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Résumé

La reconnaissance de la parole continue est un des plus grands défis dans ce

début du siècle. Les avances impressionnantes dans l'équipement électronique

permettent l'utilisation de méthodes mathématiques sophistiquées pour résoudre des

problèmes extrêmement complexes. Dans cette thèse, nous allons montrer que les

méthodes séquentielles inventées pour décoder les codes convolutionnels de grande

longueur de contrainte peuvent être utilisées dans la reconnaissance de la parole.

Les contributions principales de cette thèse peuvent être récapitulées comme

suit:

(1) L'applicabilité de l'algorithme de décodage à pile (séquentiel) à la

reconnaissance de la parole continue.

(2) Le développement et l'analyse d'une métrique de chemin (dans un arbre) basé

sur la distance de Mahalanobis. Cette métrique a été utilisée dans la mise en place de

l'algorithme de pile dans le programme de reconnaissance et également dans

l'algorithme de Viterbi dans le programme d'apprentissage.

(3) Le développement d'un nouvel algorithme basé sur la prédiction linéaire pour

la restauration d'un signal de parole écrêté.

(4) Une méthode de suppression du bruit dans le signal de parole basée sur des

filtres de Wiener à paramètres non stationnaires. Nous avons obtenu des résultats

remarquables à l'aide d'un filtre d'ordre très réduit.

(5) Afin de trouver une bonne métrique de chemin pour notre algorithme à pile,

nous avons effectué une analyse statistique de trois représentations paramétriques de la

parole et nous avons prouvé que les paramètres de MFCC sont pratiquement Gaussien

et fournissent la meilleure séparabilité entre classes par rapport aux coefficients de LPC

et de PARCOR.

(6) Dans le dernier chapitre de la thèse, nous avons développé un algorithme

automatique de segmentation que nous utilisons pour l'apprentissage du programme de

reconnaissance de la parole.
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Abstract

Continuous speech recognition is one of the greatest challenges in this beginning

of the century. The impressive advances in hardware allow the use of sophisticated

mathematical methods to solve complex problems. In this thesis, we show that methods

invented for solving long constraint length convolutional codes can be used in speech

recognition.

The main contributions of this thesis can be summarized as follows:

(1) The applicability of the stack decoding algorithm to continuous speech

recognition.

(2) The development and the analysis of a path metric based on the Mahalanobis

distance. This path metric has been used in the implementation of the stack algorithm in

recognition program and also in the Viterbi algorithm in the training program.

(3) The development of a novel algorithm for clipped speech restoration based

on linear prediction.

(4) Speech denoising method based on time varying Wiener filters. We obtained

remarkable results using a very low order filter.

(5) In order to develop a good path metric for our stack algorithm, we have

performed a statistical analysis of three parametric representations of speech and we

have shown that the MFCC set is nearly Gaussian and provides the best separability

between classes as compared with LPC and PARCOR coefficients.

(6) In the last chapter of the thesis, we have developed an automatic

segmentation algorithm that we use for training the speech recognition program.
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Chapter 1

Introduction

Speech is the principal mean of communication between human beings. In fact,

it is the ability to communicate using language that distinguishes humans from other

living species. Speech being the language conveyor has always fascinated researchers.

The profusion of multimedia in our century provides great incentives for research in

speech communication. It is much easier to give an oral command to a machine than

typing a sequence of characters on a keyboard. Nowadays, we can b uy dictation

software like IBM's ViaVoice [26] or Nuance's Dragon Software [63] which are very

efficient. We can also find voice based control in most modern telephones and even cars

can be voice controlled.

Actually, speech recognition has started at the beginning of last century. The

first known example of a speech recognition machine is a toy called "Radio Rex" [21]

invented in 1922. It used mechanical resonance to a frequency of 500 Hz contained in

the vowel of the word "Rex" to trigger a response (a dog jumping out from its kennel).

In 1938, Dudley [25] invented the "Vocoder" which analyses speech in the frequency

domain (using a filter bank) and then reconstructs it. This machine is the first device

that provided short time Fourier analysis of the speech signal. The Vocoder is still used

by singers to modify their voice. 1946 is the year of short time Fourier analysis. Gabor

[37] developed the theory of short time Fourier analysis and the sound spectrograph

[52] has been invented the same year.

Figure 1-1 Radio Rex [21]
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Figure 1-2 is a spectrogram corresponding to the word "hassen" pronounced by a

male speaker [1]. It represents the variation of the power spectrum as a function of time.

The intensity is indicated by the grey scale (white represents the smallest value while

black the loudest one). The spectrograph allowed speech researchers to have a better

view of the dynamic features of the speech signal. We can remark the dark regions in

the figure. They represent resonant frequencies ("formants") of the vocal tract.

Figure 1-2 Spectrogram of the word "hassen" [1]

The telephone companies pushed researchers to investigate spoken digit

recognition in the early 1950's. Most systems were built using analog electronics. The

digital computers were still in their infancy. The first electronic digital computer,

ENIAC [38], was invented in 1946. We can cite a simple phoneme detector [83] in

1951, the "Audry" spoken digit recognizer [22] in 1952 which achieved a surprising low

error rate of 2% and Baumann's word recognizer [9] in 1954.

The development of digital computers in the late 1960's and 1970's allowed the

use of sophisticated mathematical methods in the speech area. The speech signal was

better modelled using linear prediction coding [3, 44, 45, 55, 58]. Furthermore,

"dynamic programming" [10] methods were used to align spoken utterances with stored

references by doing a non linear time warping. These different techniques are all

grouped under the name of "Dynamic Time Warping" (DTW) [44, 45, 78, 79]. The

DTW made speech recognition a reality [71].
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During the same period, a revolutionary mathematical tool has been developed

by Baum et Al. [5, 6, 7, 8]. Initially called "probabilistic functions of Markov chains",

they later came to be called "Hidden Markov Models" (HMM). Their application to

speech recognition led to very powerful systems. A leading figure in popularizing

HMM's is Lawrence Rabiner [72, 73, 74]. His different articles and books are the main

references in the domain. This thesis is part of this continuing endeavour. In our work,

we are going to compare classical speech recognition using HMM with a novel method

using a "stack algorithm". The idea of using a stack algorithm resulted from the

similarity between decoding of a trellis code [90] and the speech recognition process.

If one considers that speech is composed of a discrete sequence of basic units

called "phonemes1", then a model of speech communication system is a discrete one.

The source of information is the human brain where the sequence of phonemes is

formed, and then the physical means of translation of the above sequence take the relay

and convey the information in the shape of a variation of atmospheric pressure. The

acoustic wave is picked up by the ear of the listener and translated back as a sequence of

phonemes by the listener's brain. An automatic speech recognition system will try to

follow the above model as closely as possible.

The adopted model of automatic speech recognition is going to be essentially an

encoder (a tree code [96]) that will produce a sequence of "phones 2". The physical

mean of transmission and reception of speech is modeled as a channel with discrete

input, continuous output as shown in Figure 1-3.

Figure 1-3 Speech Recognition Model

The output of the channel is a sequence of random vectors representing a frame

(interval of analysis) of speech such as linear prediction coefficients (LPC parameters),

Mel Frequency Cepstral coefficients (MFCC parameters) or any other representation of

speech.

1 This notion will be defined in the next chapter.
2 A phone is the realization of a phoneme.

Features

(x1, x2, …)

Phones

(w1, w2, …)
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In the following section, we give a brief presentation of the thesis. In chapter

two, we present the speech signal and develop the different models that will be used in

the subsequent chapters. We also present a novel segmentation method of a speech

waveform into two groups (plosive, non-plosive). The remaining part of the thesis

follows a typical recognition system; starting from signal preprocessing, feature

selection, recognition and training.

Chapter three and four are devoted to signal processing prior to feature

extraction. Chapter three presents a original method for clipped speech restoration [19]

while chapter four is dedicated to noise removal using Wiener filtering. We will show

that we can obtain near optimal results using time varying filters.

In chapter five, we describe three popular sets of parametric representation of

speech. These parameters are compared statistically. We will show that the MFCC

parameters are practically Gaussian distributed and they provide the best separability of

classes.

Chapter six is devoted to speech recognition. We are going to describe a

recognition system using HMM's for colloquial Algerian Arabic numerals [76]. This

scheme will be used as a reference against which we are going to compare our stack

algorithm.

Every recognition system requires a training method. We are going to develop

an automatic training method based on clustering and a segmentation method based on

Viterbi Algorithm in chapter seven.

Finally, we will provide the conclusion and recommendations in chapter eight.
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Chapter 2

The Speech Signal

The principal mean of communication between human beings is the language

conveyed by the speech signal. This signal is highly structured and it is this structure

that transmits information. Unfortunately, this implies that the speech signal is a non-

stationary random process. However, we are going to see that we can model this signal

as a sequence of quasi-stationary waveforms.

2.1 A Production Model of the Speech Signal

The acoustic waveform is a longitudinal vibration (variation of the atmospheric

pressure) produced by a flow of air expulsed from the lungs. Figure 2-1 shows a cross

section of the human speech organ. The lungs with the diaphragm are the main source

of energy in the speech production mechanism.

Figure 2-1The Human Speech Organ [36]

This mechanism of speech production is well described by Flanagan et Al. [32,

31]. A mechanical model is provided by Figure 2-2. From this model, we can see that

speech sounds are produced by the vibration of the vocal chords or by turbulences of air

inside the vocal tract or by both mechanisms. In the first case, the speech sound is called



6

"voiced" and it corresponds to most vowels. In the second case, it is called "unvoiced"

or "voiceless" and it corresponds to "fricative" like "/s/" if the sound is sustained or to

"unvoiced stops" like "/p/" if the sound is transient. When both mechanisms are used,

we produce sounds like "/z/" called "voiced fricative" if they are sustained or "voiced

stops" like "/d/" for transients.

Figure 2-2 Schematic model of the vocal tract system [32].

In the case of voiced speech, the waveform picked by a microphone will contain

a quasi-periodic component. The air velocity wave at the glottis (glottal wave) is a

rounded saw tooth wave as shown in Figure 2-3. The fundamental frequency of this

signal is called the "pitch" frequency. The pitch frequency has a value of about 120 Hz

for a male speaker and around 220 Hz for a female speaker. Children have even a higher

pitch frequency. In the case of unvoiced speech, the waveforms have a noise like nature.

These waveforms are going to be modified by the resonances of the vocal tract and the

nasal tract.

Figure 2-3 Glottal Waveform and Relative Pressure at the Mouth [67]
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The basis for most digital speech processing algorithms is the discrete-time

model (filter) of Figure 2-4. It represents the process of producing samples of the speech

waveform. Such models have become a basis of speech synthesis, speech coding, and

speech recognition algorithms. Although the following model is linear, it is fairly

accurate.

Figure 2-4 Discrete Time Model of Speech Production [70]

2.1.1 Vocal tract model

We have seen that the vocal tract is an acoustic resonator. Its discrete time model

is a time varying digital filter V(z). V(z) represents the transfer of the volume velocity

between the glottis and the lips. The resonant frequencies of the vocal tract are called

"formants". These formants correspond to poles of the transfer function V(z). These

poles in the s-plane are represented by:
*, 2k k k ks s F (2.1)

The discrete time equivalent poles are:
2*,

cos 2 sin 2

k s k s

k s k s

T j F T
k k

T T
k s k s

z z e e

e F T e F T
(2.2)

In the above equations 2 Fk represents the formant frequency in rd/s and 2 k

represents the formant bandwidth in rd/s. Ts represents the sampling period. The transfer

function V(z) can be represented by a cascade of second order resonators:

1

( ) ( )
M

k
k

V z V z (2.3)
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where:
2

21 2

1 2 cos(2 )
( )

1 2 cos(2 )
k k k

k

k k k

z F T z
V z

z F T z z z
(2.4)

The numerator of Vk(z) in equation (2.4) corresponds to a value of Vk(1) = 1

(z = 1 correspond to zero frequency, = 0). The number of formants is usually between

three and five. This implies that the order of the filter varies between 6 and 10.

2.1.2 Radiation Model

The pressure at the lips has been shown to be related to the volume velocity at

the lips by a transfer function which can be approximated as a first order backward

difference [70]. So, the transfer function R(z) is given by:
1

0( ) 1R z R z (2.5)

The above model introduces a zero at dc in the overall transfer function.

2.1.3 Glottal Pulse Model

We have seen in Figure 2-3 (upper waveform) that the glottal volume velocity

wave for voiced speech is a quasi-periodic wave composed of a periodic succession of

pulses g(n). Rosenberg [77] has analysed this pulse and he found that g(n) can be

accurately approximated by:

1
1

1
1 2

2

1( ) 1 cos 0
2

cos 2

0

ng n n NN

n N N n NN

otherwise

(2.6)

g(n) being a finite time pulse has an all zero z-transform. However, the

following second order model [58] has provided very good approximation.
1

21

ln( )( )
1

ae a zG z
az

(2.7)

2.1.4 The Complete Model

For voiced speech, it is seen that a quite accurate model for speech production is

a periodic impulse train filtered by the cascaded filters, G(z), V(z) and R(z). The filter
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V(z) is time varying. However, we consider its parameters to be invariant for durations

of about 20 ms. So, we can consider a filter H(z).

( ) ( ) ( ) ( )
( ) ( ) ( )

H z G z V z R z voiced
H z V z R z unvoiced

(2.8)

The above model does not take into account the effect of the nasal tract which

appears when we pronounce sounds like "/m/". The resonances of the nasal tract are

going to introduce zeroes in the total transfer function. So, to resume, the complete

model is going to be a pole and zero (slowly) time varying filter modifying either a

periodic impulse train or a random (white) noise. However, in many cases, speech can

be correctly modelled by an all pole model [58, 3].

