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ABSTRACT 

This thesis focuses on the application of 1D Convolutional Neural Networks (CNN) for 

the classification of power quality disturbances. As the demand for electricity continues 

to rise, ensuring the reliability and efficiency of power systems has become paramount. 

Power quality disturbances pose a significant challenge in maintaining system stability 

and integrity. The aim of this research is to explore the potential of 1D CNN in 

accurately classifying various types of power quality disturbances, thereby contributing 

to the enhancement of power system reliability.  

This thesis provides an overview of power quality disturbances, including an 

exploration of the state-of-the-art research. It delves into the field of pattern 

recognition, specifically focusing on the detailed architecture of 1D CNN. The proposed 

1D CNN model for power quality disturbance classification is presented in detail. Three 

different datasets were used in this work which are noiseless dataset, dataset with 

30dB noise and dataset with random noise. The accuracy results were 100%, 97.18% 

and 93% respectively. The 1D CNN model proposed showed effective classification 

ability even in the case of noise, and also a good generalization for it to be used as 

prediction model. 
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1 Chapter 1: Introduction 

 

1.1 Motivation 

The demand for electricity is rapidly increasing worldwide, leading to the construction of more 

complex power systems and grids. However, this complexity also brings a higher risk of power 

quality disturbances. These disturbances have a significant impact on the reliability of power 

systems. To enhance system reliability and efficiency, it is crucial to explore advanced techniques. 

Artificial intelligence (AI) is becoming increasingly integrated into various domains, prompting me 

to consider its potential in the electrical field. During my research on classification techniques, I 

noticed a gap in applying Convolutional Neural Networks (CNNs) specifically to power quality 

disturbances. Most existing work focused on 2-dimensional CNNs, despite power signals being 1-

dimensional. This motivated me to explore the use of 1D CNNs to classify power quality 

disturbances and improve grid reliability. 

By leveraging 1D CNNs, we can effectively analyze the temporal and frequency patterns in power 

signals, enabling accurate and automated classification of disturbances. This research aims to 

contribute to the advancement of power quality analysis and provide valuable insights for system 

operators and engineers to implement proactive measures and ensure reliable power system 

operation. 

In conclusion, my motivation for working on the classification of power quality disturbances using 

1D CNNs arises from the need to address the increasing complexity and risks associated with 

power systems. By applying AI techniques, particularly 1D CNNs, we aim to enhance the reliability 

and performance of power grids. This research has the potential to make a significant impact by 

optimizing power systems and ensuring a stable and uninterrupted electricity supply to meet the 

growing demands of our modern world. 

1.2 Project impact 

By employing the power of 1D CNN, which has proven to be highly effective in various domains of 

pattern recognition and signal processing, I aim to develop a robust and accurate classification 

model capable of automatically identifying and categorizing different types of power quality 
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disturbances. This approach holds great promise for enhancing the monitoring and diagnosis 

capabilities of power systems, leading to timely detection, effective mitigation, and ultimately 

improving the overall reliability and quality of electrical supply. 

1.3 Aim 

Through this project, I aspire to contribute to the field of power quality analysis by developing a 

state-of-the-art classification model based on 1D CNN. By achieving accurate and automated 

classification of power quality disturbances, we can empower system operators, engineers, and 

researchers with valuable information to effectively manage power systems, diagnose faults, and 

implement targeted mitigation strategies. 

1.4 Thesis summary  

Chapter 1: Introduction 

- Provides an overview of the project and outlines the motivation behind it. 

- Highlights the contributions made and discusses the potential impact of the 

research. 

Chapter 2: Overview on Power Quality Disturbances 

- Explores the field of power quality disturbances, including their types and 

significance. 

- Examines existing tools and approaches used to optimize power quality 

disturbances. 

Chapter 3: Classification of Power Quality Disturbances 

- Discusses the field of pattern recognition and its relevance to the project. 

- Introduces the concept of convolutional neural networks (CNN) for classification 

purposes. 

- Introduce and discuss the proposed method and model. 

Chapter 4: Results and Discussion 

- Presents the obtained results from the implementation of the 1D CNN model for 

power quality disturbances classification. 

- Discusses the findings and provides an analysis of the results. 

Chapter 5: Conclusion and Future Work 

- Summarizes the main conclusions drawn from the research. 

- Reflects on the significance of the work and its implications. 
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- Outlines potential avenues for future research and improvement
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2 Chapter 2:  Overview on Power Quality Disturbances  

 

2.1 Introduction 

Power quality disturbances (PQDs) are of great importance in ensuring the efficiency, safety, and 

reliability of operations electrical systems, minimizing financial losses, and meeting regulatory 

requirements. Organizations and power utilities invest in power quality monitoring, analysis, and 

mitigation measures to address these disturbances and maintain optimal power supply conditions. 

In this chapter, we will go through the different types of power quality disturbances and their 

classification, and then we will mention some the work previously done in the field of PQDs 

classification. 

2.2 Types of power quality problems 

There are several concerns with power quality in today’s modern electrical systems, which are 

experiencing drastic development. This change made the basis for classification of power quality 

disturbances vary. Bhim Singh et al. [1] classified power quality disturbances into three categories:   

1. Events: transient nature disturbances (e.g. sag, swell, short-duration voltage variations and 

power frequency variations) and steady state nature (e.g. long-duration voltage variations, 

waveform distortions, DC offset, flicker and poor power factor) 

2. Quantity: voltage (flicker, notches, sag, swell), current (harmonic currents, unbalanced 

currents, and excessive neutral current) and frequency. 

3. Load or supply chain: load current (harmonics, DC offset, unbalanced current), supply chain 

(voltage, frequency or combination of both). 

On the other hand, S.Khokhar et al. [2] classified power quality events into two main categories. 

First, fault events like sag or interruption in faulty phase of a three-phase system and swell in 

a non-faulty phase. Second, switching events like transients (e.g. impulsive and oscillatory) and 

harmonics (e.g. sag, swell and interruption). 

IEEE standard 115-1995 also had a similar classification for power quality disturbances. It calls 

the events based on its nature like transient for impulsive and oscillatory events, short duration 
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variations for interruption, sag and swell, and also steady state for harmonics, notch flicker etc. 

