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Abstract. The precise determination of the resilient modulus (MR) of the 
base and sub-base materials is a major preoccupation and a key criterion in 
the flexible pavement design process. The experimental determination of 
MR implies a challenging process which requires usually very difficult test 
procedures and extreme precautions and manpower. This is why soft 
computing techniques are increasingly popular and of growing importance. 
Many prediction techniques based primarily on linear and non-linear 
regression could not provide flexible use and consistent prediction of MR 
for practical engineering. This article introduces a hybrid of the Bayesian 
optimization algorithm (BOA) and support vector regression (SVR) as a new 
modelling tool for the MR prediction of crushed stone materials used as base 
and sub-base layers for pavement design. For this purpose, an experimental 
database was utilized to generate the hybrid BOA-SVR model of indirect 
estimation of the resilient modulus based on material type, basic engineering 
characteristics and loading conditions. The database consists of 260 
experimental datasets obtained from repeated loading triaxial tests 
performed by the laboratory of the Central Transportation Agency located 
in Algiers, Algeria. To develop the model, all hyperparameters were 
optimised using the BOA technique. It was found that the average, median, 
standard deviation, minimum, maximum and interquartile range of the 
expected values of the developed hybrid model are very close to the 
experimental results. Results revealed that the hybrid BOA-SVR model 
predict the MR of the crushed stone materials with a coefficient of 
determination of 99.91% and root mean squared error of 3.55. Comparisons 
with traditional and other Artificial intelligence models showed that BOA-
SVR hybrid model predictions are more accurate and robust than those of 
other models. 

1 Introduction 

Among the most extensive road networks in North Africa, Algeria possesses a network of 
secondary roads encompassing over fifty percent of its estimated one hundred thousand 
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kilometres in length. In order to support the weight of traffic, these road structures typically 
comprise numerous unbound granular base and subbase layers in addition to thin asphalt 
layers [1]. The primary design parameter influencing the performance of this pavement 
structure is the resilient modulus of the crushed rock materials.  

The Mechanistic Empirical Pavement Design Guide (MEPDG) establishes three tiers of 
reliability [2]. To achieve the highest tier of reliability, which corresponds to Algerian road 
network class 1, input from a resilient modulus test is required. However, correlations and 
local databases are acceptable for the second and third tiers, which correspond to secondary 
roads classified as medium to low volume roads and Algerian road network class 2, 
respectively.  

As its implementation primarily relies on laboratory characterization of pavement 
materials and the utilisation of an extensive materials database, the Algerian Mechanistic 
Empirical Pavement Design Guide method [3] has encountered numerous obstacles over the 
past few decades. Conversely, laboratory determination of the resilient modulus of crushed 
rock materials is a laborious process that necessitates substantial financial investment and 
specialised expertise [4] due to the intricate characteristics of the materials employed in road 
construction. At this moment, a number of local transport agencies in Algeria lack the 
necessary testing capabilities to ascertain the UGMs' resilient modulus.  

It is also possible to estimate the MR values of crushed rock materials (which are utilised 
as subbase and base granular layers in pavement construction) via predictive models. 
Predictive models of MR typically endeavour to establish correlations between it and various 
other properties, including stress state conditions [7], California Bearing Ratio (CBR) [5], 
liquid limit (LL), plastic limit (PL), and plasticity index (PI) [6].  

The MR value of crushed rock materials can be affected by a variety of factors, including 
the type of aggregate, the level of stress, and fundamental properties such as unit weight, 
moisture content, and density [8]. Rada and Witczak [9] found that the level of stress had the 
greatest influence on the MR value. It was discovered that granular materials' MR tends to 
increase as the confining stress rises. Additionally, it has been noted that the MR of granular 
substances is intrinsically connected to deviator stress as a result of a change in the grain's 
redirection towards a denser state [10,11].  

A prevalent approach among professionals is to establish relationships between the 
resilient modulus of crushed rock materials and various fundamental engineering properties 
using empirical formulas and coefficients derived from classical regression methods [12]. 
Nevertheless, notwithstanding their apparent simplicity, empirical methods possess several 
constraints. For instance, they fail to account for the extent of nonlinearity and the impact of 
all influential parameters. Furthermore, classical regression methods may yield weak 
correlations in certain empirical relationships [13].  

