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The design of new efficient maximum power point tracking (MPPT) techniques has become extremely important due to the rapid
expansion of photovoltaic (PV) systems. Because under shading conditions the characteristics of PV devices become multimodal
having several power peaks, traditional MPPT techniques provide crappy performance. In turn, metaheuristic algorithms have
become massively employed as a typical substitute in maximum power point tracking. In this work, a new optimizer, which
was named the hyperbolic slime mould algorithm (HSMA), is designed to be employed as an efficient MPPT algorithm. The
hyperbolic tangent function is incorporated into the optimizer framework equations to scale down large perturbations in the
tracking stage and boost its convergence trend. Moreover, to provide a strong exploration capability, a new mechanism has
been developed in such a way the search process is carried out inside the best two power peak regions along the initial
iterations. This region inspection mechanism is the prime hallmark of the designed optimizer in avoiding local power peaks
and excessive global search operations. The developed algorithm was examined through diverse complicated partial shading
conditions to challenge its global and local search abilities. A comparative analysis was carried out against the well-regarded
PSO, GWO, and the standard slime mould algorithm. In overall, the designed optimizer defeated its contenders in all aspects
offering higher efficiency, superior robustness, faster convergence, and fewer fluctuations to the operating point. An
experimental setup that consists of the DSpace microcontroller and a PV emulator was employed to validate the algorithm
overall performance. The recorded outcomes outline that the developed optimizer can achieve a tracking time of 0.6 seconds
and 0.86 seconds on average, with 99.85% average efficiency under complex partial shading conditions.

1. Introduction

The growing concerns about climate degeneration and the
depletion of traditional energy resources have awakened
governments to foster the development of renewable energy
sources, especially photovoltaic (PV) systems. This energy
transition is also driven by the substantial decline of PV

technologies™ costs and their ease of installation. However,
besides the low efficiency of PV devices, their generated
power is strongly dependent on the incoming solar irradi-
ance and temperature. This influence can be visualized using
power-voltage curves and current-voltage curves. At a cer-
tain uniform illuminance level, the generated PV curve is
hill-shaped, characterized by a unique top associated with
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the PV generator’s maximum power point (MPP). In effect,
the PV system needs to operate at this point to maximize its
efficiency and reduce power losses. However, when a load is
directly coupled to the PV generator, the operating point is
dictated by the intersection of the load line and the IV char-
acteristic curve. In practice, the resultant operating point is
hardly the MPP level, leading to a substantial reduction in
the system overall efficiency. To resolve this issue, DC-DC
converters are employed as an interface between the PV gen-
erator and the system’s load side, allowing the impedance
seen by the PV device to be changeable. In turn, by properly
adjusting the duty cycle of the DC-DC converter, the operat-
ing point can be varied accordingly so that it coincides with
the MPP level of the PV array. For these reasons, maximum
power point tracking (MPPT) algorithms are incorporated
into PV systems to monitor the operating point and keep
the power as high as possible under any conditions. Undeni-
ably, conventional MPPT techniques like the perturb and
observe (P&O) [1] and the incremental conductance (InC)
[2, 3] are the most widely investigated and employed [4].
Broadly speaking, these classical approaches are generally
grounded on the hill-climbing concept, which is based on
perturbing the system along the direction of increasing
power. However, one of the major defects of these algo-
rithms is the appearance of oscillations around the MPP
level and their inability to handle partial shading conditions.
During such circumstances, the shaded cells are impelled to
operate in the reverse bias mode leading to the hot spot phe-
nomenon, which causes severe damage to the PV device. At
that time, bypass diodes are inserted in parallel with PV
modules to provide an alternative path to the current, elim-
inating the hot spot problem. In effect, although equipping
PV modules with bypass diodes affords protection to them,
their presence leads to the distortion of the PV and IV char-
acteristics under nonuniform irradiance conditions [5]. The
distortion is in the format of multiple peaks occurring in the
characteristic curves due to the mismatch conditions. The
peak with the largest power level corresponds the global
MPP, while the remaining peaks are local MPPs with lower
power levels. Because the PV characteristics turn into multi-
modal curves under PSCs, the task of maximum power point
tracking becomes even more challenging and classical MPPT
techniques often fail to handle such cases. With their basic
structure, they cannot traverse the different regions of the
PV characteristics and often get stagnated at one of the local
peaks. At that time, metaheuristic algorithms have become a
typical substitute due to their stochastic gradient-free foun-
dation and population-based nature. Because they treat
problems as black boxes, neither input data nor training is
required to lay out the system [6]. Accordingly, with meta-
heuristic algorithms, maximum power point tracking is
treated as an optimization problem, with the power being
the objective function controlled through the duty cycle as
the decision variable. During the tracking stage, metaheuris-
tic algorithms usually divide the search mechanisms into
two main phases: exploration and exploitation. The explora-
tion process is devoted to generate distant solutions to scout
as many optimum regions in the search space as possible.
The exploitation process on the other hand intends to
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inspect the best-discovered region until eventually converg-
ing to the global optimum solution. Despite the well-
performing global search abilities of metaheuristic algo-
rithms, their behavior and outcomes are largely dictated by
their tuned parameters [7]. More often, applying the algo-
rithm as it was designed in its original version might lead
to large perturbations during the tracking stage, slow con-
vergence, and eventually poor accuracy. To enhance their
tracking performance, modifications are usually necessary
to incorporate into their canonical versions. There have been
a myriad number of proposed metaheuristic algorithms
applied for MPPT among which the particle swarm optimi-
zation (PSO) [8-10], grey wolf optimizer (GWO) [11, 12],
salp swarm algorithm (SSA) [13, 14], artificial bee colony
algorithm (ABC) [15], ant colony optimization (ACO)
[16], and flower pollination algorithm [17] were widely
employed. Due to its simple structure, the PSO algorithm
has been extensively applied in literature along with incor-
porated amendments. Despite its successful global optimal
tracking under partial shading conditions, it exhibits several
issues during optimization. The search behavior generates
large perturbations of duty cycles due to the velocity term,
which is influenced by the inertia w and the cognitive and
social constants. Although reducing these factors might
reduce the velocity levels, the algorithm’s exploration stage
might be negatively affected, leading to local optima stagna-
tion. For instance, in [18], an accelerated PSO version was
developed by removing the personal best term form the
velocity equation to boost its convergence trend. In other
relevant works as in [19], the modifications involve adjusting
the PSO parameters making them either increasing or
decreasing over the lapse of iterations. In [20], an enhanced
autonomous group PSO algorithm was designed by updat-
ing the cognitive constants using a combination of cubic
and root functions, leading to a better balance between
exploration and exploitation. Moreover, the inverse tangent
function was inserted into the velocity term to reduce the
highly random nature of the algorithm. Accordingly, the
results of the algorithm were superior to those of other
PSO variants. In [21], the authors introduced a mechanism
by which the duty cycles are effectively distributed within
the search space to roughly recognize the global optimum
region. Once the particles were scattered, the PSO algorithm
takes the lead to carry on the tracking process. Even though
improvements were observed with the different PSO vari-
ants, the conducted experiments in most of the reported
works were missing complicated partial shading patterns in
which the number of peaks is high and the global MPP is
close to the nearest local peak [22]. In such cases, the prob-
ability of local optima stagnation is very high and poses a
challenging process to the performance of the given algo-
rithm. In other works, the combination of two or more
metaheuristic algorithms turned out to be beneficial. These
hybrid schemes intend to take advantage of the merits of
each algorithm in the exploration and exploitation phases.
Some works divide the tracking process by assigning the
first iterations to a certain optimizer due to its performant
global search and designating the other one to carry on
the tracking process along the remaining iterations due
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to its good local search operation. For instance, the
authors in [23] designed a two-stage MPPT controller that
combines an improved version of the artificial bee colony
algorithm and the simultaneous heat transfer search algo-
rithm. The first algorithm was appointed to roughly find
the global MPP region in the early stages, while the sec-
ond algorithm took the lead of digging around that region
in the remaining stages. Several other techniques split the
duty ratios between two algorithms so that the framework
equations of one algorithm update a portion of the solu-
tions and the other portion is updated by the mechanisms
of the second algorithm. The latter idea was effectively
examined in [24] by combining differential evolution and
the whale optimization algorithm resulting in a remarkable
faster convergence. In [25], the authors merged the grey
wolf optimizer for its good exploration capabilities with
the Nelder-Mead (NM) technique for its performant local
search operation. The resulting hybrid scheme is con-
structed in such a way a portion of the candidate solutions
are updated by the GWO algorithm and then passed to
the NM technique undergoing its four fundamental opera-
tions. This passage between the GWO algorithm and the
NM technique avoided repeated exploration of the search
space, leading to a faster convergence trend as reported
in the outcomes. Another interesting scheme was designed
in [26] by integrating a detection method to distinguish
between partial shading conditions and uniform irradiance
conditions (UICs) to avoid unnecessary exploration. More-
over, by checking some inequalities on the PV voltage and
the PV current, a skipping method was incorporated to
eliminate some regions of the search space and perform
the tracking process only on a reduced interval. Once
the conditions are checked, the snake optimizer (SO) per-
forms the search process on the specified search space
with a rapid convergence trend. Despite the observed sat-
isfactory performance, most of the designed MPPT algo-
rithms were benchmarked on partial shading conditions
that involve few peaks, which are not quite difficult to
handle [27-33]. Moreover, one can observe from their
framework equations that they entail multiple parameters
to be tuned due to the incorporated amendments. In this
regard, an efficient and fast algorithm with a well-
founded search ability has been designed in this work.
The developed optimizer employs a modified equation
from the recent slime mould algorithm (SMA) [34] by
incorporating the hyperbolic tangent function as an effec-
tive tool to reduce large perturbations during the tracking
process. Moreover, the duty cycle updating process allo-
cates half the candidate solutions to inspect the neighbor-
hood of the global optimum solution and the other half to
do the same operation within the second-best optimum
solution. To guarantee that an optimum region does not
get overpromoted, a mechanism is developed in such a
way the stored global best and the second best solutions
belong to different regions of the PV characteristics. The
latter operation is employed only in the first two iterations
to ensure a rapid performant exploration process and
reduce the chances of local peak stagnation. Once the
global peak region has been perceived to the algorithm,

