
People’s Democratic Republic of Algeria Ministry of

Higher Education and Scientific Research

UNIVERSITY M’HAMED BOUGARA - BOUMERDES

Institute of Electrical and Electronic Engineering

PROjECT REPORT PRESENTED IN PARTIAL FULfILLMENT Of THE

REqUIREMENTS Of THE DEGREE Of:

‘Master’

IN COMPUTER ENGINEERING

Control and Implementation of Quadrotor
using a Raspberry PI as Ground Station

Presented by :

Nesrine ATTOUCHE

Malak BELKACEMI

Supervisor :

Dr.H. BELAIDI

Co-Supervisor :

Pr.A. NEMRA (EMP)

Promotion: 2022/2023

Abstract

As the development and utilization of Unmanned Aerial Vehicles (UAVs) continue to

grow, it becomes increasingly important to address the challenges related to their control

and performance. This master’s project aims to build a stable quadrotor’s flight con-

troller using the ESP32 microcontroller, enabling wireless guidance through a Graphical

User Interface (GUI) on Raspberry Pi. In this regard, this project provides quadrotor

modeling and simulating the Backstepping controller (BSC) approach with various sim-

ulation scenarios. Additionally, two control approaches were practically implemented .

The first approach utilizes the classical Proportional Integral Derivative (PID) technique,

while the second approach employs the modern Backstepping technique. The results ob-

tained from the project demonstrate that both control approaches exhibit satisfactory

performance and responsiveness in terms of stailizing the quadrotor when implemented in

real-world scenarios. However, it has been noticed that the Backstepping Controller can

achieve higher performance, whereas, PID performance is limited by tuning and model.

Keywords : UAVs, Quadrotor, Backstepping controllers, ESP32 microcontroller,

Raspberry Pi, GUI, Attitude controllers, PID, Implementation, prototype, wireless guid-

ance.

I

Dedication

“
We dedicate this project to our loving family, whose

unwavering support, encouragement, and sacrifices have

been the foundation of our journey. Their constant

motivation has propelled us forward. This project is a

testament to their love and belief in us,

We gratefully dedicate this work to our advisors and

mentors, whose guidance has profoundly influenced our

intellectual growth. We deeply appreciate their

commitment to our academic and personal development.,

To our friends and colleagues, thank you for being our

source of motivation, that made this academic endeavor

enjoyable.

Lastly, we dedicate this achievement to all those who strive

to advance knowledge and make a positive impact in their

respective fields.

”
II

Acknowledgement

First and foremost, we thank Allah the Almighty for granting us the courage and

patience necessary to complete this work.

We would like to express our heartfelt gratitude to our supervisor, Dr.H.BELAIDI,

for her competent assistance, patience, and encouragement. Her critical eye has been

invaluable in structuring the work and improving the quality of the various sections.

We would also like to thank our mentor, Pr.A.NEMRA, for his immense help,

and quality guidance, and for providing us with invaluable advice and information with

unmatched patience and professionalism.

We would also like to express our heartfelt gratitude to the Military Polytechnic

School EMP (Ex-ENITA) where we completed our internship. Our deepest thanks go

to the all school members who supported us during our time there.

We would like to thank Mr. A.SAIBI, for their valuable assistance, and encourage-

ment.

To the members of the jury, we sincerely thank you for the honor of taking the time

to read and evaluate this work.

We would also like to thank the pedagogical and administrative teams of IGEE for

their efforts in providing us with excellent education.

Finally, we would like to thank everyone who has contributed directly or indirectly to

the completion of this work.

III

Contents

Abstract . I

Dedication . II

Acknowledgement . III

General Introduction . 1

1 Overview of UAVs . 3

1.1 Brief History of UAVs . 4

1.2 Applications of the UAVs . 6

1.3 UAVs Limitations . 7

1.4 Classification of UAVs . 7

1.4.1 Range of Action Classification . 8

1.4.2 Aerodynamic Configuration Classification 9

1.5 Quadrotor . 10

1.5.1 Quadrotor’s Movements . 10

1.5.2 Dealing with Six-Degrees of Freedom (6 DOF) 12

1.6 Conclusion . 12

2 Modeling a Quadroter . 13

2.1 Kinematic and Dynamic Modeling . 14

2.1.1 Quadrotor Kinematic Model . 15

2.1.2 Quadrotor Dynamic Model . 17

2.2 State Space Model . 21

2.2.1 State Vector X . 21

2.2.2 Control Input Vector U . 22

2.2.3 Rotational Equation of motion in state space form 23

IV

Contents

2.2.4 Translational Equations of motion in state space form 24

2.2.5 State Space Representation . 24

2.3 Conclusion . 25

3 System Control . 26

3.1 Back-stepping Control Algorithm . 27

3.2 The Adopted Control Strategy . 27

3.2.1 Attitude and Position control . 28

3.3 Simulation of Control System . 30

3.3.1 Description of Simulation Blocks 31

3.3.2 Simulation Results . 34

3.4 Results and Discussion . 37

3.5 Conclusion . 37

4 Building and Testing a Quadrotor Prototype 38

4.1 Quadrotor’s Hardware Components . 39

4.1.1 ESP32 Discription . 41

4.1.2 Configuring the IMU (MPU6050) 41

4.1.3 Electronic Speed Controller . 44

4.1.4 Motors Control . 45

4.1.5 PCB Design . 45

4.1.6 Raspberry PI . 47

4.1.7 Wireless Graphical User interface using Raspberry PI 48

4.2 Attitude Controller . 50

4.2.1 Proportional-Integral-Derivative Controller 50

4.2.2 Hardware Test . 52

4.2.3 Results and Discussion . 54

4.3 Back-Stepping Controller . 54

4.3.1 Designing Single-Loop Controller 55

4.3.2 Hardware Test . 56

4.3.3 Results and Discussion . 58

4.4 Comparision Between PID and Back-Stepping 58

4.5 Problem Description . 59

V

Contents

4.6 Conclusion . 61

General Conclusion . 62

Appendices . 67

VI

List of Figures

1.1 Aerial bombardment of Venice in 1849[3] 4

1.2 Kettering Bug [5]. 5

1.3 Queen Bee seaplane with Prime Minister Winston Churchill [6]. 5

1.4 Applications of UAVs [11]. 7

1.5 Fixed wing UAV [16]. 9

1.6 Multirotor UAV [17]. 9

1.7 Quadrotor UAV [18] . 10

1.8 Quadrotor Mouvements [19] . 11

2.1 Quadrotor Configuration [20]. 15

2.2 The relative orientation between body-frame and inertial-frame [21]. 15

3.1 Quadrotor control strategy scheme. 28

3.2 The overall Simulink model of the Quadrotor using Backstepping. 30

3.3 Simulink Trajectory block. 31

3.4 Simulink block of position controllers. 32

3.5 Simulink block of Correction block. 33

3.6 Simulink block of Attitude controller. 33

3.7 Simulink block of Quadrotor System model. 34

3.8 Altitude/attitude of the hovering quadrotor. 35

3.9 Trajectory Tracking Results. 36

3.10 Helix trajectory in XYZ plane. 36

3.11 Error results of positions and orientations simulation. 37

4.1 Block diagram of Quadrotor prototype. 40

4.2 Circuit diagram of Quadrotor prototype. 40

4.3 Quadrotor component. 40

4.4 ESP32-DevKitC with ESP32-WROOM-32 module soldered [27]. 41

VII

List of Figures

4.5 Comparison between Accelero and Gyro readings for pitch angle 42

4.6 Flowchart of Gyro calibration. 43

4.7 Comparison between accelerator, Gyro, and complementary filter for roll

and pitch angles. 44

4.8 PWM signal of the ESC. 44

4.9 Quadrotor axis. 45

4.10 Generated motor signal . 45

4.11 PCB Design using EAGLE software. 46

4.12 PCB Design using EAGLE software. 47

4.13 Raspberry Pi 4 Model B [29]. 47

4.14 Graphical User Interface (GUI) on the Raspberry Pi. 48

4.15 Wireless communication between the ESP32 and Raspberry Pi 49

4.16 Quadrotor flight controller controlled wirelessly with Raspberry Pi GUI. . 49

4.17 The block diagram of the PID controller 50

4.18 Control strategy using PID. 51

4.19 Programming structure of attitude controller using PID. 51

4.20 Test without propellers. 52

4.21 Test with propellers. 53

4.22 PID Tunning tests for pitch mouvement. 53

4.23 Quadrotor angle pitch response with PID controller. 54

4.24 Attitude controller using the Backstepping technique. 55

4.25 Attitude controller using the backstepping technique. 56

4.26 Quadrotor Hardware Tests using Backstepping controller. 56

4.27 Unstable response of pitch angle with Backstepping 57

4.28 Stable behavior using Backstepping controller. 57

4.29 Stable response of pitch angle with Backstepping. 57

4.30 30A-72A Power Supply. 59

4.31 Losing Data from MPU6050. 60

4.32 Hardware problems. 60

0.33 ESP32 Pins chart [27]. 68

0.34 Mpu registers [30]. 69

VIII

List of Tables

3.1 Parameters of the Quadrotor . 31

3.2 Parameter Values . 34

3.3 Parameter Values . 35

4.1 The used Quadrotor components and their characteristics 39

4.2 PID Parameters for Quadrotor Control unstable state (inner loop). 53

4.3 PID Parameters for Quadrotor Control in a stable state (inner loop). . . . 53

4.4 Comparison between Backstepping and PID Controllers in Quadrotor . . . 58

0.5 Cost of Quadrotor Components. 68

IX

List of Abbreviations

6DOF Six-degrees of Freedom

BLDC Brush-Less Direct Current

BSC Back-Stepping Controller

ESC Electronic Speed Controller

ESP Espressif System

GUI Graphical User Interface

HTTP Hypertext Transfer Protocol

I²C Inter-integrated circuit

IMU Inertial Measurement Unit

IP Internet Protocol

LiPo Lithium Polymer

PCB Printed Circuit Board

PID Proportional-Integral-Derivative

PWM Pulse Width Modulation

SoC System on Chip

UAV Unmanned Areal Vehicle

VTOL Vertical Take Off and Landing

X

List of Symbols

F Net force

I Quadrotor’s inertia matrix

Kf Aerodynamic force constant

Km Aerodynamic moment constant

MB All the moments acting on the quadrotor in the body frame

MG Gyroscopic moment

Ωi Angular velocity of rotor i

R Rotation matrix

Rr Transformation matrix

m Quadrotor’s mass

re Linear position

vb Linear velocity

wb Angular velocity

ye Angular position

ϕ Roll angle

ψ Yaw angle

θ Pitch angle

XI

General Introduction

Context

Unmanned Aerial Vehicles (UAVs), popularly known as drones, have become very

popular in recent years. This remote control has caught the attention of people, businesses,

and governments around the world. Quadrotors, especially, have attracted attention with

their agility, stability, and maneuverability. The quadrotor design allows vertical take-

off and landing (VTOL) operations, making the suitable for confined spaces and rapid

deployment. A quadrotor can move through space, fly in any direction and perform precise

maneuvers, making it versatile for a variety of applications.