Numerous machine learning models have been implemented in geotechnical engineering 
over the last few decades to forecast the complex behaviour of numerous geomaterials and 
establish relationships between inputs and targets of numerous experimental datasets. An 
examination of the specialised literature about the estimation of MR reveals that sophisticated 
techniques, such as artificial neural networks [14-16] and other machine learning approaches, 
have been utilised to construct predictive models for unbound granular substances, such as 
crushed rock materials [7,17].  

The improvement of MR prediction model accuracy has consistently been a primary 
concern for numerous researchers. The utilisation of ensemble machine learning and ANN 
models to surpass the performance of traditional regression models has been the subject of 
numerous prior studies, while the application of hybrid models has been neglected.  

This paper presents the development of a Bayesian Optimization Algorithm Based 
Support Vector Regression (BOA-SVR) model to enhance the predictive capability of the 
resilient modulus model.  
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Notably, the selection of hyperparameters is of the utmost importance when it comes to 
SVR. Negligible parameter selection has the potential to result in overfitting or under fitting. 
By integrating the Bayesian optimization algorithm (BOA) with k-fold cross-validation, SVR 
determines the optimal values for each of these hyperparameters.  

The primary objective of this scholarly article is to calculate the resilient modulus of 
unbound granular substances that are commonly employed as subbase and base materials in 
Algeria's northern region. Mean Absolute Error (MAE), Coefficient of Determination (R2), 
and Root Mean Squared Error (RMSE) are typical performance indicators utilised to assess 
the hybrid BOA-SVR model. The proposed model was developed utilising data from 260 
experimental results stored in a local database. The outcomes of the simulations demonstrate 
that the hybrid BOA-SVR model accurately predicts the resilient modulus of granular 
materials that are not bound. Furthermore, upon comparison with alternative models 
including the conventional Multi Linear Regression (MLR) and the Random Forest (RF) 
models, it becomes evident that the hybrid BOA-SVR model exhibits superior performance 
across the board.  

2 Materials and methods 

The current investigation is conducted according to the suggested methodology, which 
consists of three primary phases: (1) preparation of the data, (2) development of the model, 
and (3) validation of the proposed model. The data acquired from laboratory tests is utilised 
to generate two datasets—the training and testing datasets—during the initial phase. The 
initial dataset is constructed using 80% of the overall data, while the subsequent dataset is 
comprised of 20% of the residual data. When developing the hybrid BOA-SVR model, 
consideration is given to the training dataset. At this stage, an investigation is conducted into 
the impact of hyperparameter values on the accuracy of the hybrid model. During the third 
stage, the testing dataset is utilised to assess the performance of the proposed model in 
comparison to established Artificial Intelligence models like MLR and Random Forest. 
Utilized statistical indicators consist of R2, RMSE, and MAE.  

2.1 Processing of data  

Numerous variables impact the resilient modulus (MR) of crushed rock materials. As a means 
of simplifying the model, this investigation will concentrate on the primary variables that 
have a substantial impact on the resilient modulus.  

The hybrid (BOA-SVR) model is employed to indirectly estimate the resilient modulus 
of crushed rock materials by utilising an experimental database. This model takes into 
account material type, fundamental engineering characteristics, and loading conditions. 260 
experimental datasets derived from Repeated Load Triaxial (RLT) tests conducted by the 
laboratory of the Central Transportation Agency in Algiers, Algeria [18] comprise the 
database.  

The RLT tests were conducted on a variety of crushed rock materials obtained from 
quarry crushing of three distinct types of massive rocks—granite, limestone, and diabase—
which were found in various deposits situated in the northern Algerian central region.  