2.2 Short Time Spectrum Analysis

2.2.1 Definition

We have seen that the transfer function H(z) is a time varying filter. So, this

implies that the spectral properties of the speech signal vary with time. So, instead of

considering the speech signal as a single entity, we are going to assume that the

waveform is a concatenation of many different signals. Each signal has different

spectral properties. An example is provided by Figure 2-5. We remark a noise like wave

at the beginning of the signal corresponding to the unvoiced sound "/s/". It is followed

by quasi-periodic wave with different nature corresponding respectively to the sounds

"/a/", "/m/", "/ee/" and finally "/r/".

Figure 2-5 Waveform corresponding to the word "samir"
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So, quite naturally, a definition [70] of the Short Time Fourier Transform

(STFT) is:

( ) ( ) ( )j j m
n

m

X e x m w n m e (2.9)

where x(n) is the signal under analysis and w(n) is a finite time window. The

above formula is invertible.

2

0

1( ) ( ) ( )
2

j jm
nx m w n m X e e d (2.10)

So, if w(0) 0, then we can recover x(n) by:

2

0

1( ) ( )
2 (0)

j j m
mx m X e e d

w
(2.11)

Equation (2.9) can be viewed as a convolution:

( ) ( ) ( )j j m
n m n

X e x m e w m (2.12)

or alternatively:

( ) ( ) ( )j j m j m
n

m n
X e x m w m e e (2.13)

A typical window, like the Hamming window has a lowpass frequency response

with a bandwidth being inversely proportional to the window length. So, equation (2.12)

corresponds the following sequence of operations: we first shift the frequencies around

down to zero and then we lowpass filter the resulting signal. The same result is
obtained using equation (2.13). ( ) j mw m e is the impulse response of a bandpass filter

centered around the frequency . The multiplication by the phasor j me shifts the

output of the bandpass filter down to zero. So, when we are analyzing a signal using the

short time Fourier transform, we have to find a good compromise between a good

frequency resolution (long window) and a good time resolution (short window). Figure

2-6 shows the short time spectrum computed at time t = 180 ms using a Hamming

window of size = 512 samples (the sampling frequency is fs = 11025 Hz) for the signal

displayed in Figure 2-5. If we change the size of the window to 128 samples, we obtain

the spectrum displayed in Figure 2-7. We can remark the complete loss of details.



11

Figure 2-6 Short time power spectrum of vowel "/a/" using a Hamming window of

size = 512 samples at time t=180 ms

Figure 2-7 Short time power spectrum of vowel "/a/" using a Hamming window of

size = 128 samples at time t=180 ms

2.2.2 The Sound Spectrogram

The sound spectrograph was invented in the 1940's [52]. It is an important tool

of analysis of speech signals. Up to the 1970's, the sound spectrograph was built using

analogue electronic devices. It used a magnetic tape and a variable bandpass filter to

produce "spectrograms". A spectrogram is a display of the magnitude of the short time

Fourier transform as a function of time. Today, a spectrogram is produced using digital

signal processing (windowing followed by fast Fourier transform FFT). In order to

generate a spectrogram, we have to use a finite time window and move it by R samples

in time and compute the short time Fourier transform on a discrete set of frequencies,

i.e., use a discrete Fourier transform (DFT). In other words, we compute:
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(2 )

1

( ) ( ) ( ) 0,1,..., 1
rR

j k N m
rR

m rR L

X k x m w rR m e k N (2.14)

where N is the number of equally spaced frequencies in the interval 0 2

and L is the window length.

The sound spectrogram is then a plot of the magnitude of XrR expressed in dB.

10( , ) 20 log ( )r k rRS t f X k (2.15)

where the plot axes are labelled in terms of analog time and frequency through

the relations:

r st rRT and k
s

kf NT (2.16)

where Ts is the sampling period of the signal x(n). So, a spectrogram is a plot of

a function of two variables: time and frequency. The magnitude is displayed using

either a grey scale or a color scale. Depending on the window size, the spectrogram is

called wide band (short window) or narrow band (long window).

Figure 2-8 Wide band spectrogram of the word "samir"

Figure 2-9 Narrow band spectrogram of the word "samir"

In Figure 2-8 and Figure 2-9, we see two different spectrograms for the same

speech signal. In the wide band, we can observe very clearly the formants characterizing

the voiced part of the signal. We can also notice quite well the time variation of the
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spectrum. In the narrow band, the modulation of the spectrum by the pitch frequency is

apparent; however, the boundaries of the word segments become fuzzier.

2.3 Phonetics and Phonology

Phonology is a subfield of linguistics which studies the sound system of a

specific language or group of languages [41, 47, 87, 89]. In phonology, we define basic

sounds that are distinct units of a given language or a group of languages. This

"atomistic" view of speech is commonly used in most automatic speech recognition

(ASR) systems. We view words as a succession or concatenation of basic units called

"phonemes". Phonemes are language dependent and are abstraction of basic sounds

called "phones". For example, the phoneme /t/ in "ten" and in "that" represents the same

entity, however, the two instances sound differently. They are called "allophones". So,

in general, it is the phones that are used as a basic unit in ASR systems. For the English

language, we can use the set of phonemes given by the ARPAbet 3 set shown in Table

2-1. This table can be freely downloaded from the Carnegie Mellon University site:

http://www.speech.cs.cmu.edu/cgi-bin/cmudict. Another phonetic alphabet is the

International Phonetician Association alphabet (IPA) [40, 2], which is used in almost all

dictionaries to indicate the pronunciation of the different words. The IPA alphabet is

composed of 130 different symbols and it is possible to phonetically encode practically

all the languages with the IPA symbol set. However, it uses a special set of graphical

symbols, which makes it difficult to use in practice. For the Arabic language, Harakat

[41] proposes a list of 31 phonemes. This list is provided in Table A-1 and will be used

in our work. Another list of phonemes for the Arabic language is proposed by

Reggab [76]. It will be used occasionally in our work. In what follows, we provide a

short description of the phonemes listed in Table A-1.

Vowels

Vowels (/aa/, /ii/, /oo/) are voiced sound with rather fixed parameters (formants).

They can be sustained for a quite long time.

3 ARPA, (now DARPA) stands for the Advanced Research Projects Agency (The D stands for Defense):
It is a United State Government Agency which is responsible for the funding of many research projects in
speech recognition.
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Semivowels

This group of sounds consisting of /wa/ and /ya/ is quite difficult to characterize.

These sounds are called semivowels because of their vowel like nature. They are

characterized by a gliding transition in the vocal tract area between adjacent phonemes.

Table 2-1 Condensed list of ARPAbet phonetic symbols for North American English
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Nasals

The nasal consonants, /mm/ and /nn/, are voiced sounds characterized by the fact

that the velum is lowered during their pronunciation. Air flows through the nasal tract.

They are characterized by zeroes in the transfer function H(z).

Unvoiced Fricatives

As the name indicates, the unvoiced fricatives /ff/, /st/, /ss/ and /sh/ produce

noise-like waveform. They are produced by air turbulences inside the vocal tract and

there is no glottal excitation.

Voiced Fricatives

The voiced fricatives, /th/, /zz/ and /dh/ are the counterpart of the unvoiced ones.

They are produced by the same constriction in the vocal tract. The difference is that the

vocal cords are used in their production in addition to the air flow turbulence produced

by the constriction.

Voiced Stops (Plosives)

The voiced stop consonants /bb/, /dd/, /dj/, and /da/, are transient, non continuant

sounds which are produced by building up pressure behind a total constriction

somewhere in the oral tract, and suddenly releasing the pressure. For /bb/ the

constriction is at the lips; for /dd/ the constriction is back of the teeth. During the period

when there is a total constriction in the tract there is no sound radiated from the lips.

However, there is often a small amount of low frequency energy radiated through the

walls of the throat (sometimes called a voice bar). This occurs when the vocal cords are

able to vibrate even though the vocal tract is closed at some point.

Unvoiced Stops (Plosives)

The unvoiced stop consonants /ta/, /tt/, /qa/, /kk/ and /ia/ are similar to the voiced

ones with one major exception. During the period of total closure of the tract, as the

pressure builds up, the vocal cords do not vibrate. Thus, following the period of closure,

as the air pressure is released, there is a brief interval of friction (due to sudden

turbulence of the escaping air) followed by a period of aspiration (steady air flow from

the glottis exciting the resonances of the vocal tract) before voiced excitation begins.
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Figure 2-10 shows the major four categories of phonemes that are of concern in

our research. These four groups will be collected later into two ensembles:

"sustainable" and "non-sustainable" phonemes.

Figure 2-10 Acoustic waveforms of the four major types of phonemes

2.4 Short Time Characterization of Speech

One of the first steps in speech processing is to decide whether a waveform

segment corresponds to speech or to noise (silence). This operation is usually

accomplished using a voice activation detection (VAD) algorithm [75, 62]. Most of the
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VAD algorithms use the concept of short time energy (or magnitude) and zero crossing

rate (ZCR).

Using the same notation as in section 2.2.2, consider a section of length L of

signal x(k) positioned at the nth sample, we define the short time energy function [70]

as:

2( ) ( )n
m

E x m w n m (2.17)

where w(n) is a window of size L. En as given by equation 2.17 is more

expensive to compute than the mean magnitude function:

( ) ( )n
m

M x m w n m (2.18)

A large value of En or Mn is a strong indicator of the presence of a voiced

segment in the signal. However, a small value does not imply that the actual segment is

a silence segment. Unvoiced segments have a quite low value of energy or magnitude.

We have seen that they are noise-like waveforms. Their spectrograms show that the

energy is concentrated at high frequency. A simple parameter characterizing this

behaviour is the zero crossing rate:

sgn[ ( )] sgn[ ( 1)] ( )n
m

ZCR x m x m w n m (2.19)

In many cases, the window is a rectangular window.

Figure 2-11 Mean magnitude and ZCR scatter plot
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We have used Mn and ZCRn to segment acquired speech signals into voiced,

unvoiced and silent segments. Figure 2-11 shows a scatter plot for 406 different speech

segments from a male locutor. The letter "v" indicates the segment is voiced, the letter

"u" indicates that it is unvoiced and "s" indicates a silent segment. It shows clearly how

to discriminate between the different segments. A silent segment is characterized by a

low Mn and a low ZCRn. A voiced segment on the other hand has a quite high Mn but a

low ZCRn. Finally, an unvoiced segment has a low Mn and a high ZCRn . Table 2-2

shows the result of classifying 718 segments of speech into voiced, unvoiced and silent

segments.

Classified as

Input Segment
Voiced Unvoiced Silence

Voiced 99.47% 0.52% 0.01%

Unvoiced 0.0% 99.8% 0.2%

Silence 0.9% 0.0% 99.1%

Table 2-2 Confusion Matrix (Voiced, Unvoiced, Silence)

Another segmentation that can be performed on a given speech waveform is the

identification of plosives [15, 61]. We can see from Figure 2-10 that plosives are purely

dynamic in nature. A plosive is defined essentially by the sudden variation of amplitude

that follows the closure of the mouth. The criterion that we have used is the ratio of the

magnitude function between successive frames. This ratio seems to be a natural

candidate for plosive detection since a plosive is characterized by a complete closure

(Mn-1 0) followed by sudden release of energy (Mn quite large).

However, the use of the sole magnitude ratio as a criterion is not enough because it

also detects the transitions between weak unvoiced sounds (/ff/ for example) and a

voiced sound like a vowel. We added a measure of ZCR before the transition in order to

eliminate the above mentioned problem. If the ZCR happens to have a high value, then

it is evident that we have an unvoiced/voiced transition and not a plosive.

The plot shown in Figure 2-12 is the acoustic signal of the word “FAROUK”

‘ ’, where we have the weak unvoiced sound /ff/ at the beginning followed by the

vowel /aa/. In such a case, if the magnitude ratio is the only parameter used in the

detection of plosives, a plosive will be detected around sample 500 where in fact it is
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not. When the ZCR information was not used, the system detected two plosives, one

around sample 500, which is a wrong decision, and another one around sample 7500

where the plosive /qa/ does really exist. However, after the use of the ZCR information,

the first decision was eliminated due to the high ZCR of the sound /ff/. A test performed

on 50 words of the same type provided 91% of correct results.
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Figure 2-12 The acoustic signal of the word ‘ ’

Finally, we have seen that a speech signal is composed of a concatenation of

phones. Some of them can be sustained while others are purely transient. The average

duration of a phone is about 20 ms and it is known that the maximum duration of a

phone cannot exceed 100 ms [31, 70]. From this, we can conclude that speech can be

considered as a quasi-stationary signal if the interval of observation does not exceed

20 ms.
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Chapter 3

Clipped Speech Restoration

The first stage in a speech recognition system is the acquisition system. If the

ASR system is implemented on a personal computer (PC), this acquisition system is the

PC sound card. The signal is sampled at a rate that can be adjusted between 6 kHz and

119 kHz for most sound cards, but usually it does not exceed 44.1 kHz (sampling period

larger than 22.73 s). The analog to digital converter (ADC) represents the speech

samples with 16 bits. The signal is picked by a low cost microphone and in a quite noisy

environment (without the use of a sound anechoic chamber). A PC sound card does not

have an automatic gain control (AGC) system. This means that the acquired signal is

confronted with two major problems: DC level wandering and peak clipping. The first

one is easily eliminated by simple linear processing but the second one requires more

complex algorithms. Peak clipping is fundamentally a non linear distortion. It is

characterized by the fact that several successive values of the signal disappear and are

replaced by a constant. However, we have seen in chapter 2 that the speech signal is

highly predictable. Therefore, clipped speech restoration is an interpolation problem.