[3]- [4] 

D. Saxena et al. [5]  classified power quality disturbances based on the nature of the waveform 

distortion. Table 2-1 shows each category while mentioning its spectral content, duration and 

magnitude.  

Table 2-1 Classification of various power quality events with their duration and voltage magnitude 
[5] 

Category Duration 
Voltage 
Magnitude 

Short 
Duration 
Variation 

Sag 
0.5-30 cycle. (instantaneous) 
30 cycles-3 sec. (momentary)  
3 sec-1min.(temporary) 

0.1-0.9 pu.  
0.1-0.9 pu.  
0.1-0.9 pu. 

Swell 

0.5-30 cycle. (instantaneous) 
 
30 cycles-3 sec. (momentary) 
 
3 sec-1 min. (temporary) 

1.1-1.8 pu.  
1.1-1.4 pu.  
1.1-1.2 pu. 
 
 
 

Interruption 
0.5 cycles-3 sec. (momentary) 
 
3 sec-1min. (temporary) 

<0.1 pu. 
<0.1 pu. 

Transients 

Impulsive 

<50 nsec. (nanosecond) 
 
50-1 msec. (microsecond) 
 
>1 msec (millisecond)  

 

Oscillatory 

00.3-50 msec.(low frequency) 
 
20 µsec.(medium frequency) 
 
5 µsec. (high frequency) 

0-4 pu.  

0-8 pu.  

0-4 pu. 

Waveform 

Distortion 

Harmonics Steady state.  

Notch Steady state.  

Noise Steady state.  

 

We can observe the previously mentioned single disturbances in figure 2-1 and figure 2-2, while 

figure 3-3 shows the hybrid disturbances. 

 



Chapter 2 

14 

 

 

 

 

 

 

Figure 2-1 Short Duration Variation disturbances. 

Figure 2-2 Transient disturbances. 
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Figure 2-3 Waveform distortion disturbances. 
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Figure 2-4 Hybrid disturbances. 

 

 

 

 



Chapter 2 

17 

 Figure 2-5 shows a summary of the previous classifications based mainly on nature and quality:  

 

Figure 2-5 Power Quality Disturbances classification diagram. 

 

2.3 Metigation of Power-Quality Problems  

In the past few years, the industry witnessed a boost in its investment regarding the issues of 

power quality in electrical systems. While developing many techniques for recognition and 

classification of power quality disturbances, it is equally important to come up with new methods 

of correction. 

 The aim for these methods of correction is to make the power source qualified in meeting the 

requirements from the users. Alexander Kusko & Marc T.Thompson and S.Khalid & Bharti Dwivedi 

[6]- [7] proposed similar methods in this area.  

The methods mainly cover:  

 Layout of the load equipment: like switch-mode power supplies, which can be 

implemented in lowering harmonics in the load current as well as control the sensitivity to 

voltage disturbances. 

 System design of the electric-power supply: can be constructed to lower source impedance, 

to separate loads and to prevent harmonic resonances. 
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 Installation of power-harmonic filters: implementing power-harmonic filters to 

compensate the continuous voltage distortion and blocking harmonics. A model is shown 

in figure 2-3. 

 Use of dynamic voltage compensators: used to fix short time voltage waveforms sags. 

 Installation of uninterruptible power supplies (UPSs): an electronic inverter providing an 

independent power source to the load in case of a power outage or interruption. We can 

see a real implemented supply in figure 2-4. 

 

Figure 2-6 Uninterruptible Power Supply [8]. 

 Dependability on standby power: Engine-generator (E/G), for example, is more effective 

during long-time outages. It also replaces the main power supply during a system 

maintenance. Diesel Generator in figure 2-5 is one of the most common used generators. 
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2.4 State of the art on the classification of PQDs 

Power quality has been receiving a tremendous interest from customers for various reasons, 

mainly due to the consequences resulting from different types of disturbances. In addition, as the 

power grid is witnessing a great and quick evolution; new and more complicated power quality 

disturbances are evolving.  

As a result, impressive research is being developed in the field of power quality. Many papers are 

published discussing new and updated methods and algorithms for detecting and classifying power 

quality disturbances. 

Feng Zhao et al. and Amin Akbarpour et al. [9], [10] implemented different methods for PQDs 

detection, multi resolution S transform (ST)  and extreme-point-based algorithm respectively, yet 

both used the same type of classifiers (K-Nearest Neighbor KNN, Support Vector Machine SVM, 

and Decision Tree DT) for classification. In both works, SVM scored the lowest accuracy especially 

in the case of hybrid disturbances with 95.9% and 76.5%. Whereas DT performed the best with 

97.5% and 98.8%. Both authors concluded that DT classifier was the best options compared to 

other methods.  

Similarly, I. W. C. Lee & P. K. [11] Dash also used ST as a method of detection of non-stationary 

signals in power networks. This method was combined with two types of neutral networks (NN): 

Feedforward NN and Probabilistic NN for classification. The combined techniques came up with a 

very high and constant accuracy even in the presence of noise with value of 95%, which showed 

that this method is significant in designing a strong recognition system for PQDs.  

Umamani Subudhi & Sambit Dash [12] also compared KNN and SVM classifiers with Extreme 

Learning Machine (ELM) method tuned through Grey Wolf Optimization (GWO). The technique 

over-performed other methods of classifications by a very high accuracy of 99.41%, where ELM 

alone also had a high accuracy of 97.35% proving that even techniques with good performance 

can be enhanced when combined with optimization techniques.  

Deep learning was also implemented in the field of PQDs classification. Shouxiang Wang, Haiwen 

Chen [13] used a deep learning method using CNN 1-D where he made a comparison of five 

different types of deep learning neutral networks DNNs (SEA, ResNet50, LSTM, FRU,RNN and CNN) 



Chapter 2 

20 

based on loss, accuracy, training time, mode size, and number of parameters. Different methods 

outperformed in different parameters, but overall SEA provided the worst performance while the 

deep CNN proposed in the paper was the optimal choice with higher classification precision and 

less training time cost.  