Multiple input parameters are chosen from the experimental database, including the 
following: Rock Type (RT), Coefficient of Uniformity (CU), Coefficient of Curvature (CU), 
Fine content (Fc), Liquidity Limit (LL), Plasticity Index (PI), Maximum Dry Density 
(MDD), and Sample Moisture content (SMC). Additionally, two loading components are 
incorporated: the confining pressure denoted as σ3 (SIGMA3) and the deviator of stress 
denoted (σd) (SIGMAD).  When these parameters are utilised in modelling, the result is the 
resilient modulus of unbound aggregate materials (MR).  [18,19] contain comprehensive 

3

MATEC Web of Conferences 396, 05016 (2024) https://doi.org/10.1051/matecconf/202439605016
WMCAUS 2023



definitions and instructions on how to ascertain the input variables from laboratory tests. It 
is worth noting that except for the RT variable, which is categorical and accepts three values 
(granite, limestone, and diabase), all of these variables are numeric. The symbol, unit, and 
statistical analysis of the continuous variables of input and output are detailed in Table 1.  

The Pearson correlation coefficient between all variables has been visualised by the 
correlation matrix heat map in Fig. 1.  

Table 1. Statistics describing the input parameters utilised in this study  

Variable Mean StDev Min Max 
Cu 58.28 29.22 4.17 112.00 
Cc 3.87 1.86 0.88 6.92 

Fc (%) 9.46 1.99 8.00 14.08 
LL (%) 28.45 4.93 19.00 37.00 
PI (%) 7.08 2.61 2.00 12.00 

MDD (g/cm3) 2.23 0.07 2.11 2.34 
SMC (%) 6.54 1.13 3.60 8.50 

SIGMA3 (kPa) 102.85 71.34 10.00 250.00 
SIGMAD (kPa) 335 160.40 150.00 600.00 

MR (MPa) 267.23 128.20 46.60 590.31 
 

 
Fig. 1. Correlation matrix heat map. 

2.2 Support vector regression (SVR) 

The Support vector machine (SVM) algorithm is a statistical learning theory-based general 
classification and regression technique [21]. The utilisation of support vector regression, an 
extension of Vapnik's -insensitive loss function, has been implemented to address regression 
issues (SVR).  SVR enhances its ability to generalise by employing the principle of structural 
risk minimization (SRM), notwithstanding its inception with a restricted set of learning data. 
The objective of this minimization process is to obtain a function that deviates from the actual 
targets by no more than ε across all training data. Due to the inevitability of errors, the 
objective is to restrict their occurrence to a specific range of values (ε). For nonlinear 
mapping, the relationship between input and output variables can be mathematically 
represented as equation (1) [22]:  
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i 

𝑘𝑘(𝑥𝑥) = {𝑤𝑤. Ø(𝑥𝑥)} + 𝑏𝑏        (1) 
 
Where x= (x1, x2, x3, …, xn) denotes the input value, yi represents the output value and 

Ø(𝑥𝑥)denotes an irregular function to assign input data to the high-dimensional domain. 
Furthermore, 𝑤𝑤represents the weight vector, which determines the orientation of a 
discriminating plane, c ∈ R represents the scalar threshold, related to the bias term, and 
n is the size of training data. The ε -insensitive loss function is defined as [21]: 

 
|𝑦𝑦 − 𝑘𝑘(𝑥𝑥)|ε = 𝑚𝑚𝑚𝑚𝑥𝑥{0, |𝑦𝑦 − 𝑘𝑘(𝑥𝑥)| − 𝜀𝜀}, 𝜀𝜀 > 0  (2) 

 
 The flatness of equation (1) depends on a smaller value of 𝑤𝑤. It is practically impossible 

for a function to generate an error for every data point whose value is less than ε. To 
accommodate a greater number of errors, slack variables ξ𝑖𝑖  , ξ𝑖𝑖

∗  are implemented. Therefore, 
the optimization function in SVR can be expressed as follows:  

Minimize: 

1
2 ‖𝑤𝑤2‖ + 𝐶𝐶 ∑(ξ𝑖𝑖 − ξ𝑖𝑖

∗)
𝑛𝑛

𝑖𝑖=1
   (3) 

subject to: 
 

{
𝑦𝑦𝑖𝑖 − {𝑤𝑤. ∅(𝑥𝑥𝑖𝑖) + 𝑏𝑏}  ≤  𝜀𝜀 + ξ𝑖𝑖
{𝑤𝑤. ∅(𝑥𝑥𝑖𝑖)} + 𝑏𝑏 − 𝑦𝑦𝑖𝑖  ≤  𝜀𝜀 + ξ𝑖𝑖

∗ 
ξ𝑖𝑖 , ξ𝑖𝑖

∗   ≥ 0
  (4) 