the remaining stages are devoted to focalize the search
around it. The new optimizer, which was named the
hyperbolic slime mould algorithm (HSMA), is less depen-
dent on random factors, unlike other existing MPPT tech-
niques. In overall, the key contributions and aspects of this
work can be outlined as follows:

(i) A novel hyperbolic slime mould algorithm (HSMA)
is designed for maximum power point tracking

(ii) The main hallmark of the algorithm lies in its ability
to inspect and distinguish the best two peak regions
of the search space before eventually converging to
the global solution

(iii) The designed optimizer was examined in diverse
complex partial shading conditions through simula-
tion trials and validated through an experimental
setup consisting of the DSpace controller and a PV
emulator

(iv) The conducted performance investigation reveals
that the designed HSMA optimizer earned an effec-
tive local peak avoidance with high tracking accu-
racy, tiny perturbations to the operating point, and
rapid convergence rate

(v) The designed algorithm proved to be the best-
performing algorithm when compared to the well-
regarded PSO, GWO, and SMA optimizers in all
aspects

The remainder of this paper is set out as follows: in Sec-
tion 2, a brief overview on PV models and maximum power
point tracking is provided. The designed algorithm founda-
tion and its mathematics are explained in Section 3, while
Section 4 is devoted to the algorithm working flow and its
behavior in maximum power point tracking, with a detailed
test case example. Sections 5 and 6 go over the investigated
simulation trials and the experimental validation, respec-
tively. In Section 7, a complexity analysis of the designed
algorithm is provided with an overall comparison between
various MPPT algorithms. A concise conclusion is then
given in the last section to outline the key benefits of the
designed algorithm.

2. PV Modelling and Maximum Power
Point Tracking

The most elementary device that makes up a PV generator is
a specially designed semiconductor device called the PV cell.
Several models have been developed to simulate the PV cell,
among which the single-diode model (SDM) is the simplest
and the most common. The equivalent SDM circuit is
depicted in Figure 1. It consists of a cell photocurrent source,
a shunt resistance Ry, to account for leakage current, and a
series resistance R to account for contacts [35]. Several con-
nections of PV cells constitute a PV module, and several
groupings of modules make up a PV array.



FiGURE 1: The single-diode model for PV cells [35].

