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ABSTRACT Fault detection and diagnosis (FDD) systems play a crucial role in maintaining the adequate
execution of the monitored process. One of the widely used data-driven FDD methods is the Principal
Component Analysis (PCA). Unfortunately, PCA’s reliability drops when data has nonlinear characteristics
as industrial processes. Kernel Principal Component Analysis (KPCA) is an alternative PCA technique that is
used to deal with a similar data set. For a large-sized data set, KPCA’s execution time and occupied storage
space will increase drastically and the monitoring performance can also be affected in this case. So, the
Reduced KPCA (RKPCA) was introduced with the aim of reducing the size of a given training data set to
lower the execution time and occupied storage space while maintaining KPCA’s monitoring performance for
nonlinear systems. Generally, RKPCA reduces the number of samples in the training data set and then builds
the KPCA model based on this data set. In this paper, the proposed algorithm selects relevant observations
from the original data set by utilizing a class interval technique (i.e. histogram) to maintain a bunch of
representative samples from each bin. The proposed algorithm has been tested on three tank system pilot
plant and Ain El Kebira Cement rotary kiln process. The proposed algorithm has successfully maintained
homogeneity to the original data set, reduced the execution time and occupied storage space, and led to
decent monitoring performance.

INDEX TERMS Fault detection and diagnosis (FDD), data-driven techniques, time and storage space
complexity, principal component analysis (PCA), kernel principal component analysis (KPCA), reduced
KPCA (RKPCA), histogram, cement plant, three tanks system.

I. INTRODUCTION
Industrial plants may suffer from faults at some point
during their working time, affecting the production process.
Because of this, monitoring systems are implemented to
detect those faults and to avoid major casualties which raises
the importance of ensuring their reliability and robustness.

The associate editor coordinating the review of this manuscript and
approving it for publication was Xiwang Dong.

PCA is a data-driven FDD technique, it lowers the number
of variables in a given data set by mapping this data into a
new lower-dimension space such that variables in this space
possess most of the original data set variability, the basis of
this space being a set of linearly independent vectors [1],
[2]. PCA does this mapping by computing eigenvalues and
eigenvectors of the input data set covariance matrix [3]. PCA-
based FDD technique becomes an attractive technique for
its flexibility and simplicity derived from the Single Values
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Decomposition (SVD) problem [4]. Although PCA has a
fine reputation and is widely used, it does not have the
ability to keep up its performance when data under study
has nonlinear characteristics as most industrial processes
[5]. Many techniques have been proposed to overcome this
kind of obstacle. Dong et al. [6] proposed principal curves
PCA which merges both neural network and principal curves
algorithm, Jia et al. [7] proposed a novel nonlinear PCA based
on input training network and by defining non-parametric
control limits for FDD, Geng et al. [8] proposed adaptive
nonlinear PCA based on improved input training neural
network [4], Scholkopf et al. [9] proposed KPCA that
executes conventional PCA in higher dimensional feature
space.

KPCA is a nonlinear extension of the PCA technique.
It maps a given data set from input space to a higher
dimensional feature space, Hilbert space, using kernel trick
without involving a mapping function, and then it executes
PCA in this new space [9]. KPCA is widely used for
its simplicity compared to other nonlinear PCA techniques
because it is based on solving eigenvalues problem just as
conventional PCA, furthermore, no optimization is needed
to achieve good results [9]. Because of its ability, KPCA
consumes more computational time and occupies more
storage space than the conventional PCA technique and may
lose its accuracy if the data set is too large. Thus, KPCA
may be disadvantageous when the training data set has a
very large number of observations and eventually worthless
when developing expensive computers [4], [9], [10]. Reduced
KPCA (RKPCA) is introduced to overcome the drawbacks of
the conventional KPCA technique. RKPCA uses a reduced
number of observations while retaining as much useful
information as the original training data set, then the KPCA
model is built upon this reduced data set, helping to decrease
the effect of the large-sized data set on the performance of the
conventional KPCA [11].
To use conventional PCA, KPCA, and RKPCA algorithms

for fault detection and diagnosis, it is required to use
Statistical Process Monitoring (SPM) which is based on
data-driven models by taking a number of measurements
from different variables under healthy operating conditions
of a system, in other words, it is based on monitoring
the variations in a given data set. These variations can
be categorized as common variations such as natural
variations in a process and special variations such as
faults [12]. Different statistics in SPM are used as fault
detection indices, like the Hotelling (T 2-statistic), the Square
Prediction Error (SPE or Q-statistic), and the combined
index (ϕ-statistic). The T 2-statistic evaluates variations in
principal components subspace, whereas the Q-statistic
evaluates variations in residual subspace [13]. For each
SPM data set, These fault detection indices are evalu-
ated using different metrics which are: False Alarm Rate
(FAR), Missed Detection Rate (MDR), and Detection Time
Delay (DTD).