2.5 Conclusion 

Power quality disturbances became a huge topic of interest among both research and consumers 

for many reasons. This interest resulted in the creation of many different methods of recognition 

as well as techniques of classifications with different and competitive results of accuracy. This 

constant growth is a promising sign for the development of the power system. 
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3 Chapter 3: Classification of Power Quality 

Disturbances using 1D CNNs 

3.1 Introduction 

Advancements in the field of artificial intelligence, especially deep learning, greatly influenced 

variety of fields and especially the field of pattern recognition on many aspects. Pattern 

recognition methods existed since a long time but recently has been witnessing a drastic 

development. Many methodologies and techniques are being invented and updated. One of the 

methods that has been catching scientists’ attention is neural networks and specifically CNNs. 

While CNNs are usually correlated with image-related applications, they can also be applied to 1-

dimensional signals such as voice or electrical waves. Research studies on 1D CNNs are not as wide-

ranging as their 2D counterparts. Therefore, in this chapter we focus on the application of 1 D CNN 

for the classification of power quality disturbances.  We will go through a review on pattern 

recognition, its description and types. Then, we will discuss in details 1D convolutional neural 

networks focusing on its working principle. A comparison between 1D and 2D architectures is also 

provided.  

 

3.2 Pattern classification   

3.2.1 Definition 

Duda and Hart [14] in his book simply defined pattern recognition as “the act of taking in raw data 

and making an action based on the "category" of the pattern”. In other words, it is the process of 

assigning objects to certain categories or classes based on specific features, these objects can differ 

depending on the nature of the study (e.g images, signal waveforms, measurements) [15]- [16]- 

[17]. 

There are two types of learning paradigms in pattern classification [18]: 

1) Supervised learning: which is learning from data with labeled outputs, this type is used in 

prediction or classification problems. 
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2) Unsupervised learning: which is learning from data without given labels for the output, 

this type is used for grouping problems. 

Pattern classification was developed starting from the 1960s, but nowadays it is being 

implemented in the fields of machine learning using computers. In terms of machine learning, the 

word “recognition” is more commonly used, which refers to the ability of a computer to recognize 

patterns of objects that I has learned before [19] 

In figure 3-1, we can see the overall system of pattern recognition from receiving an input (object) 

to generating an output (class/category) [20]. 

 

Figure 3-1 Pattern recognition system [22]. 

3.2.2 Types of pattern classification 

Types of pattern classification can differ depending on the nature of the object and the approached 

method. In this thesis, we will only go through the most commonly used ones: statistical, structural 

(syntactic), and neutral as shown in figure 3-2 [21] 
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Figure 3-2 Types of pattern recognition [21]. 

 

a) Statistical  

Statistical pattern recognition (SPR) is using mathematical models and algorithms to statistically 

characterize patterns of objects in large data sets [22]. These patterns are batch of features where 

each batch is selected such that it does not intersect with another feature batch [23]. Few 

applications of SPR are handwriting, speech recognition, or objects classification in images.  

From figure 3-3, it can be seen that this method is based on extracting features from new inputs 

using special algorithms then compare it with already learned parameters to finally assigning each 

input to its appropriate class or group. 

 

Figure 3-3 Working principle of statistical pattern recognition [24] 
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b) Syntactic  

Syntactic or structural pattern recognition is used in the case of problems with more complex 

features and it includes two main methods: syntax analysis and structure matching [25]. This 

method is used when patterns are interconnected where they are composed of simple sub-

patterns which themselves can be composed of simpler sub-patterns creating a hierarchical 

system.  For better understanding of this architecture, it can be visualized as the structure of a 

language where the patterns are seen as sentences, sub-patterns as the alphabet, and the 

sentences are generated according to a grammar [26]. 

c) Neural  

The world witnessed the birth of the first NN model in 1944, it quickly gained popularity in the field 

of pattern recognition to the fact that it does not required prior knowledge  making them capable 

of earning complex nonlinear connections between the input and output successive training tools 

and adjust to the given data [27] [28]. 

This technique was inspired by the working process of a biological nervous system, i.e. the human 

brain. In fact, the term neural refers to the processing elements implemented in NN called neurons 

which are sequentially connected together creating multiple hidden layers, these connection can 

either be one-directional or bi-directional [16] as shown in figure 3-4. 

 

Figure 3-4 Neural Network one-directional connection [29]. 

 

The main factors that made NN a widely used architecture in pattern recognition are its flexibility 

as it adapts to new data and information, time efficiency, tolerance against missing or noisy data, 

and optimal error rates [30]. 
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3.3 Overview on Convolutional neural network  

Convolutional neural network (CNN) was first proposed by Leon O. Chua and Lee Yang in 1988 [31], 

it quickly the most commonly used algorithm in deep analysis when it comes to pattern 

classification.  Before introducing CNN in details, it is better to have a clearer idea about deep 

learning (DL). 

DL is a subset of machine learning (ML) which was inspired by how the human brain processes 

patterns in objects or information and creates connection between them. It functions by analyzing 

a generous amount of data and automatically extracting patterns to label the given inputs. Even 

though DL is a part of ML, it stands out due to its utilization of artificial neural networks (ANN), 

which gives it a more complex structure compared to traditional ML methods. This complexity 

makes DL more practical when dealing with large and complicated data. Not to mention how self-

sufficient DL is comparing to ML in terms of human or other types of interventions  as shown in 

figure 3-5 [32]. 

 

Figure 3-5 Comparison between Machine Learning and Deep Learning [33]. 

 

3.4 One dimensional CNN 

1D CNN is one of DL algorithms; it is a type of feed-forward (multi-layer) neutral network consisting 

of three main layers: input layer, output layer, and multiple hidden layers in between where these 

layers represent convolutional structures. Since CNN functions based on the human brain 
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structure, every biological parameter in the brain is met with an artificial parameter in the 

architecture of CNN where biological neurons are artificial neuron; kernels are receptors; 

activation functions are neural electric signals. These structures perform multiple operations 

(convolution, pooling, flattening) with the help of other techniques like early-stopping, batch-

normalization, and dropout to create multiple hidden layers before the output layer  like shown in 

figure 3-6 [34]- [35]. 

 

Figure 3-6 Typical 1D CNN architecture [36] 

1D CNN has three main layers: convolutional layer supported by activation functions, pooling 

layer, and fully connected layers. 