 
    Where  ξ𝑖𝑖 and ξ𝑖𝑖

∗  are the slack variables, b is a constant, ∅(𝑥𝑥𝑖𝑖) is a nonlinear mapping 
function, and C represents the penalty factor. Samples with a training error exceeding 𝜀𝜀 will 
be subject to a higher C value. 𝜀𝜀 specifies the requirements for the regression function. By 
converting the optimization problem described in equation (3) to a dual formulation utilising 
Lagrange multipliers, the solution can be expressed in the following final form:  

 

− 1
2 ∑ ∑(𝛼𝛼𝑖𝑖 − 𝛼𝛼𝑖𝑖

∗)(𝛼𝛼𝑗𝑗 − 𝛼𝛼𝑗𝑗
∗) 𝑘𝑘(𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗) −  𝜀𝜀 ∑(𝛼𝛼𝑖𝑖 − 𝛼𝛼𝑖𝑖

∗)
𝑛𝑛

𝑖𝑖=1
+ ∑ 𝑦𝑦

𝑛𝑛

𝑖𝑖=1
 𝑖𝑖  

𝑛𝑛

𝑗𝑗=1

𝑛𝑛

𝑖𝑖=1
(𝛼𝛼𝑖𝑖 − 𝛼𝛼𝑖𝑖

∗) 

  

 

Subjected to: 

 ∑(𝛼𝛼𝑖𝑖 − 𝛼𝛼𝑖𝑖
∗)

𝑛𝑛

𝑖𝑖=1
= 0; 𝛼𝛼𝑖𝑖 , 𝛼𝛼𝑖𝑖

∗  ∈ [0 , 𝐶𝐶] 

  
(5) 

 
Where: 𝑘𝑘(𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗) =  ∅(𝑥𝑥𝑖𝑖). ∅(𝑥𝑥𝑗𝑗) is defined as the kernel function 
Upon resolving equation (5) for the given values of 𝛼𝛼𝑖𝑖, 𝛼𝛼𝑖𝑖

∗, equation (1) can be expressed 
in its final form as follows: 

𝑘𝑘(𝑥𝑥) = ∑(𝛼𝛼𝑖𝑖 − 𝛼𝛼𝑖𝑖
∗) 𝑘𝑘(𝑥𝑥 , 𝑥𝑥𝑖𝑖)   

𝑛𝑛

𝑗𝑗=1
+ 𝑏𝑏  (6) 

 
Radial Basis Functions (RBFs), sigmoid, linear, polynomial, and Fourier series functions 

are the most prevalent kernel functions. The present study employed the RBF function, which 
is defined as follows:  
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𝑘𝑘(𝑥𝑥 , 𝑥𝑥𝑖𝑖) =  𝑒𝑒(− 𝛾𝛾 ‖𝑥𝑥− 𝑥𝑥𝑖𝑖‖2)  (7) 
 
Where 𝛾𝛾 is the kernel parameter. In addition, the prediction accuracy of the SVR using 

the RBF kernel is contingent upon three parameters 𝜀𝜀 , 𝛾𝛾 and C. 
 

 
Fig. 2. A graphical depiction of support vector regression.  

2.3 Bayesian optimization algorithm (BOA) 

The BOA is based on Bayes’ rule, as shown in equation (8) below [23]: 
 

𝑝𝑝(𝑤𝑤|𝐷𝐷) =  𝑝𝑝(𝐷𝐷|𝑤𝑤) 𝑝𝑝(𝑤𝑤)
𝑝𝑝(𝐷𝐷)   (8) 

  
Where w represents an unobserved value, p(w) represents the distribution preceding it, p 

(D| w) represents the probability, and p (w| D) represents the posterior distribution. Bayes' 
rule incorporates prior knowledge to ascertain the posterior possibility; thus, the outcomes of 
previous iterations will be utilised in determining the values for the subsequent iteration. 
Consequently, it approaches the optimal point with greater efficiency than arbitrary selection. 
The BOA applies to both the acquisition and the substitute sub-models. The objective 
function is assessed by the substitute model utilising the Gaussian process (GP), a widely 
accepted alternative for simulating the objective function.  