Motivation

The fast improvement and increasing popularity of quadrotor systems have led to

various advancements in their design, control, and applications. However, there are still

challenges and unresolved troubles that should to be addressed to fully exploit the poten-

tial of quadrotors.

One of the primary challenges is accomplishing stable flight and precise maneuverabil-

ity. Quadrotors are highly dynamic systems that require sophisticated control algorithms

to maintain stability. Thus, developing robust and efficient control strategies that can

handle uncertainties, disturbances, and varying operating conditions is crucial.

Objectives

The goal of our project is to construct a stable quadrotor based on the ESP32 as a flight

controller and guided wirelessly via a Graphical User Interface (GUI) on Raspberry PI,

1

General Introduction

and develop a dynamic model used for two control approaches. First, a classical approach

by Proportional Integral Derivative (PID), then a modern approach by the Backstepping

technique.

Report Organization

This report is organized into four chapters:

The first chapter, Overview of UAVs, provides an overview of UAVs, starting with

a brief history and discussing their applications. It explores the principles of flight that

govern quadrotor systems, highlighting their challenges. This chapter serves as a founda-

tion for understanding the fundamental concepts and terminology related to UAVs and

quadrotors.

The second chapter, Modeling a Quadrotor, delves into the modeling of quadro-

tors. It presents the mathematical models and equations that describe the dynamics and

behavior of quadrotor systems. Various factors such as aerodynamics and kinematics

are considered in developing accurate and reliable models. This chapter provides a com-

prehensive understanding of the quadrotor’s kinematics, dynamics characteristics, and

behavior.

The third chapter, System Control, focuses on simulations using MATLAB Simulink

to analyze and test the quadrotor system before actual implementation. This chapter

discusses the simulation results to validate the quadrotor model and evaluate its per-

formance. It covers topics such as controller design using Backstepping Controller and

stability analysis through simulation experiments.

The fourth chapter, Building and Testing a Quadrotor Prototype, is dedicated

to the implementation of the quadrotor using the ESP32 microcontroller as a Flight

controller and Raspberry Pi as the guidance card. It explores the hardware and software

required for building a functional quadrotor system. It also addresses the challenges and

considerations in real-world implementation.

2

Chapter 1

Overview of UAVs

3

Chapter 1. Overview of UAVs

UAVs (Unmanned Aerial Vehicles), also known as Drones, are aerial vehicles that do

not require a human operator on a board. They can be either piloted remotely or fly

autonomously using pre-programmed flight plans [1]. In this chapter, we will discuss

the historical development of UAVs, their different categories, and their configurations.

We will also examine the various areas of application, as well as their advantages and

limitations.

1.1 Brief History of UAVs

The media has recently brought attention to civil drones, leading many to believe that

they are a new technology. However, drones have been around for almost a century, with

the key difference being that today’s drones are smaller, less expensive, and more readily

accessible.

• In 1849, the earliest unmanned aerial vehicle in the history of drones was seen when

Austrian soldiers attacked the city of Venice in world war II with unmanned balloons

filled with explosives [2].

Figure 1.1: Aerial bombardment of Venice in 1849[3] .

4

Chapter 1. Overview of UAVs

• In 1917, “Charles Kettering” invented the unmanned “Kettering Aerial Torpedo”,

commonly known as the “Bug” in Ohio [4]. When the Bug reached a pre-determined

distance, the engine would stop, the wings would detach, and the Bug would fall

from the sky.

Figure 1.2: Kettering Bug [5].

• In 1935, the “De Havilland DH.82B Queen Bee” aircraft was used as a low-cost

radio-controlled drone developed for aerial target practice. It is considered by many

to be the first modern drone[4].

Figure 1.3: Queen Bee seaplane with Prime Minister Winston Churchill [6].

• In 1943, “Boeing” and the “U.S. Airforce” developed the “BQ-7”, which operated

on a crude FPV (First-Person View) system. A human pilot would fly the aircraft

5

Chapter 1. Overview of UAVs

toward the target. Once the target was in view, the autopilot was engaged, and the

pilot bailed out of the plane. The “BQ-7” would then fly to the target on its own.

• In 2010, The French drone manufacturer “Parrot” unveiled its “AR Drone”, the first

of its kind to be controllable directly from a Smartphone.

• In 2013, Amazon CEO Jeff Bezos announced that the company was considering

using drones as a delivery method. The iconic DJI Phantom 1 is released and

began the modern drone craze.

• In 2016, a Chinese Tech Company called “Ehang” develops the first fully functional

Autonomous Passenger Drone Car with a futuristic design.

• In 2020-2021, Drones have been a staple during the coronavirus outbreak, helping

with medical supply deliveries, police work in social distancing, and quarantine [7].

1.2 Applications of the UAVs

a) Firefighting: Forest fire management is the most advanced and extensively demon-

strated UAV application. The earliest detection plays a crucial role in mitigating

the damages caused by fires and enables prompt response measures to be taken.

b) Security and Surveillance: The concept of surveillance drones arises to aid the

problem of tracking humans quickly without risking more human lives in disasters

or terrorist attacks.

c) Aerial Photography and Video: Drones are transforming film and television, news,

and real estate photography. It provides numerous opportunities to capture high-

quality images and videos from angles that were previously impossible [8].

d) Surveying and Mapping: Topographic maps are essential for planning large-scale

and complex construction projects, but their production is often expensive and time-

consuming. The use of drones is highly effective in such cases as they can capture

large amounts of data in a relatively short time, resulting in significant cost [9].

e) Agriculture: Farmers and agriculturists are always looking for cheap and effective

methods to regularly monitor their crops. The infrared sensors in drones can be

6

Chapter 1. Overview of UAVs

tuned to detect crop health, enabling farmers to react and improve crop conditions

locally, with inputs of fertilizer or insecticides. It also improves management and

effectuates better yield of the crops [10].

f) Military: UAVs in military applications provide critical capabilities, such as surveil-

lance, reconnaissance, target acquisition, combat support, offensive operations, force

protection, and search and rescue.

Figure 1.4: Applications of UAVs [11].

1.3 UAVs Limitations

The use of drones offered advantages on so many levels, from commercial to personal.

However, drone systems suffer from different security, safety, and privacy issues. The

breaches of security and privacy led by drones should be addressed at the highest national

level. Moreover, there should exist a very strict approach to limit the drone’s ability to

gather images and record videos of people and properties without authorized permission

[12].

1.4 Classification of UAVs

There are different ways to classify UAVs, either according to their range of action,

Aerodynamic configuration, size, and payload or according to their levels of autonomy...etc

7

Chapter 1. Overview of UAVs

1.4.1 Range of Action Classification

UAVs can be classified into 7 different categories based on their maximum altitude,

endurance, and sizes ranging from larger drones to micro drones as follows:

a) High-Altitude Long-Endurance (HALE): These drones are capable of flying at high

altitudes (above 60,000 feet) for extended periods (over 24 hours) and are typically

used for surveillance and reconnaissance missions [13].

b) Medium-Altitude Long-Endurance (MALE): These drones are similar to HALE

UAVs but can operate at lower altitudes (between 10,000 and 45,000 feet) for shorter

periods (around 24 hours). They are also used for surveillance and reconnaissance

missions[14].

c) Medium-Range or Tactical UAV (TUAV): These drones are used for military oper-

ations and can operate at medium to low altitudes (between 50 and 18,000 feet) for

shorter periods (up to 12 hours). They are designed for reconnaissance, surveillance,

and target acquisition.

d) Close-Range UAVs: These drones are lightweight and typically used for civilian and

commercial applications such as photography, mapping, and inspections. They can

fly at low to medium altitudes (between 50 and 500 feet) for short periods (up to 1

hour).

e) Mini UAV (MUAV): These can carry out their missions with a low endurance (30mn)

within a range of up to 10km. They are intended primarily for intelligence gath-

ering in close combat. Their vertical take-off and landing capability makes their

application considerable in congested environments.

f) Micro UAV (MAV): These are the smallest drones and can be used for indoor and

outdoor operations. They are typically used for close-range surveillance, inspection,

and reconnaissance missions.

g) Nano-Air Vehicles (NAV): they have a small size of about 10 mm. They are mainly

used in swarms for applications such as radar confusion in hard-to-reach places [15].

8

Chapter 1. Overview of UAVs

1.4.2 Aerodynamic Configuration Classification

UAVs can be classified into two main categories based on their aerodynamic configu-

ration as follows:

a) Fixed-wing UAVs: require a runway to take off and land. They can fly for a long

time and at high cruising speeds. They are mainly used in scientific applications

such as meteorological reconnaissance and environmental monitoring.

Figure 1.5: Fixed wing UAV [16].

b) Rotary-wing UAVs: an unmanned aerial vehicle that utilizes rotating blades or

rotors to generate lift and control their flight. Unlike fixed-wing UAVs, rotary-wing

UAVs can achieve vertical takeoff and landing (VTOL) and hover in a stationary

position.

Figure 1.6: Multirotor UAV [17].

