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A B S T R A C T

The reliability and accuracy of the wind conversion system largely depend on the early detection and
diagnosis of faults. In this paper, a novel fault estimator for wind turbine pitch and drive train systems is
developed. The main objective is to estimate actuator and sensor faults along with the system states while
mitigating the impact of process disturbances and noises. To accomplish this, an augmented state is created
by combining the states of the system and different faults. Subsequently, an Unknown Input Observer (UIO)
is developed to estimate them simultaneously. The UIO matrices are obtained by optimizing a multi-objective
function formed by transforming states and faults estimation errors into the frequency domain using a genetic
algorithm. Compared with other approaches, particularly 𝐻∞, the proposed technique shows great superiority
in accurately estimating various actuators and sensors faults.
1. Introduction

Humanity has long witnessed incessant technological development
that continues to influence all sectors of life. A new technological
approach to life has been adopted and as a result, our lives have become
easier and more challenging. The price of this advancement is the
constant need for energy which is the principal fuel for technology
to keep operating and developing. Therefore, the global demand for
energy is increasing day by day with the integration of more and more
technologies into our daily lives and with the expansion of industrial ac-
tivities. Coal and oil have been the two main energy sources for decades
since the early stages of technological development [1]. But recently,
the search for alternative energy sources has become a significant topic
in the energy field. Most countries have passed legislation to increase
the use of renewable energy sources [2].

Wind energy, a type of sustainable energy, is one of the main energy
production techniques that can help achieve this goal. The International
Energy Agency (IEA) has published that in 2022, wind power generated
more than 2100 terawatt–hours (tWh) representing the second highest
growth of all renewable technologies [3]. This catalytic role that wind
energy plays in achieving global energy security has placed more
attention on the maintenance and repair of wind turbines and called
for the need to improve technologies and methods that can help address
the challenges and obstacles that wind turbines might face.

Faults in wind turbines require maintenance and/or replacement
procedures that reduce energy output. Besides, a component failure
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can occasionally affect other components, as well as the entire wind
turbine. Therefore, it is essential to quickly identify and isolate wind
turbine problems and to take the necessary precautions to avoid such
undesirable outcomes [4]. The pitch and drive train systems of a wind
turbine are crucial components. The pitch system regulates the angle
of the wind turbine blades to maintain the gathered wind power near
the rated value above the rated wind speed, providing the advantages
of better control flexibility and power quality [5]. However, the drive
train system is in charge of transferring rotational energy from the
turbine blades to the generator. So,the wind turbine pitch and drive
train systems must be carefully designed, operated, and maintained to
achieve the best performance and dependability. Additionally, to im-
prove wind turbine reliability, a monitoring system should be properly
conceived to detect and identify faults and prevent them from causing
serious damage or downtime. In addition, it can enable wind turbines
to operate normally even in the presence of faults which is known as
fault-tolerant control.

Fault estimation is an important step in fault-tolerant control be-
cause it allows one to estimate the magnitude, shape, and location of a
fault that occurs. This could be a fault in a system component, sensor,
or actuator. In general, fault estimation is performed by designing
an observer based on the system’s mathematical model. Many works
have been done regarding the design of an observer-based actuator
and sensor fault estimation for wind turbine pitch and drive train
vailable online 29 November 2023
142-0615/© 2023 The Author(s). Published by Elsevier Ltd. This is an open access a

https://doi.org/10.1016/j.ijepes.2023.109673
Received 5 June 2023; Received in revised form 26 October 2023; Accepted 16 No
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

vember 2023

https://www.elsevier.com/locate/ijepes
http://www.elsevier.com/locate/ijepes
mailto:ab_kouadri@hotmail.com
https://doi.org/10.1016/j.ijepes.2023.109673
https://doi.org/10.1016/j.ijepes.2023.109673
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijepes.2023.109673&domain=pdf
http://creativecommons.org/licenses/by/4.0/


International Journal of Electrical Power and Energy Systems 155 (2024) 109673A. Azizi et al.
Fig. 1. Mechanical scheme of the wind turbine transmission system.
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systems [6–11]. Reconstructing faults in a system while accounting
for disturbances and noise presents a significant challenge in fault
estimation. To overcome this issue, various approaches have been de-
veloped. One such approach is to perform a multitude of optimization
computations to create a residual that is responsive to faults while
being unsusceptible to disturbances and/or uncertainty [12–21]. The
decoupling strategy eliminates disturbances from the estimate error
dynamics, provided that the distribution matrix meets the matching
rank criteria. This technique has been employed in studies by [22–24].
Authors in [25] presented an unknown input observer that decouples
partial disturbances and attenuates the remaining disturbances using
𝐻∞ optimization. Finally, the reconstruction approach estimates per-
turbation effects and removes them, as discussed and reported in [26–
28]. In this work, the wind turbine pitch and drive train systems are
jointly modeled in state space representation. An augmented represen-
tation is then created by incorporating the system states and faults
into an augmented state vector. An Unknown Input Observer (UIO) is
then introduced to estimate this augmented state vector which consists
of system states, actuator and sensor faults. To ensure robust fault
estimation against disturbances and output noise, a genetic algorithm
is used to determine the different UIO gain matrices by minimizing
a multi-objective function formed by various performance indices de-
scribed in the frequency domain. So, the main contribution of this paper
is a novel approach to finding UIO gain matrices for wind turbine
pitch and drive train systems using a genetic algorithm optimizer,
to mitigate disturbances, and reduce their impact on the estimation
process, without making assumptions about the rank of the disturbance
matrix.

The remaining sections of this paper are organized as follows:
Section 2 describes the wind turbine pitch and drive train model.
Section 3 discusses the architecture of the unknown input observer.
Section 4 discusses obtaining UIO gain matrices using the proposed and
with 𝐻∞ approaches. A simulation example is provided in Section 5,
and Section 6 draws some conclusions.

2. Wind turbine pitch and drive train model

For a pitch system, a second-order closed-loop transfer function
from 𝛽𝑟𝑒𝑓 (the pitch reference angle) to pitch angle 𝛽 is used to describe
the hydraulic pitch actuator [29]:

𝛽(𝑠)
=

𝜔2
𝑛

2 2
(1)
2

𝛽𝑟𝑒𝑓 (𝑠) 𝑠 + 2𝜉𝜔𝑛𝑠 + 𝜔𝑛
where 𝜉 and 𝜔𝑛 represent the damping factor and natural frequency,
respectively. The state space equation of the transfer function (1) is
given as follows (2):
[

𝛽̇(𝑡)
𝛽(𝑡)

]

=
[

0 1
−𝜔2

𝑛 −2𝜉𝜔𝑛

] [

𝛽(𝑡)
𝛽̇(𝑡)

]

+
[

0
𝜔2
𝑛

]