The output PV current can be found using

IPV =Iph _Is

|:e((q(va+RstV))/uKT) _ 1} B VPV; RsIPV’ (1)
sh

where I is the diode reverse saturation current, Ip, and
Vpy are, respectively, the current and voltage produced by
the PV panel, q is the electron charge (1.60217662 x 107"
C), a is associated with the PV technology and it is called
the diode ideality factor, K is the Boltzmann constant
(1.38064852 x 107 J/K"), and T denotes the temperature
of the p-n junction. To visualize the effects of solar irradi-
ance and temperature, power-voltage curves and current-
voltage curves have to be generated using the model equa-
tion. Under uniform irradiance, the PV curve is unimodal
with a unique maximum, which corresponds to the MPP
level. Logically, it is vital that the system operates at this
point to maximize its efficiency. In the other hand, when
parts of the PV generator do not receive an equal amount
of solar irradiance due to shading conditions, the shaded
cells are forced to operate in reverse bias mode causing
energy losses and hotspot issues. The latter phenomenon
which might damage PV devices is often eliminated by inte-
grating bypass diodes with PV strings. At that time, the cor-
responding PV and IV curves become distorted with
multiple peaks as illustrated in Figure 2.

When the PV generator is connected directly to the load,
the operating point is fixed by the intersection of load line
and the IV characteristic curve. Because usually the inter-
section does not land on the maximum power point, a
power interface has to be inserted between the PV array
and the load side of the system. If a buck-boost converter
is connected as shown in the arrangement of Figure 3,
then the produced output voltage and current are dictated
as follows:

VpyD
V = —, 2
e (2)
1-D
1= e, (3)

with D being the duty cycle of the buck-boost converter.
The impedance seen by the PV generator which dictates
the operating point can then be fixed by the duty ratio
as demonstrated in the following equation:
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Eq I

IPV o

o= ey (5 17 (%)

(4)

The latter equation shows how the buck-boost con-
verter can be employed to set the impedance seen by the
PV generator and hence the load line intersection. Using
a proper algorithm that generates the required duty ratio,
the operating point can be varied so that it coincides with
the MPP level of the PV array. The employed algorithm is
supposed to find the duty cycle value that leads to the
maximum power point in the least possible time duration
and detects any changes in irradiance levels to start the
tracking process again.

3. The Proposed Methodology

3.1. The Slime Mould Algorithm. The slime mould algorithm
was developed based on the special foraging behavior of a
single-celled organism known as slime mould. The inspira-
tion was educed from its main nutritional stage during
which the organic matters in this organism look around
food, ring it and then digest it. The search process of slime
mould involves generating a network of veins of distinct
densities that extend to multiple food sources. The density
is dictated by the goodness and the concentration of the food
source. When the vein proceeds towards the food, the bioos-
cillator of slime mould generates a propagating wave
through which positive and negative feedbacks are estab-
lished. An optimal path that connects various food regions
would eventually be created. The mathematical model of
the slime mould algorithm incorporates this behavior and
involves two main mechanisms: approaching food and
wrapping food.

3.1.1. Approach Food. Based on the odor in the air, slime
mould approaches the food source with higher concentra-
tions; the following equations are used to model the contrac-
tion mode near the food source:

Xy(£) + V0. (WX, (1) - X5 () ). r<p
X(t+1)=
WX(1), r>p.

(5)

N
vb takes on a value within a range of [-a, a] while Wisa

—
parameter that decreases linearly from one to zero. X refers

—
to the location of slime mould at iteration ¢, X, denotes the
food source with the highest odor concentration ever found,

— —
X, and X are two solutions randomly selected from the

solution vector, and W represents the weight of slime
mould. p is given as follows:

p =tan h|S(i) — DF|, (6)
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FIGURE 3: PV system based on buck-boost converter MPPT.

where i € 1,2, -+, n, S(i) is the fitness value of the ith solu-
tion X , and DF represents the best fitness obtained so far.

aand W are given as follows:

a = arctanh <— (%) . 1), )

bF — S(i) . N
1+rlog [——-=% +1 i< =

W (SmellIndex(i)) = bF _ S(i
1-rlo _—(l) +1 |, otherwise.
8\ DE_wE

(®)

With being the size of the solution vector, r is a random
value drawn from the interval [0, 1], bF represents the best
fitness value obtained in the current iteration while wF
denotes the worst fitness value obtained in the current itera-
tion, and Smelllndex denotes the sequence of fitness values
sorted.

SmellIndex = sort(S). 9)

3.1.2. Wrapping Food. Based on the previous mechanism,
which simulates the positive and negative feedbacks between
the vein thickness and the food concentration, variable
weights are employed to quantify the food quantity in a par-
ticular region. When the explored region appears to have a
low food concentration, the slime mould will decide to leave
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While (ite< T)

Update bestFitness X,;

Update p, vb, vc;

End For

ite=1ite+ 1;
End While
Return X

Initialize the parameters: population size n, Maximum number of iterations T
Initialize the positions of slime mould X;(i=1,2, -+, n)

Calculate the fitness of all slime mould;

Calculate the weight W using equation (8);
For each slime mould position:

Update positions using equation (10);

ArcoriTHM 1: Pseudocode of the standard slime mould algorithm.

that area to explore other potential food zones. The complete
updating mechanism is modeled as follows:

rand.(UB - LB) + LB, rand < z,

==

X(t+1) = )T(t)’ﬂ%’.(wa(t)— B(t)), r<p,

Wm r>p,
(10)

LB and UB represent the lower and upper bounds of the
search space, and z is constant parameter that is recom-
mended to have the value z=0.03.

The process steps of the SMA can be summarized as
follows:

3.2. Hyperbolic Slime Mould Algorithm (HSMA). The slime
mould algorithm was successfully employed to tackle a wide
range of engineering optimization problems and proved to
exhibit good performance. However, in maximum power
point tracking, the final output of the optimization process
is not the only concern; the applied algorithm needs to be
fast, accurate, and exhibit the least possible amount of per-
turbations. The first and the last aspects arise from the fact
that weather conditions might be highly unstable which
causes the operating point of the system to fluctuate
throughout the day. In turn, the algorithm needs to reinitia-
lize every time the operating point changes, starting the opti-
mization process all over again. For this reason, tracking
time is an important factor to make sure that the system set-
tles down at optimum steady conditions as fast as possible.
Moreover, the search stage of the algorithm needs to be skill-
ful such that it does not perturb the operating point drasti-
cally, causing considerable power losses during the process.
Considering the previous facts, the original slime mould
algorithm was modified accordingly so that it fits better with
MPPT.

