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Abstract— A vital requirement for any random number 

generator based on chaos is to ensure that the generated 

sequence always benefits of a significant level of randomness. It 

is critical to examine such sequences by means of Lyapunov 

exponents, bifur-cation diagrams, or other tests in order to 

accurately select the parameters of the dynamic system. 

However, the sequence’s randomness quality varies depending 

on the generator's design and must be examined in different 

ways. Therefore, we argue to use the National Institute of 

Standards and Technology (NIST) suite tests to evaluate and 

compare the randomness properties of two coupled systems 

found in existing literature: the logistic-sine system (LSS) and 

the logistic-tent system (LTS). The results reveal that the LSS 

has much superior statistical features in terms of randomness 

than the LTS in the range [3.1–4]. This conclusion will 

substantially affect the selection of the perfect chaotic map to 

create sequences of keys that match the requirements of 

cryptography applications. 

Keywords—Random number generator, logistic-tent system, 

logistic-sine system, NIST, randomness. 

I. INTRODUCTION  

Random number generators (RNGs) that use chaotic 

systems (CSs) are fascinating because they provide high 

throughput data without the requirement for statistical post-

processing and may be implemented as electrical circuits 

using very simple hardware [1]. In reality, using weak 

random values enables an opponent to break the whole 

system [2], that’s why chaotic sequences have received a lot 

of interest lately because of their appealing characteristics, 

including great sensitivity to initial conditions [3]. With the 

help of this feature, it is possible to create a huge number of 

sequences with unique correlation properties and unique 

control pa-rameters, such as beginning conditions and 

bifurcation parameters [4].  

The basic structure and ease of use of typical 1D 

chaotic maps are highlighted [5], however, they struggle with 

three major problems, including the limited or dis-continuous 

range of chaotic behaviors, the sensitivity of low-

computation-cost analysis utilizing iteration and correlation 

functions, and the non-uniform data distribution of chaotic 

output sequences [6]. Therefore, it is necessary to create new 

chaotic systems with improved chaotic performance. 

For instance, a nonlinear mixture of different 1D chaotic 

maps, notably the Logistic-Sine System (LSS) and the 

Logistic-Tent System (LTS), is proposed by Zhou et al. [6] to 

larger the chaotic ranges and strengthen the chaotic behavior 

com-pared with their seed maps. These qualities grabbed the 

attention of many re-searchers, who tried to use them in 

cryptography applications. Therefore, multiple tests are 

employed to quantify and evaluate its chaotic behavior, as 

well as the bi-furcation diagram, Lyapunov exponent, phase 

portrait, Poincare map, and various entropy metrics. 

In [7], the 0-1 test and the three state test are used to 

provide a thorough investigation of the behavior of the LSS 

and LTS (3ST). While Zhou et al. [6] have proved that the 

LSS and LTS exhibit a continuous chaotic behavior in the 

range r ∈ (0,4], Muthu et al. [7] portray stronger and weaker 

regions of chaos, with some regions exhibiting quasiperiodic 

behavior. In this paper, we aim to demonstrate that the map 

has the most chaotic nature and is nominated to produce high 

quality randomness; thus, we analyze and compare the 

randomness properties of the generated sequences by the LSS 

and the LTS using the NIST test suite SP 800-22. 

The rest of the paper is structured as follows: in 

Section II, the dynamic behavior of the LSS and LTS via the 

bifurcation diagram, the Lyapunov exponent, the 0–1 test, 

and the 3ST are briefed. In section III, we use the NIST tests 

to compare and discuss the randomness quality of the two 

chaotic sequences generated by the LSS and LTS, followed 

by the conclusion of the work in section IV.         

II. ANALYZE OF THE COMPORTEMENT BEHAVIOR OF LSS AND 

LTS FROM THE LITERATURE 

The LSS and LTS are a form of chaotic coupled map that 

are often employed in image encryption due to the benefits of 

more advanced dynamical behavior. Numerous tests, such as 

the bifurcation diagram and the Lyapunov exponents in 

addition to the 0–1 and 3-ST tests, are used to measure its 

chaotic behaviors. In this section, we cover the theoretical 

elements of these tests applied to the LSS and the LTS. 