𝛽𝑟𝑒𝑓 (𝑡) (2)

he drive train system is composed of a low-speed shaft and a high-
peed shaft, which have inertia 𝐽𝑟 and 𝐽𝑔 and friction coefficients 𝐵𝑟
nd 𝐵𝑔 , respectively. The connection between the two shafts is made
hrough a transmission that has a gear ratio 𝑁𝑔 and efficiency 𝜂𝑑𝑡 and

also features torsion stiffness 𝐾𝑑𝑡 and torsion damping 𝐵𝑑𝑡 [30]. In
ummary, the drive train system can be represented by the following
hree differential equations:

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝜔̇𝑟(𝑡) = −
𝐵𝑑𝑡 + 𝐵𝑟

𝐽𝑟
𝜔𝑟(𝑡) +

𝐵𝑑𝑡
𝑁𝑔𝐽𝑟

𝜔𝑔(𝑡) −
𝐾𝑑𝑡
𝐽𝑟

𝜃𝛥(𝑡) +
𝑇𝑟(𝑡)
𝐽𝑟

𝜔̇𝑔(𝑡) =
𝜂𝑑𝑡𝐵𝑑𝑡
𝑁𝑔𝐽𝑔

𝜔𝑟(𝑡) −

(

𝜂𝑑𝑡𝐵𝑑𝑡

𝑁2
𝑔𝐽𝑔

+
𝐵𝑔

𝐽𝑔

)

𝜔𝑔(𝑡) +
𝜂𝑑𝑡𝐾𝑑𝑡
𝑁𝑔𝐽𝑔

𝜃𝛥(𝑡) −
𝑇𝑔(𝑡)
𝐽𝑔

𝜃̇𝛥(𝑡) = 𝜔𝑟(𝑡) −
𝜔𝑔(𝑡)
𝑁𝑔

(3)

where 𝜔𝑟 and 𝜔𝑔 are the rotor and generator speeds in rad∕s, respec-
tively. 𝜃𝛥 is the torsion angle of the drive train in rad. 𝑇𝑟 and 𝑇𝑔 are the
aerodynamic and generator torques in N ⋅ m, respectively (see Fig. 1).
The aerodynamic torque applied to the rotor is given as [31]:

𝑇𝑟(𝑡) =
𝑃𝑟
𝜔𝑟

(4)

where 𝑃𝑟 is the mechanical power captured by the wind turbine defined
as:

𝑃𝑟 =
1
2
𝜌𝜋𝑅2

𝑏𝑣
3𝐶𝑝(𝜆, 𝛽)

𝑏 is the length of the fan blades, 𝜌 is the air density, 𝑣 is the wind
peed, and 𝐶𝑝(𝜆, 𝛽) is the wind energy conversion coefficient, which
epends on the tip speed ratio 𝜆 and pitch angle 𝛽. 𝐶𝑝(𝜆, 𝛽) and 𝜆 are
xpressed as follows as in [11]:

=
𝜔𝑟𝑅𝑏
𝑣

(5)

1 = 1 − 0.0035 (6)

𝜆𝑖 𝜆 + 0.08𝛽 𝛽3 + 1
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Table 1
Different system parameters.

Parameter Value Parameter Value

𝐽𝑟 55 × 106 kg ⋅m2 𝜂𝑑𝑡 0.97
𝜏𝑔 20 × 10−3 s 𝜌 1.225 kg∕m3

𝐽𝑔 390 kg ⋅m2 𝐾𝑑𝑡 2.7 × 109 N ⋅m∕rad
𝜔𝑛 11.11 rad∕s 𝑅𝑏 57.5 m
𝐵𝑟 7.11 N ⋅m ⋅ s∕rad 𝐵𝑑𝑡 775.49 N ⋅m ⋅ s∕rad
𝜉 0.6 𝐵𝑔 45.6 N ⋅m ⋅ s∕rad
𝑁𝑔 95

𝐶𝑝(𝜆, 𝛽) = 0.5176
(

116
𝜆𝑖

− 0.4𝛽 − 5
)

𝑒−
21
𝜆𝑖 + 0.0068𝜆 (7)

The reference torque 𝑇𝑔,𝑟𝑒𝑓 controls the generator torque 𝑇𝑔 . A first-
order model (8) with the time constant 𝜏𝑔 approximates the dynam-
ics [32]:

𝑇̇𝑔(𝑡) = −
𝑇𝑔(𝑡)
𝜏𝑔

+
𝑇𝑔,𝑟𝑒𝑓 (𝑡)

𝜏𝑔
(8)

The two subsystems (2) and (3) are gathered in the state space
representation as follows:
{

𝑥̇ = 𝐴𝑥 + 𝐵𝑢

𝑦 = 𝐶𝑥
(9)

where 𝑥 =
[

𝜔𝑟 𝜔𝑔 𝜃𝛥 𝛽 𝛽̇
]𝑇 , 𝑢 =

[

𝑇𝑟 𝑇𝑔 𝛽𝑟𝑒𝑓
]𝑇 , 𝐶 =

⎡

⎢

⎢

⎣

1 0 0 0 0
0 1 0 0 0
0 0 0 1 0

⎤

⎥

⎥

⎦

𝐴 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−𝐵𝑑𝑡+𝐵𝑟
𝐽𝑟

𝐵𝑑𝑡
𝑁𝑔𝐽𝑟

−𝐾𝑑𝑡
𝐽𝑟

0 0

𝜂𝑑𝑡𝐵𝑑𝑡
𝑁𝑔𝐽𝑔

−
(

𝜂𝑑𝑡𝐵𝑑𝑡
𝑁2

𝑔 𝐽𝑔
+ 𝐵𝑔

𝐽𝑔

)

𝜂𝑑𝑡𝐾𝑑𝑡
𝑁𝑔𝐽𝑔

0 0

1 − 1
𝑁𝑔

0 0 0

0 0 0 0 1
0 0 0 −𝜔2

𝑛 −2𝜉𝜔𝑛

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1
𝐽𝑟

0 0

0 − 1
𝐽𝑔

0

0 0 0
0 0 0
0 0 𝜔2

𝑛

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

he superscript 𝑇 denotes the transpose of a matrix.
Table 1 shows the different values of the system parameters used in

his paper, which were derived from [32].

. Observer design

Assume that system (9) is subjected to external and undesirable
nputs as follows:

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

𝑥̇ = 𝐴𝑥 + 𝐵
⎡

⎢

⎢

⎣

𝑇𝑟 + 𝛥𝑇𝑟
𝑇𝑔 + 𝛥𝑇𝑔

𝛽𝑟𝑒𝑓

⎤

⎥

⎥

⎦

𝑦 = 𝐶

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝜔𝑟 + 𝛥𝜔𝑟
𝜔𝑔
𝜃𝛥

𝛽 + 𝛥𝛽
𝛽̇

⎤

⎥

⎥

⎥

⎥

⎥

⎦

+ 𝜂

(10)

Where 𝛥𝑇𝑔 is an actuator fault, 𝛥𝑇𝑟 is treated as disturbances, 𝛥𝜔𝑟 and
𝛥𝛽 are sensor faults, and 𝜂 is the measurement noises. By developing