Because the first and the third mechanisms of the SMA
in equation (10) incorporate high randomness and distant
movements, they have been removed in the developed
SMA optimizer to reduce perturbations along the search
stage. The new version maintains only a refined format of

the second equation from the original SMA optimizer. The
refinement employs the hyperbolic tangent function as a tool
to minify large displacements that might result from the
original equation. The hyperbolic tangent function maps
values in the interval [0, 1] nonlinearly to values in the inter-
val [0, 0.76] as shown in Figure 4. The new framework equa-
tion is as follows:

|tanh (w(i) x Db) — tanh (G X Df)| « |l

D!*' = Db+ S(i) x a x y
(11)

D! denotes the ith duty cycle at iteration ¢ and w(i) is the
corresponding weight value. Db is either the global best solu-
tion or the second global best solution. Half the duty cycles
will be updated with respect to the global best solution while
the second half will be updated with respect to the second
global best solution. This is to ensure a performant explora-
tion phase and avoid local peak entrapment. In many cir-
cumstances, the first and the second global best solutions
might lie within the same region, at that time the algorithm
might fall into a local peak area and get stagnated. To avoid
such situations and ensure a successful exploration stage, an
isolating mechanism is employed in such a way Dbest; and
Dbest, are of distinct regions.

If Dbest, is the global best solution, then Dbest, is the
second optimum solution that does not fall within the inter-
val [Dbest, — 0.08, Dbest, +0.08]. In other words, if any
value of the duty cycle produces the second highest power
but it falls within the region [Dbest, — 0.08, Dbest, + 0.08],
then it will not be considered as Dbest,. This dynamic region
clustering avoids the oversight of one optimum region and
reduces early stagnation issues. Once the algorithm has per-
ceived the global peak region, it will be of no use to employ
Dbest, in the remaining search stages. For this reason, Db
will take on Dbest, starting from the 3rd iteration. The
above mechanism can be summarized as follows:

S(i) is a flag vector used to decide the direction of the
movement. Two solutions are driven to land above Db,
and the two remaining solutions are driven to be below Db
. This is to ensure an effective search operation within
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tanh (x)

X

FI1GURE 4: The hyperbolic tangent function.

if iteration = 1 or iteration = 2
ifi=lori=2
Db=Dbest,
else
Db=Dbest,
end if
else
Db=Dbest,
end if
Where

Dbest, : Optimum dutycycle value

i is the index of the duty cycle candidate solution (i =1, 2, 3, 4)

Dbest, : Dutycyle value having the highest Power outside the region [Dbest, — 0.08, Dbest, + 0.08]

ArcoriTHM 2: Updating mechanism for Dbest, and Dbest,.

Dbest, and Dbest, and avoid overlooking a direction over
another. For that matter, the vector S is set as follows: S=[1,
-1,1,-1].

The constant G takes one or two values depending on
how close D! to Db according to the following arrangement:

0.8, |Db-Dj|<0.01andite=2,
G=1 0095 |Db-D}|<0.01andite=3, (12)

1, else.

The employment of this mechanism is to avoid duplica-
tion of duty cycle values especially at the exploration phase.
The latter phenomenon might cause loss of diversity and
early stagnation issues.

d is a damping factor that takes on the value 2 in the sec-
ond iteration and fixed at 1 in the remaining iterations.

2, t=2,
d:{ (13)

The exponential term in the equation is used to bring
down the effect of the large distances between Db and D!.
The higher the distance between the two, the lower
e IPP>-Dilt it gets along the laps of iterations.

In the third iteration, Db takes on the value of Dbest,
and ¢ in its neighborhood. For the remaining iterations, the
search will be narrowed down within the identified foremost
region.

During the first iteration, the duty ratios are updated
using a slightly different equation:

Di*' = Db + §(i) x a x rand x |tanh (D,;) - tanh (D,,)|,
(14)

where D,; and D,, are two successive duty ratios randomly
chosen from the solution vector. If D, = 0.6, then D,, =0.8
. If D,; happens to be D,; = 0.2, then D,, = 0. This equation
assures an effective distribution of the duty ratios around
the detected best two solutions. The convergence factor a
in (3) of the original version has been modified so that it



decreases exponentially over the lapse of iterations to further
boost the convergence rate of the HSMA optimizer:

a=e W}, (15)

The next section provides a profound explanation of
the designed algorithm applied to maximum power point
tracking.

4. HSMA-Based MPPT

The task in maximum power point tracking is to find the
duty cycle value that would result in the highest possible
power level the system can deliver. The employed algorithm
would be implemented in a microcontroller to serve as the
MPP tracker. Based on its mathematical framework, the
algorithm in each iteration generates a set of duty cycle
values to be transmitted to the DC-DC converter and
receives the corresponding voltage and current for fitness
evaluation. The duty cycle is then considered as the decision
variable that directly affects the power of the system.
Accordingly, maximum power point tracking can be
regarded as an optimization problem with the following
objective function:

E(D;) =P;, (16)

where D, is the ith duty cycle generated by the algorithm and
P; is the corresponding PV power. The variable D is con-
strained within the range 0.1 <D, <0.9. If at a certain itera-
tion the distances between the generated duty cycles are very
small or the associated power levels are so close, the iterative
process will be terminated and the optimum duty cycle will
transmitted to the power converter. This convergence crite-
rion is set by the following condition:

M <0.01,
;
(17)
M <0.01.

1

Moreover, when the optimization stage is stopped, vari-
ations in irradiance levels have to be continuously checked
by examining the associated power level. If it happens that
a change is detected, the optimization process shall be
started all over again. The checking condition is as set as fol-
lows:

Pt _ Pt+l

| bestt best >0.02, (18)
P

best

where P is the power that corresponds to the optimum

duty cycle found during the optimization process. The over-

all operating flowchart of the HSMA applied on MPPT is

illustrated in Figure 5.