We are going to use the signal known values to predict the missing samples [19].

3.1 Basic Interpolation Methods

When there is no a priori information on the signal, classical numerical

interpolation methods should be used [43, 69, 103]. The classical polynomial

interpolation methods are based on Weierstrass approximation theorem [43]. These

methods include the Lagrange polynomials, the divided difference polynomials

(Newton), etc. These methods assume that the data is not noisy and are not well suited

to the problem at hand. A smoother approximation is provided by cubic splines [43, 69,

103]. However, even here, noise is a problem in the interpolation and furthermore, we

are not using the known signal properties for interpolation.

The classical bandlimited interpolation methods [18] use Shannon's interpolation

formulation of the sampling theorem [82]. They are commonly used for sampling rate

up conversion. To increase the sampling rate by I (integer), we insert I – 1 zeroes

between samples and low pass filter the obtained signal. Figure 3-1 shows the result of
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sampling rate change on clipped speech (from 16 kHz to 44.1 kHz). We see clearly that

the clipping is not corrected. Furthermore, the clipped part of the signal, which was

horizontal in the original signal, contains ripples due to the "sinc" function of the

lowpass interpolating filter.

Figure 3-1 Result of sampling rate increase on clipped speech

Consequently, the above listed methods of interpolation are not suited to the

problem at hand. This has led us to use statistical model based interpolation [92] for

computing the missing values.

3.2 Justification of the Method

The statistical model based method used to eliminate peak clipping in the speech

signal is based on linear prediction [3, 44, 45, 55, 58, 70]. It uses the fact that speech

signal is highly predictable. As seen in chapter 2, a speech segment is composed of a

sequence of voiced, unvoiced and silent (noise) segments. The type of speech signal that

has the greatest probability for being peak clipped is voiced speech [70]. Figure 2-11

represents a scatter plot of voiced, unvoiced and silence mean magnitude and zero

crossing rate of segments of speech. Voiced speech segments are indicated by the letter

"V", unvoiced segments by the letter "U" and the silent segments by the letter "S". It

shows clearly that the voiced signals cluster at high mean magnitude values.

Fortunately, voiced speech happens to be quite predictable. We have described

the production model in chapter 2. From equation (2.8), it is clear that voiced speech

follows quite closely the linear prediction equations. Commercial software like DC-6,

from Diamond Cut products, use low order linear prediction for clipped audio signal

restoration and the problem of audio signal interpolation have also been addressed by
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Vaseghi [92] who uses linear prediction from adjacent samples and samples one period

away (audio signals are assumed to be periodic).

Voiced speech can be considered as a quasi periodic signal. It can be modelled

as the output of a linear time invariant system (during few milliseconds, the system can

safely be assumed to be time invariant) driven by a periodic train of impulses. In this

case, a quite general formulation of the speech signal xn will be4:

1 0

p p

n k n k k n k
k k

x a x b u (3.1)

where uk is equal to 1 every T seconds and zero otherwise, T being the pitch

period. ak and bk are respectively the recursive and non recursive parameters of the

above production filter H(z) of order p. So, within a pitch period (NT samples) and after

p samples, we can write:

1

p

n k n k
k

x a x (3.2)

The above equation breaks down in the part of the speech signal that is clipped.

So, if we start the time axis at the beginning of a pitch period and if we call NT the

number of samples within the pitch period, we can write:

1

max

;
p

n k n k T
k

n

x a x p n N

for x X
(3.3)

Xmax being the saturation value.

3.3 The Proposed Restoration Algorithm

The proposed algorithm for clipped speech restoration is going to be based on

linearly predicting the missing values using equation (3.2). So, the algorithm consists of

two following steps:

- Computation of the prediction coefficients ka .

- Linear prediction of the missing values.

4 We use the notation xn instead of x(n) in this chapter because it is more commode for the Kalman
recursion.
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3.3.1 Computation of the prediction coefficients

The computation of the prediction coefficients ak can be accomplished either by

using a least square solution or by using a recursive algorithm based on Kalman

filtering.

For the least square algorithm, we can use equation (3.3) and build the following

matrix vector equation relating speech samples xk:

1 1
1 1

1 22 2

1 2

. .

. .

. . . . . . .

. .. . . . .

. .T
T T T

p p
p

p pp

N pN N N p

x x xx a
x x xx a

x ax x x

(3.4)

in which all the rows such that maxXxk are deleted. Equation (3.4) can be

written as:

b X a (3.5)

and the least square solution of equation (3.5) can be obtained as [54]:

( )T 1 Ta X X X b (3.6)

Another approach to the evaluation of the prediction coefficient is the following

sequential algorithm (Kalman filter) [39, 84] based on the subsequent set of equations

and on an autoregressive model. Consider the next state equation:

( 1) ( ) ( )k k ka a w (3.7)

where 1 2( ) , , ,
T

pk a a aa and ( )kw is a white stationary sequence. Our

problem is to estimate a(k) on the basis of observations x1, x2, … [84]. The observation

model is given by:

0
1

p

n i n i n
i

x a x b u (3.8)

and let us consider C(k-1) = [xk-1, xk-2, …, xk-p]. The observation model becomes:

( ) ( 1) ( ) ( )kz k x k k v kC a (3.9)

if it is taken that: 0( ) kv k b u .

then, starting from an initial estimate (0)a , we obtain the following recursion:

1( 1) ( ) ( 1)[ ( ) ( )]kk k k x k ka a K C a (3.10)
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where K is the Kalman gain given by:

2
0

( ) ( )
( 1)

( ) ( ) ( )
k k

k
b k k k

T
a

T
a

V C
K

C V C
(3.11)

and the matrix aV is the variance matrix of the estimator a and is given by the

following equation:

( 1) [ ( 1) ( )] ( )k k k k wa aV I K C V V (3.12)

where wV is the variance matrix of the white noise process ( )kw .

The algorithm can be initialized by: 2
wV I , (0)aV 0 and 0 1b and stopped

by using the criterion:
2( 1) ( )k ka a (3.13)

The stopping criterion can also be used for pitch detection because it is evident

that the above norm will be large while being in a clipped part, since the autoregressive

model will not be valid.

3.3.2 Interpolation of the missing samples

For the computation of the missing samples, equation (3.2) can be used starting

from p previous samples. This interpolation is referred to as forward. The missing

samples can also be predicted from p samples that follow the missing part. The first

sample can be obtained by solving equation (3.2) as:

1

; 1
p

n p i n p i T
i

x x p n N (3.14)

where the coefficients i are computed from the coefficients ai using:

1 2 1
1 2 1

1; ; ; ;p p
p p

p p p p

a a a
a a a a

(3.15)

Consequently, the reconstruction is done using backward interpolation.

3.4 Results

In order to test the previously defined algorithms, we are going to use

synthetic and natural speech. The natural speech comes from a very large database of

speech samples that were collected for the construction of a speech recognition system

in colloquial Algerian Arabic [76]. The pitch frequency is about 100 Hz for male

speaker and about 220 Hz for a female one. This corresponds to a pitch period T being
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between 4.5 ms to 10 ms. So, if a reliable estimation of the prediction parameters is

desired, we need a fairly high sampling frequency. For example, a sampling frequency

of 10 kHz (sampling period of 100 s) will provide between 45 and 100 samples for a

pitch period. A sampling frequency of 44.1 kHz (sampling period of 22.73 s) is

chosen, which provides between 198 and 440 samples for a pitch period, which is quite

reasonable. Also, in all of the following tests, the speech signal is normalized to a

maximum value of one.

3.4.1 Synthetic Speech

The algorithm is tested first with a synthetic vowel. The choice of synthetic

speech is motivated by the fact that it follows exactly the linear prediction model. The

vowel /a/ is generated using the following formants [17]:

FORMANT ( )iF Hz ( )iBW Hz

1 730 60

2 1090 100

3 2440 120

4 3500 175

5 4500 281

Table 3-1 Formants Frequencies and Bandwidth [17]

- The frequencies ( )iF and the bandwidths ( )iBW necessary to specify each

formant are shown in the following table.

- The pitch frequency is 120 Hz (male speaker), which corresponds to NT = 367

samples.

Figure 3-2 displays a Z domain pole and zero plot of the obtained transfer

function H(z). Figure 3-3 shows few periods of the synthetic vowel /aa/. The prediction

order is set to p = 10. This signal is clipped to a level of ±0.5 and restored using both

methods (least square and Kalman filter method).Figure 3-4 shows one pitch period of

the clipped signal. A window of at least 75 samples following the clipped region is used
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to compute the predictor coefficients. The first reconstruction is done using the least

square estimation of the prediction coefficients.
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Figure 3-3 Synthetic Vowel /aa/ Normalized Amplitude Waveform
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Figure 3-4 Clipped Artificial Vowel

The least square computation of the prediction coefficients along with both

forward and backward reconstruction produces the error plots shown in Figure 3- 5. It

can be seen that the backward error is much smaller than the forward one. Also, the

error occurs at the end of the reconstruction. The error can be reduced by performing

both reconstructions and averaging the results. However, since the error is essentially a

high frequency signal, simple low pass filtering after backward reconstruction yields the

same result.
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Figure 3- 5 Forward and Backward Reconstruction Error for Synthetic Speech
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Kalman filter is also used for the estimation of the prediction parameters. The

stopping criterion of the recursive Kalman algorithm is defined as:
2( 1) ( )k ka a , where is a small positive number that describes the

convergence of the algorithm. From the plot of 2( 1) ( )k ka a over 04 pitch periods

of the signal (under: 00.1 1and b ) shown in Figure 3- 6, it appears that the value

=0.00008 is acceptable.
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Figure 3- 6 Kalman Filter Convergence Criterion Plot

As stated before, the above convergence criterion ( a(k+1) - a(k) 2) can be used

for pitch detection. This is well illustrated in Figure 3- 6, the large values occurs at the

clipped parts generally located at the beginning of the pitch period. After several tests,

the following initial values: = 0.1, b0 = 1, â(0) = 0. After estimation of the prediction

parameters and backward prediction, the error is drawn in Figure 3- 7.
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Figure 3- 7 Kalman Filter Error Signal Waveform
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We observe that the error using the Kalman filter estimation is much larger that

the one using the least square method. Another problem that is encountered is the large

computation time. So, in the following tests, the results obtained by the least square

method are the only ones that will be presented.

3.4.2 Artificially Clipped Natural Speech

After being applied on a synthetic speech, the proposed technique of

interpolation (least square evaluation of the parameters and backward reconstruction) is

applied on a voluntarily clipped natural speech. The unclipped signal is taken as a

reference when evaluating the reconstruction process precision.

The used recorded speech signal consists on numbers pronounced in Algerian

Arabic, sampled at 16 KHz, taken from the database [76]. An audio processing software

(Cool Edit Pro 2.1 from Syntrillium Software Corporation) is used to adjust the

sampling frequency to 44.1 KHz.

Since the speech is a time varying signal (a concatenation of different sounds

with different characteristics) and in order to have a good estimation of the prediction

parameters, the following method based on the detection of clipped samples is used:

after each detection of a clipped sample, an adjacent segment of enough number of

successive unclipped samples (ex.: in our case 75 samples) is considered. If this

condition is satisfied, the reconstruction process that uses the least square algorithm for

the estimation of the prediction parameters will be applied. Otherwise, the procedure is

repeated. Figure 3-8 shows the different steps of signal processing. The original speech

and the reconstructed one are practically identical. Figure 3-9 shows the reconstruction

error for the natural speech where it can be observed that the error is a high frequency

signal with a small peak magnitude. So, a simple low pass filter will eliminate

completely the error.
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Figure 3-8 Artificially Clipped Natural Speech Reconstruction
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Figure 3-9 Artificially Clipped Natural Speech Reconstruction Error

3.4.3 Clipped Natural Speech

The final test is performed on clipped natural speech. Figure 3-10 and Figure 3-

11 show the clipped and the reconstructed signal. It is impossible in this case to present

an error plot due to the absence of the original unclipped signal. The only comment that
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can be made about the above plots is that the reconstructed signal looks like an

unclipped signal. Since there is no reference to objectively evaluate the performance of

the algorithm, a subjective criterion is used for judging the quality of the restoration.

The speech samples (clipped and restored) were presented to several listeners and they

were asked to evaluate the quality of the message by giving a grade between zero and

five (zero meaning completely unintelligible and five meaning very clear). The result is

a great improvement in intelligibility. The clipped signal was given an average grade of

about two while the restored signal received a grade that varied between four and five.

Figure 3-10 Clipped Natural Speech Backward Reconstruction using Least Square Estimation

Figure 3-11 Zoomed segment of the reconstruction process
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3.4.4 Discussion

It is quite hard to provide a figure of merit for the method other than the plot of

the error signal between the unclipped and the reconstructed speech signal. We can

observe from the plots in Figure 3- 5 and Figure 3-9 that two parameters determine the

quality of the reconstruction: the amplitude and the duration of the error spikes. We can

resume both parameters in the following quality factor:

1

1
( )

cN

kc

e k
N

(3.16)

where e(k) is the error signal between the unclipped and the reconstructed

speech signal and Nc is the number of clipped samples. Figure 3- 12 shows the quality

factor for forward and backward reconstruction as a function of the number of clipped

samples per pitch period for synthetic speech. For clipped natural speech, it of course

impossible to provide such data. For artificially clipped natural speech, the quality

factor curve using backward reconstruction is so close to the one for forward

reconstruction for synthetic speech that it is impossible to provide a separate plot. From

the different plots (Figure 3- 5, Figure 3-9 and Figure 3- 12), we can conclude that the

estimation of parameters using least square followed by a backward reconstruction

offers the best results in term of accuracy.
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Figure 3- 12 Plot of Quality Factor vs Number of Clipped Samples for Synthetic Speech
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Finally, we settled for a least square estimation followed by backward

reconstruction as a front end in the pre-processing part of our speech recognition

software. The next step in signal processing is noise removal part which will be

described in the next chapter.
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Chapter 4

Speech Denoising using Wiener Filters

We have seen in chapter 3 that the signal acquired under normal condition using

a standard PC sound card and a general purpose microphone contains not only the

needed information but also ambient noise. The only way to avoid this ambient noise is

to use a sound anechoic chamber to record the speech signal. In this chapter, we are

going to analyse ways to eliminate (or at least to reduce) noise.