The proposed algorithm is based on the RKPCA technique
where the retained observations are selected using class
intervals similar to the histogram of the 1st PCA’s principal
component score. A histogram is a bar-plot type that groups
data into commonly equally spaced intervals called bins
on the horizontal axis, and the corresponding appearance
frequencies on the vertical axis [14]. The idea of the proposed
algorithm is to select a number of representative observations
from each bin to form the reduced data set which is used
to build the KPCA model for fault detection purposes. This
study aims to form a reduced data matrix that maintains
homogeneity to the original data set, reduces execution
time and the occupied storage space, and manages to attain
excellent FDD results. The reduction part of the proposed
RKPCA algorithm is based on a class interval that does not
require either optimization or predefined values. This work is
proposed to create an RKPCA algorithm that can effectively
reduce the number of observations in a large-sized training
data set and enhancemonitoring performance. In other words,
the main contribution of this paper is the development of a
reliable and effective method for selecting the most relevant
observations using a class interval scheme while preserving
homogeneity to the original data set. It is well-defined and
duly analyzed theoretically. It improves RKPCA-based fault
detection performance. Consequently, it reduces significantly
both execution time and the needed storage space. Although
the proposed algorithm is effective and easy to utilize, it is
up to the user to select the appropriate reduced data matrix.
As a numerical example, the developed algorithm was tested
using a tank system data set and compared to both PCA and
KPCA techniques, then it was applied and compared to other
algorithms using a real industrial data set obtained from Ain
El Kebira cement plant rotary kiln.

This article is organized as follows: Section II introduces
some of the related work, section IV gives a literature
review on PCA and KPCA for FD, section V introduces the
proposed algorithm, section VI gives a brief description of
the processes used in this paper, section VII shows results and
gives discussion about them, and section VIII gives a general
conclusion.

II. RELATED WORK
In this section, some of the related works are presented.
Most of the existing algorithms follow almost the same
idea which is reducing a large-sized data set by omitting
redundant and/or correlated samples. The difference between
those algorithms is how to determine the samples to be
omitted and the effectiveness of the reduction method. Felipe
et al. [15] introduced an RKPCA algorithm based on the
k-means clustering algorithm which needs an appropriate
predefined number of clusters in order to have good results.
Harkat et al. [16] proposed an RKPCA algorithm that uses
PCA as data reduction on the transposed matrix of the
input data set to select the uncorrelated observations, since
the reduction is based on the PCA algorithm it may be
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affected by the size of the covariance matrix which means it
will drop its accuracy for very large data size, the reduced
data matrix using PCA approach contains the de-mapping
observations from PCA’s principal components subspace to
input space thus the new observations are slightly different
from original ones. Lahdhiri et al. [17] presented an algorithm
that keeps observations for which the kernel matrix has full
rank, unfortunately this method retains a very large number
of observations in the reduced matrix. Taouali et al. [18]
introduced an algorithm that keeps observations that point to
the largest variances with retained principal components of
the kernel matrix of the total observations, the reduction part
of this algorithm is highly related to the selected principal
components so in order to have the best overall reduced data
it can take a lot of time to obtain since for large data sets the
number of principal components choices is large. Bencheikh
et al. [4] proposed an algorithm that keeps observations with
a given Euclidean distance between them so the homogeneity
between the original and reduced data is not guaranteed.
In [19], the authors use an RKPCA algorithm based on a
variogram as a reduction technique. unluckily, the reduced
data matrix is still quite large nearly 70% of the original data
set because it deals only with spatial continuity. Thus, this
approach highly depends on the smallest selected lag which
in some processes is small and less than half of the number
of samples, making the consequential data matrix the same
as the original one and the user will not have any reduction
in the data set. More recently, Kaib et al. in [20] introduced
a reduction technique based on the fractal dimension which
represents the intrinsic dimension of a large-sized training
data set and is implicitly defined. Thus, the homogeneity
of effectively reduced data sets is interpreted concisely and
cautiously, as the power of statistical tests available for this
purpose might be limited. Furthermore, this method is only
applicable to chaotic systems.