4.1. Hlustration of the Work of HSMA. In this section, the
produced solution trend of the designed algorithm will be
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visualized iteratively through a case example. A pictorial
visualization of the duty ratio trend along the first three iter-
ations is provided in the PV curves of Figure 6 along with
the power and duty cycle curves of the HSMA optimizer
shown by Figure 7. As shown, the PV characteristics exhibit
4 peaks with the global MPP located at a power level of
703.1 W, while the closest local MPP is around 23 W away
and located at 589.5 W in the extreme left. In the initial step,
the algorithm sends the initial set of the duty cycles D=
[0.2,0.4,0.6,0.8] to the power converter to cover the entire
PV curve. In this particular case, the duty cycle value D, =
0.6 produced the highest power level of 630.5W (point A),
and the algorithm stores it as Dbest,. Likewise, D, = 0.2 pro-
duced the second highest power 559.5W (point B), which
makes it Dbest,. In the first iteration, equation (14) will be
used to convey half the solutions towards the neighborhood
of Dbest, and the other half towards Dbest,, with one driven
above the respective Db and one below it. The resultant solu-
tion vector is D =[0.652,0.514,0.301,0.129] and the associ-
ated power of each is recorded. As illustrated in the PV
curve of Figure 6(b), the solutions are equally deployed
between two distinct regions. After transmitting the updated
set, D; =0.652 produced 687.8 W (point C), which is the
highest value ever found, making it the new Dbest,. Without
region clustering, the duty ratio D = 0.6 becomes the second-
best solution as it delivers the second-largest power level.
However, by applying the mechanism of region clustering
incorporated in the HSMA optimizer, this value of the duty
cycle will not be considered as Dbest, since it falls within the
same region as Dbest,. In other words, |Dbest; — 0.6 < 0.08.
In the meanwhile, by neglecting the power associated with
D=0.6, D;=0.301 produced a power level of 573.1W
(point D) which is the second largest level. Now, since D,
=0.301 is not within [Dbest, —0.08, Dbest, +0.08], it is
now stored as the updated Dbest,. In the next iteration,
equation (11) with d=2 will be used to dig around the
newly discovered optimum regions. Again, half of the duty
cycle set will be conveyed around Dbest,;, one from above
and one from below; the same mechanism is applied for
the remaining half, with Dbest,. The new solution vector
produced by this equation is now [0.677, 0.633, 0.328,
0.274], which are allocated and split between the best-
discovered regions as depicted in the PV curve of
Figure 6(c). After transmitting the new set of duty cycles,
the value D, = 0.677 reached a new higher level of 703.1 W
(point E), making it the new optimal solution Dbest,. In
the meanwhile, although improvement has been achieved
with D; = 0.328 in the Dbest, region producing a power level
of 587.3 W (point F), this is still inferior to the power level
delivered by the opposite zone. In turn, the optimum region
has now been fully perceived to the algorithm. Starting from
the next iteration, which is the third one, Db is set to Dbest,
and all solutions will be conveyed within the recognized
optimum region using equation (5) with d = 1. Again, half
the solutions are landed above Dbest,, and the other half is
deployed below it. Accordingly, the generated solution vec-
tor is D=1[0.682,0.6671,0.6961,0.6627] which are assem-
bled in the global MPP level as shown in the last traced PV
curve of Figure 6(d).
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FiGgure 5: Flowchart of the hyperbolic slime mould algorithm-based MPPT.

5. Simulation Results

To examine the performance of the proposed HSMA opti-
mizer, MATLAB/Simulink is employed to simulate a standa-
lone PV system undergoing distinct complex partial shading
conditions. The system consists of 8 serially connected PV
modules of the same type, a boost converter operated by
an MPPT algorithm, and a resistive load. The specifications
of the employed PV module are provided in Table 1. The
buck-boost converter consists of an input capacitor C;, =
500 uF, an inductor L =150 yH, and an output capacitor

C,.t =0.9nF. The considered cases involve patterns having
5 to 8 peaks with various scenarios of the global peak loca-
tion, as depicted in the PV characteristics of Figure 8 and
Table 2. Three other well-regarded algorithms were applied
under the considered cases for the comparative study. The
selected parameters for the PSO algorithm are as chosen in
[36], while the parameters of the other algorithms were fixed
as the default settings in their original articles. All the trials
were carried out in MATLAB R2018b and executed on a
PC with Intel Core™ I15-1145G7 CPU @ 2.60GHz, 16GB
RAM, under Windows 11 64-bit OS. Moreover, for all the
considered algorithms, the population size was set to 4 and
the maximum number of iterations was fixed at 10. The

sampling time was chosen to be 0.05s to match it with the
experimental work later on.

In the first scenario, the PV generator was subjected to
irradiation levels of 950/920/900/500/400/350/320/320 W/
m”. The global MPP is located in the extreme right with a
power level of 619.8 W, while the nearest local maximum is
at 589.6 W. The resulting power curves and duty ratio adap-
tation are traced in Figure 9. The HSMA, GWO, and PSO
algorithms were all able to recognize the global region and
successfully track the GMPP location with an efficiency level
of 99.98%. The SMA attained a slightly lower level of
619.6 W, yielding an efficiency level of 99.967%. Despite
the similar tracking accuracy, one can easily observe the
rapid convergence trend of the HSMA optimizer compared
to its contenders. The tracking time was 0.8 seconds which
is way smaller than those of the GWO, PSO, and SMA opti-
mizers which consumed 1.7, 1.9, and 2 seconds, respectively.
Moreover, it is notable from the power curves and the traced
duty cycle that the HSMA generates fewer fluctuations to the
operating point leading to lower power losses than those of
the other algorithms. This is due to the masterful search
strategy which is confined to the two foremost optimum
regions, which assists the algorithm in rapidly deciding the
global optimal area along the first two iterations.



10

800 + Iteration 0
B

600 - %
g /
£ 400 + A
]
(=9

200 -

0 L L L L 1
0 50 100 150 200 250 300
V (V)
(a)

800 + Iteration 2
600 f
z
-
£ 400 f
& E

200 F

0 , ‘ . . ‘
0 50 100 150 200 250 300
V (V)

(c)

International Journal of Energy Research

800 f Iteration 1 D
C
. 600 r
g
8 Dbest1
400
g region Dbest2
A region
200 |
0 . . . . .
0 50 100 150 200 250 300
V (V)
(b)
800 F Iteration 3
. 600
g
g
é 400 All solutions are
conveyed into
200 | the global region
0 ; ; ; . .
0 50 100 150 200 250 300
V(V)
(d)

FIGURE 6: Operating point movement of the HSMA optimizer in the case example during (a) iteration 0, (b) iteration 1, (c) iteration 2, and

(d) iteration 3.

1000
< 800+ C E
% A D . Iteration 0
2 600‘r-\_r\_’_‘_'—\_r\_t-;—| A:D=06
§ P =630.5W
< 4001 B B:D=0.2
A _
E oo P =559.5W
0 : ; Iteration 1
0 0.5 1 1.5 C:D=0.652
Time (s) P =687.8W
D:D=0.301
1 P=573.1W
) 0.8 A |£ E Tteration 2
E 0.6 l E:D=0.677
8} B P=703.1W
£ 0.4 |p F D:D=0328
A P =587.3W
0.2
0 ; ;
0 0.5 1 1.5
Time (s)

FIGURE 7: Power and duty cycle curves of the HSMA optimizer in the case example.