𝐵
⎡

⎢

⎢

𝑇𝑟 + 𝛥𝑇𝑟
𝑇𝑔 + 𝛥𝑇𝑔

⎤

⎥

⎥

= 𝐵
⎡

⎢

⎢

𝑇𝑟
𝑇𝑔

⎤

⎥

⎥

+ 𝐵
⎡

⎢

⎢

𝛥𝑇𝑟
𝛥𝑇𝑔

⎤

⎥

⎥

3

⎣ 𝛽𝑟𝑒𝑓 ⎦ ⎣𝛽𝑟𝑒𝑓 ⎦ ⎣ 0 ⎦
= 𝐵
⎡

⎢

⎢

⎣

𝑇𝑟
𝑇𝑔
𝛽𝑟𝑒𝑓

⎤

⎥

⎥

⎦

+

⎡

⎢

⎢

⎢

⎢

⎢

⎣

1
𝐽𝑟
0
0
0
0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

𝛥𝑇𝑟 +

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0
−1∕𝐽𝑔 0 0

0 0 0
0 0 0
0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

[

𝑓𝑎
𝑓𝑠

]

urthermore,

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝜔𝑟 + 𝛥𝜔𝑟
𝜔𝑔
𝜃𝛥

𝛽 + 𝛥𝛽
𝛽̇

⎤

⎥

⎥

⎥

⎥

⎥

⎦

= 𝐶

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝜔𝑟
𝜔𝑔
𝜃𝛥
𝛽
𝛽̇

⎤

⎥

⎥

⎥

⎥

⎥

⎦

+
⎡

⎢

⎢

⎣

𝛥𝜔𝑟
0
𝛥𝛽

⎤

⎥

⎥

⎦

= 𝐶𝑥 +
⎡

⎢

⎢

⎣

1 0
0 0
0 1

⎤

⎥

⎥

⎦

[

𝛥𝜔𝑟
𝛥𝛽

]

= 𝐶𝑥 +
⎡

⎢

⎢

⎣

0 1 0
0 0 0
0 0 1

⎤

⎥

⎥

⎦

[

𝑓𝑎
𝑓𝑠

]

where 𝑓𝑎 = 𝛥𝑇𝑔 and 𝑓𝑠 =
[

𝛥𝜔𝑟
𝛥𝛽

]

, Eq. (10) is rewritten as shown below:

{

𝑥̇ = 𝐴𝑥 + 𝐵𝑢 + 𝐹𝑑𝑓 +𝐷𝑑

𝑦 = 𝐶𝑥 + 𝐹𝑚𝑓 + 𝜂
(11)

where 𝑓 =
[

𝑓𝑇
𝑎 𝑓𝑇

𝑠
]𝑇 , 𝑓𝑎 and 𝑓𝑠 are actuator and sensor faults, re-

spectively. 𝑑 = 𝛥𝑇𝑟, 𝐷 =
[

1
𝐽𝑟

0 0 0 0
]𝑇

, 𝐹𝑑 =

⎡

⎢

⎢

⎢

⎣

0 − 1
𝐽𝑔

0 0 0

0 0 0 0 0
0 0 0 0 0

⎤

⎥

⎥

⎥

⎦

𝑇

, and 𝐹𝑚 =
⎡

⎢

⎢

⎣

0 1 0
0 0 0
0 0 1

⎤

⎥

⎥

⎦

.

3.1. Augmented system

For the more general case, let R𝑛,R𝑚,R𝑛𝑓 ,R𝑛𝑑 , and R𝑝 be the di-
mensions of 𝑥, 𝑢, 𝑓 , 𝑑, and 𝑦, respectively; Let the augmented state
vector 𝑥𝑎 ∈ R𝑛𝑎 be as in [18]:

𝑥𝑎 =
[

𝑥𝑇 ̇𝑓𝑇 𝑓𝑇 ]𝑇 (12)

where 𝑛𝑎 = 𝑛 + 2 ⋅ 𝑛𝑓 . In addition, the second derivative of fault 𝑓 is
supposed to be not null [33], i.e., 𝑓 ≠ 0.

Thus, the state space representation (11) is rewritten in an aug-
mented state space form as follows:
{

𝑥̇𝑎 = 𝐴𝑎𝑥𝑎 + 𝐵𝑎𝑢 +𝐷𝑎𝑑 + 𝐹𝑓

𝑦 = 𝐶𝑎𝑥𝑎 + 𝜂
(13)

where

𝐴𝑎 =
⎡

⎢

⎢

⎣

𝐴 0 𝐹𝑑
0 0 0
0 𝐼 0

⎤

⎥

⎥

⎦

, 𝐵𝑎 =
⎡

⎢

⎢

⎣

𝐵
0
0

⎤

⎥

⎥

⎦

, 𝐷𝑎 =
⎡

⎢

⎢

⎣

𝐷
0
0

⎤

⎥

⎥

⎦

, 𝐹 =
⎡

⎢

⎢

⎣

0
𝐼
0

⎤

⎥

⎥

⎦

, 𝐶𝑎 =
[

𝐶 0 𝐹𝑚
]

(14)

and 𝐼 is an identity matrix with appropriate dimension.

Remark 1. 𝑥𝑎 obviously contains the state vector 𝑥, the relevant fault
vector 𝑓 , and its first-order derivative ̇𝑓 . As a result, the estimation of
𝑥𝑎 leads to estimating the three components, simultaneously.

3.2. Unknown input observer

Consider the following proportional unknown input observer as
in [34]:
{

𝑧̇ = 𝑀𝑧 +𝑁𝑢 + 𝐺𝑦
(15)
𝑥̂𝑎 = 𝑧 +𝐻𝑦
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𝑒

𝑒

where 𝑧 ∈ 𝑅𝑛𝑎 is the state vector of the dynamic system (15), 𝑥̂𝑎 is the
estimation of 𝑥𝑎, while 𝑀,𝑁,𝐺 and 𝐻 are the observer gain matrices
to be determined.

Let the estimation error be, 𝑒 = 𝑥𝑎 − 𝑥̂𝑎, by using (15) we will have:

𝑒 = 𝑥𝑎 − 𝑥̂𝑎
= 𝑥𝑎 − 𝑧 −𝐻𝐶𝑎𝑥𝑎 −𝐻𝜂

= (𝐼 −𝐻𝐶𝑎)𝑥𝑎 − 𝑧 −𝐻𝜂

(16)

From (16), one can get:

𝑧 = (𝐼 −𝐻𝐶𝑎)𝑥𝑎 − 𝑒 −𝐻𝜂 (17)

Consequently, by using Eqs. (13), (15), (16) and (17), the estimation
error derivative is as follows:

̇ = (𝐼 −𝐻𝐶𝑎)𝑥̇𝑎 − 𝑧̇ −𝐻𝜂̇

= (𝐼 −𝐻𝐶𝑎)(𝐴𝑎𝑥𝑎 + 𝐵𝑎𝑢 +𝐷𝑎𝑑 + 𝐹𝑓 ) − (𝑀𝑧 +𝑁𝑢 + 𝐺𝐶𝑎𝑥𝑎 + 𝐺𝜂)