9

Chapter 1. Overview of UAVs

1.5 Quadrotor

In our project, we are particularly interested in Quadrotors which have been increas-

ingly used as a preferred unmanned aerial vehicle (UAV) platform for indoor applications

due to their ease of maintenance, high maneuverability, vertical takeoff, and landing ca-

pabilities.

A Quadrotor, also known as a quadcopter, is a type of multirotor that is powered by

four rotors, each rotor consists of a motor and a propeller that generate vertical lift and

control the vehicle’s movement.

Figure 1.7: Quadrotor UAV [18] .

1.5.1 Quadrotor’s Movements

Quadrotors consist of four actuators that are individually controlled to produce a

relative thrust. Two of the rotors rotate clockwise, and the other two rotors rotate in a

counter-clockwise direction.

By varying the speed and direction of rotation of these rotors, the quadrotor can gen-

erate thrust in different directions, enabling it to move in various ways. The quadrotor’s

movement can be described in four basic movements:

a) Throttle Movement :

This command is provided by increasing (or decreasing) all the propeller speeds by

the same amount. It leads to a vertical force that raises or lowers the quadrotor.

10

Chapter 1. Overview of UAVs

b) Roll Movement (φ) :

This command is provided by increasing (or decreasing) the left propeller speed and

by decreasing (or increasing) the right one. The motion in the ’x’ simply describes

the quadrotor moving sideways.

c) Pitch Movement (θ) :

This command is very similar to the roll and is provided by increasing (or decreasing)

the rear propeller speed and by decreasing (or increasing) the front one. The motion

in the ’y’ describes the quadrotor moving forward/backward.

d) Yaw Movement (ψ) :

This command is provided by increasing (or decreasing) the front-rear propellers’

speed and by decreasing (or increasing) that of the left-right couple. The motion in

the ’z’ direction describes the quadrotor turning left/right.

Figure 1.8: Quadrotor Mouvements [19] .

11

Chapter 1. Overview of UAVs

1.5.2 Dealing with Six-Degrees of Freedom (6 DOF)

Controlling a quadrotor can be challenging due to its six degrees of freedom and the

fact that it relies on only four independent rotor commands, which means there is an

inherent coupling between the different movements. This coupling creates complexities

in controlling the quadrotor precisely. When a command is given to change one specific

movement, it can affect other movements as well.

1.6 Conclusion

Drone technology is an important part of the future and is set to become a big com-

mercial industry and an exciting field in the world of aviation. Drones have the potential

to become a vital part of society. Quadrotors are the most stable and easy to be designed

and implemented kind of drone. Thus, the mathematical and dynamic modeling of the

quadrotor is discussed in the next chapter.

12

Chapter 2

Modeling a Quadroter

13

Chapter 2. Modeling a Quadroter

In order to design a flight controller, we must understand the different motions of a

quadrotor and its dynamic equations to ensure that simulations of quadrotor behavior

are closer than possible to reality.

In this chapter, we focus on mathematically modeling the dynamics of a quadrotor

using Newton’s equations of motion. We start by introducing the reference points that

are needed to express the orientation and position of the quadrotor, as well as the physical

quantities required for modeling. Finally, we examine all the forces and moments that

affect the quadrotor model.

2.1 Kinematic and Dynamic Modeling

A mathematical model has been developed by using the kinematics and dynamics of

a quadrotor.

Before jumping into the mathematical model equations, certain assumptions should

be defined in order to go further in the theory:

• Quadrotor has a rigid body with no moving parts except rotor blades;

• Quadrotor structure is symmetric about the x and y-axis;

• Rotors are placed at an equal distance from the center of mass;

• Fixed propellers have been used;

• The drag forces and drag moments are neglected ;

Another important aspect of the mathematical model is the coordinate system used

which will vary whether a plus “+” or “X” configuration is presented. In our modeling,

we opt for the “X” configuration as illustrated in figure 2.1.

14

Chapter 2. Modeling a Quadroter

Figure 2.1: Quadrotor Configuration [20].

2.1.1 Quadrotor Kinematic Model

To describe the motion of a 6 DOF rigid body it is usual to define two reference frames

:

• The Earth inertial frame (E-Frame);

• The Body-fixed frame (B-Frame).

Figure 2.2: The relative orientation between body-frame and inertial-frame [21].

The linear position re of the quadrotor is determined by the coordinates of the vector

between the origin of the B-frame and the origin of the E-frame with respect to the

E-frame according to the equation:

15

Chapter 2. Modeling a Quadroter

re =


x

y

z

 (2.1)

The angular position (or attitude) ye of the quadrotor is defined by the orientation of

the B-frame with respect to the E-frame.

ye =


φ

θ

ψ

 (2.2)

The body-fixed frame is fixed with a quadrotor. The linear velocity vb, the angular

velocity wb [rad/s], are defined in this frame according to those equations:

vb =


u

v

w

 (2.3)

wb =


p

q

r

 (2.4)

To relate the position of the quadcopter in the E-frame to its velocity in B-frame, we

use a rotation matrix R. This rotation matrix, denoted as R, is obtained by multiplying

the three fundamental rotation matrices together.

R(ϕ) =


1 0 0

0 cos(ϕ) − sin(ϕ)

0 sin(ϕ) cos(ϕ)

 R(θ) =


cos(θ) 0 − sin(θ)

0 1 0

sin(θ) 0 cos(θ)

 R(ψ) =


cos(ψ) − sin(ψ) 0

sin(ψ) cos(ψ) 0

0 0 1


The multiplication of the three matrices gives the complete rotational matrix:

R =


c(θ)c(ψ) s(θ)s(ψ) −s(θ)

−c(ϕ)s(ψ) + s(ϕ)s(θ)c(ψ) c(ϕ)c(ψ) + s(ϕ)s(θ)s(ψ) c(θ)s(ϕ)

s(ψ)s(ϕ) + c(ψ)s(ϕ)s(θ) −s(ϕ)s(ψ) + c(ϕ)s(ψ)s(θ) c(θ)c(ϕ)

 (2.5)

16

Chapter 2. Modeling a Quadroter

Where : c(x) = cos(x), s(x) = sin(x).

To link between y′e that is measured in the inertial frame and angular body rates wb. The

following transformation is needed:

wb = Rry
′
e (2.6)

Rr =


1 0 −sin(θ)

0 cos(ϕ) sin(ϕ)cos(θ)

0 −sin(ϕ) cos(ϕ)cos(θ)

 (2.7)

Around the hover position, we can simplify the equation by assuming a small angle,

such that: cos(ϕ) ≈ cos(θ) ≈ 1, and sin(ϕ) ≈ sin(θ) ≈ 0. Thus Rr can be simplified to

an identity matrix I [22].

2.1.2 Quadrotor Dynamic Model

Dynamics is a branch of mechanics that studies the effects of forces and torques on the

motion of a body or system of bodies. There are several techniques that can be used to

derive the equations of a rigid body, but in general, there are two methods for determining

the equations of motion of a quadrotor:

• Newton-Euler formulation;

• Euler-Lagrange formulation.

The Newton-Euler dynamic model is the preferable choice for quad-copters with many

degrees of freedom [23]. The advantage of this model is that it produces a model recur-

sively which is generally faster in calculation and command. To simplify the modeling,

the Newton-Euler approach is used.

The Newton-Euler equation can be expressed as [24] :f
T

 =

mI O3

O3 I3

a
α

+

 0

w + I3w

 (2.8)

I =


Ixx 0 0

0 Iyy 0

0 0 Izz

 (2.9)

17

Chapter 2. Modeling a Quadroter

Where:

f : the net force acting on the quadrotor

T : the net torque

I: 3×3 identity matrix

m: the quadrotor mass.

a: the linear acceleration of the center of mass.

α : the angular acceleration.

Ixx, Iyy,Izz: the area moments of inertia about the principal axes in the b-frame.

The motion of the quadrotor can be split into two subsystems: the rotational sub-

system, which includes (roll, pitch, and yaw) , and the translational subsystem, which

involves (altitude, x position, and y position). The rotational subsystem is fully actuated

whereas the translational subsystem is underactuated.

1. Rotational Equation of Motion

The rotational equation of the quadrotor, based on the Newton-Euler method,

is derived from the body frame of the quadcopter using the following formalism:

MB =MG + Iw′
b + wb×Iwb (2.10)

Where:

I: Quadrotor inertia Matrix.

wb: Angular velocity.

MG: Gyroscopic moments due to rotors’ inertia.

MB: All the moments acting on the quadcopter in its body frame.

Moments Acting on the Quadrotor (MB)

Each rotor in the quadrotor creates an upward thrust force and generates a

moment with the direction opposite to the direction of rotation of the corresponding

rotor i.

fi = kf · Ω2
i (2.11)

Mi = km · Ω2
i (2.12)

18

Chapter 2. Modeling a Quadroter

Where:

kf and km are the aerodynamic force and moment constants respectively.

Ωi is the angular velocity of rotor i.

we will express the moment about each axis as follows:

The total moment about the x-axis can be expressed as:

Mx = f1l − f2l − f3l + f4l = (kfΩ
2
1)l − (kfΩ

2
2)l − (kfΩ

2
3)l + (kfΩ

2
4)l (2.13)

Mx = lkf (Ω
2
1 − Ω2

2 − Ω2
3 + Ω2

4) (2.14)

The total moment about the y-axis can be expressed as:

My = f1l − f2l + f3l − f4l = (kfΩ
2
1)l − (kfΩ

2
2)l + (kfΩ

2
3)l − (kfΩ

2
4)l (2.15)

My = lkf (Ω
2
1 − Ω2

2 + Ω2
3 − Ω2

4) (2.16)

The total moment about the z-axis can be written as:

Mz =M1 +M2 −M3 −M4 (2.17)

Mz = km(Ω
2
1 + Ω2

2 − Ω2
3 − Ω2

4) (2.18)

By combining the equations (2.14),(2.16) and (2.18) we can get:

MB =


lkf (Ω

2
1 − Ω2

2 − Ω2
3 + Ω2

4)

lkf (Ω
2
1 − Ω2

2 + Ω2
3 − Ω2

4)

km(Ω
2
1 + Ω2

2 − Ω2
3 − Ω2

4)

 (2.19)

Where:

l: The length from the center of the quadrotor to any of the propellers.