A. Logistic-sine and the logistic-tent systems 

The logistic-sine system (LSS) and logistic-tent 
system (LTS) proposed by Zhou et al. [6] whose main 
structure is illustrated in Fig. 1 are a nonlinear mixing 
of several 1D chaotic maps: the logistic, tent, and sine 
maps.  

 

 

 𝑋𝑛+1 = ℱ𝐿𝑆𝑆(𝑟, 𝑋𝑛) 

 𝑋𝑛+1 = [ℒ(𝑟, 𝑋𝑛) + 𝑆((4 − 𝑟), 𝑋𝑛)]𝑚𝑜𝑑1         

          = [𝑟𝑋𝑛(1 − 𝑋𝑛) + (4 − 𝑟) 𝑠𝑖𝑛(𝜋𝑋𝑛)]𝑚𝑜𝑑1        (1) 

𝑟 ∈ (0;  4] 

𝑋𝑛+1 = 𝐺𝐿𝑇𝑆(𝑟, 𝑋𝑛) 

𝑋𝑛+1 = [ℒ(𝑟, 𝑋𝑛) + 𝑇((4 − 𝑟), 𝑋𝑛)]𝑚𝑜𝑑1  

           =
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2
] mod1                 Xi < 0,5

[rXn(1 − Xn) +
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2
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𝑟 ∈ (0;  4] 

 Several tests are available in the literature to emphasize the 

chaotic behavior of these 1D chaotic systems, including the 

bifurcation diagram, Lyapunov exponent, 0–1 test, and 3ST. 

1) Bifurcation diagram 

An essential feature for showing the behavior of chaotic 

systems is the bifurcation diagram [8] by plotting the output 

sequences X(n+1) of the chaotic map along with the change 

of its parameter r [9]. Fig. 2 (a-b) compares the bifurcation 

diagrams of the LSS and the LTS. From these figures, it is 

obvious that the chaotic range of the LSS and LTS is inside 

(0,4], and their bifurcation behavior is evenly dispersed over 

the full space from 0 to 1. Visually, this finding is not 

sufficient to compare and determine zones of chaos and 

regularity; consequently, identifying them using just 

bifurcation diagrams is difficult. Classification tests are 

useful allies in dealing with this kind of situation more clearly 

[10]. In general, the classification by Lyapunov Exponents is 

the most often used approach in the literature [11]. 

 

2) Lyapunov Exponents 

When examining the dynamic behavior of chaotic 

systems, Lyapunov Exponents (LE) as key indicator that 

examines predictability is used [11]. It is one of the most 

frequently utilized tests since it is easy to implement when 

the map f is known explicitly. The Lyapunov Exponent of a 

discrete time system 𝑋𝑛+1 = 𝑓(𝑋𝑛 ) is given by: 

𝜆 = lim
𝑛→∞

1

𝑛
∑ 𝑙𝑛|𝑓′(𝑥𝑖)|𝑛−1

𝑖=0                                 (3) 

Lyapunov Exponents are used to measure chaos. This 

depends on the sign of Lyapunov exponent λ as follows:     

λ > 0, {𝑋𝑛 } shows chaotic behavior; 

λ < 0, {𝑋𝑛 } shows periodic behavior; 

λ = 0, a bifurcation occurs.  

The Lyapunov Exponent of the LSS and LTS is tested in [6]as 

shown in Fig. 3. Visually, it is obvious that the LSS and LTS 

have more complex chaotic qualities as evidenced by their 

Lyapunov Exponents which are greater than 0 over the whole 

parameter setting range r, and they consistently behave 

chaotically in the range r ∈ (0,4] [7].  