In the second scenario, the PV generator receives irradi-
ance levels of 50/400/400/500/800/800/1000/1000 W/m®
resulting in a 5-peak PV curve. The corresponding global
MPP is located at a power level of 722.65 W while the near-

est local peak provides 681.2 W. The resulting power curves
and duty ratio adaptation are provided in Figure 10. It is
revealed from the graphs that except for the HSMA opti-
mizer, the GWO, PSO, and the original SMA got entrapped
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TaBLE 1: Specifications of the employed PV module.
Module 1Soltech 1STH-215-P Open circuit voltage (V) 363V
Maximum power Pyp 2135W Short circuit current (Iy:) 7.84
Voltage at Pyp (Vypp) 29V Cells per module 60
Current at Pyp (Inpp) 7.35A
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o} g
£ 400 £ 4007
& =
300 3001
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——PSC2 ——PSC5 —PSC7
——PSC3
FIGURE 8: PV curves of the investigated partial shading conditions.
TaBLE 2: Details of the investigated partial shading conditions.
PSC case Pattern (W/m?) Number of peaks GMPP (W) GMPP location LMPP 1 (W)
PSC1 950/920/900/500/400/350/320/320 5 619.8 Right 589.6
PSC2 50/400/400/500/800/800/1000/1000 5 722.65 Middle 681.6
PSC3 1000/1000/800/700/700/500/300/200 6 806.8 Middle 738.9
PSC4 1000/900/600/0/500/400/250/200 7 492 Middle 484.7
PSC5 1000/300/800/800/500/400/200/100 7 532.2 Middle 492.4
PSCe6 800/300/200/150/100/70/50/20 8 171.7 Left 145.1
PSC7 1000/900/800/600/500/400/350/300 8 655.7 Middle 486

at the local region. In this scenario, it happened that when
transmitting the initial duty cycles, the one with the value
D=0.2 produced a higher power than the ones with D=
0.6 and D = 0.8, which are supposed to belong to the global
optimum zone. For that reason, the SMA, GWO, and PSO
algorithms got rapidly sucked into the 681 W region.
Although the standard SMA optimizer attempted to escape
from the local region at the seventh iteration, the attempt
was insufficient. The HSMA on the other hand could easily
differentiate between the regions and eventually converge
towards the global zone. This early recognition is due to
the mechanism of exploring the neighborhood of the best
two regions, giving both regions chances to reveal where
the global optimum zone is located. In terms of convergence
time, the HSMA is faster at 0.8s followed by the original

SMA at 1.1 seconds and the PSO and GWO algorithms at
1.4 and 1.6 seconds, respectively.

In the third scenario, the system undergone a PSC pat-
tern having irradiance levels of 1000/1000/800/700/700/
500/300/200, resulting in a characteristic curve of 6 peaks.
The associated global peak is located at 806.8 W in the mid-
dle, while the first local peak is around 70 W far from it. The
resulting power curves and duty ratio adaptation are pro-
vided in Figure 11. Although the HSMA, PSO, and SMA
scored the highest efficiency level of 806.5 W, the developed
optimizer’s tracking time, which was 0.8 s, was way shorter
than those of its contenders. In effect, both the PSO and
the SMA optimizers consumed around 1.8s, while the
GWO algorithm was the worst with a 2s tracking time. It
can be observed from the power curves that the HSMA
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F1GURE 11: Power and duty cycle curves during PSC3 for (a) PSO, (b) GWO, (c) SMA, and (d) HSMA.

optimizer exhibits the least amount of fluctuations com-
pared to those of the GWO, PSO, and SMA. This is due to
the rapid decision-making attribute of the guided explora-
tion stage and by which the search process was not strayed
away from the optimal peak regions.

The fourth trial involves a profile having levels of 1000/
900/600/0/500/400/250/200 W/m®, and the corresponding
PV curve consists of 7 peaks. The global peak is at 492 W,
and the associated duty cycle value is 0.356, while the closest
local peak is only 7 W away from it, making the case so chal-
lenging to handle. The associated delivered power curves
and the generated duty ratio values are shown in
Figure 12. In the initial step, the value D=0.4 produces
470 W while D=0.6 produces a higher level of 481.2W,
causing an entrapment to the MPPT algorithm. Despite
the troublesome pattern, the designed HSMA optimizer
effectively conveyed the operating point to the global maxi-
mum level resulting in a 99.99% efliciency. The dynamic
region clustering enabled the algorithm to avoid entrapment
into the closest local zone with rapid and masterful decision-
making. As can be observed, the GWO algorithm could
manage to achieve identical efficiency with the HSMA opti-
mizer; however, this was at the expense of high fluctuations
and sluggish convergence. In effect, the HSMA was again the
fastest algorithm, with 0.8 seconds, followed by the GWO
algorithm, which took 1.8 seconds to converge. In the mean-
while, the PSO and the SMA optimizers failed to recognize
the global region and got entrapped into a local MPP zone.

In the fifth case, the PV array is exposed to irradiance
levels of 1000/300/800/800/500/400/200/100 W/m?>. The
resulting 7-peak PV curve exhibits a global maximum

located near the extreme left with a power level of 532.2 W,
while the first local peak was made close at a level of
493 W. The corresponding power curves and duty ratio
adaptation are provided in Figure 13. Similar to PSC2 and
PSC3, the global region cannot be revealed after transmitting
the initial set of duty cycles. In turn, the GWO and PSO
algorithms failed to recognize the optimum zone and rapidly
got stuck at the 493 W level. The SMA has also got stuck in
that zone in the first 4 iterations; yet, due to the reinitializa-
tion mechanism of that algorithm, it could manage to escape
into the global region afterwards. However, the exploitation
phase could only achieve a power level of 523 W, which is
still far off the GMPP location resulting in poor efficiency
and slow convergence. In the meantime, due to the masterful
exploration mechanism of the HSMA optimizer, the global
region was spotted in the first iteration and took 0.8 seconds
to converge.

In the sixth experiment, the PV curve consists of 8 peaks,
with the global max located at the extreme left at a power
level of 171.7W. The resulting power curves and duty ratio
adaptation are provided in Figure 14. All algorithms could
manage to successfully land at the global peak level with
identical efficiency of 99.99%. However, as with the other
cases, the HSMA optimizer provides the best convergence
trend with 0.8 seconds tracking time and the slightest
amount of fluctuations.

The last trial involves an 8-peak PV curve by exposing
the system to irradiance levels of 1000/900/800/600/500/
400/350/300 W/m”. The global peak is located at the extreme
right with a power level of 655.7 W, while the nearest local
maximum is located at a power level of 486 W. The resulting
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power curves and the traced duty ratio progression are pro-
vided in Figure 15. It happened that the HSMA, GWO, and
PSO algorithms were able to recognize the global optimum
region while the standard SMA optimizer failed in this task.
The HSMA and PSO algorithms attained identical power
levels of 655.6 W and a corresponding efficiency of 99.98%;
however, the GWO achieved 654.6 W resulting in a lower
efficiency of 99.83%. Despite their similar accuracy scores,
the tracking process of the developed HSMA optimizer is
way better than those of its competitors. This is perceivable
from its respective power curves from which one can
observe smaller convergence time, faster decision-making,
and fewer perturbations to the operating point. Moreover,
the GWO and PSO algorithms’ search process generates pre-
viously produced and evaluated solutions causing sluggish
convergence and poor accuracy.