Noise can dramatically degrade a speech recognition rate. The recognition rate

of a single letter recognizer will drop from 87% for clean speech to about 75% in

relatively good noise conditions with an average signal to noise ratio (SNR) of 15 dB to

a very small value at SNR 0 dB [42]. In this case, noise reduction software is

mandatory. Noise reduction software can also be used to increase the comfort or the

intelligibility of a phone conversation.

Denoising methods depend on the number of microphones used to acquire the

signal. If we have a large number of microphones (more than two), we can use classical

adaptive array processing to zero the signal in the noise direction and enhance the signal

in the speaker's direction [91]. With two microphones, we can use adaptive noise

cancellation [92]. In this case, one microphone should pick mainly surrounding noise

while the other will acquire the signal plus the noise. In the case that interests us, we

assume that we have only one microphone available. In this case, we have to rely on

assumptions about the speech and the noise signals. We are going to use statistical mean

square estimation theory in order to "clean out" the speech signal. A suitable mean

square method is Wiener filter theory [100].

4.1 Wiener Filter Theory

Wiener filtering is basically a method of signal estimation [68, 84, 92]. It is

based on minimizing a mean square error between a signal to be estimated and an

estimate. The signal to be estimated is the clean speech signal x(n) and the estimate is
the output of the filter ( )x n . The estimate is obtained by linear filtering a noisy speech

signal y(n) as shown in Figure 4-1.



35

Noisy speech signal
y(n) = x(n)+n(n)

x(n): desired clean signal
n(n): additive noise

Estimated
signal ( )x n

( )e n

( )x n

Filter

Figure 4-1 Time Domain Structure of the Wiener Filter

The difference e(n) between the desired signal x(n) and the filter output ( )x n is

the error signal. The Wiener filter is the optimum filter that minimizes the mean of the

square of e(n). This is known as the "minimum mean square estimation": MMSE. The

mean square error is given by:
2

2
( ) ( )

P E e n

E x n x n
(4.1)

where E[ . ] indicates statistical expectation.

According to the block diagram shown in Figure 4-1, we can write the following
relation between y(n) and ( )x n :

( ) ( ) ( )
k I

x n h k y n k (4.2)

where the limits of the summation depend on the nature of the filter h(n).

In order to solve the problem, we have to make a certain number of assumptions.

The first one is that the different signals are stationary. We have seen in chapter one that

if we observe the speech signal over a time interval that does not exceed 20 ms, we can

safely assume stationarity. The second assumption is that the estimator (the filter) is

time invariant. We are going to drop this second requirement in the second part of the

chapter. Applying the principle of orthogonality [68], we obtain the following relation:

( ) ( ) ( ) ;
k I

yx opt yyn k n kr h r n I (4.3)

Equation (4.3) is better known as the "Wiener-Hopf" equation. ryy and ryx are

respectively the noisy signal autocorrelation function and the noisy and clean signal

cross-correlation function. hopt is the impulse response of the Wiener filter, i.e. the
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optimum filter h(n). Depending on the limits of the above summation, we have the

following three different cases:

- Causal finite impulse response (FIR) filter if I = {0, 1, …, N – 1}.

- Non causal infinite impulse response (IIR) filter if I = ]- , + [

- Causal IIR filter if I = ]0, + [

When we use the optimum filter, the mean square error becomes:

0 (0) ( ) ( )
k I

xx opt yxk kP hr r (4.4)

Equation (4.4) can be easily computed for FIR filters.

4.1.1 Non Causal IIR Wiener Filters

In the non causal case, the Wiener-Hopf equation (4.3) becomes:

( ) ( ) ( )yx nc yy
k

r n h k r n k (4.5)

hnc stands for the non causal impulse response. Equation (4.5) shows that in this

case, the cross correlation ryx is computed by the convolution of the impulse response

hnc with the autocorrelation ryy.

( ) ( ) ( )yx nc yyr n h n r n (4.6)

Taking the z-transform of the above relation, we obtain the transfer function of

the non causal IIR Wiener filter:

( )
( )

( )
yx

nc
yy

R z
H z

R z
(4.7)

Assuming that the signal x(n) and the noise n(n) are uncorrelated processes and

that the noise is zero mean, each one of the above power spectral densities (PSD) can be

expressed as:

( ) ( ) ( )yy xx nnR z R z R z (4.8)

( ) ( )yx xxR z R z (4.9)
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If we want to implement the filter, we have to estimate the above the PSD's

Rxx(z) and Rnn(z). We will use autoregressive (AR) modeling. Finally, the transfer

function of the non causal filter is:

( )( )
( ) ( )

xx
nc

xx nn

R zH z
R z R z

(4.10)

Using Wold representation [68], each one of the PSD's Ryy(z) and Rnn(z) can be

factored as:
2 1( ) ( ) ( )yy w y yR z H z H z (4.11)

2 1( ) ( ) ( )nn w n nR z H z H z (4.12)

Using only the observed signal y(n) and the noise signal n(n), we can express the

filter transfer function as:
1 1

1

( ) ( ) ( ) ( )( )( )
( ) ( ) ( )

y y n nxx
nc

yy y y

H z H z H z H zR zH z
R z H z H z

(4.13)

and finally:

12
( )1( )

( ) ( )
xx

nc
y w y

R zH z
H z H z

(4.14)

Therefore, we can say that the filter which estimates x(n) from y(n) is obtained

by cascading the whitening filter 1
( )yH z

with the optimum filter that estimates x(n)

from the innovation process ( )w n as shown in the following figure [68]:

Figure 4-2 Block Diagram of the Non-Causal IIR Wiener Filter

4.1.2 Causal IIR Wiener Filter

In the causal IIR case, the Wiener-Hopf equation becomes:

0

( ) ( ) ( ) ; 0yx c yy
k

r n h k r n k n (4.15)

In this case, we cannot use simple z-transform of a convolution because of the

causality constraint. We have to resort to a spectral factorization method that was

developed by Wiener [100, 68] for rational PSD's. The causal IIR Wiener filter will be

1
( )yH z 2 1

( )
( )

xx

w y

R z
H z

y(n) w(n) ( )x n
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obtained by cascading the whitening filter 1
( )yH z

with a causal filter that estimates x(n)

from the innovation process w(n). The causal transfer function is:

2 1

( )1( )
( ) ( )w

xx
c

y y

R zH z
H z H z

(4.16)

. denotes the causal part of the expression inside the brackets.

4.1.3 Causal FIR Wiener Filter

Finally, in the causal FIR filter of length N, the Wiener-Hopf equation becomes:
1

0

( ) ( ) ( ) ; 0 1
N

yx F yy
k

r n h k r n k n N (4.17)

Equation 4.17 represents N equations with N unknowns. It can be expressed in

the following matrix form:

(0) (1) (2) ( 1)(0) (0)
(1) (0) (1) ( 2)(1) (1)
(2) (1) (0) ( 3)(2) (2)

( 1) ( 2) ( 3) (0)( 1) ( 1)

yy yy yy yyxx F

yy yy yy yyxx F

yy yy yy yyxx F

yy yy yy yyxx F

r r r r Nr h
r r r r Nr h
r r r r Nr h

r N r N r N rr N h N

(4.18)

or:

xx yy Fr R h (4.19)

In this particular case, the mean square error can be evaluated as:
1

0
0=

(0) ( ) ( )
N

F F
m

xx yxP h m mrr (4.20)

4.2 The Autoregressive Model

When we want to solve the Wiener estimation using IIR filters, we have to

estimate the power spectra Rxx(z) and Rnn(z). The Wiener factorization method can be

applied when these power spectra are rational functions. According to Wold

representation, a wide sense stationary random process x(n) may be represented as the

output of a causal and causally invertible (minimum phase) linear time invariant system

excited by a white noise w(n) as shown in Figure 4-3. The white noise w(n) is called the

innovation process associated with the process x(n).
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Figure 4-3 Generation of the Process x(n)

If the variance of the innovation process is 2
w , we can express the PSD of the

process x(n) as [68]:
2 1( ) ( ) ( )xx wR z H z H z (4.21)

We say that the process x(n) is modeled using an autoregressive (AR) model if

the transfer function H(z) is all pole. At that time, we can express it as:

1

( )
1

P
k

k
k

H z
a z

(4.22)

is the gain of the model, P is the order and the ak 's are the model coefficients

that determine the poles of the model. We can compute these coefficients using the

Yule-Walker equations [68, 84]:

2 2(0) (1) ( ) 1

(1) (0) ( 1) 01

0( ) ( 1) (0)

w
r r r Pxx xx xx

ar r r Pxx xx xx

ar P r P r pxx xx xx

(4.23)

The solution is provided by:
1(0) ( 1) (1)

1

( 1) (0) ( )

r r P ra xx xx xx

a r P r r Pp xx xx xx

(4.24)

and

2

T
1

1
(0) (1) ( ) 1

w
Pxx xx xxr r r P a a (4.25)

Minimum Phase

System H(z)

White noise

w(n)
x(n)
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The autocorrelation rxx(k) is computed using the usual formula [66]:
1

0

1( ) ( ) ( ) ; 0
L k

xx
n

r k x n k x n k
L k

(4.26)

L is the size of the observation window.

4.3 Time Invariant Wiener Filtering

The first experiments concern a short word pronounced a male speaker (the

English word "one"). The ambient noise was produced by a radio tuned at an arbitrary

frequency in such a way that no station was picked by the antenna. The data was

recorded with a sampling frequency of 44.1 kHz and a quantization level of 16 bits. The

data was stored in a file. This allows non causal signal processing.

Figure 4-4 Recorded Noisy Speech Signal

4.3.1 FIR Time Invariant Wiener Filter

We are going to use FIR filters to clean the signal shown in Figure 4-4. We use

three different orders: N = 8, N = 64 and N = 512. Equation 4.18 is used to compute the

filter impulse response hF. Then, the signal is filtered by computing the convolution of

the signal with the impulse response.

Figure 4-5 shows the filtered signal for N = 8. We can notice a significant noise

reduction in the filtered signal. The signal shown in Figure 4-5 appears much clearer

than the original one in a hearing test.
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Figure 4-5 Filtered Speech Signal for N = 8

Repeating the same procedure for N = 64 and N = 512 yields the following

results.

Figure 4-6 Filtered Speech Signal for N = 64

Figure 4-7 Filtered Speech Signal for N = 512

Comparing Figure 4-5, Figure 4-6 and Figure 4-7, we remark that as N increases,

the noise level is reduced. However, we also remark that there is no much reduction

between the last two figures. This is illustrated by the following plot (Figure 4-8) of the
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mean square error P0F versus the filter order N. The value of the mean square error is

computed using equation 4.20. It is clear that a value of N larger than 32 will not reduce

significantly the mean square error.

Figure 4-8 Mean Square Error vs Filter Order

We can also observe that the signal is more and more distorted as N increases.

From the distortion point of view, we can conclude that the smaller order is better.

4.3.2 IIR Causal Wiener Filter

In this section, the noisy speech and the ambient noise are going to be modelled

by autoregressive models of order one and two. From the obtained transfer functions,

we realize the filters by implementing difference equations.

4.3.4.a First Order Model

Let:

1
1

( )
1yH z

a z
(4.27)

1
1

( )
1nH z

b z
(4.28)
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The model parameters , a1, and b1 are computed using the Yule-Walker

equations. Assuming a unity variance innovation process, the power spectra for the

noisy signal y(n) and the noise n(n) are given by:
2

1
1 1

( )
(1 )(1 )yyR z

a z a z
(4.29)

2

1
1 1

( )
(1 )(1 )nnR z

b z b z
(4.30)

Equation (4.16) is developed using the above relations to give:

1
1 1 1

1 1 1
1 1 1

2
( )
( ) (1 )(1 )(1 )w

xx

y

R z A z B C z
H z a z b z b z

31 2
1 1

1 1 11 1 1
r zr r

a z b z b z
(4.31)

where A1, B1, C1, r1, r2 and r3 are real valued constants. Taking the causal part of

the above equation yields:

1 2
1 1 1

1 1
2

( )
( ) 1 1w

xx

y

R z r r
H z a z b z

(4.32)

So, finally, using equation (4.16), we obtain the following transfer function:
1

1
1

( )( )
1 ( )c
A z B x zH z

b z y z
(4.33)

Therefore, the difference equation implementing the IIR causal Wiener filter is:

1( ) ( 1) ( ) ( 1)x n b x n B y n A y n (4.34)

Using the Yule-Walker equations, we evaluate the first order model parameter

from the signal and the noise shown in Figure 4-4. These coefficients are recorded in

Table 4-1.

Model Coefficients Gain

Corrupted speech signal 1a = 0.9591 = 0.0459

Ambient noise 1b = 0.9005 = 0.0380

Table 4-1 First Order Model Parameters
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We next calculate the filter coefficients to implement the digital filter. They are

given in Table 4-2.