3) The 0-1 Test  
 A relatively new method for testing for chaos in 

deterministic discrete and continuous systems is the 0-1 test  
[10]. It is used to determine if there is chaos in digital 
sequences when a mathematical model is not available. Since 
the test directly applies to time series data and phase space 
reconstruction is not required, it has been shown to be more 
favorable than the Lyapunov exponent [7]. 

A single real number K and a two-dimensional graph with 
translation variables p and q make up the test's result. 
Information about the chaotic sequence may be revealed by 
the value of K [10]: 

𝐾 ≈ 0  , Chaotic. 

𝐾 ≈ 1  , Regular (non-chaotic). 

The 0-1 test was experimented by Muthu et al. [7] on the LSS 
and the LTS with parameters N=5000 and 𝑋0 = 0.01.  

The K values obtained for the r values are shown in Fig. 4, 
which demonstrates a slope towards 1 for all values of r in the 
range [3.1, 4] for the LSS and LTS, demonstrating that these 
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Fig. 2. Bifurcation diagram: (a) logistic-tent system; (b) logistic-sine system 

Fig. 3. Lyapunov Exponent diagram: (a) logistic-tent system; (b) 
logistic-sine system [6] 
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Fig. 1. General structure of 1D combined maps 



maps do not have a consistently chaotic character over the 
given range. Furthermore, Muthu et al. [7] demonstrate that 
the LSS possesses the strongest chaotic nature in most areas 
of 𝑟. 

 

Fig. 4. 0-1 Test results: K values obtained for the r values 

TABLE I. Results of  behavior comparison of the LSS and LTS using 3ST 
proved by  [7] 

 

 

 

 

 

 

 

 

 

 

4) 3ST 
The 3ST is based on data series pattern analysis. The 

approach determines whether the dynamics are chaotic or 
regular by looking at the properties of periodic and quasi-
periodic signals. The 3ST looks at how a data series' 
distribution of system states changes over time [12]. It is 
aimed at discriminating between the three major dynamics 
represented by the LE chaotic (> 0), quasi-periodic (<0), and 
periodic (= 0) dynamics [13].  

Muthu et al. [7] performed 3ST on the LSS and LTS in the 
range r [3.1, 4]. Surprisingly, it clearly differentiates three 
types of behavior at various r values, periodic, quasi-periodic, 
and chaotic nature as categories in Table 1, which clearly 
demonstrate that LTS has a wider chaotic region than other 
maps. Further, it is demonstrated in [7] that the chaotic 
behavior of these maps is not uniformly distributed, and 
certain parts are found to be quasi-periodic in the LSS and 
LTS. This conclusion refutes what is asserted in [6] that LSS 
and LTS are chaotic throughout. 

III. EXPERIMENTAL STUDY 

In order to further study and compare the random 

properties of the chaotic sequence formed by the LSS and 

LTS, the National Institute of Standards and Technology 

(NIST) is used in this section to identify the areas of 

randomness and lack of randomness of these two sequences. 

A. NIST test of chaotic sequence 

In this test, we have expanded our study about the 

correspondence between the NIST statistical tests for pseudo-

random number generators and certain chaotic metrics, 

including Lyapunov exponents, bifurcation diagrams, the 0-1 

Test, and 3ST as a viable technique to verify findings in [6] 

and [7] . 

First, the LSS and LTS systems are utilized to construct 

the chaotic series X (n+1) with control parameters r in the 

range (0,4] and X 0= 0.1 using the iterative procedures 

specified in (1) and (2). The bit length of each sequence n was 

set to 1000 bits. Then the statistical tests are done using NIST 

SP 800-22. The 15 sub-tests that make up the NIST test may 

all be used to assess the randomness of the sequences. By ana-

lyzing the sequence's uniformity, the test results largely show 

the benefits and draw-backs of the pseudo-random sequence 

[8], in which the probability value (P-value) reflects the 

regularity of the sequence. The p-value of each subtest is 

compared to a tester-determined significance threshold 

(which, for cryptography and in the case of NIST test suite 

version SP800-22, is commonly set to = 0.01[14]). If the P-

value is greater than α, the sequence is random; otherwise, the 

sequence is not random. The NIST tests may be divided up 

into four basic categories of testing. These tests include the 

frequency test from 1–4, repetitive pattern tests from 5–6, 

pattern matching tests from 7–12, and random walk tests from 

13–15 [15]. 