The proposed algorithm tends to reduce the size of the
training data set using the class interval, histogram, while
maintaining homogeneity between the two data sets, this
can help the proposed algorithm to achieve decent overall
performances.

III. TERMINOLOGIES AND NOTATIONS
A. ABBREVIATIONS

• CPV: Cumulative Percentage Variance.
• DTD: Detection Time Delay.
• FAR: False Alarm Rate.
• FD: Fault Detection.
• FDD: Fault Detection and Diagnosis.
• KPCA: Kernel Principal Component Analysis.
• MDR: Missed Detection Rate.
• PC: Principal Component.
• PCA: Principal Component Analysis.
• RKPCA: Reduced Kernel Principal Component
Analysis.

• SPM: Statistical Process Monitoring.

B. MATHEMATICAL NOTATIONS
• Â: Principal Components of A.
• Ã: Residuals of A.
• exp: Natural base exponent.
•

∑
: Covarince-Correlation matrix.

• Rd : Space of dimension d .
• ∥v∥: Euclidean norm of the vector v.
• x: Row variable.
• X : Matrix variable.
• XT : Transpose of matrix X .
• X−1: Inverse of matrix X .

C. PARAMETERS AND HYPERPARAMETERS
• 2δ2: Hyperparameter or (gamma) of the Radial Basis
Function.

• σ 2: variance of the input data set.
• NB: Number of Bins in the proposed algorithm.
• ν: Appearance frequency

IV. LITERATURE REVIEW
A. PCA
PCA is known for its simplicity and low execution time value,
it decomposes inter-correlated variables into a principal
component set of variables [21].

Let Xn×mo be the data set matrix collected from the normal
operating system of n observations from m sensors. Before
proceeding with the conventional PCA, this data set matrix
is normalized to zero mean and unit standard deviation to
obtain X̄n×m. Equation (1) demonstrates how the covariance
matrix,6, is computed and decomposed using Singular Value
Decomposition (SVD).

6m×m =
1

n− 1
X̄T X̄ = P3PT (1)

The columns of Pm×m are known as loading vectors and
3 is a diagonal matrix containing the eigenvalues of 6 in
descending order, [λ1 . . . λm]. The scores matrix, T , is then
given by

T = XP (2)

There exist different methods for the selection of the
number of Principal Components (PCs) to be retained. The
Cumulative Percentage Variance (CPV) is a widely used
method, it selects the number of PCs, l, such that the sum
of their variances, CPV(l), is greater than or equal to a
predefined value CPVlimit [16]. It is given as follows

CPV (l) =

∑l
i=1 λi∑m
i=1 λi

× 100(%) ≥ CPVlimit (%) (3)

After selecting PCs, the loading vectors can be decomposed
into P̂m×l , which represents the principal loading vectors, and
P̃m×(m−l) that is the residual loading vectors.

P =

[
P̂m×l P̃m×(m−l)

]
(4)
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In the same way, the scores and eigenvalues matrices are
decomposed as in equations (5) and (6), respectively.

T =

[
T̂n×l T̃n×(m−l)

]
(5)

3 =

(
3̂l×l 0l×(m−l)

0(m−l)×l 3̃(m−l)×(m−l)

)
(6)

The T 2-statistic, theQ-statistic, and ϕ-statistic are given by
equations (7), (8), and (9), respectively.

T 2
= xT P̂3̂−1P̂T x (7)

Q = xT P̃P̃T x (8)

ϕ =
T 2

Tα

+
Q
Qα

(9)

Their corresponding upper control limits Tα , Qα , and ϕα are
given as shown in equations (10), (11), and (12), respectively.

Tα =

(
n2 − 1

)
l

n (n− l)
Fα (l, n− l) (10)

Fα (l, n− l) represents Fisher-Snedecor distribution with l
and (n− l) degrees of freedom, and α is the significance
level.

Qα =
σ 2
Q

2µQ
χ2

(
α,

2µQ
2

σ 2
Q

)
(11)

where σ 2
Q is the variance of Q-statistic, and µQ is its mean,

and χ2 is the chi-square distribution.

ϕα = gχ2 (α, h) (12)

where g and h can be found in [22].
For each statistic, a fault is reported when its value exceeds

its corresponding upper control limit.