Diagonal Inertia Matrix (I)

The quadrotor’s inertia matrix is structured as diagonal matrix, its diagonal

elements are Ixx,Iyy and Izz, which represents the mass moments of inertia about

the principal axes in the body frame.

I =


Ixx 0 0

0 Iyy 0

0 0 Izz

 (2.20)

19

Chapter 2. Modeling a Quadroter

Gyroscopic Moment (MG)

The gyroscopic effect is exhibited by a rotor when an external force is applied

to change its orientation. The gyroscopic moments are defined as follows:

MG = wb×


0

0

JrΩr

 (2.21)

Where:

Jr: Inertia of rotors

Ωr: rotors’ relative Speed

Ωr = −Ω1 + Ω2 − Ω3 + Ω4

2. Translational Equations of Motion

The quadrotor’s translation equation of motion by using Earth’s frame and

Newton’s second rule is :

mre =


0

0

mg

+RFb (2.22)

where:

m: quadrotor’s mass.

g: gravitational acceleration g = 9.81m/s2.

R: Rotational matrix.

re: linear position of quadrotor.

Fb: non-gravitational forces acting on the quadrotor.

Non-gravitational Force (Fb)

The non-gravitational force is the thrust force acting on the quadcopter in the

vertical direction (there is no rolling or pitching).It can be expressed as follows:

20

Chapter 2. Modeling a Quadroter

Fb =


0

0

−kf (Ω2
1 + Ω2

2 + Ω2
3 + Ω2

4)

 (2.23)

2.2 State Space Model

This section focuses on discussing the mathematical equations of motion presented in

a state space representation, and this will help to control the quadrotor.

2.2.1 State Vector X

Due to the quadrotor’s six degrees of freedom, a state vector is required to represent

its position in space, as well as its angular and linear velocities. It will include twelve

elements given in those equations:

X =



φ

φ′

θ

θ′

ψ

ψ′

z

z′

x

x′

y

y′



(2.24)

21

Chapter 2. Modeling a Quadroter

X =



x1

x2

x3

x4

x5

x6

x7

x8

x9

x10

x11

x12



(2.25)

2.2.2 Control Input Vector U

The control vector U consisting of the control inputs U1 through U4 is defined to be:

U =


U1

U2

U3

U4

 (2.26)

Where:

U1 = kf (Ω
2
1 + Ω2

2 + Ω2
3 + Ω2

4) (2.27)

U2 = kf (Ω
2
1 − Ω2

2 − Ω2
3 + Ω2

4) (2.28)

U3 = kf (Ω
2
1 − Ω2

2 + Ω2
3 − Ω2

4) (2.29)

U4 = km(Ω
2
1 + Ω2

2 − Ω2
3 − Ω2

4) (2.30)

The equations (2.27) to (2.30) can be expressed in matrix form as:


U1

U2

U3

U4

 =


Kf Kf Kf Kf

Kf −Kf −Kf Kf

Kf −Kf Kf −Kf

Km Km −Km −Km




Ω2

1

Ω2
2

Ω2
3

Ω2
4

 (2.31)

22

Chapter 2. Modeling a Quadroter

The control input can be used to calculate the velocity of the rotor using the following

equation: 
Ω2

1

Ω2
2

Ω2
3

Ω2
4

 =


1

4Kf

1
2Kf

1
2Kf

1
4Km

1
4Kf

− 1
2Kf

− 1
2Kf

1
4Km

1
4Kf

− 1
2Kf

1
2Kf

− 1
4Km

1
4Kf

1
2Kf

− 1
2Kf

− 1
4Km




U1

U2

U3

U4

 (2.32)

The calculation of the rotors’ velocities from the control inputs can be expressed as :

Ω1 =

√
1

4Kf

U1 +
1

2Kf

U2 +
1

2Kf

U3 +
1

4Km

U4 (2.33)

Ω2 =

√
1

4Kf

U1 −
1

2Kf

U2 −
1

2Kf

U3 +
1

4Km

U4 (2.34)

Ω3 =

√
1

4Kf

U1 −
1

2Kf

U2 +
1

2Kf

U3 −
1

4Km

U4 (2.35)

Ω4 =

√
1

4Kf

U1 +
1

2Kf

U2 −
1

2Kf

U3 −
1

4Km

U4 (2.36)

2.2.3 Rotational Equation of motion in state space form

The equation describing the total moments acting on the quadcopter body becomes:

MB =


lU2

lU3

U4

 (2.37)

By utilizing equations (2.10) and (2.37), the angular accelerations can be expressed

as follows:

φ" = l

Ixx
U2 −

Jr
Ixx

θ′Ωr +
Iyy − Izz
Ixx

θ′ψ′ (2.38)

θ" = l

Iyy
U3 −

Jr
Iyy

φ′Ωr +
Izz − Ixx
Iyy

φ′ψ′ (2.39)

ψ" = 1

Izz
U4 +

Ixx − Iyy
Izz

φ′θ′ (2.40)

To simplify equations (2.38) to (2.40), the inertia terms are written as:

a1 =
Iyy − Izz
Ixx

a2 =
Jr
Ixx

a3 =
Izz − Ixx
Iyy

23

Chapter 2. Modeling a Quadroter

a4 =
Jr
Iyy

a5 =
Ixx − Iyy
Izz

b1 =
l

Ixx
b2 =

l

Iyy
b3 =

1

Izz

Equations (2.38) through (2.40) can be rewritten in a simple form in terms of the system

states as:

φ" = b1U2 − a2x4Ωr + a1x4x6 (2.41)

θ" = b2U3 − a4x2Ωr + a3x2x6 (2.42)

ψ" = b3U4 + a5x2x4 (2.43)

2.2.4 Translational Equations of motion in state space form

The equation of the upward force acting on the quadrotor becames:

Fb =


0

0

−U1

 (2.44)

By expanding equations (2.22),(2.23), and (2.44), the accelerations can be expressed

as follows [22]:

x′′ = −U1

m
(sinφ sinψ + cosφ cosψ sin θ) (2.45)

y′′ = −U1

m
(sin θ sinψ cosφ− sinφ cosψ) (2.46)

z′′ = −g + U1

m
(cosφ cos θ) (2.47)

Rewriting in terms of the state variable X:

x′′ = −U1

m
(sinx1 sinx5 + cosx1 cosx5 sinx3) (2.48)

y′′ = −U1

m
(sinx3 sinx5 cosx1 − sinx1 cosx5) (2.49)

z′′ = −g + U1

m
(cosx1 cosx3) (2.50)

2.2.5 State Space Representation

By incorporating the rotational angular acceleration equations (2.40) to (2.42), and the

translation equations (2.44) to (2.46), the complete mathematical model of the quadrotor

24

Chapter 2. Modeling a Quadroter

can be represented in a state space form as follows:

x′1 = φ′ = x2

x′2 = φ" = b1U2 − a2x4Ωr + a1x4x6

x′3 = θ′ = x4

x′4 = θ" = b2U3 − a4x2Ωr + a3x2x6

x′5 = ψ′ = x6

x′6 = ψ" = b3U4 + a5x2x4

x′7 = z′ = x8

x′8 = z" = g − U1

m
(cosx1 cosx3)

x′9 = x′ = x10

x′10 = x" = −U1

m
(sinx1 sinx5 + cosx1 cosx5 sinx3)

x′11 = y′ = x12

x′12 = y" = −U1

m
(sinx3 sinx5 cosx1 − sinx1 cosx5)

(2.51)

Whereas: Ux = sinx1 sinx5 + cosx1 cosx5 sinx3

Uy = sinx3 sinx5 cosx1 − sinx1 cosx5

2.3 Conclusion

In this chapter, the main focus was on the modeling of a quadrotor. We delved

into the dynamics of a quadrotor system and discussed the mathematical models used

to represent its motion and behavior. Through the exploration of fundamental concepts

such as kinematics, dynamics, and control, we have established a strong basis in quadrotor

technology.

25

Chapter 3

System Control

26

Chapter 3. System Control

In this chapter, we are interesting in the controller design for the modeled Quadrotor

which is an underactuated, and highly nonlinear system. To address the control challenges,

we intend to utilize the backstepping control technique as our chosen controller for the

quadrotor system.

3.1 Back-stepping Control Algorithm

Backstepping is a control methodology used to design control laws for systems with

nonlinear dynamics. It is particularly useful for systems with high levels of uncertainty or

complexity. The backstepping approach involves dividing the system into subsystems and

designing controllers for each subsystem. This design is based on the derived state vector

equations and relies on Lyapunov’s theory (particularly Lyapunov’s second method).

In the context of quadrotor control, backstepping can be used to develop control laws

for both the orientation (φ, θ, ψ) and position (x, y, z) subsystems.

3.2 The Adopted Control Strategy

In this section, we have proposed a control strategy for the Quadrotor based on two

loops (outer and inner loops). The inner loop contains attitude control laws for the roll,

pitch, and yaw control. The outer loop contains controllers for the x,y, and z positions.

The output of the outer loop is injected into a block called « Correction block » which is

introduced to generate the desired roll and pitch angles. Figure 3.1 presents the scheme

that illustrates the adopted strategy.

27

Chapter 3. System Control

Figure 3.1: Quadrotor control strategy scheme.

3.2.1 Attitude and Position control

We start by using the first two variables of the state vector which are the roll angle

and its derivative, we get: x
′
1 = x2

x′2 = x4x6a1 − a2Ωrx4 + b1U2

(3.1)

The synthesis of the roll command U2 is done in two stages :

Step 1 :

We take the first equation:

x′1 = x2 (3.2)

We define the error ε1 between the desired and the measured roll angle.