Filter Coefficients

A= -0.4260

B= 0.5053

Table 4-2 Filter Coefficients

Applying this filter to the noisy speech signal produces the following result:

Figure 4-9 Filtered Speech Signal using Causal First Order Filter

4.3.4.b Second Order Model

Let:

1 2
1 2

( )
(1 )yH z

a z a z

1 1
1 2(1 )(1 )p z p z

(4.35)

1 2
1 2

( )
(1 )nH z

b z b z

1 1
1 2(1 )(1 )q z q z

(4.36)

where p1, p2 and q1, q2 are the poles of Hy(z) and Hn(z) respectively. , a1 , a2, ,

b1 and b2 are given by the Yule-Walker equations. Assuming a unity variance
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innovation process, the power spectra for the noisy signal y(n) and the noise n(n) are

given by:
2

1 1
1 1 2 2

( )
(1 )(1 )(1 )(1 )yyR z

p z p z p z p z
(4.37)

2

1 1
1 1 2 2

( )
(1 )(1 )(1 )(1 )nnR z

q z q z q z q z
(4.38)

Therefore, following the same work done for the first order model, we obtain the

transfer function:
3 2 1

1 1
1 2

3 2 1

1 2
1 2

( )
(1 )(1 )

( )
1 ( )

c
A z B z C z D

H z
q z q z

A z B z C z D x z
b z b z y z

(4.39)

All the constants of the above transfer function are real numbers. So, the filter

will be implemented using the following difference equation:

1 2( ) ( 1) ( 2) ( ) ( 1) ( 2) ( 3)x n b x n b x n D y n C y n B y n A y n (4.40)

Using the Yule-Walker equations, we evaluate the first order model parameter

from the signal and the noise shown in Figure 4-4. These coefficients are recorded in

Table 4-3.

Model Coefficients Gain

Corrupted speech signal
1a = 1.7525

2a = -0.8274
= 0.0258

Ambient noise

1b = 1.6607

2b = -0.8443
= 0.0204

Table 4-3 Second Order Model Parameters

We next calculate the filter coefficients to implement the digital filter. They are

given in Table 4-4. When applied to the noisy speech signal, the filter produces the

results displayed in Figure 4-10.
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Filter coefficients

A= -0.8597

B= 3.0397

C= -3.4930

D= 1.4526

Table 4-4 Filter Coefficients

Figure 4-10 Filtered Speech Signal using Causal Second Order Filter

We remark that the second order filter passes more noise than the first order one.

However, it produces less distortion. This behaviour is typical of Wiener filters. The

output is a compromise between good noise elimination and good signal preservation.

4.3.3 IIR Non Causal Wiener Filter

The power spectra models (first and second order) have been computed in the

previous section, we just have to use equation (4.13) to obtain the transfer function of

the non causal IIR filter of order one and two.

4.3.3.a First Order Model

The power spectra are given by equations (4.29) and (4.30). We deduce that the

first order non causal IIR filter has the following transfer function:
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2 1

1 1 1
1 1

1 2
1 1 1

1 1

( )
(1 )(1 )

1 1

nc
A z B z C

H z
b z b z

r r
K

b z b z

(4.41)

where A, B, C, K, r1 and r2 are real constants.

The first and second term of the partial fraction expansion of Hnc(z) describe

stable causal systems. They can be implemented using the following difference

equations:

1( ) ( )x n K y n (4.42)

2 1 2 1( ) ( 1) ( )x n b x n r y n (4.43)

The third term describes a stable anti-causal system. It can be implemented by

processing the data backward (from the end of the file to the beginning) through the

entire length of the noisy signal using the following difference equation:

3 1 3 2( 1) ( ( ) ( ))x n b x n r y n (4.44)

The estimated signal ( )x n is the sum of 1( )x n , 2( )x n and 3( )x n .

For the implementation, we use the model parameters collected in Table 4-1.

The filter coefficients are given in Table 4-5.

Filter coefficients

A= 0.2693

B= -0.5484

C= 0.2693

Table 4-5 Filter Coefficients

Figure 4-11 displays a pole and zero plot of the transfer function in the complex

plane. The transfer function of the filter shows a pair of real poles, one inside and one

outside the unit circle. The pole inside the unit circle is the one of the stable causal part

of the transfer function whereas the pole outside the unit circle is the one of the stable

anti-causal part.

The noisy speech signal is filtered using the three difference equations (4.42),

(4.43), (4.44). It is displayed in Figure 4-12.
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Figure 4-11 First Order Pole and Zero Plot

Figure 4-12 Filtered Speech Signal using Non-Causal First Order Filter

4.3.3.b Second Order Model

The power spectra are given by equations (4.37) and (4.38). We deduce that the

second order non causal IIR filter has the following transfer function:
4 3 2 1

1 1 1 1 1 1
1 1 2 2

31 2 4
1 1 1 1 1 1

1 2 1 2

( )
(1 )(1 )(1 )(1 )

1 1 1 1

nc
A z B z C z D z E

H z
q z q z q z q z

rr r r
K

q z q z q z q z

(4.45)

The residues r1, r2, r3 and r4 can be either real or complex (conjugate) numbers

while K must be a real constant. Grouping the second term with the third one and the
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fourth term with the fifth one in equation (4.45) yields the following three difference

equations:

1( ) ( )x n K y n (4.46)

2 1 2 2 1 2 2 1 2 1 2 2 1( ) ( ) ( 1) ( 2) ( ) ( ) ( ) ( 1)x n q q x n q q x n r r y n rq r q y n (4.47)

1 1 1 1
3 1 2 1 2 3 3 3 4 3 2 4 1( 2) ( )(( ) ( 1) ( ) ( ) ( ) ( ) ( 1))x n q q q q x n x n r r y n r q r q y n (4.48)

Since each pair of (r1, r2), (r3, r4) and (q1, q2) is complex conjugate, the last three

difference equations can be implemented directly where equations (4.46) and ( 4.47)

describe stable causal systems, equation (4.48) describes a stable anti-causal system. It

will be implemented using backward processing as for the first order system.

The sum of 1( )x n , 2 ( )x n and 3( )x n is the estimated signal ( )x n .

For the implementation, we use the model parameters collected in Table 4-3.

The filter coefficients are given in Table 4-6.

Filter coefficients

A= 0.3879

B= -1.2585

C= 1.7769

D= -1.2585

E= 0.3879

Table 4-6 Filter Coefficients

Figure 4-13 is a pole and zero plot of the transfer function.

Figure 4-13 Second Order Pole and Zero Plot



50

The filter presents two pairs of complex conjugate poles. One pair is inside the

unit circle while the other is outside the unit circle. The first pair belongs to the stable

causal parts of the transfer function. The second pair represents the poles of the stable

anti-causal parts. When applied to the noisy speech signal, the filter gives the following

result:

Figure 4-14 Filtered Speech Signal using Non-Causal Second Order Filter

If we compare Figure 4-12 and Figure 4-14, we can say that there is more noise

at the output of the second order filter. However, there is much less distortion in the

signal filtered by the second order filter. We can also compare the output of the causal

and the non causal filters. The non causal filter produces more filtering. However, we

always face the same compromise. Either we filter noise and distort the signal or we

preserve the signal but keep the noise. We have seen in chapter one that the speech

signal is not stationary. A solution for denoising the speech signal is to use time varying

Wiener filter [51].

4.4 Time Varying Wiener Filter

A speech segment with duration of more than 20 ms cannot be considered as

stationary. This is why it is practically impossible to use efficiently time invariant

filters. We are going to use a sliding window to analyse the speech signal and we

recomputed the filter parameters every time. It is very hard to implement time varying

IIR filters because they have infinite memory (in theory). Therefore, we settle for a

causal time varying FIR filter. We use windows of 256 sample-length slid 100 samples

at a time from speech waveforms sampled at 44.1 kHz. However, we assume that the

noise character remains constant over quite long intervals. A long speech waveform is a

succession of silence (noise only) segments and noisy speech segments. We use the

noise only segment to evaluate the noise autocorrelation function rnn(k) and the speech

segment will be divided into the above mentioned windows in order to evaluate the
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noisy speech autocorrelation ryy(n). We need a tool to discriminate between speech and

noise. We can use a VAD system based on mean magnitude and zero crossing rate as

described in chapter 2. Figure 4-15 shows a signal with two speech regions (between N2

and N3 and between N4 and N5) and three noise-only regions.

Figure 4-15 Representation of the Speech Windowing

The noise autocorrelation rnn(k) for the above signal will be computed first using

the signal from the region between N1 and N2 to compute the filter parameters up to

N3. Then, it will be recalculated using the signal between N3 and N4 to compute the

filter parameters up to N5, and so on. The noisy speech autocorrelation is recomputed

on every 256 sample window as shown above. So, for every speech region, we are

going to have L vectors ryy ,k, each of dimension N. L is the number of frames, k is the

frame index..

Using equation (4.8), we compute the vector rxx,k as:

, ,xx k yy k nnr r r (4.49)

Then, the kth frame impulse response is given by the same relation as equation

(4.18), with the major difference being that it has to be recomputed every frame as

shown in equation (4.50).
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(4.50)

After the computation of the impulse response, the output ( )x n is computed via

convolution of hF,k(n) with the noisy signal y(n). However, since the filter parameters
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are dependent only on the speech region, we have to adopt a particular strategy for the

noise-only region.

When y(n) consists of only noise, we have two possibilities. We can eliminate

the noise by simply setting its value to zero, that is, multiplying it by zero. This method

presents many drawbacks. First, the abrupt change will provoke a discontinuity at the

boundary between a silence region and a speech region. Next, if the VAG system is not

very accurate, we can eliminate information if a speech region is mistakenly included in

the silence region. To avoid the above-mentioned drawbacks, we are going to filter the

noise by the impulse response computed in the first speech region that immediately

follows the concerned silence region.

When y(n) consists of noisy speech, the filter parameters are changed every 100

samples. These parameters are computed using the corresponding window of 256-

sample length.

We are going to compare first our time varying filter with the time invariant one

of section 4.3.1. The first signal to be filtered is the one represented in Figure 4-4.

Figure 4-16 shows the output of a time invariant FIR Wiener filter of order N = 256.

Figure 4-17 shows the result of using our time varying filter on the same signal. The

length of the impulse response is N = 2 only. We observe that the second order time

varying filter achieves a better noise rejection than the 256-sample long time invariant

filter. Furthermore, the time invariant filter distorts the signal while we observe very

little signal distortion in the output of the time varying filter.

Figure 4-16 Filtered Signal with aTime Invariant Wiener Filter of Order N = 256
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Figure 4-17 Noisy and Filtered Signal with a Time Varying Filter of Order N = 2

We then test the algorithm with longer test sentences. The next signal consists of

the sentence "they study" pronounced by a male speaker. The ambient noise is the same

as the one use to record the signal of Figure 4-4. We can observe in Figure 4-18 that the

signal consists of two speech regions and three noise-only regions.

Figure 4-18 Noisy Sample Speech "They Study"

For this sentence, we consider six different filter orders: N = 2, N = 8, N = 32,

N = 64, N = 128 and N = 256. The resulting waveforms are presented in Figure 4-19.
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Figure 4-19 Filtered Signal for: (a) N = 2 (b) N = 8 (c) N = 32 (d) N = 64 (e) N = 128

(f) N = 256

A substantial noise reduction is observed for N = 2, 8, 32 and 64. However,

when the order of the filter exceeds the size of the shift between windows

(100 samples), the performance of the filter degrades significantly. A large number of

experimentations on the size of the analysis window and on the size of the shift are

collected in reference [50]. It is found that a greater noise reduction is accomplished

using a second order filter with a 256 sample-length window rather than a 64-order

filter with a 1064 sample-length window.

Subjective listening tests have been conducted by Miss Kaddouri [50, 51]. The

first test is a speech quality test of the same type as the one that we have conducted for

the clipped speech restoration. Ten people were asked to listen to noisy speech and then

to filtered speech. The filter is a second order time varying filter. The listeners were

asked to grade each speech heard on a scale from 1 to 5, according to how "pleasant"

their listening experience was. The results are presented in Table 4-7. We observe that,

according to this test, the quality of the speech has considerably improved after being

filtered by the proposed time-varying filter.



55

1st sample

average grade

2nd sample

average grade

3rd sample

average grade

4th sample

average grade

Total average

grade

Noisy speech 2.00 1.90 1.90 1.80 1.90

Filtered speech 4.00 3.95 4.00 4.10 4.01

Table 4-7 Results of the Speech Quality Measurement Test [50]

The second test is an intelligibility test called Diagnosis Rhyme Test

(DRT) [59]. It consists on six word pairs that differ by a single acoustic feature in an

initial consonant. The word pairs are chosen to evaluate the phonetic characteristics

listed in Table 4-8.

Characteristics Description Example

Voicing Voiced-unvoiced Dense-tense

Nasality Nasal-Oral Need-deed

Sustention Sustained-interrupted Sheet-cheat

Sibilation Sibilated-unsibilated Sing-thing

Graveness Grave-acute Weed-reed

Compactness Compact-diffuse Key-tea

Table 4-8 DRT Characteristics [59]

The listener hears six words in a row, one from each category. In an answering

sheet, two options are given for each word. The listener has to mark on the answering

sheet which one of the two words he thinks is correct. The test has been conducted on

10 listeners and the results are presented in Table 4-9. The filter is again a second order

FIR time varying filter. We see clearly that the filtering has greatly improved the

intelligibility.