−𝐻𝜂̇

= [(𝐼 −𝐻𝐶𝑎)𝐴𝑎 − 𝐺𝐶𝑎 −𝑀(𝐼 −𝐻𝐶𝑎)]𝑥𝑎 + [(𝐼 −𝐻𝐶𝑎)𝐵𝑎 −𝑁]𝑢

+ (𝐼 −𝐻𝐶𝑎)𝐷𝑎𝑑 + (𝐼 −𝐻𝐶𝑎)𝐹𝑓 +𝑀𝑒 − (𝐺 −𝑀𝐻)𝜂 −𝐻𝜂̇

(18)

If the below relations can be maintained:

(𝐼 −𝐻𝐶𝑎)𝐴𝑎 − 𝐺𝐶𝑎 −𝑀(𝐼 −𝐻𝐶𝑎) = 0 (19)

(𝐼 −𝐻𝐶𝑎)𝐵𝑎 −𝑁 = 0 (20)

and by rewriting (19) as:

𝑀 = 𝐴𝑎 −𝐾𝐶𝑎 −𝐻𝐶𝑎𝐴𝑎 (21)

where 𝐾 = 𝐺 −𝑀𝐻 (22)

The estimation error derivative (18) becomes:

̇ = 𝑀𝑒 + (𝐼 −𝐻𝐶𝑎)𝐷𝑎𝑑 + (𝐼 −𝐻𝐶𝑎)𝐹𝑓 −𝐾𝜂 −𝐻𝜂̇ (23)

Under the absence of external inputs (𝑑 = 0, 𝑓 = 0, and 𝜂 = 0), the
estimation error is stable if and only if the matrix 𝑀 is hurwitz.

The necessary and sufficient conditions for the existence of the
(UIO) (15) for the system (11) are established under the following
assumptions:

Assumption 1. The pair (𝐴,𝐶) is observable.

Assumption 2.
[

𝐴 𝐹𝑑
𝐶 𝐹𝑚

]

is full column rank.

Remark 2. Assumption 1 is commonly adopted for observers to ensure
system states observability [26]. Additionally, Assumption 2 can be
understood as the need for the transmission zeros stemming from the
unknown inputs to the measurements to be in a stable state [25].

4. UIO gain matrices

4.1. Proposed using genetic algorithm

The main objective of this work is to design the previous UIO (15) in
such a way that the transfer function between the estimation error and
each input (disturbances, noises, and the second derivative of a fault)
has its maximum singular value minimized, meaning that its infinite
norm is minimal.

Applying Laplace transform to Eq. (23), with null initial conditions,
the relation between estimation error and the different inputs is as
follows:
𝑒(𝑠) = (𝑠𝐼 −𝑀)−1(𝐼 −𝐻𝐶𝑎)𝐷𝑎𝑑(𝑠) − (𝑠𝐼 −𝑀)−1(𝐾 +𝐻𝑠)𝜂(𝑠)

−1 2 (24)
4

+ (𝑠𝐼 −𝑀) (𝐼 −𝐻𝐶𝑎)𝐹𝑠 𝑓 (𝑠)
The following performance indices to be minimized are proposed [33,
35]:

𝑇1(𝐾,𝐻) = ‖(𝑠𝐼 − 𝐴𝑎 +𝐾𝐶𝑎 +𝐻𝐶𝑎𝐴𝑎)−1(𝐼 −𝐻𝐶𝑎)𝐷𝑎‖𝑠=𝑗𝑤𝑑
(25)

𝑇2(𝐾,𝐻) = ‖(𝑠𝐼 − 𝐴𝑎 +𝐾𝐶𝑎 +𝐻𝐶𝑎𝐴𝑎)−1(𝐾 +𝐻𝑠)‖𝑠=𝑗𝑤𝜂
(26)

𝑇3(𝐾,𝐻) = ‖(𝑠𝐼 − 𝐴𝑎 +𝐾𝐶𝑎 +𝐻𝐶𝑎𝐴𝑎)−1(𝐼 −𝐻𝐶𝑎)𝐹𝑠2‖𝑠=𝑗𝑤𝑓
(27)

where ‖ ⋅ ‖ denotes the infinite norm. 𝑤𝑑 , 𝑤𝜂 , and 𝑤𝑓 are the distur-
bance, noise, and the second derivative of fault dominant frequencies,
respectively.

By minimizing 𝑇1, 𝑇2, and 𝑇3, the effect of disturbances, noises, and
the second derivative of faults on the estimation error will be reduced,
respectively.

The Weighted Sum Multi-objective function to be assessed is as
follows:

minimize
𝐾,𝐻

3
∑

𝑖=1
𝛼𝑖𝑇𝑖(𝐾,𝐻)

subject to 𝑟𝑒𝑎𝑙(𝜆(𝐴𝑎 −𝐾𝐶𝑎 −𝐻𝐶𝑎𝐴𝑎)) < 0

(28)

where 0 < 𝛼𝑖 ≤ 1 and ∑3
𝑖=1 𝛼𝑖 = 1, and 𝑟𝑒𝑎𝑙(𝜆(𝜉)) is the real part of 𝜉’s

eigenvalues.
To remove the constraint of the objective function (28), the matrices

𝐾 and 𝐻 are rewritten in terms of the estimation error state matrix’s
eigenvalues.

Assume that there are 𝑛𝑟 real eigenvalues 𝜆𝑖(𝑖 = 1 ⋯ 𝑛𝑟), and
𝑛𝑐 pairs of complex-conjugate eigenvalues 𝜆𝑖,𝑟𝑒 ± 𝑗𝜆𝑖,𝑖𝑚𝑔(𝑖 = 1 ⋯ 𝑛𝑐 )
and that any of 𝑛𝑟 and 𝑛𝑐 meet the relation:

𝑛𝑟 + 2𝑛𝑐 = 𝑛𝑎 (29)

The relationship between the closed-loop observer matrix (𝐴𝑎−𝐾 ⋅𝐶𝑎−
𝐻 ⋅ 𝐶𝑎 ⋅ 𝐴𝑎) eigenvalues and eigenvectors can be represented as:

(𝐴𝑎 −𝐾𝐶𝑎 −𝐻𝐶𝑎𝐴𝑎)𝑇 𝑣𝑖 = 𝜆𝑖𝑣𝑖, 𝑖 = 1, 2,… , 𝑛𝑎 (30)

where 𝜆𝑖 is the right eigenvalue of the closed-loop observer matrix
(𝐴𝑎 − 𝐾𝐶𝑎 − 𝐻𝐶𝑎𝐴𝑎)𝑇 and 𝑣𝑖 is the corresponding eigenvector of 𝜆𝑖,
and 𝑖 = 1 ⋯ 𝑛𝑎.