 Convolutional layer: 

Convolutional layer is the fundamental component in 1D CNN when it comes to feature 

extraction. It consists of multiple convolutional filters called kernels, these filters convolve with 

the input which is considered a matrix and is called a tensor, to then generate an output called 

feature map. The size of these filters can be adjusted depending on other parameters [37]. 

Convolution is done such that the size of the kernel is applied across the tensor under a dot 

product operation between the two over a single dimension. The result of this operation is 

summed and sent to the next layer to perform the same operation. Multiple operation are done 

consecutively until a feature map is generated [37]. 

While the kernel is sliding across the tensor performing the convolution operation, the outermost 

elements of the tensor can be left out causing a reduction in the size of the feature map compared 

to the tensor. To avoid this, padding is introduced [37]. 
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Padding, or commonly used zero padding, is the adding rows and columns of zeros in each side of 

the tensor. This way, the dimension of the tensor is kept in the feature map [37]. These operations 

are clearly illustrated in figure 3-8.  

 

Figure 3-7 Extracting feature map through convolution with kernel size of 3 and zero padding in 
1D CNN [38] 

 

After generating a feature map, next is to pass this layer through an activation function. There 

exist multiple activation functions with different characteristics. The most commonly used one is 

the ReLU function because of its ability to overcome the vanishing gradient problem [39] and 

lowering the computational load [32]. 

 Pooling layer: 

Pooling layer is responsible for reducing the dimension of the 1D feature map, i.e. decreasing the 

computations required to process the 1D input data. This layer helps extracting the dominant 

features making the model training more effective [32], [40]. 

This operation comes in different forms, the most popular one is max pooling where it returns 

the maximum value from the portion selected in the feature map by the kernel while ignoring all 

the other values [40]. 

 Fully connected (FC) layer: 

In this layer, all the neurons are connected to the neurons of the previous layer, hence fully 

connected.  After the feature extraction is done, the last pooling layer is flattened into a one-

dimensional array of numbers resulting of an input for the FC layer.  This connection results in 

what we call the dense layers [40], [32]. 
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In addition to these layers, some functions are introduced in order to make the training process 

more effective like early-stopping, batch-normalization, and dropout functions. 

 Early stopping: a regularization technique used to stop the training when it is no longer 

producing improved results i.e. convergence in order to avoid over fitting [41]. 

 Batch Normalization: in NN, an output of a layer is an input of another, this shift causes 

disturbance in the distribution of the input in the training, especially in the case of large 

number of layers. This disturbance is known as internal covariate shift. Batch 

normalization is a method introduced to reduce this problem by normalizing each 

activation input to have the same distribution over every batch. In CNN, usually batch 

normalization is inserted directly after the convolutional layer [42]. 

 Dropout: The term “dropout” refers to the dispose of units in the neural network. The 

units are temporarily and randomly removed with all of its connection, like shown in 

figure 3-9. The range of values for dropout is from 0.1 to 1, where 0.1 means we drop 

10% of the neuron units in previous layer are randomly dropped and 90% are kept active 

for next iterations. This technique was also introduced to avoid overfitting [43]. 

 

Figure 3-8 Neural Network before and after drop out [44]. 

This complex architecture of CNN and NN in general, made it a famous classification tool for 

modern applications. Considering the amount of data collected nowadays, traditional methods are 

no longer practical as its learning process is limited, i.e. it does not learn from all the data given to 

it, unlike NN, which its performance is proportional to the amount of available data to be trained 

[45]. Figure 3-10 clearly shows the relation between the amount of data with traditional learning 

methods and different levels of complexity of NN networks. 
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Figure 3-9 Learning capacity of traditional algorithms vs neural network [46] 

 

3.5 Difference between a CNN 1D and a CNN 2D 

It is worth to mention that when CNN started taking off, it was mostly used on 2D type of objects 

like images and videos. Later on, a modified version of CNN appeared which is 1D CNN. This version 

was implemented on applications handling 1D data like speech recognition, ECG monitoring and 

other types of signals. In this type of data, CNN showed a superiority in performance in terms of 

computational complexity, facility of training and implementation, and speed [47].  

Even though it is mentioned that 1D CNN handles 1D data and 2D CNN handles 2D data, we must 

clarify that the actual shape of the input data is 3D and 4D respectively. Input in 1D CNN is a matrix 

with three components: [batch size, width, input channels], while in 2D CNN the input is a matrix 

with four elements: [batch size, height, width, input channels] [48] 

The two types of CNN do not only differ in the dimensionality of the input, but also the 

dimensionality of the kernel used to extract features. Kernels follow the same dimensionality as 

the input, i.e. kernels used for 1D CNN are vectors with three components: [width, input channels, 

output channels], while kernels for 2D CNN are matrices with four elements: [height, width, input 

channels, output channels [48] This difference is illustrated in figure 3-11.  
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Figure 3-10 Input and kernel sizes for 1D CNN and 2D CNN [49] 

 

Number of channels is related to the type of input data. In 1D CNN, the number of channels is 

typically 1. As for 2D CNN, number of channels is related to the color representation of the images. 

For example, in case of grayscale images the number of channels Is 1, while for RGB images the 

number of channels is 3 [49]. 

In this thesis, for the classification of power quality disturbances in electrical signals using 1D CNN 

and since these signals are considered one dimensional, we used only 1 input channel i.e. one 

feature is extracted time step. The resulting input shape of our input is [batch size, time_steps, 

input channels]. 

3.6 The model of the 1D CNN proposed method 

The model has an input layer, six convolutional layers, three max-pooling layer, two fully 

connecting layers, and four batch normalization layers.  

The shape of our input is [n_timesteps, n_features, n_outputs] where n_timesteps is the length of 

the input data, n_features is the number of channels and n_outputs is the number of classes in the 

output labels. From out data, the input shape is [640, 1, 16]. 

 As for the convolutional layers, the size of each layer is 32,32,64,64,128 and 128, respectively. The 

kernel slides over the input signal by using (3) to produce the feature map. The max-pooling layers 
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are added after every two convolutional layers with size of 3 and a stride of 1. The batch 

normalization layers are added directly after every max-pooling layer. 

After all these layers comes the dropout layer with rate of 0.7 and a flatten layer. 

Two dense layers are applied after the flatten layer with 256 and 128 units respectfully with a 

batch normalization layer in between. 