B. KPCA
Themain idea behind the KPCA algorithm is to perform PCA
in feature space, F , using kernel trick instead of the mapping
function φ [23].
Let Xn×m be normalized data set to zero mean and unit

standard deviation, then the mapping function φ is defined as
the following:

φ : xi ∈ Rm
→ φ (xi) ∈ Rf i = 1 · · · n (13)

where xi is a row vector from Xn×m and f ≫ m.
By making the assumption that the vectors in feature space

are scaled to zero mean and unit variance, mapped data
can be expressed as 8 = [φ (x1) φ (x2) · · · φ (xn)]T [9], the
covariance matrix in feature space, F , is then computed as
the following:

6φ =
1
n
8T8 =

1
n

∑n

i=1
φ (xi) φ(xi)T (14)

As property of this feature space is that the dot product〈
φ (xi) .φ

(
xj
)〉

can be computed using kernel trick (kernel
function) as the following [9]:

k
(
xi, xj

)
= φ (xi)T φ

(
xj
)

i, j = 1 · · · n (15)

There are different types of kernel functions, but the most
used one is the Radial Basis Function (Gaussian) [19], and
it is given as:

k
(
xi, xj

)
= exp

(
−

∥∥xi − xj
∥∥2

2δ2

)
(16)

where the hyperparameter 2δ2 can be found using the formula
2δ2 = 2rmσ 2, such that r is empirically obtained, and m and
σ 2 are the number of variables and the variance of the data
set matrix, respectively [23].

As conventional PCA, KPCA tends to solve the eigenval-
ues problem defined as in equation (17):

68V = λV (17)

Since the mapping itself is not known, the Gram matrix 8T8

can be computed using kernel trick as in equation (15). with
the use of this trick, the matrix K = 8T8 is defined as the
following equations:

K =

k (x1, x1) · · · k (x1, xn)
...

. . .
...

k (xn, x1) · · · k (xn, xn)

 (18)

The retained PCs are selected by theCPVmethod as shown
in equation (3).
For FDD, the monitoring indices T 2, Q, and ϕ-statistics

are used. The way to compute them is shown in equa-
tions (19), (20), and (21) respectively. The Hotelling
T 2-statistic is given as the following:

T 2
= k(x)T P̂φ3̂−1

φ P̂Tφ k (x) (19)

where P̂φ is the principal eigenvectors of K , and 3̂φ diagonal
elements are the principal eigenvalues of K . The upper
control limit of this statistic is given using equation (10).
Q-statistic is obtained by:

Q = k (x, x) −k(x)T P̂φ3̂−1
φ P̂Tφ k (x) (20)

Its upper control limit is given as in the conventional PCA by
equation (11). For both equations (19) and (20), k (x) is given
as k (x) =

[
k
(
x1,., x

)
k
(
x2,., x

)
· · · k

(
xn,., x

)]T [22].
ϕ-statistic is computed as:

ϕ =
T 2

Tα

+
Q
Qα

(21)

The upper control limit is given by equation (12).
For each of the aforementioned fault detection indices,

three different monitoring performancemetrics are evaluated.
The False Alarm Rate (FAR) represents the rate of normal
samples that exceed the control limit of a given fault detection
index during the system normal operation conditions, it is
described by equation (22). TheMissedDetection rate (MDR)
characterizes the faulty samples that don’t exceed the control
limit under defective operation conditions, it is described as
in equation (23). The Detection Time Delay (DTD) is the
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number of samples between the appearance of a fault and its
detection, it is described by equation (24).

FAR =
NF
NOC

(22)

MDR =
FN
FOC

(23)

DTD = tD − tO (24)

NF is the number of non-faulty samples that exceed the
control limit, NOC is the number of total non-faulty samples,
FN is the number of faulty samples that didn’t exceed the
control limit, FOC is the number of total faulty samples, tD
is the sample of the detection of a fault while tO is the sample
of its occurrence.

V. PROPOSED RKPCA ALGORITHM
Histogram, in statistics, is a type of bar graph that displays the
value of appearance frequency of specific data within a given
bin, so it helps to visualize data distribution and its skewness
[24]. The width of the bins is controlled by the number of bins
used as shown by the following equation:

Bw =
MV − mV

NB
(25)

where Bw is the bin width, MV is the maximum value in
data set, mV is the minimum value in data set, and NB is
the number of bins. The y-axis can represent different types
of values, such as appearance frequencies, probabilities, and
percentages [24].