Finally, we see that the best filtering is obtained by a low order time varying

Wiener filter. A great advantage of the time varying filter is the fact that the signal is

not distorted. This is due to the fact that the filter adapts itself to the variations of the

signal. A remarkable fact is that the best filtering has been obtained by a second order
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FIR filter. This is essentially due to the fact that the time varying filter has a time

variable gain. The gain is quite small in the noise only part, while it is much higher

( 1) in the speech region.
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%

16.6

%

16.6

%

0% 16.6

%

16.6

%

0% 16.6

%

0% 16.6

%

11.6
%

Table 4-9 Intelligibility Measurement Test Results [50]

We have described speech pre-processing, i.e. processing before feature

extraction. We tried to correct most of the inconveniences that can affect speech

acquired by a typical PC sound card. The next step is to extract parameters from the

"cleaned" speech.
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Chapter 5

Feature Extraction and Selection

At this point, the speech signal has been pre-processed and cleaned of unwanted

distortion and noise. The next step is to extract from this "raw" signal a set of

parameters that are as informative as possible on the phones or phonemes being

pronounced by the speaker whereas we should eliminate all redundant information and

also unneeded information (about the speaker, his/her emotive state, etc) that might

hinder the recognition process. We have seen that speech is a slow varying non

stationary random process. So, we are going to analyse the speech signal using time

frames of few milliseconds duration. In fact, we are going to use the same framing as

the one described in Figure 4-15, i.e. frames 256 sample-long translated by 100 samples

each time. If the sampling rate is 16 kHz, this represents frames taken every

6.25 milliseconds, each one having a duration of 16 milliseconds. We are going to

analysis three different parametric representations: the linear prediction coefficients

(LPC), the partial correlation coefficients (PARCOR) and the Mel frequency Cepstral

coefficients (MFCC). These three sets are going to be compared from a statistical point

of view and the best one will be selected for the final recognition system and for its

training.

5.1 Linear Prediction

Linear prediction is a technique for the representation of speech segments using

the model of production presented in chapter 1. We have seen that the speech

production system can be modelled as slowly time varying linear filter H(z). There exist

two different formulation of linear prediction: The stationary or autocorrelation

formulation [57, 58, 44, 45] and the non-stationary or covariance formulation [3, 56,

104].

5.1.1 The Autocorrelation Formulation

We have seen in chapter 3 that equation (3.1) allows us to predict a speech

sample by a linear combination of the p previous samples. This formulation forms the

basis of the linear prediction method. In chapter 4, we have also considered

autoregressive modeling of stationary random processes. Consider the following all pole

system driven by a white noise w(n):
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0

1

( )
1

p
k

k
k

bH z
a z

(5.1)

The output of the above system is:

0
1

( ) ( ) ( )
p

k
k

x n a x n k b w n (5.2)

It consists of a sum of two signals. A linearly predicted signal:

1

( ) ( )
p

k
k

x n a x n k (5.3)

and a white process b0w(n). If the process has a small variance, then, we can say

that the signal x(n) can be linearly predicted from its p past values in the mean square

sense. As a result, we can represent the properties of the signal using the set of

parameters {ak ; k = 1,..., p} that minimizes the following mean square error:
2( ) ( )E E x n x n (5.4)

This problem has already been seen in chapter 4, the solution is provided by the

Yule-Walker equations (4.24) which are repeated below:

1(1) (0) ( 1)

( ) ( 1) (0)

xx xx xx

xx xx xx p

r ar r p

r p r p r a
(5.5)

or r = Ra

where rxx(k) is the autocorrelation function of the signal x(n). This

autocorrelation can be computed using the unbiased formula given by equation (4.26),

however, if one minimizes directly (5.4) in the least square sense, using a windowed

signal, we find as result the biased value:

1( ) ( ) ( )xx
n

r k x n x n k
L

(5.6)

where ( )x n is the signal x(n) multiplied by a finite time window of length L.

Equation (5.5) can be solved using a very efficient algorithm, the Levinson-Durbin

algorithm [86]. The Levinson-Durbin algorithm is based on the fact that the matrix R is

a symmetric Toeplitz matrix [86]. It is implemented using the following pseudo-code.

The superscripts indicate an iteration number.
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A particularity of the Levinson-Durbin algorithm is the fact that the signal is

represented by a succession of models of increasing orders, starting from zero up to p. A

by-product of the algorithm is the set of coefficients k i. These coefficients are called the

PARCOR (partial correlation) coefficients by Itakura and Saito [44, 45]. The PARCOR

coefficients are also called "reflection coefficients" and they have a direct relationship

with the implementation of the speech model H(z) by the lattice structure shown in

Figure 5-1.

Figure 5-1 Lattice Structure of the Vocal Tract Model H(z)

Another property of the refection coefficients is the fact that they are bounded by
one: 1ik . It can be shown that this implies that the obtained filter H(z) is always

stable. In conclusion, the particular speech segment (corresponding to the finite time

window) can be represented by either the set of p prediction coefficients ai or the set of

p PARCOR coefficients ki.
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5.1.2 The Covariance Formulation

For the covariance formulation, we assume that the speech segment is voiced

and let us place the time origin at the beginning of the pitch period. Let NT the number

of samples in a pitch period. If we assume that the production model has poles and

zeroes (general autoregressive, moving average model, ARMA), then the input output

relationship of the production model satisfies equation (3.1) which is repeated below:

1 0

( ) ( ) ( )
p p

k k
k k

x n a x n k b u n k (5.7)

where the excitation u(n) take the value of one at n = 0 and zero up to NT.

Assuming zero initial conditions and a window of size N + 1, we can write the

following set of equations:

0

1 1

2 1 2

1 2

1 2

1 2

(0)

(1) (0)
(2) (1) (0)

( ) ( 1) ( 2) (0)

( 1) ( ) ( 1) (1)

( ) ( 1) ( 2) ( )

p p

p

p

x b

x b a x
x b a x a x

x p b a x p a x p a x

x p a x p a x p a x

x N a x N a x N a x N p

(5.8)

Introducing the following notation:

1

2

0 1

1 2

(0) (1) (2) ( )

( 1) ( )

T

T

T

p

T

p

x x x x p

x p x N

b b b

a a a

x

x

b

a

We can re-express the set of equations (5.8) in matrix form. It provides:

1

2

x I L b
x 0 X a

(5.9)

where:
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0 0 0
(0) 0 0
(1) (0) 0

( 1) ( 2) (0)

x
x x

x p x p x

L

and

( ) ( 1) (1)
( 1) ( ) (2)

( 1) ( 2) ( )

x p x p x
x p x p x

x N x N x N p

X

The least square solution of the above set of equations is given by:

1

2

0 0
T T T T

xI I I L b
xL X L X 0 X a

(5.10)

Finally, we find:

2
T TX x X Xa (5.11)

1b x La (5.12)

The elements of the p p matrix XTX are denoted (i,k) and are called covariance

coefficients. Their value is given by

1

( , ) ( ) ( )
N

n p

i k x n i x n k (5.13)

and the elements of the vector XTx2 are actually given by ( i,0).

The set of parameters ak, solution of the system of equations (5.11), is also

called the set of prediction coefficients. The matrix XTX, although symmetric, lacks the

Toeplitz structure of the matrix R of equation (5.5). Nevertheless, it is usually positive

definite. It can be solved by the Cholesky decomposition method [86], which is quite

efficient. We note also that the covariance method is in fact a pole and zero

representation of the speech production model H(z). In reference [17], Chandra and Lin

show that if the interval of analysis is smaller than a pitch period, the covariance

method is more precise. If the window is much longer than the pitch period, the two

methods become similar. Therefore, we are going to use the autocorrelation formulation

in the remaining part of our work.
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5.2 The Mel Frequency Cepstral Coefficients

The Mel Frequency Cepstral Coefficients (MFCC) is the most commonly used

set of parameters in modern speech recognition systems [16, 26, 63]. This set of features

is based on an auditory model of frequency sensation by listeners. Measurements have

shown that human listeners cannot distinguish two tones if they are separated by less

than a bandwidth of about 20% of the frequency of one the tones [106]. Other

measurements on human perception of tones show also that our perception of frequency

follows a logarithmic scale. The perceived "frequency" is called pitch5 [85] and is

measured in mels. The following equation is an empirical relationship between

frequencies and mels [85].

Pitch in mels 1127 ln 1 700
f (5.14)

The mel scale is calibrated by assigning the value of 1000 mels to a frequency of

1000 Hz. The concept of mel scale is closely related to the concept of critical frequency

bands.

Another important notion used in the MFCC's is the concept of cepstrum [12].

The word "cepstrum" is an anagram of the word spectrum. It has been coined by

Bogert [12] in 1963. This notion has been later generalized by Oppenheim et al. [64, 65]

to the concept of "homomorphic" processing of signals. In speech recognition, the

original definition is sufficient. It is usually defined as real cepstrum. Given a windowed

segment of signal x(n), the real cepstrum c(n) is defined as the inverse discrete Fourier

transform (IDFT) of the logarithm of the modulus of the discrete Fourier transform

(DFT) of the signal x(n).

( ) IDFT log DFT ( )c n x n (5.15)

The index axis of the cepstrum is called the "quefrency" axis. If the signal x(n)

has been produced by the convolution of a periodic signal with some impulse response,

the cepstrum is going to present at low quefrencies the transform of the impulse

response and at the higher quefrencies the transform of the excitation. We can separate

the two signals (deconvolve) by eliminating the high quefrency terms. This operation is

called "liftering" (for filtering) and the window is called a "lifter" (for filter). If this

operation is applied to the speech signal, we can eliminate the glottal response, which is

5 It is a subjective attribute of periodic sounds. It should not be confused with the previously defined pitch
frequency of voiced speech.
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speaker dependent, and keep only the vocal tract response, which depends on phones

being pronounced. l1(n) and l2(n) are typical lifters used in speech recognition.

1

1 0,1, , 1
( )

0
n L

l n
elsewhere

(5.16)

2

11 sin 0,1, , 1
( ) 2 1

0

L n n L
l n L

elsewhere
(5.17)

L being smaller than the size of the window.

The Mel Frequency Cepstral coefficients (MFCC) is a parametric representation

of speech that utilizes a filter bank with bandwidths that are constant on a mel scale and

also liftering in order to eliminate the effect of the excitation on the vocal tract

response [23]. For a 4 kHz bandwidth, approximately 20 filters are needed. In practice,

a short time DFT is computed, resulting in a spectrum Xn(k) for the frame positioned at

sample n.

Figure 5-2 Weighting Functions for Mel-Frequency Filter Bank

The DFT values are then grouped together in critical bands and weighted using

the triangular functions shown in Figure 5-2. We can remark that the bandwidth are

constant below 1 kHz and then increase exponentially up to 4kHz, resulting in 22

analysis filters. So, the mel frequency power spectrum is defined as the weighted power

out of the analysis filters for r = 1, ..., R.

21 ( )
r

r

U

n r n
k Lr

MF r V k X k
A

(5.18)

where Vr(k) is the rth triangular weighting function spanning the sample

frequency index from Lr to Ur and Ar is a normalizing constant.



64

2( )
r

r

U

r r
k L

A V k (5.19)

This normalization is built into the filters shown in Figure 5-2. It is needed, so

that a flat Fourier spectrum will produce a flat mel spectrum. The final MFCC

coefficients are then computed using a discrete cosine transform (DCT) of the logarithm

of the filter output. The DCT is used instead of an IDFT because we are dealing with a

real symmetric spectrum.

1

1 2 1log cos
2

R

n n
r

c m MF r r m
R R

(5.20)

At this level, a liftering is performed since we compute only NMFCC coefficients

where NMFCC < R. Typical values are NMFCC = 13 and R = 22. In some applications, we

compute also first difference coefficients cn(m) (to approximate the derivative) and

second difference coefficients cn(m) (to approximate the acceleration). These

difference coefficients are useful to characterize transient phones like plosives but they

increase the dimension of the feature space (from 13 to 39). In the following section, we

are going to compare three set of features from the statistical point of view. The three

sets are: the set of linear prediction coefficients {a1, a2, ..., a16} from the autocorrelation

formulation, the set of PARCOR coefficients {k1, k2, ..., k16} from the same formulation

and the set of MFCC coefficients {c(1), c(2), ..., c(13)}.

5.3 Statistical Comparison of Features

5.3.1 The Normal Density

In our model of speech recognition, we assume that the phones cluster in

different classes. The basic assumption is that the parameters extracted from a given

speech segment are members of a given statistical population, that is, they are

realizations of random vectors having a given probability density function (PDF). It is

quite common to assume that the pdf is unimodal. Therefore, it is convenient to assume

that the features derive from a multivariate Gaussian density (Normal density) [49].

1
| 1

2 2

1 1( | ) , , exp
22

i

T
w i i i i i ip

i

f wx x x m S x m S x m
S

N (5.21)

Equation (5.21) describes a pdf for a normal density for a p-dimensional vector x

coming from the class with label wi, with mean mi and covariance matrix Si. The

constant pdf surfaces are hyper-ellipsoids described by equation (5.22).
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2 1 2( , ) T

i i i id cx m x m S x m (5.22)

d2(x,mi) is called the Mahalanobis distance between x and mi. The principal axes

of the hyper-ellipsoid are given by the eigenvectors of Si and their lengths are

proportional to the square root of the eigenvalues of Si. We will show that the

Mahalanobis distance has a chi-square distribution with p degrees of freedom. So, if
2 2 ( )pc , where 2 ( )p is the (100 ) percentile (quantile) of a chi-square

distribution with p degrees of freedom, then we have 100 % of chance to find a vector

x belonging to the class wi inside the hyper-ellipsoid defined by (5.22). Therefore, if the

distributions of all classes are normal, the samples will have a tendency to cluster in

hyper-ellipsoids. We are going to verify which set of features obeys (as much as

possible) a normal law.