In every convolutional layer, an activation operation is performed using ReLU, and regularization 

of rate 0.3.  

The figure 3-12 summarizes our model by showing the input and output sizes at each layer. 
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Figure 3-11 Model summary showing the input and output sizes at each layer 
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3.7 Performance assessment  

There are several measures to estimate the performance of a classification algorithm. Some 

techniques are scalar values calculated though the confusion matrix shown in figure 3-13, like 

accuracy, sensitivity, precision, and specificity. Alternatively, there exist graphical methods like 

Receiver operating characteristics (ROC) and Precision-Recall curves (PR) [50]. The latters are used 

in case of unbalanced dataset.  

 

(a) 

 

(b) 

Figure 3-12 (a) Confusion matrix for binary classification. [51] 
                                      (b) Confusion matrix for multi-class classificaition. [52] 

In our case, since our data is balanced, we will be using the confusion matrix to evaluate our model 

which will be shown with the results in chapter 4. 

 Confusion Matrix: It is an N×N matrix where N is the number of classes. 

Where: TP: True Positive, TN: True Negative, FP: False Positive, FN: False Negative. 



Chapter 3 

34 

Key Performance indicators: The previously mentioned indicators are calculated from the 

confusion matrix using the formulas as follows [51]:   

- Accuracy: (TP+TN)/(TP+TN+FP+FN). 

- Precision: TP/(TP+FP). 

- Recall (Sensitivity): TP/(TP+FN). 

- Specificity: TN/(TN+FP). 

3.8 Conclusion 

Pattern recognition is a problem-solving technique that touched upon a wide-range of fields from 

medical applications to data mining to financial analysis. Merging this technique in the field of 

artificial intelligence, and precisely deep learning, resulted in a speed growth in the pattern 

recognition methodologies and especially in neural networks. Convolutional neural network 

specifically had profound impact on pattern recognition whether it is for 1D applications like 

speech recognition, ECG signal analysis, and electrical signals, or for 2D applications like image 

classification and facial recognition. 1D CNN has being receiving more attention in the field of 

pattern recognition after proving its robust and effectiveness in the field due to hierarchical 

representations and exhibit translation invariance. In this project, we have proposed a 1D CNN 

architecture for the classification of power quality disturbances. This architecture, designed 

empirically based on PGD data, aims to accurately identify and categorize various disturbances in 

electrical power systems. The proposed architecture is not very complex with only six 

convolutional layer, which contributed with the computational efficiency. We will undergo a 

comprehensive analysis and discussion of the model's performance results in the next chapter. 
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4 Chapter 4: Results and interpretations  

4.1 Introduction 

The reliability of the power system is an important for ensuring the stable and uninterrupted 

supply of electricity to consumers. In recent years, 1D CNN has proved its robustness and 

effectiveness in various fields, including power quality analysis. In this chapter, we will go through 

the results of classifying power quality disturbances using 1D CNN architecture. The method will 

be analyzed using special performance assessment parameters. We will then briefly compare the 

performance of our method with different previously suggested techniques. 

 

4.2 Software and programming languages  

4.2.1 MATLAB 

This work was accomplished using MATLAB software. MATLAB is a powerful programming 

language for computational tasks. It is a user-friendly tool that combines computation and 

visualization for solving problems using numerous and familiar mathematical representations [53]. 

The 2021 version (MATLAB R2021a) was used in this project. 

4.2.2 Python 

Python was created by Guido van Rossum as a successor of the language called ABC, its first version 

was released in 1991 [54].  Python is a scripted programming language that focuses on organizing 

and structuring codes around objects with just-in-time compilation technique, making it easy and 

fast to edit and debug [55]. Python has many different libraries with different function for multiple 

applications. 

 For signal and image processing, we used the Keras library. Keras is a potent, user-friendly, charge-

free and an open source for building and assessing deep learning models [56]. This library was used 

through the Kaggle platform.  

Kaggle is a famous platform for its wide use in Data Science. It hosts competitions, provides 

datasets and models, and is a very useful environment for data analysis and machine learning 

projects thanks to the variety of libraries it offers like Keras. Kaggle primarily supports the Python 

programming language.  Aside from all these advantages, the main reason we resorted to kaggle 
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is that it offers different GPU accelerators. We executed our model using the GPU P1001 which 

tremendously helped with the time optimization.  

4.2.3 The open-source software package 

 

Figure 4-1 User Interface of open-source dataset generator. 

 

Figure 4-2 GUI example: generation of a disturbance signal with 3 sag signals. 

                                                           
1 GPU: Graphics Processing Unit, is a specialized electronic circuit which is used for parallel processing 
tasks related to graphics and visualization. GPU P100 refers to the NVIDIA Tesla P100. 
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A synthetic dataset generator was designed by R.Machlew et al. to generate sixteen different types 

of PQDs. The sixteen type consist of single disturbances (sag, swell, interruption, harmonics, 

oscillatory transient, flicker, notch, spike, impulsive transient) and hybrid distrubances 

(sag+harmonics, swell+harmonics, flicker+harmonics, interruption+harmonics, flicker+sag, 

flicker+swell). 

The mathemathical formulas of these PQ disturbances follow IEEE-1159 standard as shown in table 

1-4.  The code to this software as well as the Graphical User interface (GUI) were both built using 

MATLAB 2016B. The interface is shown in figure 4-1.  