To assess the HSMA optimizer in achieving identical
efficiency levels at the same irradiance, it was tested under
varying load conditions. The system was exposed to the last
PS conditions with a load change from 50Q to 25 after
1.25 seconds. It can be seen from the resulting curves in
Figure 16 that the algorithm was able to recognize the
change in the power level and reinitialized the search start-
ing from the next sampling cycle. Once again, the algorithm
maintained its behavior during the search process with
99.98% efficiency in both load conditions and 0.8 seconds
tracking time.

6. Experimental Validation

To support the results obtained through the simulation tri-
als, the HSMA optimizer was examined on an experimental
setup shown in Figure 17 for real-time performance investi-
gation. The system is made up of a PV array emulator
employed to generate the intended partial shading condi-
tions, a buck-boost converter, and DSpace (D1104) as the
controller that transmits the generated PWM signals to the
gate driver. The Chroma 62150H PV emulator was used to
setup a PV generator consisting of 6 modules connected in
series. The selected solar module is the SunPower SPR-
305-WHT having the following characteristics: V

109V, I

mpp =

mpp =259 A, V=131V, and I =592A. The

\
oetany
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¥ G b
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Ficure 17: Employed experimental setup.

generated voltage V,y and current Iy, from the PV simu-
lator were measured by a voltage (LEM LV-25-P) sensor
and a current (LEM LA-25-NP) sensor which provide
readings to the ADC pins of the DSpace microcontroller.
The employed boost converter consists of an input capac-
itor C1=1200uF, an output capacitor C2=550uF, an
inductor L =470 uH, and a variable load resistor fixed at
R =200 with the switching frequency set to 20 kHz. Based
on the buck-boost converter settling trend, the sampling
time was selected to be 50ms to provide accurate readings
of voltage and current to the microcontroller. This section
is devoted to the analysis of the algorithm records on the
used experimental setup.

In the first scenario, the system receives solar irradiance
levels of 1000, 1000, 900, 800, 700, and 600 W/m® resulting
in a PV curve of 5 peaks. The global peak is located at the
extreme right with a power level of 261.51 W as indicated
in the screen of the PV emulator. The resulting power curves
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and duty cycle progression are provided in Figure 18. The
red point on the PV and IV curves corresponds to the steady
state reached after the optimization process. The algorithm
was able to stand at a power level of 261.3 W with 99.92%
efficiency within 0.8 seconds, matching the simulation
records. Disregarding the first fluctuations which correspond
to the initial set of duty cycles, it is apparent that the algo-
rithm induced tiny perturbations during the optimization
process before steady state. This feature is attributed to the
smooth exploration phase that allows digging around the
best two solutions before deciding which of which the opti-
mum region is.

In the second test case, the system is exposed to irradi-
ance levels of 1000, 1000, 900, 800, 500, and 400 W/m’.
The associated 5-peak PV curve is shown in Figure 19, with
an MPP level of 217.5W. As recorded in the figure, the algo-
rithm successfully located the GMPP region with 99.8% effi-

ciency. Although the tracking time was 0.95s which is a bit
longer than that of the other cases, the duty cycle perturba-
tions in the last iterations are very tiny with unnoticeable
power fluctuations during these moments.

The PV and IV curves corresponding to the third trial
are provided in Figure 20. The global MPP is located in
the middle with power level of 146.9.9 W. Again, the HSMA
optimizer was able to convey the operating point into the
GMPP with 99.95% efficiency within 0.6 seconds. It is per-
ceivable from the duty cycle progression that the algorithm
was able to quickly decide which region is the optimum
one, resulting in a few and tiny perturbations and hence
small power losses.

In the fourth case, the global MPP is located in the
extreme left of the PV curve as depicted in Figure 21. The sys-
tem is exposed to irradiance levels of 1000, 1000, 350, 300,
150, and 100 W/m?. The algorithm was able to attain a power
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level of 124 W out of 124.3 W resulting in 99.75% efliciency.
The tracking time was 0.8 seconds, which is again in accor-
dance with the one of the simulation part.

The fifth experiment involves 6 peaks resulting from
exposing the PV generator to irradiance levels of 1000/500/
400/250/150 and 100 W/m>. The global peak is located in
the middle at a power level of 86.86 W as shown in
Figure 22. The HSMA optimizer was able to deliver
86.74 W resulting in 99.87 W. The algorithm this time took
a bit longer to settle down and consumed 1.2 seconds to con-

verge. Despite this slower convergence, the perturbations
during the tracking stage are small and the corresponding
power fluctuations are small.

In the last experimental trial, the system was exposed to
a dynamic irradiance of two partial shading patterns. The
first pattern is the same as PSC2 and the second pattern is
set as PSC4. This experiment is important to testify the algo-
rithm performance in detecting irradiance changes which
usually occur in practice. As can be perceived from the out-
comes of Figure 23, the HSMA optimizer was able to
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reinitialize the tracking process immediately once the change
occurred. Along the first pattern, the algorithm took around
1.1 seconds to converge, while in the second case, it con-
sumed only 0.6 seconds to settle down at the global opti-
mum operating point.

To support the rival and superior performance of the
HSMA optimizer, the previously considered algorithms were
implemented on the same experimental setup and condi-
tions. The produced power, current, voltage, and duty cycle
graphs of each algorithm are provided in Figures 24-38.
The detailed outcomes of all algorithms along the investi-
gated experimental cases are reported in Table 3. In overall,
the results are much the same as the ones obtained during
the simulation trials. Clearly, a high number of fluctuations