For real eigenvalues, (𝑖 = 1 ⋯ 𝑛𝑐 ), we can express the eigenvec-
tors 𝑣𝑖 as follows:

(𝐴𝑇
𝑎 − 𝐶𝑇

𝑎 𝐾
𝑇 − 𝐴𝑇

𝑎 𝐶
𝑇
𝑎 𝐻

𝑇 )𝑣𝑖 = 𝜆𝑖𝑣𝑖 (31)

or

𝑣𝑖 = −(𝜆𝑖𝐼 − 𝐴𝑇
𝑎 )

−1𝐶𝑇
𝑎 𝑞𝑖 − (𝜆𝑖𝐼 − 𝐴𝑇

𝑎 )
−1𝐴𝑇

𝑎 𝐶
𝑇
𝑎 𝑟𝑖 (32)

where

𝑞𝑖 = 𝐾𝑇 𝑣𝑖 (33)

𝑟𝑖 = 𝐻𝑇 𝑣𝑖 (34)

In the case where the eigenvalues are complex conjugate:

𝜆𝑖 = 𝜆𝑖,𝑟𝑒 + 𝑗𝜆𝑖,𝑖𝑚𝑔 (35)

𝑣𝑖 = 𝑣𝑖,𝑟𝑒 + 𝑗𝑣𝑖,𝑖𝑚𝑔 (36)

from (30), one can get:

(𝐴𝑇
𝑎 −𝐶𝑇

𝑎 𝐾
𝑇 −𝐴𝑇

𝑎 𝐶
𝑇
𝑎 𝐻

𝑇 )(𝑣𝑖,𝑟𝑒+𝑗𝑣𝑖,𝑖𝑚𝑔) = (𝜆𝑖,𝑟𝑒+𝑗𝜆𝑖,𝑖𝑚𝑔)(𝑣𝑖,𝑟𝑒+𝑗𝑣𝑖,𝑖𝑚𝑔) (37)

This equivalent to:
{

(𝐴𝑇
𝑎 − 𝐶𝑇

𝑎 𝐾
𝑇 − 𝐴𝑇

𝑎 𝐶
𝑇
𝑎 𝐻

𝑇 )𝑣𝑖,𝑟𝑒 = 𝜆𝑖,𝑟𝑒𝑣𝑖,𝑟𝑒 − 𝜆𝑖,𝑖𝑚𝑔𝑣𝑖,𝑖𝑚𝑔
(𝐴𝑇

𝑎 − 𝐶𝑇
𝑎 𝐾

𝑇 − 𝐴𝑇
𝑎 𝐶

𝑇
𝑎 𝐻

𝑇 )𝑣𝑖,𝑖𝑚𝑔 = 𝜆𝑖,𝑖𝑚𝑔𝑣𝑖,𝑟𝑒 + 𝜆𝑖,𝑟𝑒𝑣𝑖,𝑖𝑚𝑔
(38)

or
{

(𝜆𝑖,𝑟𝑒𝐼 − 𝐴𝑇
𝑎 )𝑣𝑖,𝑟𝑒 − 𝜆𝑖,𝑖𝑚𝑔𝑣𝑖,𝑖𝑚𝑔 = −𝐶𝑇

𝑎 𝐾
𝑇 𝑣𝑖,𝑟𝑒 − 𝐴𝑇

𝑎 𝐶
𝑇
𝑎 𝐻

𝑇 𝑣𝑖,𝑟𝑒
𝑇 𝑇 𝑇 𝑇 𝑇 𝑇 (39)
𝜆𝑖,𝑖𝑚𝑔𝑣𝑖,𝑟𝑒 + (𝜆𝑖,𝑟𝑒𝐼 − 𝐴𝑎 )𝑣𝑖,𝑖𝑚𝑔 = −𝐶𝑎 𝐾 𝑣𝑖,𝑖𝑚𝑔 − 𝐴𝑎 𝐶𝑎 𝐻 𝑣𝑖,𝑖𝑚𝑔
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by making

𝐴𝑎𝑖 =
[

(𝜆𝑖,𝑟𝑒𝐼 − 𝐴𝑇
𝑎 ) −𝜆𝑖,𝑖𝑚𝑔𝐼

𝜆𝑖,𝑖𝑚𝑔𝐼 (𝜆𝑖,𝑟𝑒𝐼 − 𝐴𝑇
𝑎 )

]

, 𝐶1 =
[

𝐶𝑇
𝑎 0
0 𝐶𝑇

𝑎

]

,

𝐶2 =
[

𝐴𝑇
𝑎 𝐶

𝑇
𝑎 0

0 𝐴𝑇
𝑎 𝐶

𝑇
𝑎

]

and
{

𝑞𝑖,𝑟𝑒 = 𝐾𝑇 𝑣𝑖,𝑟𝑒
𝑞𝑖,𝑖𝑚𝑔 = 𝐾𝑇 𝑣𝑖,𝑖𝑚𝑔

(40)
{

𝑟𝑖,𝑟𝑒 = 𝐻𝑇 𝑣𝑖,𝑟𝑒
𝑟𝑖,𝑖𝑚𝑔 = 𝐻𝑇 𝑣𝑖,𝑖𝑚𝑔

(41)

e will have the eigenvectors for 𝑖 = 1, 2,… , 𝑛𝑐 as follows:
[

𝑣𝑖,𝑟𝑒
𝑣𝑖,𝑖𝑚𝑔

]

= −𝐴𝑎
−1
𝑖 𝐶1

[

𝑞𝑖,𝑟𝑒
𝑞𝑖,𝑖𝑚𝑔

]

− 𝐴𝑎
−1
𝑖 𝐶2

[

𝑟𝑖,𝑟𝑒
𝑟𝑖,𝑖𝑚𝑔

]

(42)

The observer gain matrices 𝐾 and 𝐻 are given by:

𝐾 = (𝑄𝑉 −1)𝑇 (43)

𝐻 = (𝑅𝑉 −1)𝑇 (44)

where

𝑉 =
[

𝑣1 ⋯ 𝑣𝑛𝑟 𝑣1,𝑟𝑒 ⋯ 𝑣𝑛𝑐 ,𝑟𝑒 𝑣1,𝑖𝑚𝑔 ⋯ 𝑣𝑛𝑐 ,𝑖𝑚𝑔
]

∈ 𝑅𝑛𝑎×𝑛𝑎

𝑄 =
[

𝑞1 ⋯ 𝑞𝑛𝑟 𝑞1,𝑟𝑒 ⋯ 𝑞𝑛𝑐 ,𝑟𝑒 𝑞1,𝑖𝑚𝑔 ⋯ 𝑞𝑛𝑐 ,𝑖𝑚𝑔
]

∈ 𝑅𝑝×𝑛𝑎

𝑅 =
[

𝑟1 ⋯ 𝑟𝑛𝑟 𝑟1,𝑟𝑒 ⋯ 𝑟𝑛𝑐 ,𝑟𝑒 𝑟1,𝑖𝑚𝑔 ⋯ 𝑟𝑛𝑐 ,𝑖𝑚𝑔
]

∈ 𝑅𝑝×𝑛𝑎

(45)

Therefore, Eq. (28) becomes:

minimize
𝑄,𝑅,𝜆1 ,…,𝜆𝑛𝑎

3
∑

𝑖=1
𝛼𝑖𝑇𝑖(𝑄,𝑅, 𝜆1,… , 𝜆𝑛𝑎 )

subject to 𝑟𝑒𝑎𝑙(𝜆𝑖) < 0, 𝑖 = 1, 2,… , 𝑛𝑎

(46)