The following is an expansion of the Gaussian distribution. In general, GP establishes a 
prior over function which can be transformed into a posterior over function after the 
observation of certain function values.  

As illustrated below, this technique, the function 𝑓𝑓 (𝑥𝑥) is assumed to be a realization of 
GP with the mean function  (𝑥𝑥) and the covariance function 𝑘𝑘(𝑥𝑥 , 𝑥𝑥𝑖𝑖), where 𝑥𝑥 is the 
function value with any potential pair of (𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗) in the input domain. Additional information 
can be found somewhere else [24]: 

 
f (z) ∼ GP(m (𝑥𝑥) (𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗) (9) 
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Each input parameter in this function represents a variable that is interconnected with 
other variables defined in the input domain, including those outlined by the covariance 
function. As a kernel, the covariance function regulates the amplitude and smoothness of the 
Gaussian process samples. Conversely, the BOA's acquisition function is optimised through 
repetitions and is dependent on prior observations. The subsequent iteration point is proposed 
by the acquisition model based on the outcomes of the substitute model. The mathematical 
representation of hyperparameter optimization utilising BOA is denoted by equation (10):  

 
𝑔𝑔∗ = arg 𝑚𝑚𝑚𝑚𝑚𝑚

𝑔𝑔∈𝐺𝐺
𝑓𝑓(𝑔𝑔) (10) 

 
Here, 𝑓𝑓(𝑔𝑔) is the objective score to reduce root mean square error (RMSE), 𝑔𝑔 ∗

is the set 
of hyperparameters that generates the lowest value of the score, and 𝑔𝑔∗  is any value of space 
G. BOA was utilised in this study because it is more effective than other available 
optimization methods (e.g., grid, random search, manual, particle swarm optimization).  
Additionally, it facilitates the systematic optimization of black box functions on a global 
scale [25,26].  

The optimization of the hyperparameters (ε, C, γ, kernel function) is achieved through the 
integration of the SVR algorithm and the Bayesian optimization algorithm (BOA). Before 
the BOA was implemented, the k-fold cross-validation method was employed. The train data 
are succinctly divided into k subsets in the same manner. A test subset is selected from one 
dataset, whereas the remaining subsets are utilised for training purposes. By iterating this 
method k times, each subset is utilised precisely once for the test. The optimization algorithm 
comprises the subsequent stages:  

1. Configuration of SVR model hyperparameters for the kernel function, ε, C, γ  
2. Set the objective function 
3. Develop a surrogate probability model of the objective function 
4. Determine the optimal hyperparameters for the surrogate model.  
5. Apply the following hyperparameters to the actual objective function:  
6. Incorporate the new result into the surrogate.  
7. Repeat the step 3 to 6 until the maximum number of trials is reached 
8. Determine the optimised hyperparameters  
9. Employ these optimised hyperparameters in the construction of the SVR model.  

2.4 Statistical indices 

Three statistical indices were employed in the present study to evaluate the performance of 
the proposed models. The mean absolute error (MAE) quantifies the discrepancy between 
the predicted and measured MR values. To determine the average magnitude of the errors, 
RMSE was applied with greater significance to larger errors. The precision of the predicted 
MR values was assessed using the coefficient of determination (R2). Comprised of the 
subsequent equations are the statistical indices:  

𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑁𝑁 ∑|𝑦𝑦𝑖𝑖 − 𝑡𝑡𝑖𝑖|

𝑁𝑁

𝑖𝑖=1
(11) 

𝑅𝑅𝑀𝑀𝑅𝑅𝑀𝑀 = √1
𝑁𝑁 ∑(𝑦𝑦𝑖𝑖 −  𝑡𝑡𝑖𝑖)2

𝑁𝑁

𝑖𝑖=1
 (12) 

 

7

MATEC Web of Conferences 396, 05016 (2024) https://doi.org/10.1051/matecconf/202439605016
WMCAUS 2023