ε1 = xd1 − x1 (3.3)

ε′1 = (xd1)
′ − x2 (3.4)

The error ε1 must asymptotically converge towards zero, this definition explicitly indicates

our command objective. We choose the first candidate Lyapunov function of the following

form:

V1 =
1

2
ε21 (3.5)

28

Chapter 3. System Control

Where V1 is computed as follows:

V ′
1 = ε1(ε1)

′ = ε1((x
d
1)

′ − x2) (3.6)

To ensure stability, it is necessary that V ′
1≤0 ; for that we take as a virtual command xd2

with:

xd2 = (xd1)
′ + k1ε1 where k1 > 0 (3.7)

Step 2 :

As the virtual control cannot instantly take its desired value, we seek in what follows

to stabilize the error between the virtual control and the stabilizing function.

ε2 = xd2 − x2 (3.8)

ε2 = (xd1)
′ + k1ε1 − x2 (3.9)

so :

V2 = V1 +
1

2
ε22 (3.10)

(V2)
′ = (V1)

′ + ε2(ε2)
′ = −ε1ε2 − k1ε

2
1 + ε2(x2)

′ − (xd1)
′′ − k1(ε1)

′ (3.11)

The first Lyapunov function is added to a quadratic term of the second error variable ε2
to get a second Lyapunov function V2.

V2 = k1ε
2
1 + k2ε

2
2 where k2 > 0 (3.12)

V ′
2 = V ′

1 + ε2ε
′
2 = −ε1ε2 − k1ε

2
1 + ε2(x

′
2 − xd1" − k1ε

′
1) (3.13)

The control input U2 that ensures V ′
2=-k1ε

2
1 − k2ε

2
2 is given by :

U2 =
1

b1
((xd1)

′′ − x4x6a1 − a2Ωrx4 + b1U2 + k1(ε2 − k1ε1) + ε1 + k2ε2) (3.14)

The term k2ε2 with k2 > 0 is added to stabilize ε2.

U3, U4, U1, Ux, and Uy are calculated in the same way.

U3 =
1

b2
((xd3)

′′ − x2x6a3 − a4Ωrx2 + k3(ε4 − k3ε3) + ε3 + k4ε4) (3.15)

U4 =
1

b3
((xd5)

′′ − x2x4a5 + k5(ε6 − k5ε5) + ε5 + k6ε6) (3.16)

U1 =
m

cos(x1) cos(x3)
(−ε7 + g − k7x7 + k8ε8) (3.17)

Ux =
m

U1

((xd9)
′′ + k9(ε10 − k9ε9) + ε9 + k10ε10) (3.18)

Uy =
m

U1

((xd11)
′′ + k11(ε12 − k11ε11) + ε11 + k12ε12) (3.19)

29

Chapter 3. System Control

3.3 Simulation of Control System

In this section, the overall block diagram of the backstepping approach using Matlab

Simulink is presented in figure 3.2, to be used for control algorithm development and

verification, before working with a real experimental system.

Figure 3.2: The overall Simulink model of the Quadrotor using Backstepping.

30

Chapter 3. System Control

Table 3.1: Parameters of the Quadrotor

Parameter Value Units

g 9.81 m/s2

m 0.5 kg

l 0.2 m

Ixx 2.510−4 kg · m2

Iyy 2.3210−4 kg · m2

Izz 3.73810−4 kg · m2

3.3.1 Description of Simulation Blocks

In this section, we will cover the simulation blocks used to control a quadrotor’s

behavior. We will explain each block’s function, equations, and inputs/outputs, how they

contribute to the overall control of the quadrotor, and how these blocks work together to

achieve stable and precise control.

a) Trajectory Block: It takes as inputs x, y, z and ψ angle to generate the desired

trajectory for the quadrotor to follow, which can be specified using mathematical

functions or a set of waypoints. The output of this block shown in figure 3.3, is

the desired position and yaw orientation of the quadrotor, which are then used as

inputs for the ”Position Controller” block.

Figure 3.3: Simulink Trajectory block.

31

Chapter 3. System Control

b) Position Controller Block: Responsible for implementing the control algorithm

to track the desired position of the quadrotor generated by the “Trajectory Desired”

block. In our model shown in figure 3.4, two separate position controllers are used,

one for the x and y directions and another for the z direction. The equations

implemented on those blocks are eqs (3.18), and (3.19) for x and y to provide the

virtual commands Ux and Uy respectively, and eq (3.17) for U1.

Figure 3.4: Simulink block of position controllers.

c) Correction Block: Uses the commands generated from the position controllers

(Ux,Uy, and U1) and ψd to compute the desired orientation of the quadrotor (see

figure 3.5). The outputs are then used as inputs for the “Attitude Controller” block.

This approach allows the desired angles to be calculated from the equations below

[25] without directly specifying them, which can simplify the control design.
φd = arcsin

m · Ux · sin(ψd)− Uy · cos(ψd)√
U2
x + U2

y + U2
1


θd = arctan

(
Ux · cos(ψd) + Uy · sin(ψd)

U1 + g

)

32

Chapter 3. System Control

Figure 3.5: Simulink block of Correction block.

d) Attitude Controller: This block given in figure 3.6 implements a control algo-

rithm to track the desired orientation. The outputs generated by this block are

the U2, U3, and U4 which are implemented using the eqs (3.14), (3.15), and (3.16)

respectively.

Figure 3.6: Simulink block of Attitude controller.

e) Quadrotor System Model: This block describes the equations of motion for

our quadrotor. The equations implemented in this block are based on Newton’s

laws and the principles of rigid body dynamics. The output of this block is the

current position and orientation as illustrated in figure 3.7, which is fed back to the

”Position Controller” and ”Attitude Controller” blocks.

33

Chapter 3. System Control

Figure 3.7: Simulink block of Quadrotor System model.

3.3.2 Simulation Results

Altitude /Attitude Stabilization

The control objectives were to achieve and maintain a desired altitude/attitude, al-

lowing the quadrotor to hover steadily at a fixed point. The desired altitude/attitude was

specified as [zd, φd, θd, ψd] = [1, 0, 0, 0]T .The parameters given in Table 3.2 is used.

Table 3.2: Parameter Values

Parameter k1 k2 k3 k4 k5 k6

Value 18 14 15 19 16 17

34

Chapter 3. System Control

Figure 3.8: Altitude/attitude of the hovering quadrotor.

Trajectory Tracking

In this section, we present the simulation results for trajectory tracking by the quadro-

tor system, using the parameter of tables 3.2 and 3.3. The final simulation time is set to

tfinal = 100s. The desired trajectory is chosen to be a helix shape given by:



xd(t) = 8 cos(1
2
t)

yd(t) = 8 sin(1
2
t)

zd(t) = 0.2t

Ψd = 0

(3.20)

Table 3.3: Parameter Values

Parameter k7 k8 k9 k10 k11 k12

Value 4 3 10 10 9 11

35

Chapter 3. System Control

Figure 3.9: Trajectory Tracking Results.

Figure 3.10: Helix trajectory in XYZ plane.

36

Chapter 3. System Control

Figure 3.11: Error results of positions and orientations simulation.

3.4 Results and Discussion

The results of the simulations are shown in figures 3.8 to 3.11. From figure 3.8 it can

be observed that the altitude/attitude of the quadrotor can be maintained at the desired

altitude/attitude, that is, the hovering flight is stable. figure 3.9 reveals the maximum

overshoots obtained for roll, pitch, and yaw angles. The values of 18.40°, -17.91°, and

0.08° respectively, indicate that there is a slight deviation from the desired angles during

the start time of simulations. From figure 3.10 the graph demonstrates the quadrotor’s

ability to track a predefined trajectory (Helix) over time. Initially, the quadrotor exhibits

some deviations from the desired trajectory. However, as the simulation progresses, we

observe a gradual reduction in the deviation, indicating an improvement in trajectory

tracking. Overall, the simulation results using the back-stepping algorithm demonstrate

the quadrotor system’s ability to maintain stable hovering flight, achieve desired positions

and angles with acceptable overshoots, and effectively track predefined trajectories. Fur-

thermore, the errors graph in figure 3.11 showcases a consistent convergence toward zero

as the simulation progresses. The quadrotor starts at certain positions and angles, but

over time, it gradually approaches zero.

3.5 Conclusion

In this chapter, we focused on the stabilization of a quadrotor using the backstepping

control strategy. The objective was to ensure system stability and demonstrate the effec-

tiveness of this approach. The simulation results demonstrated a high level of reliability,

with a very short and precise response time. All these advantages prove the robustness

of the backstepping command.

37

Chapter 4

Building and Testing a Quadrotor

Prototype

38

Chapter 4. Building and Testing a Quadrotor Prototype

The implementation focuses on the practical aspects of building and operating a

quadrotor system. In this chapter, we delve into the details of assembling the hard-

ware components, configuring the software, and conducting experiments to validate the

functionality and performance of the quadrotor.

4.1 Quadrotor’s Hardware Components

We will group the components into three categories: flight control system, powertrain,

and wireless ground station.

1. The Flight Control System: including the ESP32 microcontroller and IMU

sensor.

2. Wireless Ground Station: we will use Raspberry Pi to send commands and

instructions to the ESP32 and recieve data using a Graphical User interface (GUI).

3. The Power-Train: is the high-current part of the quadrotor. It is powered by a

battery, which supplies electrical current to the electronic speed controllers (ESCs).

Each ESC converts the current into pulses, with pulse length determined by the

microcontroller’s motor commands. The characteristics of these modules are sum-

marized in Table 4.1. These modules are connected as illustrated in figure 4.1,figure

4.2 and figure 4.3.

Table 4.1: The used Quadrotor components and their characteristics

Powertrain Flight Controller

(×4) BLDC Motors 1000Kv (×1) ESP32 Microcontroller

(×4) Propellers 1045 (×1) MPU6050 GY-521

(×4) Electronic Speed Controller (ESC) 30A

(×1) Lipo Battery 2200mAH

Wireless Ground Station

Raspberry PI 4 Model b 8GB

39

Chapter 4. Building and Testing a Quadrotor Prototype

Figure 4.1: Block diagram of Quadrotor prototype.

Figure 4.2: Circuit diagram of Quadrotor prototype.