 

Since we can’t determine which maps exhibit superior 

randomness simply by doing one test for just one value of r, 

we have to repeat the test according to r’s transitions from 3,15 

to 3,95, and then we have calculated the likelihood that a 

random sequence fails one or more tests for each testing 

process. Fig. 5 depicts the histogram plot of the uniformity test 

p-values at three values of r: 3.15, 3.65, and 3.95 for the two 

maps LSS and LTS. Table 2 shows the results of 15 failed tests 

at NIST for all r values mentioned.  

 

SS findings exhibit excellent randomness, where all P-values 

are much over the significance threshold in most r values, 

expected Binary Matrix Rank Test, Overlap-ping Template 

Matching Test, and Maurer's Universal Statistical Test. It 

should be noted that some of these tests are not always 

appropriate. These tests are run only if the sequence meets 

certain criteria (for example, passing the frequency test, 

having more than 500 [16] cycles, and having a sufficient bit-

length). However, LSS remains regarded as random even if it 

fails 3 to 4 tests, according to [16], where data may still be 

deemed random at the significance level α = 0.01 if they fail 

fewer than 7 NIST statistical tests. 

 

LTS fails multiple tests when r is in the quasi-periodic range 

[3.1-3.29] and in the chaotic range [3.4-3.59]. That might be 

explained by the fact that the randomness of the sequences 

does not rely only on the chaotic state of the underlying system 

but also on the post-processing and the generator’s design. It 

is obvious that the randomization qualities of these maps in 

such a range have exposed major security needs, which make 

its usage inappropriate for image encryption and demand a 

solid selection of the chaotic system parameters when 

employing them. 
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TABLE II. Failed tests relatively to 15 tests for r listed values, we have use 
NR: Not random, R: Random 

Finally, the results reveal a strong relationship 

between the NIST tests and the chaotic metrics described in 

Part II. The seeds for which the maps are chaotic, are the seeds 

that determine a low number of failed NIST tests, which 

demonstrates the notion that a required criterion for a 

successful pseudo random number generator is that the 

development of the underlying system is chaotic. Thus, 

according to [7], the LSS that processed the strongest chaotic 

behavior in the range [0-4] is the one with the fewest failed 

NIST tests and the ability to generate a highly random chaotic 

sequence.       

IV. CONLUSION  

       Coupling chaotic maps is a common way to develop 

more sophisticated dynamic behavior. This paper gives a 

comparative examination of two coupled systems, namely the 

logistic-sine system (LSS) and the logistic-tent system (LTS), 

considering their randomization qualities to verify which 

performs the best. Since several test batteries are available to 

debate which system is best utilized as a random number 

generator, we pick the NIST test suite, which is regarded as 

the most appropriate one. We have demonstrated through 

NIST tests that the LSS presents better properties of 

randomness than the LTS, while the LTS is discontinuity 

random in the range of [3.1–3.95], the LSS is random 

throughout; thus, this will strongly influence the selection of 

the perfect chaotic map to generate sequences of keys used 

later for many applications, such as image encryption. We 

also discovered experimentally that using Lyapunov 

exponents, bifurcation diagrams, the 0-1 test, 3ST, and NIST 

tests is required to select the dynamic system characteristics 

required to develop chaos-based random generators. 

However, merely making a proper selection of the chaotic 

system characteristics is not enough; the unpredictability or 

lack of randomness of such a sequence relies on many 

aspects, including post-processing and the generator’s 

design, and must be assessed in other ways. 
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