The software contains two main GUI, the first generates and analyzes the disturbance signals 

based on the mathematical formulas shown in table 1-4. The second one is a dataset assembler 

which creates different PQD vectors into a single “.mat” file. These two GUIs are shown in figure 

4-1 and 4-2. 
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Table 4-1 Mathematical models of PQDs. [4] 

# Disturbance Characteristic equation Parameters 

1 Normal [1 ± α(u(t − 𝑡1) − u(t − 𝑡2))]sin(ωt) 
α < 0.04, T ≤ (𝑡2 − 𝑡1) 
≤ 9T 

2 Sag [1 − α(u(t − 𝑡1) − u(t − 𝑡2))]sin(ωt) 
0.1 ≤ α < 0.9, T ≤ (𝑡2 

− 𝑡1) ≤ 9T 

3 Swell [1 + α(u(t − 𝑡1) − u(t − 𝑡2))]sin(ωt) 
0.1 ≤ α ≤ 0.8, T ≤ (𝑡2 

− 𝑡1) ≤ 9T 

4 Interruption [1 − α(u(t − 𝑡1) − u(t − 𝑡2))]sin(ωt)] 
0.9 ≤ α ≤ 1, T ≤ (𝑡2− 
𝑡1) ≤ 9T 

5 Harmonics 
𝛼1sin(𝜔𝑡) + 𝛼3sin(3𝜔𝑡) + 𝛼5sin(5𝜔𝑡) + 
𝛼7sin(7𝜔𝑡) 

0.05 ≤ 𝛼3, 𝛼5, 𝛼7 ≤ 

0.15, ∑(α𝑖
2 i ) = 1 

6 Flicker [1 + 𝛼𝑓sin(β𝜔𝑡)]sin(𝜔𝑡) 
0.1 ≤𝛼𝑓 ≤ 0.2, 5 ≤ β ≤ 

20Hz 

7 Oscillatory Transient 
sin(𝜔𝑡) + α− (t− 𝑡1 )/τ sin(𝜔𝑛 (t − 
𝑡1))(u(𝑡2) − u(𝑡1)) 

0.1 < α ≤ 0.8, 0.5T ≤ 
(𝑡2 − 𝑡1) ≤ 3T, 8 ≤ τ ≤ 
40, 300 ≤ 2π𝜔𝑛 ≤ 
900 

8 Impulsive Transient [1 − α(u(t − 𝑡1) − u(t − 𝑡2))]sin(𝜔𝑡) 
0.1 ≤ α ≤ 0.414, T/20 
≤ (𝑡2 − 𝑡1) ≤ T/10 

9 Notch 
sin(𝜔𝑡) − sign(sin(𝜔𝑡))×∑ k[u(t −9

𝑛=0

 (𝑡1  −  0.02n))  −  u(t −  (𝑡2  −
 0.02n))] 

0 ≤ 𝑡1, 𝑡2 ≤ 0.5T, 0.1 
≤ K ≤ 0.4, 0.01T ≤ 𝑡2 
− 𝑡1 ≤ 0.05T 

10 Spike 
sin(ωt) + sign(sin(ωt))× ∑ k[u(t −9

𝑛=0

 (𝑡1  −  0.02n))  −  u(t −  (𝑡2  −
 0.02n))] 

0 ≤ 𝑡1, 𝑡2 ≤ 0.5T, 0.1 
≤ K ≤ 0.4, 0.01T ≤ (𝑡2 

− 𝑡1) ≤ 0.05T 

11 Sag+harmonics 
[1 − α(u(t − 𝑡1) − u(t − 𝑡2))] × [𝛼1sin(ωt) 
+ 𝛼3sin(3𝜔𝑡) + 𝛼5sin(5𝜔𝑡) + 𝛼7sin(7𝜔𝑡)] 

0.1 ≤ α < 0.9, T ≤ (𝑡2 
− 𝑡1) ≤ 9T, 0.05 ≤ 𝛼3, 

𝛼5, 𝛼7 ≤ 0.15, ∑(α𝑖
2  ) 

= 1 

12 Swell+harmonics 
[1 + α(u(t − 𝑡1) − u(t − 𝑡2))] × [𝛼1sin(ωt) 
+ 𝛼3sin(3𝜔𝑡) + 𝛼5sin(5𝜔𝑡) + 𝛼7sin(7𝜔𝑡) 

0.9 ≤ α ≤ 1, T ≤ (𝑡2 − 
𝑡1)  ≤ 9T 

13 Interruption+harmonics 
[1 − α(u(t − 𝑡1) − u(t − 𝑡2))] × [𝛼1sin(𝜔𝑡) 
+ 𝛼3sin(3𝜔𝑡) + 𝛼5sin(5𝜔𝑡) + 𝛼7sin(7𝜔𝑡)] 

0.05 ≤ 𝛼3, 𝛼5, 𝛼7  ≤ 
0.15, ∑(𝛼2 i ) = 1 
0.1 ≤ 𝛼𝑓 ≤ 0.2, 5 ≤ β ≤ 

20 

14 Flicker+harmonics 
[1 + 𝛼𝑓sin(β𝜔𝑡)] × [𝛼1sin(𝜔𝑡) + 

𝛼3sin(3𝜔𝑡) + α5sin(5𝜔𝑡) + 𝛼7sin(7𝜔𝑡)] 

0.05 ≤ 𝛼3, 𝛼5, 𝛼7 ≤ 
0.15, ∑(𝛼2 i ) = 1 
0.1 ≤ 𝛼𝑓 ≤ 0.2, 5 ≤ β ≤ 

20 

15 Flicker+sag 
[1 + 𝛼𝑓sin(β𝜔𝑡)][1 − α(u(t − 𝑡1) − u(t −  

𝑡2))]sin(ωt) 

0.1 ≤ α ≤ 0.9, T ≤ (𝑡2 
− 𝑡1) ≤ 9T 
0.1 ≤ αf ≤ 0.2, 5 ≤ β ≤ 
20 

16 Flicker+swell 
[1 + 𝛼𝑓sin(β𝜔𝑡)][1 + α(u(t − 𝑡1) − u(t −  

𝑡2))]sin(𝜔𝑡) 

0.1 ≤ α ≤ 0.8, T ≤ (𝑡2 
− 𝑡1) ≤ 9T 
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4.3 Dataset generation  

Using the previous dataset generator [4] simulated on MATLAB software R2021a, we generated 

the sixteen classes with 4800 signal for each class. That left us with 76800 signals total. We 

generated three type of datasets: pure (noiseless), with 30dB noise and with random noise. The 

random noise is an additive white Gaussian noise with signal-to-noise ratio (SNR) between 20-50 

dB. The sampling rate for all signals is 3.2 kHz, and the nominal frequency was set to 50Hz with 

length of 10 cycles, i.e. 0.2 s, 640 sampling points.  

By manipulating the constraints parameters, an infinite number of data can be generated. Table 

4-2 shows the specific parameters we chose for our dataset. 

Table 4-2 Table showing the contstraint parameters chosen for each disturbance. 