Figure 4.3: Quadrotor component.

40

Chapter 4. Building and Testing a Quadrotor Prototype

4.1.1 ESP32 Discription

The ESP32 is a highly integrated system-on-chip (SoC) that combines a microcon-

troller unit (MCU) with a Wi-Fi and Bluetooth radio. It features a dual-core processor,

ample memory, various peripherals, and built-in connectivity options, making it suitable

for a wide range of applications [26]. The board used in our project is ESP32 Development

Kit (ESP32 DevKitC) shown in figure 4.4.

Figure 4.4: ESP32-DevKitC with ESP32-WROOM-32 module soldered [27].

4.1.2 Configuring the IMU (MPU6050)

For our project, the flight controller Board was paired with an MPU6050 IMU break-

out board. The communication between them is done through standard I2C protocol.

The MPU6050 GY-521 will be used, which incorporates both a gyroscope and an ac-

celerometer, Where the gyroscope provides precise angular rate measurements, allowing

us to accurately determine rotational movements.

On the other hand, the accelerometer measures linear acceleration, enabling to detect

changes in orientations. we used those equations tocalculates the angles in degrees from

the accelerometer :

AngleRoll = arctan

(
AccY√

AccX2 + AccZ2

)
1

π
(4.1)

AnglePitch = − arctan

(
AccX√

AccY2 + AccZ2

)
1

π
(4.2)

41

Chapter 4. Building and Testing a Quadrotor Prototype

where AccX,AccY and AccZ are the accelerations readings around x, y and z axis respec-

tively.

Despite their advantages, both the gyroscope and accelerometer have some limitations.

Gyroscopes are susceptible to drift over time, causing small errors to accumulate and

leading to inaccurate orientation estimation. Accelerometers can be sensitive to external

vibrations and noise, affecting their ability to measure true acceleration as illustrated in

figure 4.5.

Figure 4.5: Comparison between Accelero and Gyro readings for pitch angle .

From figure 4.5, we can see that accelerometer provides instantaneous measurements

of the pitch angle. The sharp peaks in the accelerometer signal suggest rapid variations

in acceleration. In contrast, gyroscope readings are prone to drift, meaning that their

measurement tends to gradually deviate from the true values over time. As a result, con-

tinuous re-calibration or correction is often required to maintain accurate measurements.

Gyro calibration involves determining and compensating for any biases or drifts in the

sensor readings. The calibration process is explained in the flowchart given in figure 4.6.

42

Chapter 4. Building and Testing a Quadrotor Prototype

Figure 4.6: Flowchart of Gyro calibration.

Complementary Filter

To further enhance the accuracy and stability of our sensor data, a complementary

filter is used. The complementary filter combines the outputs of the gyroscope and ac-

celerometer, leveraging their respective strengths while compensating for their weaknesses.

This filtering algorithm allows us to obtain a reliable and robust estimation of the device’s

orientation.

OutputAngle = α · GyroAngle + (1− α) · AcceleroAngle

For our quadrotor, a factor of 0.8 was assigned to the gyroscope data, while a factor

of 0.2 was assigned to the accelerometer data. Some comparison results are illustrated in

figure 4.7.

43

Chapter 4. Building and Testing a Quadrotor Prototype

Figure 4.7: Comparison between accelerator, Gyro, and complementary filter for roll and

pitch angles.

4.1.3 Electronic Speed Controller

The ESC acts as an intermediary between the flight controller and the motor. It

receives commands from the control source, typically in the form of a Pulse width Mod-

ulation (PWM) signal, and translates them into appropriate power levels for the motor.

The standard PWM range for controlling the motor speed of an ESC is commonly defined

as 1000 to 2000 microseconds (µs) as shown in figure 4.8.

Figure 4.8: PWM signal of the ESC.

44

Chapter 4. Building and Testing a Quadrotor Prototype

4.1.4 Motors Control

According to our MPU position as shown in figure 4.9, motor control signals are

generated. This process ensures the quadrotor’s movements based on the information

provided by the sensor. We describe all movements as a linear combination of each other,

for all motor outputs as shown in figure 4.10.

Figure 4.9: Quadrotor axis.

Figure 4.10: Generated motor signal .

4.1.5 PCB Design

Recognizing the need to simplify the connections between the components, specifically

the ESP32, MPU 6050, and motors, we decided to leverage the power of Printed Circuit

Boards (PCBs) shown in figure 4.11.

45

Chapter 4. Building and Testing a Quadrotor Prototype

By designing and incorporating a PCB interface, we have significantly reduced the

complexity of our wiring setup while enhancing overall system efficiency. We utilized the

software called Eagle for designing our board. Eagle is a powerful and versatile tool that

offers comprehensive features for creating professional-grade printed circuit boards. The

overall circuit of the PCB design is shown in figure 4.12.

Figure 4.11: PCB Design using EAGLE software.

46

Chapter 4. Building and Testing a Quadrotor Prototype

Figure 4.12: PCB Design using EAGLE software.

4.1.6 Raspberry PI

The Raspberry Pi is a series of small, single-board computers developed by the Rasp-

berry Pi Foundation. It features a low-power ARM-based processor, memory, storage,

and a range of connectivity options, all integrated onto a single board. It runs on a

Linux-based operating system and supports a wide range of software tools and libraries

[28]. In our project, we will use the Raspberry Pi 4 Model B as shown in figure 4.13.

Figure 4.13: Raspberry Pi 4 Model B [29].

47

Chapter 4. Building and Testing a Quadrotor Prototype

4.1.7 Wireless Graphical User interface using Raspberry PI

To take advantage of the WiFi capability of the ESP32, we aim to establish a wireless

connection between the ESP32 and a Raspberry Pi. This connection allows us to transmit

commands from the Raspberry Pi to the ESP32 wirelessly and to recieve sensor readings.

To facilitate this communication, we intend to develop a graphical user interface (GUI)

on the Raspberry Pi, as illustrated in figure 4.14.

Figure 4.14: Graphical User Interface (GUI) on the Raspberry Pi.

The GUI shown in figure 4.14 of the Raspberry Pi, was programmed using a Python

script within the Tonny IDE, which provided a conducive environment for our coding.

The GUI includes sliders to adjust the throttle, desired roll, pitch angles, and controller

coefficients. Additionally, it includes a button for resetting the flight controller and an in-

teractive button to display the graphs with a simple click to easily analyze the quadrotor’s

response and behavior.

Communication Protocol

For the communication between the ESP32 and Raspberry Pi, the chosen protocol is

HTTP (Hypertext Transfer Protocol). HTTP is a widely used protocol for transmitting

data over the internet or a local network [24]. It is based on a client-server architecture,

as illustrated in figure 4.15.

48

Chapter 4. Building and Testing a Quadrotor Prototype

Figure 4.15: Wireless communication between the ESP32 and Raspberry Pi .

figure 4.15, shows the successful communication between the Raspberry Pi and the

ESP32. The HTTP protocol facilitates this communication using the IP address of the

flight controller. When modifications are made in the GUI, such as input values, or

controller coefficients, those changes are immediately reflected on the serial monitor within

the Arduino IDE.

Figure 4.16: Quadrotor flight controller controlled wirelessly with Raspberry Pi GUI.

49

Chapter 4. Building and Testing a Quadrotor Prototype

4.2 Attitude Controller

The attitude controller is a critical component in controlling the orientation of a

quadrotor. In this section, we will explore two types of controllers: the PID controller

and the backstepping controller. We will discuss the principles behind each controller and

provide a comparison of their strengths and weaknesses.

4.2.1 Proportional-Integral-Derivative Controller

PID controller is a linear control system method that consists of three terms controller

type which are proportional, integral, and derivative. Each term has a different task in

improving the dynamic response of the controlled plant. Generally, the structure of the

PID controller is shown in figure 4.17.

Figure 4.17: The block diagram of the PID controller .

The proportional term provides immediate response, the integral term eliminates

steady-state error, and the derivative term enhances stability. Proper selection and tuning

of the Kp, Ki, and Kd constants are essential to achieve the desired control performance.

Designing a Dual-Loop Attitude Controller

To design our controller, we need to implement two separate loops: one for controlling

the rate and another for controlling the angle.

1. The Rate Control loop (inner loop): focuses on regulating the angular velocity.

It measures the rate and compares it to the desired rate, generating a control signal

to adjust the rate accordingly. This loop helps stabilize the system’s dynamics and

manage fast changes in angular velocity.

50

Chapter 4. Building and Testing a Quadrotor Prototype

2. The Angle Control loop (outer loop): deals with maintaining the desired angles

of the system. It measures the current angle and compares it to the desired angle,

producing a control signal to steer the system toward the desired angle. This loop

ensures the system maintains changes in the desired angle using only ’P’ controller.

The two loops are shown in 4.18.

Figure 4.18: Control strategy using PID.

Programming Algorithm

While implementing our quadrotor, we need to design a software algorithm that is

formed in the programming language and embedded in the ESP32 microcontroller. In

this study, Arduino IDE is used as a compiler with C/C++ programming language. The

overall programming structure includes the PID algorithm shown in figure 4.19.

Figure 4.19: Programming structure of attitude controller using PID.

51

Chapter 4. Building and Testing a Quadrotor Prototype

4.2.2 Hardware Test

In this section, we will conduct hardware tests to evaluate its capabilities and its

performance.

Test Without propellers

Testing without propellers provides an opportunity to verify and validate the func-

tionality of the quadrotor’s software to focus solely on the flight control algorithms, sensor

integration, and communication protocols without the influence of physical forces gener-

ated by the propellers as illustrated in figure 4.20.

Figure 4.20: Test without propellers.

Test With propellers

Testing a quadrotor with propellers is essential to evaluate its actual flight behavior,

performance, and stability as illustrated in figure 4.21.

PID Tuning

After numerous attempts and diligent tuning of the PID parameters, we have suc-

cessfully achieved stabilization of the quadrotor system. The process involved iterative

adjustments and fine-tuning of the proportional, integral, and derivative gains to optimize

the control response as illustrated in figure 4.22.