5.3.2 Assessing the Assumption of Normality

When we deal with one-dimensional data, a commonly used test for normality of

the data is the QQ (quantile-quantile) plot [49]. Assume we have collected N random

data X1, X2, ..., XN . The order statistics X[1],N, X[2],N, ..., X[N],N is a rearrangement of the

initial data in increasing order. If we assume that the data came from a population

having a given pdf fX(x), then it is shown [11] that X[j],N is the "sample p-quantile" where

j is the smallest integer greater than or equal to Np. The p-quantile p is defined as:

( )p

Xp f x dx (5.23)

Let p , p = (j – 0.5)/N, j = 1, ...,N, be N successive quantiles from the above

defined distribution. A QQ plot is a plot of the sample p-quantiles against the

quantiles p. If the data are effectively drawn from the same type of distribution, then

the plot will be a straight line. We can measure the degree of linearity by computing the

correlation coefficient between the data. The data will be Gaussian (Normal) if the p-

quantiles are drawn from a standard normal distribution.
2

21
2

p
x

p e dx (5.24)

When the collected data are multidimensional, the above test can be used to

examine whether the marginal distributions are normal or not. However, this does not

imply that the overall distribution is Gaussian if all the marginal distributions are

normal. A better test is the Chi-square plot [49]. We have seen that the Mahalanobis

distance d² has a chi-square distribution. So, if we plot sorted Mahalanobis distances
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versus chi-square quantiles, then we can assess whether the distribution of d² is chi-

square or not. This will allow us to deduce that the distribution of the vectors is normal

if the chi-square plot is linear.

We are going to analyze three different parametric representation of speech. The

speech signal is coming from two different locutors: one male ('Kader') and one female

('Aicha') sampled at 16 kHz. We use 256 sample wide Hamming windows shifted by

100 samples at each frame. The sets are:

16 LPC coefficients issued from the autocorrelation formulation. We also

call them the "a parameters".

16 PARCOR coefficients issued from the same formulation. We also call

them "k parameters".

13 MFCC coefficients.

Since our data are multidimensional, we are going to use Chi-square plots. The

first step in our analysis is the manual extraction of speech segments corresponding to

the different phonemes of Table A-1. For each one of these segments, we extract

different sets of features ("a", "k" and MFCC").

Figure 5-3 and Figure 5-4 show two Chi-square plots relating to MFCC

parameters. Figure 5-3 concerns 727 frames of different utterances of the phoneme /oo/

pronounced by Kader while Figure 5-4 concerns 723 frames of utterances of the

phoneme /aa/ pronounced by Aicha. We can notice that the plots are quite linear,

especially for values of squared Mahalanobis distance not exceeding 30. This tendency

is confirmed by the correlation coefficients, which have respectively the values:

r = 0.9892 for the phoneme /oo/ pronounced by Kader and r = 0.9829 for /aa/

pronounced by Aicha.

Figure 5-5 and Figure 5-6 show two Chi-square plots concerning LPC "a"

parameters. Figure 5-5 is about 581 frames of utterances of the phoneme /aa/

pronounced by Kader while Figure 5-6 is about 802 frames of utterances of the

phoneme /oo/ pronounced by Aicha. It is visible that the plots are not as linear as the

ones pertaining to MFCC parameters. The correlation coefficients are respectively

r = 0.9076 for the phoneme /aa/ pronounced by Kader and r = 0.7978 for /oo/

pronounced by Aicha.
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Figure 5-3 Chi-Square Plot for MFCC of /oo/ by Kader
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Figure 5-4 Chi-Square Plot for MFCC of /aa/ by Aicha
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Figure 5-5 Chi-Square Plot for "a" parameters of /aa/ by Kader
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Figure 5-6 Chi-Square Plot for "a" parameters of /oo/ by Aicha

Figure 5-7 and Figure 5-8 show two Chi-square plots pertaining to PARCOR "k"

parameters. Figure 5-7 concerns 581 frames of utterances of the phoneme /aa/

pronounced by Kader while Figure 5-8 concerns 799 frames of utterances of the

phoneme /aa/ pronounced by Aicha. We see that the plots are not linear at all. This is

confirmed by the correlation coefficients which are respectively r = 0.5850 for the

phoneme /aa/ pronounced by Kader and r = 0.5628 for /aa/ pronounced by Aicha.
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Figure 5-7 Chi-Square Plot for "k" parameters of /aa/ by Kader
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Figure 5-8 Chi-Square Plot for "k" parameters of /aa/ by Aicha

We have repeated the above tests for most sustainable phonemes of Table A-1.

The results are summarized in Table 5-1 for the male speaker (Kader) and in Table 5-2

for the female one (Aicha).

Kader /aa/ /oo/ /ii/ /rr/ /ss/ /ff/ /mm/

MFCC 0.9850 0.9892 0.9853 0.9699 0.9581 0.9712 0.9778

PARCOR 0.5850 0.5748 0.5783 0.5230 0.5177 0.5623 0.5576

LPC 0.9076 0.8925 0.8991 0.9020 0.9102 0.8925 0.8953

Table 5-1 Correlation Coefficients for Kader

Aicha /aa/ /oo/ /ii/ /rr/ /ss/ /ff/ /mm/

MFCC 0.9829 0.9725 0.9679 0.9564 0.9600 0.9501 0.9550

PARCOR 0.5628 0.5542 0.5538 0.5378 0.5221 0.5012 0.5566

LPC 0.8022 0.7978 0.7899 0.7543 0.7830 0.7692 0.7669

Table 5-2 Correlation Coefficients for Aicha

From the above tables, it is apparent that the MFCC exhibit a more pronounced

Gaussian character than the other two sets of features. In fact, the Gaussian behavior is
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more evident for smaller values of the Mahalanobis distance to the mean of the class.

Considering only the Gaussian behavior, we should select the MFCC set of parameters.

5.3.3 Discriminant Analysis

Another factor to take into consideration in the choice of a set of features is the

separation of the different clusters in the feature space. Ideally, the clusters should have

very small variances and they should be widely separated. A graphical tool that is very

useful is a scatter plot of the data. However, it can be used only in two-dimensional

spaces. We have seen that the parameters under study are 13-dimensional vectors for

the MFCC, 16-dimensional vectors for the LPC coefficients and 16-dimensional vectors

for the PARCOR coefficients. In order to have significant scatter plot, we should define

a p to 2 mapping. The mapping that we are going to use must retain as much properties

as possible. Among all possible mappings, we are going to select one such that the

classes are going to be as separated as possible in the range space.

Introduced by Fisher [28, 29] and later developed by Wilks [101], statistical

discriminant analysis is a way of transforming a set of p-dimensional vector

observations into a set of m-dimensional vectors, m < p. The transformed vectors have

the property that most of the information of the original set is preserved in the lower

dimensional space. These transformations are commonly used in statistical pattern

recognition [35, 88] We assume that we have N p-dimensional observations belonging

to M different classes, that is, N1 vectors in class w1, N2 in w2, ..., NM in wM, along with

N1 + N2 +...+ NM = M. For each class, we can define a class center, i.e. the class mean

using (5.25) and a scatter matrix, which is nothing but the class covariance matrix using

(5.26).

1

1 ;
iN

i k k i
ki

w
N

m x x (5.25)

1

1 ;
1

iN
T

i k i k i k i
ki

w
N

W x m x m x (5.26)

The matrix Wi gives an indication of the distribution of data from class wi

around its mean. However, this is "local" information that pertains only to class wi.

More global information is provided by the within scatter matrix:

1

M
i

i
i

N
M

W W (5.27)
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The within scatter matrix provides information about how data cluster around

the different means: The smaller its eigenvalues, the more concentrated the data will be

around its means. We can also define an overall mean:

0
1

M
i

i
i

N
M

m m (5.28)

Information about the average separation of classes is given by the between

scatter matrix:

0 0
1

M
Ti

i i
i

N
M

B m m m m (5.29)

B being the sum of M rank one matrices will automatically be singular if M is

smaller than the dimension of the observation space. Classes will be widely separated

and the data will be tidily clustered around their means if the following criterion is

maximized:
1J tr W B (5.30)

where tr[A] stands for trace of A.

Let us define a transformation matrix A from the p-dimensional space to an m-

dimensional. The within and the between scatter matrices are going to become:

( ) ( )andT T
m mB A BA W A WA (5.31)

It is shown that the optimum transformation matrix, that is, the matrix A that

maximizes J in the m-dimensional space is given by the matrix whose columns are the

eigenvectors corresponding to the largest eigenvalues of the following generalized

eigen-problem:

Bx Wx (5.32)

Figure 5-9, Figure 5-10, Figure 5-11and Figure 5-12 represent two-dimensional

scatter plots of measured data from three vowels pronounced by Kader and Aicha. The

axes of the two-dimensional space are the eigenvectors corresponding to the largest

eigenvalues of (5.32) computed in the space of LPC parameters (16-dimensional) and

the space of MFCC (13-dimensional). Scatter plots for the PARCOR coefficients are

not shown because it is impossible to distinguish the three classes in the scatter plots.

Figure 5-9 and Figure 5-11 represent the scatter plots for the LPC coefficients while

Figure 5-10 and Figure 5-12 represent scatter plots for the MFCC parameters. It is

apparent that the MFCC coefficients provide a better class separation. Furthermore, we
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notice the typical ellipsoidal shape of the different clusters, which confirms the

Gaussian nature of the MFCC parameters.

Figure 5-9 Scatter Plot of LPC parameters by Aicha

Figure 5-10 Scatter Plot of MFCC Parameters by Aicha
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Figure 5-11 Scatter Plot of LPC parameters by Kader

Figure 5-12 Scatter Plot of MFCC Parameters by Kader

The scatter plots indicate that the MFCC parameters form a better set of features

than the LPC parameters. This is confirmed by the value of J = tr[W-1B] computed for

both speakers and both set of parameters. The separability of the set of MFCC is much

higher than the one provided by the LPC parameters.

tr[W-1B] LPC MFCC

Aicha 0.00050534 0.0029941

Kader 0.0006328 0.0029114

Table 5-3 J Criterion Value for LPC and MFCC Parameters

The statistical analysis indicates clearly that we should use the MFCC

parameters to represent speech segments for the recognition stage of our system.



74

Chapter 6

Continuous Speech Recognition

Speech recognition is a subdivision of the more general theory of pattern

recognition. In our work, we are going to use results from statistical pattern recognition

[35, 88]. In the present chapter, we are going to compare two different techniques for

speech recognition. The first one uses the classical hidden Markov models (HMM) [76]

and will be used as a benchmark against which we are going to compare our stack

search method [20].

6.1 Statistical Pattern Recognition

Statistical pattern recognition [35, 88] is essentially a method of classification.

Let us assume we are given a measurement vector x. This vector represents features

from some pattern wi. If we know that there exists M pattern classes {w1, w2, …, wM},

the job of the pattern recognizer (classifier) is the identification of the class wi according

to some optimality criterion. The usual (and most widely used) criterion of optimality is

the minimum probability of error. It is shown that minimizing the probability of error is

equivalent to maximizing the "A posteriori" probability. So, the MAP (Maximum A

posteriori Probability) rule is:

select such that: maximum; 1,2, ,i iw P w i Mx (6.1)

where P [wi|x] is the a posteriori probability of the class wi given the

measurement x. If the patterns are generating continuous random variables, application

of the Bayes rule generates the following decision function:

|( ) ( | )
ii i w id P w f wXx x (6.2)

and the decision rule becomes:

select such that: ( ) maximum; 1, 2, ,i iw d i Mx (6.3)

| ( | )
iw if wX x is the conditional density of x given that it comes from the class w i.

It is also called the "likelihood" function. P [wi] is the a priori probability of the class wi.

If all classes are equiprobable, the decision rule is based only on the likelihood function.

It is called a ML or maximum likelihood decision rule. The decision rules divide the
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observation space into M non-intersecting regions Di. The probability of error can be

evaluated as:

|
1

1 ( | )
i

i

M

i w i
i

P E P w f w dX x x
D

(6.4)

Equation (6.4) can be very hard to compute and is usually evaluated statistically.

It is an important figure of merit of a recognition algorithm. However, the presented

theory is valid for static patterns. This is not the case of speech. We have seen in chapter

two that speech can be represented as a succession of phones. When we analyze a

speech segment using translated overlapping windows, the sequence of measured data is

going to trace a path in the feature space. Figure 6-1 shows an example of a given path

in a two dimensional space which shows that the phone corresponding to class w1 is

pronounced during a given time. Then there is a transition to another phone and the

signal remains in class w2, etc. A solution to word recognition would be to try to

recognize every segment independently and then assemble the result of the recognition

to recognize the word or phrase being pronounced. The drawback of this method is the

fact that some segments might be in error and that the number of segments

corresponding to a particular phone is variable. We can remark this variation in Figure

6-2 and Figure 6-3, where the same locutor pronounces the same word, but in different

disposition. This approach does not give satisfactory results. We obtain better results by

following the segment recognizer with some smoothing algorithm [61]. Even with this

improvement, the recognition rate is not very high unless the vocabulary size is small.

Figure 6-1 Path Followed by a Speech Signal in the Feature Space

w3

w2

w1
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Figure 6-2 Word "mars" pronounced by Kader on day 1

Figure 6-3 Word "mars" pronounced by Kader on day 2

All large vocabulary speech recognition systems model words as concatenation

of sub-words units such as syllables or phonemes. These models allow also dynamic

modelling of speech in order to take into account the variabilities described above.