Disturbance Parameter 
Sag α=0.42  

Swell α=0.4 

Interruption α=0.94 

Harmonics 
𝛼3=0.09, 𝛼3=0.11, 
𝛼7=0.13 

Flicker 𝛼𝑓=0.14, β=17.5 

Oscillatory Transient α=0.4, T=20, 𝐹𝑛=400 

Impulsive Transient α=0.414 

Notch K=0.4  

Spike K=0.4 

Sag+harmonics 
α=0.4, 𝛼3=0.09, 𝛼5=0.11, 
𝛼7=0.13 

Swell+harmonics 
α=0.4, 𝛼3=0.09, 𝛼5=0.11, 
𝛼7=0.13 

Interruption+harmonics 
α=0.94, 𝛼3=0.09, 𝛼5=0.11, 
𝛼7=0.13 

Flicker+harmonics 
𝛼𝑓=0.14, β=1.75, 𝛼3=0.09, 

𝛼5=0.11, 𝛼7=0.13 

Flicker+sag α=0.92, 𝛼𝑓=0.16, β=10 

Flicker+swell α=0.42, 𝛼𝑓=0.18, β=12.5 

 

It is also worth mentioning that the disturbances accure for duration of 20 ms only and for some 

signals for only 1 second. 

The dataset came in .mat format, so in order to efficiently use it we had to convert the .mat files 

into .csv files. We used MATLAB code for the conversion. 
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4.4 Results and discussion 

We split our data, 76800 sample, such that 20% is used for testing, 33% for validation and the rest 

47% is for training. 

 The previously mentioned model was used for the training with parameters of 150 epoch and 32 

batch size.  We obtained 20,511,584 trainable parameters. The hardware parameters are the ones 

offered by kaggle: CPU with 13GB and GPU P100 with 15.9GB memory. 

 In order to calculate the accuracy for each type of disturbance, we apply the previously mentioned 

equation in Chapter three. 

Table 4-3 summarizes the accuracy in each dataset while table 4-4 shows the accuracy of the 16 

disturbances in each dataset (noiseless, 30 dB noise, random noise). 

These values were calculated through applying the above equation on the confusion matrix of each 

dataset. The confusion matrices are shown in figure 4-3, 4-4, and 4-5 for noiseless, 30dB, and 

random noise datasets respectively. 

The types of disturbances are labelled from 0 to 15. The labelling is shown in the table 4-4. 
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Figure 4-3 Confusion matrix for noiseless dataset 

The noiseless dataset was the easiest one to train since the signals were pure, i.e. ideal case, so 

the model with that many layers easily classified the disturbances with an accuracy of 100% for 

each class and 100% average accuracy. 
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Figure 4-4 Confusion matrix for 30dB dataset 

From the confusion matrix and results of the accuracy in the table, we can sense the effect of the 

added noise comparing to the noiseless signals. We can see some minor misclassification but the 

one must be mentiond is the misclassification of 221 signals of the impulsive transient class with 

the normal class. Since impulsive transients are considered short-duration disturbances, we 

assume that adding noise to the signals made it tricky for the model to distinguish between the 

two signals which led to the misclassification. 

Despite the misclassification, this data set had a good average accurancy of 97.18%. 
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Figure 4-5 Confusion matrix for random noise dataset 

The random noise dataset had an overall accuracy of 93%. The lowest accuracies were between 

class 11 (sag) and class 15 (swell). The model misclassified 166 sag signals for swell, and 

misclassified 796 swell signals for sag signal. The random noise ranged from 20-50 dB so the signals 

range from obscured signals to clearer signals. Even though these two types of signals have 

different characteristics in terms of their amplitude, where swell is a sudden increase in voltage or 

current while sag is sudden increase, adding random AWGN noise corrupted the signals which 

caused an overshadow to these characteristics making it challenging for the model to accurately 

detect the correct disturbance. Not to mention the short duration of the disturbances (20ms) 

making the changes in the signals somewhat rapid. 
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Table 4-3 Accuracy of the three datasets. 

Dataset type Accuracy 

Noiseless 100% 

30dB noise 97.18% 

Random noise 93% 

 

Table 4-4 Accuracy of 16 classes of disturbances in the three datasets. 

Label Type of disturbance 
Accuracy 

Noiseless 30dB Random 

0 Flicker harmonics 100% 100% 99.06% 

1 Flicker sag 100% 98.75% 99.89% 

2 Flicker 100% 100% 100% 

3 Flicker swell 100% 98.75% 98.95% 

4 Harmonics 100% 100% 100% 

5 Impulsive transient 100% 76.87% 100% 

6 Interruption harmonics 100% 99.58% 100% 

7 Interruption 100% 98.54% 100% 

8 Normal 100% 93.23% 99.89% 

9 Notch 100% 98.02% 99.68% 

10 Oscillatory transient 100% 100% 90.20% 

11 Sag 100% 96.56% 78.84% 

12 Sag harmonics 100% 98.33% 100% 

13 Spike 100% 97.6% 99.89% 

14 Swell harmonics 100% 99.48% 97.91% 

15 Swell 100% 99.27% 15% 
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Another way to capture our model performance is through the learning curve. One of the most 

famous learning curves is loss over time. We decided to focus on improving the loss curve since it 

gives an insight into model behavior during the training process, as well as it gives a major 

indication on the generalization of the model. It is also an important tool to detect issues like data 

insufficiency, overfitting or underfitting. Focusing on improving this curve through tuning our 

model helped improve its performance. The figures : 4-4, 4-7, and 4-8 are the loss curves for the 

noiseless, 30dB noise, and random noise datasets respectively. 

 

Figure 4-6 Loss curve for noieseless dataset. 
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Figure 4-7 Loss curve for 30dB noise dataset. 

 

Figure 4-8 Loss curve for random noise dataset. 
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4.5 Results assessment 

In order to evaluate our model performance on a deeper level, we will calculate the Key 

Performance indicators we mentioned before in chapter 3 section 7. 

We already calculated the accuracy for each dataset using the confusion matrices. Now we will 

calculate the recall, precision and specificity using the same matrices according to the equation 

formulas mentioned before. 