Due to the symmetry of quadrotors, it is often possible to set the same gain values

for the pitch and roll axes. Since the dynamics and control requirements are similar for

these two axes. On the other hand, the yaw axis, may not require as precise control as

the pitch and roll axes.

52

Chapter 4. Building and Testing a Quadrotor Prototype

(a) Grounded Quadrotor (b) Quadrotor in flight mode

Figure 4.21: Test with propellers.

(a) Not stable behavior of the quadrotor (b) Stable behavior of the quadrotor

Figure 4.22: PID Tunning tests for pitch mouvement.

Table 4.2: PID Parameters for Quadrotor Control unstable state (inner loop).

Axis Proportional (Kp) Integral (Ki) Derivative (Kd)

Roll/Pitch 17 1 2

Yaw 0.4 0.02 0.1

Table 4.3: PID Parameters for Quadrotor Control in a stable state (inner loop).

Axis Proportional (Kp) Integral (Ki) Derivative (Kd)

Roll/Pitch 7.5 1 5

Yaw 0.4 0.02 0.1

53

Chapter 4. Building and Testing a Quadrotor Prototype

Therefore, a Kp coefficient of 3 is chosen for the outer loop, which is applied to

all angles. figure 4.23 illustrates the response of the angle pitch with respect to the

implementation of a PID controller.

Figure 4.23: Quadrotor angle pitch response with PID controller.

4.2.3 Results and Discussion

During the initial tuning process illustrated in Table 4.2, we observe overshooting

and oscillations in the quadrotor’s response, which resulted in instability as shown in

figure 4.22(a). However, after fine-tuning these parameters demonstrated in Table 4.3,

the behavior of the quadrotor became stable as shown in figure 4.22 (b).

By decreasing the proportional gain (Kp), we effectively reduce oscillations in the

system which helps to result in smoother movements and behavior. By increasing the

derivative gain (Kd), the controller responds faster to changes in the error rate which

improves stability.

From figure 4.23, the PID controller effectively stabilizes the angle to the desired 0

degrees. However, it is noticeable that there is some initial overshoot and also transient

overshoot during the stabilization process. Thus, Fine-tuning the PID gains required

careful adjustment to achieve the desired balance between stability and agility and yielded

positive results.

4.3 Back-Stepping Controller

In this section, the objective is to demonstrate the implementation of the attitude

controller to our quadrotor prototype using the backstepping technique, which we previ-

ously discussed in the System Control chapter. We will put the theoretical concepts into

54

Chapter 4. Building and Testing a Quadrotor Prototype

practice by demonstrating how to implement the controller and validate its performance

through tests.

4.3.1 Designing Single-Loop Controller

Due to the coupled nature of the equations governing the system’s dynamics, such as

angular velocities and angles, makes it challenging to separate the controllers into distinct

inner and outer loops. Therefore, to effectively handle the interdependencies between

these variables, we have opted for a single-loop controller approach. As illustrated in

figure 4.24.

Figure 4.24: Attitude controller using the Backstepping technique.

Programming Algorithm

The flowchart of the overall programming structure including the backstepping Con-

troller algorithm on the ESP32 is shown in figure 4.25.

55

Chapter 4. Building and Testing a Quadrotor Prototype

Figure 4.25: Attitude controller using the backstepping technique.

4.3.2 Hardware Test

The implementation of the backstepping controller on the actual hardware platform

resulted in notable instability issues. The quadrotor exhibited erratic behavior, including

oscillations and difficulty in maintaining stable flight as illustrated in figure 4.26.

Figure 4.26: Quadrotor Hardware Tests using Backstepping controller.

figure 4.27 illustrates the unstable response of the angle pitch with respect to the

implementation of a backstepping controller.

56

Chapter 4. Building and Testing a Quadrotor Prototype

Figure 4.27: Unstable response of pitch angle with Backstepping .

After making numerous adjustments to the gains in the backstepping controller, we

have significantly improved the behavior of the quadrotor. It demonstrates enhanced

stability, responsiveness, and smooth transitions, as shown in figure 4.28.

Figure 4.28: Stable behavior using Backstepping controller.

figure 4.29 illustrates the stable response of the angle pitch with respect to the imple-

mentation of a backstepping controller.

Figure 4.29: Stable response of pitch angle with Backstepping.

57

Chapter 4. Building and Testing a Quadrotor Prototype

4.3.3 Results and Discussion

Based on the results shown in figure 4.26 and figure 4.27, we observe that the quadro-

tor exhibited unstable behavior. The instability was manifested through oscillations,

erratic movements, and an inability to maintain a steady flight.

Insufficient adjustment of the control parameters (improper tuning) was identified as

the primary factor contributing to the observed instability in the quadrotor. However,

after conducting extensive parameter tuning, we have successfully improved its behavior,

as shown in figure 4.28 and figure 4.29. This fine-tuning process entailed adjusting the

coefficients of control laws of each subsystem within the backstepping controller.

4.4 Comparision Between PID and Back-Stepping

In this section,the two control approaches: Proportional-Integral-Derivative (PID) and

backstepping controllers are compared. Various criteria are examined to evaluate their

performance and effectiveness. The following table 4.4 provides a detailed comparison

between PID and backstepping.

Table 4.4: Comparison between Backstepping and PID Controllers in Quadrotor

Aspect Backstepping Controller PID Controller

Design

Complexity

Requires mathematical model of

the system

Requires tuning of controller pa-

rameters

Stability
Can guarantee asymptotic stabil-

ity

May have stability issues if not

tuned well

Adaptability
Can handle changes in system dy-

namics
May require retuning for changes

Implementation More complex to implement Relatively easier to implement

Performance

Limit
Can achieve higher performance

Performance limited by tuning

and model

58

Chapter 4. Building and Testing a Quadrotor Prototype

4.5 Problem Description

During our hardware implementation, several problems were encountered which made

reaching our objective harder; some of these problems are discussed in the coming sub-

sections. Nevertheless these obstacles, we have got satisfactory results as was proved

previously.

Battery Consumption

The total voltage of the 3-cell is 12.6 volts, indicating a fully charged battery. There-

fore, with a 2200mAh battery and constant current consumption of approximately 30A,

the estimated flight time is around 4.4 minutes.

During the flight test, we observed a poorer performance from the quadrotor. However,

it is worthwhile to utilize a power supply with a range of 30-72A as shown in figure 4.30

for further test experiments.

Figure 4.30: 30A-72A Power Supply.

Loss of sensor connection

The loss of the MPU 6050 connection comes from loose wires, a breach in the cable,

or a malfunction in the IMU itself and that causes a lot of time to exhibit unpredictable

behavior, so to track this problem we printed the outputs of the angles on the serial

monitor. figure 4.31 illustrated an example of losing sensor data.

59

Chapter 4. Building and Testing a Quadrotor Prototype

Figure 4.31: Losing Data from MPU6050.

Motor Failures

Overheating and excessive load, cause the motors to experience a decrease in perfor-

mance or lead to damage, as shown in figure 4.32 (a).

Propeller damage

The propeller damage as demonstrated in figure 4.32 (b), resulted in a delay in our

testing schedule.

(a) Motor damage (b) Propeller broken

Figure 4.32: Hardware problems.

60

Chapter 4. Building and Testing a Quadrotor Prototype

4.6 Conclusion

In this chapter, we focused on the hardware implementation of the prototype quadro-

tor, covering various aspects such as component connections, algorithm development, and

software integration. Furthermore, we conducted tests with the prototype to visualize

the attitude controller’s performance, utilizing a PID and backstepping controller. Our

experiments showcased the effectiveness of both controllers in stabilizing the quadrotor

in real-world scenarios. Unfortunately, due to safety concerns and potential risks associ-

ated with testing, we are unable to test the quadrotor prototype without implementing

threads.

61

General Conclusion

In this project, we explored Unmanned Aerial Vehicles (UAVs) with a specific focus

on quadrotors. Our research primarily revolved around three key areas: the utilization of

a mathematical model and the simulation of backstepping control algorithms. Moreover,

the PID (Proportional-Integral-Derivative) and backstepping controllers are implemented

on a quadrotor platform, employing a Raspberry Pi as a ground station.

A mathematical model was used to capture the dynamics of the quadrotor. By under-

standing the mathematical representation of the system, we were able to develop control

strategies that could effectively align with these mathematical models. During the simu-

lations, we observed that the backstepping controller performed exceptionally well. It led

to stable flight and precise tracking of the desired trajectory.

Regarding hardware implementation, we successfully implemented a quadrotor pro-

totype to visualize both the BSC and PID control algorithms. Despite the achieved

stability through those control approaches, the quadrotor system may still experience

some instability under specific conditions. This instability can be attributed to various

factors, including suboptimal tuning of the control parameters, inaccuracies in the sensor

measurements, or limitations in the hardware components.

Furthermore, the theory and simulation of the backstepping controller have demon-

strated exceptional performance in achieving precise orientation. However, The imple-

mentation can be time-consuming due to its intricacies and complexities.

From the project, we gained a profound understanding of quadrotors, from theoretical

modeling to simulation and practical implementation. We witnessed the translation of

theoretical concepts into tangible outcomes and evaluated the strengths and limitations of

different control approaches. This project enhanced our knowledge of UAV dynamics and

control and also equipped us with the practical skills required to develop UAV systems.

62

General Conclusion

Future Work and Perspectives

The quadrotor possesses countless features when it comes to functional capabilities.

Here are some potential expansions that could be considered in the future:

• Sensor Fusion such as Kalman filter can provide more accurate and drift-free attitude

estimation.

• Autonomous Navigation and trajectory tracking by using GPS, cameras, lidar, and

ultrasonic sensors to enable the quadrotor to perceive its environment, plan its

trajectory, and execute its flight path.

• Object Detection by detecting and tracking specific objects of interest within an

image or video using computer vision.

63

References

[1] Anuj Puri. “A survey of unmanned aerial vehicles (UAV) for traffic surveillance”.

In: Department of computer science and Engineering, University of South Florida

(2005), pp. 1–29.