𝑅𝑅2 = (
∑ (𝑡𝑡𝑖𝑖 − 𝑡𝑡̅) (𝑦𝑦𝑖𝑖 − �̅�𝑦)𝑁𝑁

𝑖𝑖=1

√[∑ (𝑡𝑡𝑖𝑖 − 𝑡𝑡̅)2𝑁𝑁
𝑖𝑖=1 ] [∑ (𝑦𝑦𝑖𝑖 − �̅�𝑦)2𝑁𝑁

𝑖𝑖=1 ]
)

2
(13) 

 
Where 𝑦𝑦𝑖𝑖  and 𝑡𝑡𝑖𝑖 are predicted and measured values, �̅�𝑦 and 𝑡𝑡 ̅are the mean of the predicted 

and measured values of MR respectively, and N denotes the number of data records.  

3 Results and discussion 

3.1 Development of a hybrid BOA-SVR model  

The development of the BOA-SVR model involves the adjustment of its hyperparameters 
(specifically, the kernel function, C, ε, γ), as these parameters significantly impact both the 
accuracy of the model and the computation time. The literature contains numerous well-
known methods for tuning hyperparameters, including the random search algorithm, the grid 
search algorithm, particle swarm optimization, and the Bayesian optimization algorithm 
(BOA).   It is noteworthy to mention that both the random search and grid search algorithms 
necessitate numerous iterations and can be laborious. Particle swarm optimization is a time-
consuming and well-known conventional method. The BOA, on the other hand, is a cutting-
edge optimization framework that determines the optimal parameters significantly faster than 
the alternatives by utilising an acquisition function that computes the subsequent point to 
evaluate. The BOA was chosen for the current study as it is a methodical adjustment 
procedure that obviates the necessity for derivatives [26,27]. Furthermore, it yielded superior 
outcomes in comparison to alternative approaches.  

 To prevent overfitting, a 10-fold cross-validation strategy was selected due to its low root 
mean square error (RMSE) and computational time of 34.85 seconds. BOA was utilised to 
optimise the kernel function type, epsilon, box constraint, and kernel scale values; the 
predictive accuracies of the models were then evaluated. The optimal point of the SVR 
hyperparameter optimization process is depicted in Fig. 3. The minimum observed objective 
score of 7.90 was recorded across 79 trials (iterations).  The determination of the optimal 
model utilising the tuned parameters as specified in Table 2 was based on the precision level.  

Table 2. The optimized parameters for the used SVR model 

Parameters Range/type Optimized 
parameters 

Kernel function RBF, Polynomial 29.22 
Epsilon [10-5,105] 0.000153 

Box Constraint [10-5,105] 9154.00 
Kernel Scale [10-5,100] 0.0754 
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 Fig. 3. The progress of Bayesian hyperparameters optimization. 

 
In light of the data-dependent nature of intelligence-based models, the applied BOA–SVR 

model was developed through empirical laboratory experiments. Significantly, both 
experiments and the SVR model were utilised to generate descriptive statistics and 
distribution of results. The statistical analyses of the measured and estimated values of the 
resilient modulus using the BOA-SVR model are presented in Table 3.  

Table 3. Statistical summary of the measured values and the BOA–SVR model predictions 

Parameters Measured BOA-SVR 
Mean 303.12 302.90 

Std. Deviation 126.08 125.59 
Min 102.46 102.72 
Max 590.31 586.77 

 
A common method for illustrating the distribution of data through a five-number 

summary, including the median, minimum, and maximum scores, as well as the first and third 
quartiles, is the use of a boxplot. The boxplots of experimentally determined and predicted 
resilient moduli of crushed rock materials are displayed in Fig. 4. The findings indicate that 
the predicted and measured output distributions were similar.  

Due to the fact that each median line is enclosed within a box, there was no discernible 
distinction between the datasets. The absence of substantial variability in the interquartile 
ranges for both the assessed and anticipated values indicates that the findings may not have 
been widely disseminated.  