The proposed algorithm aims to reduce the size of
large-sized data while preserving their most characteristics.
It starts by computing the PCA model, using algorithm 1,
for the original training data set and then selects 1st principal
component score, because it contains the most information
explained by its highest variance. After that, a histogram
of this 1st principal component is plotted with a specified
number of bins NB. Lets define ε as the minimum appearance
frequency, νi as the appearance frequency of the ith bin, and
γi as shown in the following equation:

γi =

⌈νi

ε

⌉
i = 1 · · ·NB (26)

All the appearance frequencies will be scaled to the
minimum appearance frequency ε such that the minimal
frequency becomes 1 or 2 according to the frequency in this
bin, and each other bin i has γi as frequency. The median
is then taken as representative observations of a bin. The
choice of having the same median ensures that the remaining
samples are distributed through all the bins. After this, the
proposed algorithm selects the corresponding rows in the
scores matrix and performs the inverse of PCA mapping to
obtain the reduced data matrix Xr with fewer observations
than the original data set. Finally, use this data matrix to build
the KPCAmodel, using algorithm 2, and test this model using
faults described in section VI and loss functions (28, 29),
these loss functions tend to minimize the number of abnormal

samples in FDD system. The proposed algorithm does not
require optimization in the size reduction part because only
a few values of NB can lead to ϵ > 1 and the size of Xr is
directly related to ϵ.

For the normalization of the kernel matrix K and testing
kernel matrixKt , 1n is equal to 1

n time a (n× n) square matrix
of ones, the same thing goes for 1t the only difference is
the matrix of ones is now a (t × n) matrix where t is the
number of testing samples. The first value of NB is chosen
such that ε = 1, which means in this case that the reduced
data matrix is the same as the original one and then it is
decreased for larger ε values and repeat using smaller values
of NB to obtain matrices with fewer observations. After that,
the performance of each resulting reduced data matrix is
computed to pick the one with the best performance and
having fewer observations than the original data set as shown
in Tables 1 and 5. Algorithm 3 illustrates how the proposed
algorithmworks. The loss function presented in the following
equation (27) aims to reduce theMDR, DTD, and FAR values
for a given monitoring index which means that the lower the
value of Js is the better the monitoring metrics values are and
vice versa. Change the number of bins, NB, and repeat until a
satisfying result is obtained. Algorithm 3 illustrates how the
proposed algorithm works.

Jstat = a1FARstat + a2MDRstat + a3
(
1 − e−0.1DTDstat

)
(27)

J =
1
3
(JT 2 + JQ + Jϕ) (28)

In order to have the same effect of different indices over the
loss function, the different weighting factors are selected as
the following a1 = a2 = a3 = 1. Furthermore, the algorithm
performance is duly considered in assessing monitoring
performance overall.

JO = J +
Etr
Etn

+
Sor
Son

(29)

whereEtr and Sor represent the execution time for one testing
sample from the testing part (online) and the occupied storage
space of the training part of algorithm 2 using the reduced
data matrix Xr , respectively. Similarly, Etn and Son are the
same as Etr and Sor only this time the original training
data is used. The cost function (29) takes into account the
overall monitoring performance, the execution time, and the
needed storage space all at once. For a lower values of
JO, the algorithm is expected to have a decent monitoring
performance and require less execution time and less storage
space for the model that is the subject of this study.

The proposed algorithm can improve the performance
of RKPCA because its purpose is to eliminate redundant
observations and keep homogeneity between original and
reduced data sets. As mentioned in [9], the size of the Gram
matrix K can affect the accuracy of the KPCA’s performance
if it is a large-sized matrix.
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Algorithm 1 PCA model.

- Scale Xn×mo with zero mean and unit variance
- Compute covariance matrix, 6, using equation (1)
- Compute eigenvalues and eigenvectors of the covariance
matrix.
- Select the Principal component using the CPV method as
in equation (3).
- Compute principal scores matrix T .