To calculate the above parameters, we need the value of FN, FP and TN which are also calculated 

through the confusion matrix such that: 

FN= the sum of values in the class’s corresponding row excluding TP. 

FP= the sum of values in the class’s corresponding column excluding TP. 

TN= sum of all columns and rows excluding the class’s corresponding column and row. 

After calculating these values, we calculate the recall, precision, specificity and F1 for each class, 

then later calculate the average values of these parameters for every dataset. 

The results are displayed in table 4-5, where: R: Recall, P: Precision, and S: Specificity. 

From the table, we can clearly see that the model overall performance is high. 

 The first dataset showed ideal results in all four key performance indicators, due to the data being 

pure. 

In the second dataset, the recall value of 0.97 indicates that the model is effective in minimizing 

the false negatives and has a low tendency to miss positive instances. While the precision value 

shows that the model has low rate of false positives and is able to make accurate positive 

predictions. The specificity value of 0.99 demonstrates a high ability to correctly identify negative 

cases, minimizing the number of false positives. F1 score of 0.99 also shows a high performance 

and good balance between minimizing false positives and false negatives. 

As for the third dataset, overall results were also good but some of the classes, specifically swell 

class, showed a really low value for both recall and precision which ultimately affected the value 

of F1. This indicates that the model still have room for improvement. 
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Overall, the model showed promising results in its performance even in case of added noise, which 

highlights the potential of the model to be utilized in real-world applications. 

Table 4-5 Different key performance indicators for the sixteen classes in the three dataset with 
their averages. 

  Dataset type 

  Noiseless 30Db Random 

Label PQD type R P S F1 R P S F1 R P S F1 

0 
Flicker 

harmonics 
1 1 1 1 1 1 1 1 0.99 1 1 0.99 

1 Flicker sag 1 1 1 1 0.98 0.99 0.99 0.99 0.99 0.99 0.99 0.99 

2 Flicker 1 1 1 1 1 0.97 0.99 0.98 0.99 0.99 0.99 0.99 

3 Flicker swell 1 1 1 1 0.98 0.99 0.99 0.99 0.97 0.99 0.99 0.98 

4 Harmonics 1 1 1 1 1 0.97 0.99 0.98 1 0.97 0.99 0.98 

5 
Impulsive 

transient 
1 1 1 1 0.76 0.9 0.99 0.83 1 1 1 1 

6 
Interruption 

harmonics 
1 1 1 1 0.99 0.98 0.99 0.99 1 1 1 1 

7 Interruption  1 1 1 1 0.98 0.98 0.99 0.98 1 0.99 0.99 0.99 

8 Normal  1 1 1 1 0.93 0.77 0.98 0.84 0.99 0.71 0.99 0.83 

9 Notch 1 1 1 1 0.97 1 1 0.98 0.99 0.91 0.99 0.95 

10 
Oscillatory 

transient 
1 1 1 1 1 1 1 1 0.90 0.99 0.99 0.94 

11 Sag 1 1 1 1 0.96 0.99 0.99 0.98 0.73 0.49 0.94 0.58 

12 
Sag 

harmonics 
1 1 1 1 0.98 1 1 0.99 1 0.99 0.99 0.99 

13 Spike 1 1 1 1 0.97 1 1 0.98 0.99 0.99 0.99 0.99 

14 
Swell 

harmonics 
1 1 1 1 0.99 0.99 0.99 0.99 0.97 1 1 0.98 

15 Swell 1 1 1 1 0.99 1 1 0.99 0.15 0.31 0.97 0.20 

Average 1 1 1 1 0.97 0.97 0.99 0.97 0.91 0.89 0.99 0.90 
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4.6 Comparison with other work:  

Table 4-6 Comparison of the accuracy of the proposed method with the accuracy of different 
methods. 

Ref Method 
Dataset type 

Noiseless 30dB Random 

[57] 

2D CNN 97.67% 96.67% 

- 
SqueezNet 72.33 66.67% 

GoogleNet 80% 70.67% 

ResNet-50 100% 98.3% 

[58]  2D CNN - 0.95%  

[4]  BiLSTM 96% - 98.13% 

[59] 
ST 94.7% 

- - 
EMD-HT 97.9% 

[10] Extreme points 98.8%  - 

[60] WT and PSO 98% 93.6% - 

[61] FFT and ANNs  95.65 - 

[62] FDST and DT 99.28% 97.49% - 

 
Proposed method  

(1D CNN) 
100% 97.18% 93% 

 

To prominently show our model’s performance, we did a small comparison between our proposed method 

and other well-known methods like BiLSTM, 2D CNN and ST…etc. The studies mentioned mostly worked 

with noiseless datasets or datasets with different degrees of AWGN noise than 30dB, which is way it was 

hard to find papers which worked with random added noise in its dataset. 

From this comparison, it becomes evident that our proposed 1D CNN model displays impressive 

performance, attaining high accuracies. Furthermore, it maintains a balanced trade-off between 

computational efficiency and predictive power, distinguishing itself from more complex models.    

4.7 Conclusion  

From the results obtained from the training and evaluating of the proposed 1D CNN model, and after 

comparing it with other famous methodologies, we can easily say that this method proved its effectiveness 

in classifying in accurately identifying and classifying multiple power quality disturbances even when 

subjected to varying levels of noise. This model with further improvements can easily be applied in real life 

power system to make a step forward in the field of the smart grid and improve its reliability. 
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5 Chapter 5: Conclusion and future work  

 

5.1 Conclusion 

This work focused on the design of a classification model using a specific type of 

convolutional neural network, namely 1D CNN. In this method, three synthetic datasets were 

generated from an open-source data set generation tool, allowing the generation of sixteen 

different disturbances with controllable AWGN noise. 

This research project successfully designed and implemented a 1D CNN-based classification 

model for power quality disturbances with high accuracies even in the presence of different level 

of noise. Through extensive evaluation and comparison with existing works, the effectiveness and 

performance of the proposed model were demonstrated in terms of model complexity, time 

efficiency, and memory usage. The findings contribute to the field of power quality disturbances 

classification and provide valuable insights for further research and practical applications. 

5.2 Future work 

Future work consists of: 

- Improve the training time and memory usage even more. 

- Measure the performance of the model on data with lower level of noise. 

- Use the model for prediction with real-life data. 
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