[2] Kennedy Martinez. “The History of Drones (Drone History Timeline from 1849 To

2019)”. In: Drone Ethusiast (2018).

[3] de Nansouty-M De Nansouty-M. “Aérostation, Aviation Savoirs Et Traditions”. In:

HACHETTE LIVRE (1914), p. 774.

[4] Erik Haywood Stoer. Flying bombs, aerial torpedoes, and Kettering bugs: America’s

first cruise missiles. The Florida State University, 2001.

[5] Astronomy Encyclopedia of Astrobiology and Space Flight. “http://www.daviddar-

ling.info/encyclopedia”. In: (25 APRIL 2023).

[6] https://commons.wikimedia.org/. “Winston Churchill and the Secretary of State

for War waiting to see the launch of a de Havilland Queen Bee radio-controlled

target drone”. In: (6 June 1941).

[7] Paul Posea. “The Complete History of Drones (1898-2023) - INFOGRAPHIC”. In:

(2023).

[8] L Zitzman. “Drones in Construction: How They’re Transforming the Industry. Re-

trieved August 2, 2019”. In: (2018).

[9] Matúš Tkáč and Peter Mésároš. “Utilizing drone technology in civil engineering”.

In: Selected Scientific Papers-Journal of Civil Engineering 14.1 (2019), pp. 27–37.

[10] Mohamed Amine Kafi et al. “A study of wireless sensor networks for urban traffic

monitoring: applications and architectures”. In: Procedia computer science 19 (2013),

pp. 617–626.

64

References

[11] Jack Brown. https://www.mydronelab.com/blog/drone-uses.html. 2021.

[12] Ann Cavoukian. Privacy and drones: Unmanned aerial vehicles. Information and

Privacy Commissioner of Ontario, Canada Ontario, 2012.

[13] Saad Nazarudeen. “Conceptual Design of High Altitude Long Endurance Solar Pow-

ered UAV”. In: (2018).

[14] Sharon L Conwell et al. “Evolution of Human Systems Integration for Remotely

Piloted Aircraft Systems”. In: Remotely Piloted Aircraft Systems: A Human Systems

Integration Perspective: A Human Systems Integration Perspective (2016), pp. 15–

39.

[15] Kasim Biber. “Aerodynamic analysis of a medium-altitude, long-endurance un-

manned aircraft”. In: AIAC-2015-062, 8th Ankara International Aerospace Con-

ference, 10–12 … 2015.

[16] K Raja Sekar et al. “Aerodynamic design and structural optimization of a wing for

an Unmanned Aerial Vehicle (UAV)”. In: IOP Conference Series: Materials Science

and Engineering. Vol. 764. 1. IOP Publishing. 2020, p. 012058.

[17] Pimonrat Tiansawat and Stephen Elliott. Unmanned aerial vehicles for automated

forest restoration. 2020.

[18] “https://www.directindustry.com/prod/uav-america/product-182005-2113873.html”.

In: (21/05/2023).

[19] Hakan Üçgün et al. “Graphical Interface Design and Implementation for Flight

Tests of the Rotary Wing Unmanned Aerial Vehicles”. In: (2016).

[20] Aminurrashid Noordin, Mohd Ariffanan Mohd Basri, and Zaharuddin Mohamed.

“Sensor fusion for attitude estimation and PID control of quadrotor UAV”. In: Inter-

national Journal of Electrical and Electronic Engineering and Telecommunications

7.4 (2018), pp. 183–189.

[21] Hashim A Hashim, Lyndon J Brown, and Kenneth McIsaac. “Nonlinear explicit

stochastic attitude filter on SO (3)”. In: 2018 IEEE Conference on Decision and

Control (CDC). IEEE. 2018, pp. 1210–1216.

[22] Hatem M Kandeel, Ebrahim A Abdelmaksod, and Abdelrady Okasha Elnady. “Mod-

eling and Control of X-Shape Quadcopter”. In: ().

65

References

[23] Herman Høifødt. “Dynamic Modeling and Simulation of Robot Manipulators: The

Newton-Euler Formulation”. In: 2011.

[24] Amrouche Hafid;Recham Zine Eddine. “Adaptive control for disturbance rejection

in quadrotors”. In: 2021.

[25] Zongyu Zuo. “Trajectory tracking control design with command-filtered compensa-

tion for a quadrotor”. In: IET control theory & applications 4.11 (2010), pp. 2343–

2355.

[26] Eduardo Luı́s Neto Santos. “Sleep Bruxism Detection Device”. PhD thesis. 2020.

[27] ESP32 DevKitC Core Board ESP32 Development. Alibaba. Accessed on June 10,

2023. url: %7Bhttps://arabic.alibaba.com/product-detail/ESP32-DevKitC-

core-board-ESP32-development-62183009476.html%7D.

[28] Basit Qureshi and Anis Koubâa. “On energy efficiency and performance evaluation

of single board computer based clusters: A hadoop case study”. In: Electronics 8.2

(2019), p. 182.

[29] Raspberry Pi 4 Model B 2GB (BCM2711). e-komponent. Accessed on June 10,

2023. url: %7Bhttps://www.e-komponent.com/raspberry-pi-4-model-b-2gb-

bcm2711%7D.

[30] InvenSense, Inc. MPU-6000 Register Map. InvenSense. 2015. url: https://invensense.

tdk.com/wp-content/uploads/2015/02/MPU-6000-Register-Map1.pdf.

66

%7Bhttps://arabic.alibaba.com/product-detail/ESP32-DevKitC-core-board-ESP32-development-62183009476.html%7D
%7Bhttps://arabic.alibaba.com/product-detail/ESP32-DevKitC-core-board-ESP32-development-62183009476.html%7D
%7Bhttps://www.e-komponent.com/raspberry-pi-4-model-b-2gb-bcm2711%7D
%7Bhttps://www.e-komponent.com/raspberry-pi-4-model-b-2gb-bcm2711%7D
https://invensense.tdk.com/wp-content/uploads/2015/02/MPU-6000-Register-Map1.pdf
https://invensense.tdk.com/wp-content/uploads/2015/02/MPU-6000-Register-Map1.pdf

Appendices

67

Project Cost

In Table 0.5, we present the cost breakdown for our quadrotor project. Some of the

materials had to be repurchased due to damage and breakage.

Table 0.5: Cost of Quadrotor Components.

Component Cost (DZD)

Frame 6000.00

Motors 2200.00 (each)

Electronic Speed Controllers (ESCs) 2200.00 (each)

ESP32 2950.00

Propellers 800.00 (set)

LIPO Battery 8000.00

MPU6050 500.00

Battery charger 8500.00

Raspberry PI 4 40000.00

Total Cost 9 3850.00

ESP32 Pins chart

Figure 0.33: ESP32 Pins chart [27].

68

MPU Registers

Figure 0.34: Mpu registers [30].

69

	People’s Democratic Republic of Algeria Ministry of Higher Education and Scientific Research
	Institute of Electrical and Electronic Engineering
	‘Master’
	Promotion: 2022/2023

	List of Figures
	List of Figures
	Motivation
	Objectives
	General Introduction

	Report Organization

	Chapter 1 Overview of UAVs
	1.1 Brief History of UAVs
	1.2 Applications of the UAVs
	1.3 UAVs Limitations
	1.4 Classification of UAVs
	1.4.1 Range of Action Classification
	1.4.2 Aerodynamic Configuration Classification

	1.5 Quadrotor
	1.5.1 Quadrotor’s Movements
	1.5.2 Dealing with Six-Degrees of Freedom (6 DOF)

	1.6 Conclusion

	Chapter 2
	2.1 Kinematic and Dynamic Modeling
	2.1.1 Quadrotor Kinematic Model
	2.1.2 Quadrotor Dynamic Model
	1. Rotational Equation of Motion
	Moments Acting on the Quadrotor (MB)
	Diagonal Inertia Matrix (I)
	Gyroscopic Moment (MG)
	2. Translational Equations of Motion
	Non-gravitational Force (Fb)

	2.2 State Space Model
	2.2.1 State Vector X
	2.2.2 Control Input Vector U
	2.2.3 Rotational Equation of motion in state space form
	2.2.4 Translational Equations of motion in state space form
	2.2.5 State Space Representation
	
	 (1)
	 (2)

	2.3 Conclusion

	Chapter 3 System Control
	3.1 Back-stepping Control Algorithm
	3.2 The Adopted Control Strategy
	3.2.1 Attitude and Position control
	Step 1 :
	Step 2 :

	3.3 Simulation of Control System
	3.3.1 Description of Simulation Blocks
	3.3.2 Simulation Results
	Altitude /Attitude Stabilization
	Trajectory Tracking
	

	3.4 Results and Discussion
	3.5 Conclusion

	Chapter 4
	4.1 Quadrotor’s Hardware Components
	4.1.1 ESP32 Discription
	4.1.2 Configuring the IMU (MPU6050)
	Complementary Filter

	4.1.3 Electronic Speed Controller
	4.1.4 Motors Control
	4.1.5 PCB Design
	4.1.6 Raspberry PI
	4.1.7 Wireless Graphical User interface using Raspberry PI
	Communication Protocol

	4.2 Attitude Controller
	4.2.1 Proportional-Integral-Derivative Controller
	Designing a Dual-Loop Attitude Controller
	Programming Algorithm

	4.2.2 Hardware Test
	Test Without propellers
	Test With propellers
	PID Tuning

	4.2.3 Results and Discussion

	4.3 Back-Stepping Controller
	4.3.1 Designing Single-Loop Controller
	Programming Algorithm

	4.3.2 Hardware Test
	4.3.3 Results and Discussion

	4.4 Comparision Between PID and Back-Stepping
	4.5 Problem Description
	Battery Consumption
	Loss of sensor connection
	Motor Failures
	Propeller damage

	4.6 Conclusion

	General Conclusion
	References
	Appendices
	ESP32 Pins chart

	Abstract
	Dedication
	Acknowledgement
	General Introduction
	Overview of UAVs
	Modeling a Quadroter
	System Control
	Building and Testing a Quadrotor Prototype
	General Conclusion
	Appendices