Algorithm 2 KPCA for Fault Detection

Training Part:
- Scale Xn×mo with zero mean and unit variance.
- Compute kernel matrix K using kernel function in
equation (16).
- Scale the kernel matrix K using the following equation:
Kn = K − 1nK − K1n + 1nK1n
- Solve the eigenvalues problem defined in equation (17).
- Calculate different statistics used for fault detection and
their limits.
Testing Part:
- Acquire testing samples.
- Scale these samples using the mean and standard
deviation of the original data set.
- Compute testing kernel matrix using equation (16).
- Scale the obtained kernel matrix using the following
equation: Ktn = Kt − 1tK − Kt1n + 1tK1n
- Compute different statistics, and report a fault if one of
them exceeds its limit.

Algorithm 3 Proposed RKPCA Algorithm

- Perform Algorithm 1.
- Select 1st Principal score vector
- Plot histogram of this vector (with specified number of
bins NB).
- Pick the minimum appearance frequency ε.i ≤ NB
- Compute median of the ith bin.
- Compute γi as given in equation (26).
- Select the number of observations equal to γi with the
same median.
- Select the corresponding rows in the scores matrix T .
- Perform the inverse mapping of PCA.
- Perform the inverse scaling to obtain Xr .
- Use Xr to build KPCA model using algorithm 2.
- Compute the value of the loss function JO in equation (29)
to evaluate the performance of the model.

VI. PROCESS DESCRIPTION
A. THREE TANKS SYSTEM DTS-200
This system corresponds to the plant made by Amira GmbH
that includes three serially connected tanks (cylinders) and
two pumps to fill two of the three tanks [25], [26]. Five
sensors are used for this application, they are placed as

the following: (i) Level sensor at each of the three tanks.
x1, x2, and x3 are the measured variables from these sensors.
(ii) Flow meters for each pump. u1 and u2 are the measured
values. Figure 1 shows the diagram of this system. The data
acquisition process is explained in [26]. Data sets of this
system are organized as (i) Healthy training data set with
a matrix size of 9000 × 5. (ii) Faulty data set with fault of
10% in the first tank level sensor with 2400 observations.
(iii) Faulty data set with fault of 10% in the second tank level
sensor with 2400 observations. For further explanation of the
plant please refer to [26] and [27].

FIGURE 1. Three tanks system DTS-200.

B. AIN EL KEBIRA CEMENT PLANT
Cement production is a complex process that starts by mining
and then grinding raw materials including limestone and clay
to a fine powder, called raw meal, which is then heated to a
sintering temperature as high as 1450oC in a cement kiln to
broke the chemical bonds of the raw materials and then they
are recombined to form new compounds. The result is called
clinker, which is grounded to a fine powder in a cement mill
and mixed with gypsum to create cement.

The Ain El Kebira cement plant is located near Setif in
eastern Algeria. it has a rotary kiln of 5.4 m shell diameter and
80 m length with 3o incline. The kiln is spun up to 2.14 rpm
using two 560 kws asynchronous motors and the producing
clinker of density varying from 1300 kg.m−3 to 1450 kg.m−3

under normal conditions. Two natural gas burners are used,
the main one in the discharge end and the other one in the first
level of the pre-heater tower without any tertiary air conduct.

Table 2 in paper [4] illustrates different variables of the
process and a schematic diagram of this plant is presented in
[28]. Data sets used for this work are as follows: (i) training
data set with 768 observations. (ii) Testing data set with
11000 observations. (iii) Real process fault with 2048 obser-
vations. It includes the normal operating conditions part that
last less than 420 samples, and the rest is the faulty part
which constitutes multiple faults in various variables that
increase gradually [30]. (iv) 10 simulated sensor faults data
sets with each one lasting for 1000 observations these faults
are described in [19].
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VII. RESULTS AND DISCUSSION
For the two study cases, the computer used has Intel(R)
Core(TM) i3-3217U CPU @ 1.80 GHz and 4 Go of RAM.
Besides, the significant level α is selected to be 1%.

First, algorithm 3 is applied to the three tank system
described in section VI. Table 1 exhibits some of the reduced
matrices that are obtained using the proposed reduction
method and their performance based on different FDD
statistics and indices described in section IV. It can be noticed
how the number of bins, NB, affects the least appearance
frequency, ε, which determines the size of the reduced data
matrix, the higher it gets the smaller the reduced data matrix
is. The first reduced data matrix is the same as the original
data set because ϵ = 1 and its performance is the same as the
conventional KPCA. In this table, the comparison between
different reduced data matrices is based mainly on the cost
function described by the equation (29). Some of the reduced
matrices have also better performance than conventional
KPCA in terms of the different indices alone described by
equation (27) as shown in columns (4, 5, and 6) but for
this study the data matrix Xr with a number of observations
of 1007 is chosen due to its overall performance based on
cost function JO. Figure 2 and Figure 3 show the histogram
obtained from the first PC score of both the original data set
and the selected reduced data matrix, respectively. As can be
seen from both figures, both histograms have the same shape
and skewness for the same bins. Furthermore, Table 2 is an
illustration of how the figures 2 and 3 are alike by exhibiting
the appearance frequencies and relative frequencies of both
histograms. The relative frequencies from both histograms
are close to each other which explains why both histograms
have the same distribution. Hence, these results show that the
proposed reduction method has successfully maintained the
same distribution in the direction of the highest variance of
the data.