 

 
Fig. 4. Box plot for measured and predicted resilient modulus. 
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3.2 Assessment of the BOA-SVR hybrid model  

Utilizing the hybrid BOA-SVR model that was created for this investigation, the resilient 
modulus of crushed rock materials was estimated. The fitted line, denoted as the 45◦ line, 
illustrates the relationship between the experimental and model-predicted resilient moduli in 
Fig. 5. The fitted line is obviously in close proximity to the 45° line. The fitted curve on the 
test dataset exhibits a coefficient of determination (R2) of 99.92 percent, signifying a 
satisfactory level of fit. Thus, it can be asserted that the predicted outcomes closely resemble 
the data obtained in the experimental laboratory. Automatic hyperparameter tuning was 
employed to optimise the model's performance in proximity to the experimental data. 
Additionally, k-fold cross-validation was utilised to mitigate the risk of overfitting. As a 
result, improved forecasts were attained.  

Furthermore, to evaluate the model's compatibility, Fig. 6 displays the outcomes of 
residual analyses. Notably, the residual plot resembles a scatter plot; the model is acceptable 
if residual data points are dispersed around the zero line. It is noteworthy that Fig. 6 illustrates 
that every residual data point is observed near the zero line. This observation provides further 
support for the model's reliability and validity.  

 
Fig. 5. Measured and predicted values plotted with a fitted line.  

 
Fig. 6. Residual plot. 
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It was observed that every statistical error parameter (MAE, RMSE) was minimal. Based 
on the findings presented in Table 4, it can be concluded that the predictive model employed 
in this study for the resilient modulus of crushed rock materials is highly satisfactory. Notable 
is the fact that predictions generated by the hybrid BOA–SVR model are deemed reliable 
when the error and coefficient of determination values approach zero and one, respectively. 
The SVR model undoubtedly meets this particular criterion.  

Table 4. Performance indices for training and testing dataset 

 Train data Test data 
MAE 0.21 2.07 
RMSE 0.64 3.55 

R2 0.9999 0.9992 

3.3 Analysis of the hybrid model's performance in comparison to other 
artificial intelligence models  

To facilitate a direct comparison between the BOA-SVR model and established other 
Artificial Intelligence models, every performance metric derived from the hybrid model is 
assessed in relation to conventional MLR and Random Forest models. In Table 5, the MAE, 
RMSE, and R2 values are compiled.  

Table 5. Comparison of model performance on the test dataset 

 BOA-SVR MLR RF 
MAE 2.07 22.78 27.33 
RMSE 3.55 26.40 36.16 

R2 0.9992 0.9300 0.9024 
 

As anticipated, the results presented in Table 5 demonstrate that the hybrid BOA-SVR 
model significantly outperformed the MLR and RF models, as indicated by its significantly 
lower MAE and RMSE and higher R2.  

4 Conclusion 

A support vector regression model based on a Bayesian optimization algorithm was 
developed in this article to estimate the resilient modulus of crushed rock materials. Cross-
validation was performed tenfold in order to prevent overfitting. The BOA-SVR model was 
developed utilising an extensive collection of 260 experimental datasets collected by the 
laboratory of the Central Transportation Agency on crushed rock materials. The evaluation 
of the model's performance was conducted by employing various indicators for measuring 
performance. A comparison was also made between the predicted outcomes and conventional 
Artificial Intelligence (AI) models. Based on the outcomes of the simulations, the subsequent 
deductions can be made:  

1. The experimental results and the estimated resilient modulus of crushed rock 
materials using the hybrid BOA–SVR model are remarkably congruent. 
Furthermore, the interquartile ranges, means, medians, and standard deviations of 
the predicted and measured outcomes are extremely similar.  

2. The estimated results and laboratory results are in agreement due to the extremely 
close proximity of the R2 value between the measured and predicted values to 1.  

3. The residual data points of the proposed model are observed to be around the zero 
line, providing additional confirmation of the model's dependability.  
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4. In contrast to the alternative artificial intelligence models discussed in this paper, 
the BOA–SVR model exhibits the smallest mean, standard deviation, and 
coefficient of variation.  

5. Particularly for roads with low to moderate traffic volume, a dependable soft 
computing tool for pavement design can be constructed using the BOA–SVR 
model.  

6. Since the proposed model is constructed utilising a regional database, augmenting 
its generalizability with supplementary data from other areas could be beneficial.  
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