Furthermore, a new real scalar variable 𝑠𝑖 is introduced to remove the
above constraint for real eigenvalues using the following formula [36]:

𝜆𝑖 = 𝐿𝑖 + (𝑈𝑖 − 𝐿𝑖) ⋅ sin
2(𝑠𝑖) (47)

where, 𝜆𝑖 ∈ [𝐿𝑖, 𝑈𝑖]. 𝐿𝑖 and 𝑈𝑖 are the lower and the upper value of 𝜆𝑖
to be designed, whilst for complex eigenvalues:

𝜆𝑖,𝑟𝑒 = 𝐿𝑖,𝑟𝑒 + (𝑈𝑖,𝑟𝑒 − 𝐿𝑖,𝑟𝑒) ⋅ sin
2(𝑠𝑖) (48)

𝜆𝑖,𝑖𝑚𝑔 = 𝐿𝑖,𝑖𝑚𝑔 + (𝑈𝑖,𝑖𝑚𝑔 − 𝐿𝑖,𝑖𝑚𝑔) ⋅ sin
2(𝑠𝑖) (49)

𝜆𝑖 = 𝜆𝑖,𝑟𝑒 ± 𝑗 ⋅ 𝜆𝑖,𝑖𝑚𝑔 (50)

where, 𝜆𝑖,𝑟𝑒 ∈ [𝐿𝑖,𝑟𝑒, 𝑈𝑖,𝑟𝑒] and 𝜆𝑖,𝑖𝑚𝑔 ∈ [𝐿𝑖,𝑖𝑚𝑔 , 𝑈𝑖,𝑖𝑚𝑔]. Hence, Eq. (46)
becomes:

minimize
𝑄,𝑅,𝑠1 ,…,𝑠𝑛𝑎

3
∑

𝑖=1
𝛼𝑖𝑇𝑖(𝑄,𝑅, 𝑠1,… , 𝑠𝑛𝑎 ) (51)

The procedure for designing the proposed UIO consists of first
creating the augmented system of the form (13), then finding the UIO
gain matrices 𝐾 and 𝐻 by minimizing (51) using a genetic algorithm,
then calculate the rest of the parameters 𝑀 , 𝑁 , and 𝐺 expressed
respectively in (19), (21) and (22). The different steps for evaluating
the multi-objective function (51) are listed below:

Step 1. Start with initial values of 𝑅, 𝑄, and 𝑠𝑖.
Step 2. Calculate the eigenvalues using (47) or (50) after designing the

upper and lower bounds.
Step 3. Calculate the eigenvectors using 𝑅, 𝑄, and the eigenvalues

employing (32) or (42).
Step 4. Calculate 𝐾 and 𝐻 using (43) and (44).
Step 5. Finally, evaluate (51) by first calculating the performance

indices 𝑇 , 𝑇 , and 𝑇 in (25), (26) and (27), respectively.
5
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4.2. Using 𝐻∞ optimization

Definition 1. A system is said to be stable with 𝐻∞ performance if the
following conditions are satisfied [37]: (1) With zero disturbance, the
system is asymptotically stable. (2) With zero initial condition and for
a given positive constant 𝛾 the following condition holds:

∫

∞

0
𝑥𝑇 𝑥 𝑑𝑡 < 𝛾2 ∫

∞

0
𝑑𝑇 𝑑 𝑑𝑡 (52)

where 𝑥 and 𝑑 are the system state vector and the disturbance, respec-
tively.

Lemma 1 (Schur Complement [38]). Let 𝑃 =
[

𝑃11 𝑃12
∗ 𝑃22

]

be a symmetric

matrix, then:

𝑃 < 0 ≡ 𝑃22 < 0 and 𝑃11 − 𝑃12𝑃22𝑃
𝑇
12 < 0

Theorem 1. There exists a robust observer (15) that can be achieve
𝐻∞ performance (52), if there exist a symmetric positive definite matrix
𝑋 ∈ R𝑛𝑎×𝑛𝑎 and a scalar 𝛿 > 0 satisfying:

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑋𝑀 +𝑀𝑇𝑋 (𝑋 − 𝑌2𝐶𝑎)𝐷𝑎 (𝑋 − 𝑌2𝐶𝑎)𝐹 −𝑌1 −𝑌2 𝐼𝑛𝑎
∗ −𝛿𝐼𝑛𝑑 0 0 0 0
∗ ∗ −𝛿𝐼𝑛𝑓 0 0 0
∗ ∗ ∗ −𝛿𝐼𝑝 0 0
∗ ∗ ∗ ∗ −𝛿𝐼𝑝 0
∗ ∗ ∗ ∗ ∗ −𝛿𝐼𝑛𝑎

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

< 0 (53)

where 𝑌1 = 𝑋𝐾, 𝑌2 = 𝑋𝐻 , and 𝑋𝑀 = 𝑋𝐴𝑎 − 𝑌1𝐶𝑎 − 𝑌2𝐶𝑎𝐴𝑎.

Proof. Define a Lyapunov function as:

𝑉 (𝑒) = 𝑒𝑇𝑋𝑒 (54)

where 𝑋 = 𝑋𝑇 > 0. Using (23), the derivative of 𝑉 with respect to time
yields that:

𝑉̇ (𝑒) = 𝑒̇𝑇𝑋𝑒 + 𝑒𝑇𝑋𝑒̇

=
(

𝑀𝑇 𝑒𝑇 + 𝑑𝑇𝐷𝑇
𝑎 (𝐼 −𝐻𝐶𝑎)𝑇 + 𝑓𝑇𝐹 𝑇 (𝐼 −𝐻𝐶𝑎)𝑇

− 𝜂𝑇𝐾𝑇 − 𝜂̇𝑇𝐻𝑇
)

𝑋𝑒+

𝑒𝑇𝑋
(

𝑀𝑒 + (𝐼 −𝐻𝐶𝑎)𝐷𝑎𝑑 + (𝐼 −𝐻𝐶𝑎)𝐹𝑓 −𝐾𝜂 −𝐻𝜂̇
)

=
[

𝑒𝑇 𝑑𝑇𝑠
]

𝛱
[

𝑒
𝑑𝑠

]

(55)

where

𝛱

=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝑀𝑇𝑋 +𝑋𝑀 𝑋(𝐼 −𝐻𝐶𝑎)𝐷𝑎 𝑋(𝐼 −𝐻𝐶𝑎)𝐹 −𝑋𝐾 −𝑋𝐻
∗ 0 0 0 0
∗ ∗ 0 0 0
∗ ∗ ∗ 0 0
∗ ∗ ∗ ∗ 0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

,

𝑑𝑠 =

⎡

⎢

⎢

⎢

⎢

⎣

𝑑
𝑓
𝜂
𝜂̇

⎤

⎥

⎥

⎥

⎥

⎦

Let

𝑃ℎ = ∫

∞

0
𝛿−1𝑒𝑇 𝑒 − 𝛿𝑑𝑇𝑠 𝑑𝑠 𝑑𝑡 (56)

by using Eqs. (55) and (56), one can get:

𝑃ℎ = ∫

∞

0
𝛿−1𝑒𝑇 𝑒 − 𝛿𝑑𝑇𝑠 𝑑𝑠 + 𝑉̇ (𝑒) 𝑑𝑡 − ∫

∞

0
𝑉̇ (𝑒) 𝑑𝑡

=
∞
[

𝑒𝑇 𝑑𝑇𝑠
]

𝛱1

[

𝑒
]

𝑑𝑡 −
∞
𝑉̇ (𝑒) 𝑑𝑡

(57)
∫0 𝑑𝑠 ∫0
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w

∫

𝛱

∫

s
d

5

o
t
t
w
s

c

5

a
w

𝛱1 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝑀𝑇𝑋 +𝑋𝑀 + 𝛿−1𝐼𝑛𝑎 𝑋(𝐼 −𝐻𝐶𝑎)𝐷𝑎 𝑋(𝐼 −𝐻𝐶𝑎)𝐹 −𝑋𝐾 −𝑋𝐻
∗ −𝛿𝐼𝑛𝑑 0 0 0
∗ ∗ −𝛿𝐼𝑛𝑓 0 0
∗ ∗ ∗ −𝛿𝐼𝑝 0
∗ ∗ ∗ ∗ −𝛿𝐼𝑝

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(58)
Box I.

R
d
i

𝐷

𝑑

w
f
1

d
f
t
t
e
i
o
m

5

t

C

w

𝑑

𝐷

Table 2
Root mean square error between system states, actuator, and sensor faults and their
estimation (first case).

Approach 𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑓𝑎 𝑓𝑠1 𝑓𝑠2
𝐻∞ 0.0000 0.0009 0.0000 0.0042 0.0154 181.2895 0.0014 0.0040
Proposed 0.0000 0.0008 0.0000 0.0039 0.0243 14.8411 0.0008 0.0039

Fig. 2. Disturbance 𝑑𝑟(𝑡).

here (see Eq. (58) in Box I).
Under zero initial condition, 𝑒(0) = 0:
∞

0
𝑉̇ (𝑒) 𝑑𝑡 = 𝑉 (𝑒(∞)) > 0 (59)

1 < 0 implies that 𝑃ℎ < 0, which means
∞

0
𝑒𝑇 𝑒 𝑑𝑡 < ∫

∞

0
𝛿2𝑑𝑇𝑠 𝑑𝑠 𝑑𝑡

etting 𝑌1 = 𝑋𝐾 and 𝑌2 = 𝑋𝐻 , and utilizing Lemma 1 on Eq. (58),
emonstrates Theorem 1.

. Results and discussion

The simulation is divided into two parts to address the two cases
f the disturbances matrix; one where it has a full column rank, and
he other where it does not. When comparing the different approaches,
he bold value represents the best value of the corresponding variable
hile the underline values represent the best approach for all variables

et.
The weighting factors 𝛼1, 𝛼2, and 𝛼3 presented in Eq. (51) are each

onsidered to be 1
3 .

.1. Case 1: Not full column rank disturbances matrix

For this simulation of wind turbine pitch and drive train systems, the
ctuator fault is considered to be random following Weibull distribution

3

6

ith the scale of 1.2 × 10 and shape equal to 8 starting from 𝑡 = 100 s;
The noises 𝜂 affecting the system are Gaussian noises with 0 mean and
10−3 standard deviation. The sensor faults 𝑓𝑠1 and 𝑓𝑠2 are as follows:

𝑓𝑠1 (𝑡) =

{

0, 𝑡 < 300

0.2 + 0.05 sin(0.3(𝑡 − 300)), 𝑡 ≥ 300

𝑓𝑠2 (𝑡) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0, 𝑡 < 150
1.8
50

(𝑡 − 150), 150 ≤ 𝑡 < 200

1.8 + 0.8 cos(0.2(𝑡 − 200)) sin(0.02(𝑡 − 200)), 𝑡 ≥ 200

egarding the disturbances, additional perturbations have been intro-
uced to achieve a disturbance matrix with a non-full column rank. 𝐷
s taken as:

=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

1
𝐽𝑟

−5
𝐽𝑟

0 0
0 0
0 0
0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

and the disturbance 𝑑(𝑡):

(𝑡) =
[

𝑑𝑟(𝑡)
102(𝑢(𝑡 − 100) − 𝑢(𝑡 − 300))

]

here 𝑢(𝑡) is the unit step function and 𝑑𝑟(𝑡) is considered to be random
ollowing a Weibull distribution with the scale of 103 and shape equal
0 starting from 𝑡 = 50 s as illustrated in Fig. 2.

It can be seen from Figs. 3 to 9, the proposed approach consistently
emonstrates higher accuracy in estimating system states and different
aults compared to that of 𝐻∞. This highlights the effectiveness of
he proposed approach for robust estimation. As shown in Table 2,
he suggested strategy outperforms 𝐻∞ in many cases, particularly in
stimating faults with random behavior (e.g., the actuator fault shown
n Fig. 7). Obviously, the proposed approach achieves an RMSE value
f 14.8411, whereas 𝐻∞ yields 181.2895. The different observer gain
atrices of the two techniques are provided in Appendix A.

.2. Case 2: Full column rank disturbance matrix with uncertainties

In this case, we are considering that the system is subject to uncer-
ainties 𝜁 (𝑥), actuator fault 𝑓𝑎, and the disturbances 𝑑:
{

𝑥̇ = 𝐴𝑥 + 𝐵𝑢 + 𝐹𝑎𝑓𝑎 +𝐷𝑑 + 𝛯𝜁 (𝑥)

𝑦 = 𝐶𝑥
(60)

ombining 𝑑 and 𝜁 as in [39], Eq. (60) becomes:
{

𝑥̇ = 𝐴𝑥 + 𝐵𝑢 + 𝐹𝑎𝑓𝑎 +𝐷1𝑑1
𝑦 = 𝐶𝑥

(61)

here 𝐹𝑎 is the first column of the matrix 𝐹𝑑 , 𝐷1 =
[

𝐷 𝛯
]

, and

1 =
[

𝑑
𝜁

]

.

𝐷 and 𝛯 are chosen as:

=

⎡

⎢

⎢

⎢

⎢

⎢

1
𝐽𝑟
0
0
0

⎤

⎥

⎥

⎥

⎥

⎥

, 𝛯 =

⎡

⎢

⎢

⎢

⎢

⎢

0
0.01
0
0

⎤

⎥

⎥

⎥

⎥

⎥

⎣ 0 ⎦ ⎣
−0.02

⎦
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a

Fig. 3. System state 𝑥1 and its estimate along with the variation of the estimation error (first case).
Fig. 4. System state 𝑥2 and its estimate along with the variation of the estimation error (first case).
Table 3
Root mean square error between system states, actuator, and sensor faults with their
estimation (second case).