Table 3 illustrates the comparison between conventional
PCA, conventional KPCA, and the proposed RKPCA
algorithmwith the chosen reduced data matrix. This compari-
son is held upon the cost function described by equation (28).
As anticipated, the PCA algorithm failed to perform aswell as
the KPCA and RKPCA algorithms due to nonlinearities. The
proposed algorithm managed to perform as the conventional
KPCA because it has only kept useful observations which
are 11.19% of the total number of observations. Moreover,
the proposed algorithm has kept homogeneity for all reduced
matrices presented in Table 1 based on the test presented
in [29]. These results manifest the potential of the proposed
algorithm which leads to applying it to cement plant data and
then comparing it to some of the existing RKPCA algorithms.

Table 4 shows the gain obtained using the proposed
algorithm instead of the conventional KPCA in terms of
the execution time and occupied storage space, taking into
account that the KPCA algorithm and the RKPCA algorithms
usually follow O(n3) time complexity and O(n2) for the
storage space complexity and the difference in execution

TABLE 1. Data set size reduction using the proposed algorithm for the
three tank system.

FIGURE 2. Appearence frequency of the 1st PC score of the three tank
system original data.

FIGURE 3. Appearence frequency of the 1st PC score of the three tank
system reduced data.

TABLE 2. Relative frequency distribution of the 1st score data sets of the
three tank system.

time and required storage space between RKPCA and KPCA
algorithms is a result of reducing the number of observations
from the large-sized training data set. The time gained
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TABLE 3. PCA, KPCA, and RKPCA performance comparison.

TABLE 4. Gained execution time (%) for one sample monitoring via
different fault indices and gained storage space (%) for the three tank
system.

in this table is the required time to evaluate one sample
in the online part of the KPCA algorithm. The gained
time is then given as (1 − (Etr/Etn)) × 100(%). The same
thing goes for the gained storage space, it is given as
(1 − (Sor/Son)) × 100(%). The gained storage space for the
proposed algorithm is 98.84%.

Table 5 illustrates some of the results that are obtained
by performing algorithm 3 on cement plant data set using
different faults and real process fault mentioned in section VI,
all the different statistics and metrics introduced in section IV
are used for FD. As it is seen in Table 5, again the number
of bins NB affects the least appearance frequency ε which
determines the reduced data matrix. The cost functions used
in this table are defined by equations (27, 28, and 29) but
the one used to select the appropriate reduced data matrix
is described in equation (29) because it is based on the
overall monitoring performance and takes into account the
gained time and storage space complexities. For the T 2

index the reduced data matrix with 199 samples has the best
performance, and for the Q index the reduced data matrix
with 263 samples outperforms other reduced data matrices,
whereas, for the combined index ϕ two reduced data matrices
with 261 and 157 samples have the best performance. For
the overall monitoring performance only based on J , data
matrices with the size 389, 261, and 157 samples have the
best performance. From these data matrices, the selected one
is the one that leads to the best performance based on JO
which is the data matrix with only 157 samples or one-fifth
of the total number of observations. The reduction part has
successfully maintained only 20.44% of the total number of
observations.

After the selection of the data matrix Xr , Table 6 and
figures 4 and 5 demonstrate the distribution of the original
data and reduced data as well to compare and see how close
they are. From figures 4 and 5, it can be noticed that there
is a slight difference between the appearance frequency of
the original data set and the one from the reduced data set,
this is due to the redundant observations from the data set
because this data was collected from real plant and one can
notice that both figures have the same skewness and nearly
the same distribution. on the other hand, Table 6 helps to

TABLE 5. Reduced data matrix selection of the cement plant.

FIGURE 4. Appearance frequency of the 1st PC score of the cement plant
original data.