and jumps characterize the power curves produced by the
PSO, GWO, and the SMA optimizers before arriving at
steady-state conditions. This highly random and unguided
search process caused lots of power perturbations and even-
tually sluggish tracking speed. The HSMA optimizer in the
other hand could achieve a very small tracking time of 0.6
seconds, while the largest recorded time was 1.2 seconds.
With the investigated cases, the HSMA optimizer settles
down on average within 0.87 seconds, which is nearly 4.3
iterations. In terms of tracking accuracy, the designed algo-
rithm was able to achieve experimentally an efficiency level
as high as 99.95% and 99.87% on average, which is very
promising, bearing in mind its rapid convergence trend
and its low fluctuations. In general, the reported results of
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TaBLE 3: Reported results of the considered algorithms along the experimental trials.
HSMA GWO PSO SMA
PSC1 Efficiency (%) 99.92 99.42 99.91 99.52
Convergence time (s) 0.8 2.7 2.7 2.1
PSC2 Efficiency (%) 99.80 99.56 99.05 99.91
Convergence time (s) 0.95 2.0 1.75 2.1
PSC3 Efficiency (%) 99.74 99.81 99.42 99.98
Convergence time (s) 0.6 2.2 1.75 2.0
PSCa Efficiency (%) 99.95 99.62 99.46 99.67
Convergence time (s) 0.8 2.0 1.6 2.2
PSC5 Efficiency (%) 99.97 99.42 98.69 98.0
Convergence time (s) 1.2 2.0 1.6 2.2
Average efficiency (%) 99.876 99.566 99.306 99.416
Average convergence time (s) 0.87 2.18 1.88 2.08
TaBLE 4: Overall comparison between the HSMA optimizer and other MPPT techniques.
MPPT Tracking . Probability of LMPP  Fluctuations around  Fluctuations during Computational Number of
algorithm  speed Efficiency stagnation under PSC  the operating point  the tracking phase complexity tuneable
& parameters
HSMA  Moderate  High Low Low Low Moderate I (convergence
factor c)
SMA Slow High Moderate Low High Moderate 2 (convergence
factors a, b)
PSO Slow High Moderate Low High Moderate 3(Cy, Cyw)
GWO Slow High Moderate Low High Moderate I (convergence
factor a)
. . 1 (duty cycle
P&O Fast Low High High Very Low Low

perturbation)

Table 3 indicate that the HSMA optimizer comes at the first
rank in both average tracking time and average efficiency
with the least amount of perturbations.

7. Overall Comparison

The various phases of the HSMA optimizer can be summa-
rized into five distinct sections: power evaluations, sorting,
weight calculation, duty cycle update, and memory saving.
The computational complexity can then be derived as fol-
lows:

O(HSMA) = O(T x power evaluation) + O(T x sorting)
+ O(T x weight computation)
+ O(T x duty cycle update),

(19)

where T denotes the number of iterations. Since the previous
processes depend on the number of generated solutions N,
the computational complexity can be further computed as
follows:

OHSMA)=0(T xN)+O(T xN) + O(T x N log N)
+O(TxN)=0(T xN x (3+1logN)).
(20)

It has to be highlighted that the main operations of the
HSMA optimizer are similar to those in most metaheuris-
tic algorithms. The process starts by generating an initial
set of candidate solutions, and then in each iteration, the
solutions are updated by the framework equations of the
algorithm and evaluated by the defined fitness function.
After completing the evaluation process, the best solution
or a portion of the best solutions is saved for use in the
next iterations.

In order to present a comprehensive assessment of the
algorithm overall performance compared to other MPPT
techniques, a comparative table that covers the major indices
is constructed is given in Table 4. The perturb and observe
algorithm (P&O) has been added so that it helps as a refer-
ence in the comparison given its minimal computational
complexity and rapid tracking speed capabilities.
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8. Conclusion

The focal interest of this work was to design an efficient and
reliable MPPT algorithm that can handle various partial
shading conditions. It was noted from many reported tech-
niques that the validation was carried out on nonuniform
irradiance patterns having only few peaks with a global peak
that is not hard to detect. In essence, most of the existing
techniques are built in such a way they drive the duty ratios
rapidly to the spotted optimum region without traversing
other potential zones. In light of that, a new performant
hyperbolic slime mould algorithm is designed to tackle this
issue. The designed optimizer incorporates the hyperbolic
tangent function as a way to reduce large distances and
hence minify power losses. To foster its global search ability,
the algorithm stores the best two solutions that belong to
distinct regions of the search space and inspect their neigh-
borhood during the first two iterations. This mechanism of
scanning the best two power peak regions allows the algo-
rithm to avoid both redundant exploration and local peak
stagnation. A local search operation around the recognized
optimum region then takes place along the remaining opti-
mization stages with a rapid convergence trend. To testify
its global performance, it was examined through simulation
trials of challenging partial shading conditions and com-
pared to the PSO, GWO, and SMA optimizers. Concisely,
the HSMA was the winner in all aspects providing higher
efficiency, shorter convergence duration, and fewer fluctua-
tions. Moreover, it was shown that the algorithm has an
effectual local peak avoidance when exposed to complicated
partial shading patterns in which its contenders got rapidly
stagnated into the nearest local peak. This benefit is credited
to the region inspection mechanism applied to the algorithm
and by which the best two optimal zones are effectually
exploited before deciding which of which the global best
region is. The experimental validation through the DSpace
microcontroller and a PV emulator supported the simula-
tion outcomes and proved the algorithm performance,
endorsing the HSMA optimizer as an efficient, fast, and reli-
able MPPT algorithm. Because during uniform irradiance
conditions (UICs) the PV characteristic curves are unimodal
with a unique peak, global search is unnecessary since it
entails a larger tracking time than that of a local search.
Given its metaheuristic nature, the designed optimizer
behaves the same way during partial shading conditions
and uniform irradiance conditions. Therefore, a detection
method to distinguish between PSCs and UICs would be
highly beneficial to assist the algorithm in deciding whether
to perform a global search or a local search process. If a UIC
is detected, the algorithm will be confined within the opti-
mum region with a local search operation avoiding travers-
ing the whole PV curve and substantially reducing the
tracking time.

Nomenclature

ABC:  Artificial bee colony
ACO:  Ant colony optimization
DE: Differential evolution
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DDM: Double-diode model
FPA:  Flower pollination algorithm
GWO: Grey wolf optimizer

HSMA: Hyperbolic slime mould algorithm
InC: Incremental conductance algorithm
MPP: Maximum power point

MPPT: Maximum power point tracking
NM:  Nelder-Mead technique
Single-diode model

SO: Snake optimizer

Salp swarm algorithm
SMA:  Slime mould algorithm
P&O:  Perturb and observe algorithm

PS: Partial shading

Partial shading condition
Particle swarm optimization
PV: Photovoltaic

Uniform irradiance conditions
WOA: Whale optimization algorithm
Ipy: Output PV current
Loy Photocurrent
I, Reverse saturation current
a: Diode ideality factor
R Series resistance
Ry: Shunt resistance

Vpy:  Output PV voltage
Ppy: PV power.
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