Approach 𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑓𝑎
𝐻∞ 0.0000 0.0006 0.0000 0.0036 0.0187 81.5936
Proposed in [39] 0.0000 0.0830 0.0000 0.0057 0.0067 61.2897
Proposed 0.0000 0.0008 0.0000 0.0015 0.0061 8.7031

The disturbance 𝑑(𝑡) follows a Weibull distribution with the scale
nd shape parameters of respectively 102 and 10, starting from 𝑡 = 100 s,

as depicted in Fig. 10, and the uncertainties 𝜁 =
[

0.01 0 0.02
]

𝑦. And
the actuator fault is considered as 𝑓𝑎 = 500 × (𝑢(𝑡 − 80) − 𝑢(𝑡 − 400)).

In this simulation case, the results of the proposed approach are
compared with the 𝐻∞ technique as well as with the sliding mode
observer for the actuator fault scenario proposed in [39]. The observer
gain matrices of the three approaches are provided in Appendix B.
7

Compared to 𝐻∞ and the method described in [39], the suggested
approach consistently shows superior accuracy in estimating the system
states and actuator fault, as shown in Figs. 11 to 15. This demonstrates
how successful the suggested method is for robust estimation. As it
can be seen in Table 3, the proposed method produced the best results
although the suggested strategy in [39] fared well when compared to
𝐻∞.

6. Conclusion

In this paper, an Unknown Input Observer-based simultaneous states
and faults estimation approach for wind turbine pitch and drive train
systems is developed, which can effectively handle systems that are
susceptible to disturbances and noises. The theoretical analysis of the
proposed technique is well-defined. The design approach of a linear
system estimator is satisfactorily provided and achieves robustness by
using the Genetic Algorithm optimizer to minimize a multi-objective
function derived from a set of performance indices in the frequency
domain. The obtained results show great superiority of the developed
technique compared with the 𝐻∞ technique and the sliding mode
observer.
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Fig. 5. System state 𝑥4 and its estimate along with the variation of the estimation error (first case).
Fig. 6. System state 𝑥5 and its estimate along with the variation of the estimation error (first case).
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Appendix A. Case 1

A.1. Proposed observer gain

𝐾 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

0.005 0.072 0.002
−0.036 6.723 −0.052
0.001 0.000 0.000
4.431 5.502 13.621

−28.827 −50.354 −126.460
94083.466 124376.056 204032.291

2.140 0.178 0.606
−29.492 −28.969 −69.962
15673.406 18767.128 29986.395

8.958 0.248 1.554

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎣

−4.225 −5.408 −7.160
⎦
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Fig. 7. Actuator fault and its estimate along with the variation of the estimation error 𝑒𝑓𝑎 (first case).
Fig. 8. First sensor fault and its estimate along with the variation of the estimation error 𝑒𝑓𝑠1 (first case).
𝐻 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−0.001 0.001 −0.000
−0.030 1.006 0.001
0.000 −0.000 −0.000
−2.151 0.860 0.066
19.210 −8.038 5.470

15576.856 −117395.993 −3616.558
6.734 0.048 0.004
11.362 −4.312 2.895
5467.725 −21848.737 −593.262
0.919 0.036 0.001
2.228 −0.906 0.932

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

9

A.2. 𝐻∞ observer gain

𝐾 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−0.000 0.097 −0.000
−0.009 9.215 −0.000
0.000 −0.000 −0.000
−0.000 −0.000 −0.000
−0.000 0.000 0.000
0.120 −126.174 0.000
0.606 −0.020 −0.000
0.000 −0.000 0.632
3.917 −4206.144 0.000
1.115 −0.106 −0.000
−0.000 −0.000 1.128

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦
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𝐻

Fig. 9. Second sensor fault and its estimate along with the variation of the estimation error 𝑒𝑓𝑠2 (first case).
A

B

𝐾

𝐻

Fig. 10. Disturbance 𝑑(𝑡).

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−0.000 0.010 0.000
−0.023 0.869 −0.000
0.000 0.000 −0.000
−0.000 −0.000 −0.000
−0.000 −0.000 −0.000
0.259 −12.454 −0.000
1.113 0.009 −0.000
0.000 0.000 1.190
8.557 −413.179 −0.000
0.607 −0.009 −0.000
−0.000 0.000 0.653

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

10
ppendix B. Case 2

.1. Proposed observer gain

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0.113 0.044 0.020
3.112 5.671 1.180
0.057 0.000 0.002

−12.844 −0.637 5.137
307.026 15.951 −135.901

5332844.256 81558.741 −82024.932
1485317.752 47522.134 −9094.924

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0.488 0.002 0.004
2.560 0.970 0.181
−0.084 0.000 0.001
−10.740 0.095 0.597
306.400 −2.408 1.116

−6724910.896 −8360.215 43603.483
−3030140.228 −6132.256 11460.276

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

B.2. 𝐻∞ observer gain

𝐾 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0.001 0.073 −0.000
0.080 6.897 0.000
−0.000 −0.000 0.000
−0.000 0.000 0.000
0.000 −0.000 −0.000
−0.891 −94.513 0.007
−29.777 −3152.188 0.226

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

𝐻 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

0.000 0.008 0.000
0.005 0.626 −0.000
−0.000 0.000 −0.000
−0.000 0.000 −0.000
−0.000 −0.000 0.000
−0.063 −9.791 −0.001

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎣
−2.103 −325.084 −0.018

⎦
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Fig. 11. System state 𝑥1 and its estimate along with the variation of the estimation error (second case).
Fig. 12. System state 𝑥2 and its estimate along with the variation of the estimation error (second case).
𝑃 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

11369810051.003 6658042.714 912629320.034 −3917785.993 −71776.013
6658042.714 4623.219 628164.284 −2327.427 −48.137
912629320.034 628164.284 1430534000.352 −725970.255 −24202.312
−3917785.993 −2327.427 −725970.255 1043035387.806 23840.689
−71776.013 −48.137 −24202.312 23840.689 76194611.702

⎤

⎥

⎥

⎥

⎥

⎥

⎦

Box II.
B.3. Sliding mode observer in [39] parameters

𝛿 = 0.005, 𝛬 = 0.1, 𝛤 = 4, 𝜎 = 2, 𝜇 = 0.2 (see unnumbered equation
in Box II).
11
𝐿 =

⎡

⎢

⎢

⎢

⎢

0.651 −0.005 −0.005
7901.093 8.350 5.094
−64.051 −0.011 0.021
−0.017 0.000 1.091

⎤

⎥

⎥

⎥

⎥

⎢

⎣
−0.021 0.000 −106.120⎥

⎦
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Fig. 13. System state 𝑥4 and its estimate along with the variation of the estimation error (second case).

Fig. 14. System state 𝑥5 and its estimate along with the variation of the estimation error (second case).

Fig. 15. Actuator fault and its estimate along with the variation of the estimation error 𝑒𝑓𝑎 (second case).
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𝐾1 =
[

206.724 0.121 −0.071
68015.947 47.195 −500.088

]

𝐾2 =
[

−17071.904 −11.854 5.968
]
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