FIGURE 5. Appearance frequency of the 1st PC score of the cement plant
reduced data.

TABLE 6. Frequency distribution of the 1st score of the cement plant
system.

understand the difference between appearance frequency and
relative frequency of the two data sets and where they are
alike and where they are not.
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Then a comparison is done between the proposed
algorithm and different algorithms. The comparison is based
on loss function value (29) and homogeneity test introduced
in [28], this test is chosen because it gives a non-parametric
estimator of a given divergence for the case of a continuous
distribution, the chosen function for divergence estimation
is the asymmetric Kullback-Leibler. The same faults shown
in section VI are used for the comparison between different
algorithms and to evaluate the overall performance.

Based on results shown in Table 7, the method presented
in [20] has a relatively very small number of retained
observations compared to the original data set, meaning it
could be challenging to detect true differences in homo-
geneity if they exist. So, the homogeneity statistical test is
ignored. The proposed algorithm has significantly reduced
the number of retained observations compared to some
algorithms presented in the same table. It has reduced
the number of samples to approximately one-fifth of the
total observations. For Hotelling T 2-index, the proposed
algorithm has decent monitoring performances compared to
the other algorithms. Furthermore, the ones that do better
than the proposed algorithm are the conventional KPCA
and the variogram-based RKPCA which have more than the
triple of samples in the training data set. For the Squared
Prediction Error Q-index, the proposed algorithm has the
second-best monitoring performance after the k-means-based
RKPCA which requires a pre-defined number of clusters to
have such performance. Whereas, the proposed algorithm
has the best monitoring performance through the combined
index ϕ along with the variogram-based RKPCA which
again has a larger number of samples. According to the
overall monitoring performance given by J , the proposed
algorithm has the second-best monitoring performance after
the variogram-based RKPCA. Furthermore, it can be clearly
seen that the proposed algorithm has the best value JO
which means that the proposed algorithm has balanced
between the monitoring performance and retained samples.
To visualize how the proposed algorithm performs in the
case of a real process fault explained in Section VI, Figure 6
is introduced. It can be noticed that overall, the proposed
algorithm has successfully detected the fault through the
different monitoring indices despite a slightly high FAR value
brought by the indexQ compared to other indices. In the case
of homogeneity between original and reduced data sets, the
proposed algorithm has kept more homogeneous variables
with the original data set than other algorithms such that only
one variable is not homogeneous whereas other algorithms
have at least two non-homogeneous variables which give
the credibility of this reduced data to replace the original
data set and to represent the same system without losing
its relevant features. This homogeneity leads the proposed
algorithm to perform much well in comparison with other
RKPCA algorithms.

From Table 7 and 8, it is noticed that the proposed
algorithm has successfully balanced the overall performance,
the gained computation time with respect to other algorithms,

TABLE 7. Performance metrics comparison of different algorithms.

TABLE 8. Comparison of gained execution time (%) for one sample
monitoring using different fault indices and gained storage space (%)
via cement plant data of different algorithms.

the gained storage space of 95.40%, and homogeneity to the
original data set.

FIGURE 6. Different fault detection indices before and after the
occurrence of a real process fault.

VIII. CONCLUSION
This paper introduces a new RKPCA algorithm for
fault detection. As the conventional KPCA, the proposed
algorithm has conserved the ability to work with non-linear
data sets while reducing the computation time and storage
space needed to execute this algorithm. Not only it does
enhance the execution time and occupied storage space, but it
maintains the original data set’s characteristics by preserving
the homogeneity of this data set. The basic idea of the
proposed algorithm is to select a number of representative
observations in each class interval of the first principal
score histogram from the original data set; in other words,
it selects those observations based on the distribution of the
original data set. By using this, a reliable KPCA model is
attained. This model is then compared to the conventional
PCA and KPCA algorithms through the three tank system
data set. After that, the proposed algorithm is applied to
the data set collected from the Ain El Kebira cement plant
rotary kiln and compared to other existing algorithms. The
overall performance of the proposed algorithm in terms
of monitoring, computation time, and storage space was
outstanding compared to the other techniques. Furthermore,
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it has successfully maintained homogeneity with the original
data set.

Future research can be extended to many pertinent
similarity techniques that could be developed and adapted
to the size reduction purposes whose main objective is to
obtain better performance in terms of monitoring metrics
and computational costs. Therefore, this topic remains more
attractive to the big data research community
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