6.2 Finite State Automata

Finite state automata (FSA) are commonly used for language modelling. In

speech recognition, we can use FSA to model word sub-units, (phonemes or syllables),

words or even phrases or complete sentences. Using FSA, we can introduce the notion

of time variation in the speech segment. The raw speech signal is analyzed in frames

consisting of finite time windows (usually 256 samples) translated by R samples

(usually 100 samples).

Finite State Automaton Definition [53]:

A finite state automaton is an abstract machine consisting of:

1. A set of states ,1,2, , ,Q I K F , where I is an initial state and

F is a final state. F is also referred as accepting state in the case of finite

state recognizer (FSR). We can have multiples initial and final states.

The state visited at frame index t will be denoted qt.
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2. A set Y of input symbols. The symbols can be discrete or continuous,

scalars or vectors. The input at frame index t will be denoted y t.

3. A set X of output symbols. The symbols can be discrete or continuous,

scalars or vectors. The output at frame index t will be denoted x t.

4. A state transition function qt = f (yt, qt-1) called also the next state

equation. In many cases, it is available in the structure of a table.

5. An emission function xt = g (qt, qt-1) which takes the current state and the

previous state and returns the output pattern x t. This automaton is usually

known as a Mealy FSA or branch emitting FSA. A variant of this, the

Moore FSA, has an emission function that depends only on the current

state xt = g (qt). It is also called state emitting FSA.

We assume that the FSA is synchronous: it makes a state transition at each

frame. In many cases, the FSA model is used without the input set Y. The complete

machine can then be described by a single transition table or graphically, using a state

diagram as shown in Figure 6-4. It represents a two state Mealy FSA with outputs x0

and x1. The same information is provided by Table 6-1.

Figure 6-4 Example of a State Diagram

Present state Next state Branch label

0 0 x0

0 1 x1

Table 6-1 State Transition Table

The state diagram provides only static transition information. Better information

on the time evolution of the FSA is provided by a state trellis. The state trellis is a two

dimensional representation of state transitions. The horizontal axis is a time (frame) axis

and the vertical axis represents the states at the given frame index.
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Figure 6-5 State Trellis Corresponding to Figure 6-4

A particular realization of the process described by the above state automaton

will trace a path in the state trellis. FSA can be quite useful to describe speech

segments. We have seen in chapter 2 that a particular speech segment can be modelled

as a succession of quasi-stationary small segments, each segment corresponding to a

branch label for a Mealy machine or a node (state) label for a Moore machine.

6.3 Hidden Markov Models

The FSA described above are deterministic FSA. There exist Stochastic FSA's

(SFSA). An FSA is stochastic when the production function g (.) is not deterministic.

An important class of SFSA is represented by hidden Markov models (HMM) [5, 6, 7,

8, 16, 34, 62, 67, 72, 73, 74, 76]. It is essentially a Markov chain whose states cannot be

observed directly. A Markov chain is a FSA that can be described by a state diagram

with branch labels being transition probabilities between states. So, an HMM will be

defined by:

1. A finite set of states 1, 2, ,Q N . The state at time t will be labelled

as qt.

2. The state transition probability is the probability of moving from state i

to state j in one frame step.

1 ; 1 ,ij t ta P q j q i i j N (6.5)

Using the finite memory of the Markov chain:

1 1 1 2 2 0 0 1; ; ; ;t t t t t t t tP q j q i q k q k q k P q j q i

These probabilities can be represented by an N N transition matrix A = {aij}.

……

……
0

1

0 1 2 t t+1
x0 x0 x0

x1 x1 x1
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3. The initial state probabilities are defined as:

0 ; 1i P q i i N (6.6)

4. To every state, at frame index t, we attach an observation xt (feature

vector for example) with a conditional probability (or conditional

density):

j t t tb P q jx x (6.7)

Properties 1, 2 and 3 are nothing but the definition of a Markov chain, while the

last property relates the observations to the Markov chain. It is evident, from the

definition, that the states of the Markov chain cannot be observed directly. We can

observe only their effect through the functions bj.

In speech recognition, the observations are sequences of vectors of parameters

such as LPC coefficients, PARCOR coefficients or MFCC coefficients. There exist

other parametric representations of speech, but in this chapter, we will use the MFCC

parameters because we have seen in chapter 5 that they are near optimum for

discrimination of patterns. The type of Markov chains used in speech recognition are

not ergodic, but "left to right" as shown in Figure 6-7.

Figure 6-6 Ergodic HMM Structure
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Figure 6-7 Five State Left to Right HMM Speech Model [92]

In the left to right Markov chain, the transition matrix A is upper triangular, and

is usually assumed to be banded. The transition matrix corresponding to the state

transition diagram shown in Figure 6-7 is:

11 12 13

22 23 24

33 34 35

44 45

55

0 0
0 0
0 0
0 0 0
0 0 0 0

a a a
a a a

a a a
a a

a

A (6.8)

A being a stochastic matrix has the property that aNN = 1. The spoken letter "C"

corresponds to the two phones /ss/ and /ii/ cascaded. The self loops (aii 0) indicate that

the corresponding speech segment can have an arbitrary long duration. The first off

diagonal (ak,k+1) indicate a normal transition while the second off diagonal (ak,k+2)

indicate that the next state can be skipped. We see clearly that we can model very

accurately the time variations of the speech waveform. When we use a right to left

topology, we have to start at the first state. This implies that the initial state probabilities

form the following vector:

1 0 0 (6.9)

So, when we are pronouncing "C", the associated SFSA will go from one state to

another until we arrive to the last state, which is an acceptor state. This means that in

order to recognize a particular speech segment of length T + 1 frames, we have to find

the particular state sequence {q0, q1, …, qT} it has undertaken given the sequence of
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measurements {x0, x1, ..., xT}. If we use the concept of MAP defined by (6.1), this

means that we must find the path in the state trellis that maximizes

P [q0, q1, …, qT|x0, x1, …, xT]. An exhaustive search through all possible paths will be

too costly since the total number of possible paths depends exponentially on the number

of states N and on the number of measurements T + 1. A solution to this problem is

provided by the Viterbi Algorithm [95, 33, 96]. The Viterbi algorithm is essentially a

dynamic programming method [10] and is equivalent to the optimum methods for

finding the shortest path in graph theory. It has been developed originally for decoding

short constraint length convolutional codes [95]. Using the Bayes theorem, maximizing

the probability of the state sequence given the observation sequence is equivalent to

maximizing the following product:

0 1 0 1 0 1, , , , , , , , ,T T TP q q q P q q qx x x (6.10)

(6.10) can be rephrased as:

1
0 0

T T

k k k k
k k

P q P q qx (6.11)

if we set 0 1 0P q q P q . At that time, we iteratively solve the maximization

problem. We define by ( )t i the maximum value of the metric (6.10) of the path

arriving at state i at frame index t. Then, using the dynamic programming principle that

any sub-path of an optimum path is itself optimum, using (6.11), we can state the

following recurrence rule:

1 1 1
( ) ( ) max ( )t j t t iji N

j b i ax (6.12)

since 1 1 1( )j t t tb P q jx x and 1ij t ta P q j q i . Because (6.12) is a

product of numbers with modulus less than one (probabilities), the above quantity is

numerically unstable. It is better to use the logarithm of the above quantity as a path

metric and replace the multiplications by additions.

1 1 1
( ) ( ) max ( )t j t t iji N

j b i ax (6.13)

where ( ) log ( )t ti i , ( ) log ( )i t i tb bx x and logij ija a .

In continuous speech recognition, we model each phone by a tri-state HMM and

the phone is recognized if it has the highest end path metric (6.13). The word is then

recognized by the use of a dictionary of phonemic transcriptions of the given

vocabulary.
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A major problem in all recognition systems is the evaluation of the different

parameters that form the model. In our case, we must estimate the different transition

probabilities aij and evaluate the probability density functions bj(x). This is achieved by

"training" the recognizer. In the case of HMM, a powerful training method, the Baum-

Welch algorithm [8, 98] has been developed. A description of the algorithm is provided

in ref. [16, 72, 73, 76, 98].

6.4 Benchmark System [76]

As a benchmark continuous speech recognition system, we are going to use a

toolkit developed at the Cambridge University, the Hidden Markov model Tool Kit

(HTK). It is a set of files that can be downloaded freely from the Cambridge University

site http://htk.eng.cam.ac.uk/. The toolkit can be used for general purpose modelling of

time series using HMM's. However, HTK is primarily designed for building and

training speech recognizers.

The system designed using HTK is a continuous speech recognition for

colloquial Algerian Arabic numbers from one to 999 999 999 [76]. When somebody

wants to develop an HMM based recognition system in American English, he can use a

very powerful corpus of speech data, TIMIT Acoustic-Phonetic Continuous Speech

Corpus [30]. It consists of a database of manually time aligned speech data from 630

speakers using eight dialects of American English. However, such system is not

available for Algerian Arabic. So, data was collected from 37 department students

forming a database of 11230 sentences pronounced by 17 male students and 20 female

students.

The speech signal is acquired with a sampling rate of 16 bits along with 16 bits

per samples using built in sound cards of PC computers. This data has been manually

segmented into phones using a freely available software, Speech Analyzer ver.1.5 from

Summer Institute of Linguistics, copyright © 1996-2002, Acoustic Analysis Project,

IAARS-CCS, Waxhaw, N.C., USA.

A task grammar has been developed to enhance the recognition using syntactic

rules. The language to be recognized is the central Algerian dialect. The task grammar

along with pronunciation rules is much more complex than classical or standard Arabic

language due to the lack of a unique rule for pronouncing the different words. For

example, the digit two is either "zoudj" or "tnin". This second form can have different

pronunciations such as /tt/ /nn/ /ii/ /nn/ or /st/ /nn/ /ii/ /nn/.
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Figure 6-8 shows a graphical representation of the top level of the task grammar

used to define our recognition scheme. Any spoken number between one and

999 999 999 will always obey this grammar. The block named $units defines the

structure of numbers between one and 999, the block $thousands defines the structure of

numbers between one thousand and 999 thousands and finally, the block $millions

defines the structure of numbers between one million and 999 millions. The word

composed of the single phoneme "u" (/oo/) links the different blocks together and has

the meaning of the English word "and".

Figure 6-8 Overall Task Grammar [76]

Each block in Figure 6-8 can be developed as shown in Figure 6-9 and Figure 6-

10. However, describing the whole task grammar graphically is too lengthy. We are

going to use HTK word building language which is based on the extended Backus-Naur

Form (EBNF) description language [81].

Figure 6-9 Development of the $units Block
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Figure 6-10 Development of the $thousands and $millions blocks

The definition of the task grammar is given in a bottom up manner, starting from

basic sub-blocks all the way to the final definition of the complete grammar. Each block

contains words or parts of words that share some common acoustic properties. For

example, we can connect the phoneme "a" (/aa ita/ ) to the sub-block $G0 to produce

the words: "reb3a" (/rr/ /aa/ /bb/ /3a/ /aa ita/), "khemsa" (/Kh/ /aa/ /mm/ /ss/ /aa ita/),

"setta" (/ss/ /aa/ /tt/ /aa ita/), "seb3a" (/ss/ /aa/ /bb/ /3a/ /aa ita/), "tes3" (/tt/ /aa/ /ss/ /3a/

/aa ita/). These words are the representations of the numbers 4, 5, 6, 7, 9 respectively.

Definition of the task grammar:

$G0 ::= reb3 | khems | sett | seb3 | tes3;
$G1 ::= thlath | thmany | $G0;
$G11 ::= 3eshr | $G1;
$G2 ::= thelth |themn|$G0;
$G22 ::= $G2|3eshr;
$G23 ::= zoudj|$G2|3eshr;
$G3 ::= hdash|thnash|(thlet|rbe3|khmes|seT|sbe3|thmen|tse3) Tash;
$G40 ::= wahed | thnin | $G1 a;
$G4 ::= [$G40 u] $G1 a;
$G50 ::= $G3 en | $G4;
$G51 ::= u [$G3 en | $G4];
$G52 ::= [[$G2] mya (t | $G51) | mitin [$G51] | $G50] melyun;
$G53 ::= [(([$G2] mya) | mitin) u ] $G23 mlayen;
$millions ::= $G52 | $G53;
$G6 ::= $G22 alaf | alfin;
$G61 ::= [[$G2] mya (t | $G51) | mitin [$G51] | $G50] alef;
$G62 ::= [(([$G2] mya) | mitin) u] $G6;
$thousands ::= $G61 | $G62;
$G7 ::= wahed | zoudj | $G11 a | $G3 | $G4;
$units ::= $G7 | ([$G2] mya | mitin) [u $G7];
(SENT-START ($units | $thousands | $millions | $millions u $thousands | $millions u
$units | $thousands u $units | $millions u $thousands u $units) SENT-END)

The last line give the definition of the overall grammar starting by a silence

represented by the word SENT-START and ending by another silence SENT-END.

HTK requires a dictionary containing all the words to be recognized listed in

alphabetical order. The dictionary contains the words with their phoneme transcription.
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The system implemented does not use the phonemes listed in appendix A, but a

compatible transcription of these phonemes in a form that can be accepted by HTK. The

sentences used to build the database have been generated by HTK and then pronounced

by the selected students. All the sentences are then syntactically correct according to the

previously defined task grammar. These sentences have been used to train the system.

The recognition and the training of the system based on HTK used the same

acquisition system. The raw speech waveform is sampled at 16 kHz. It is then

windowed using a 256 samples Hamming window that will be translated by

100 samples for each frame as shown in Figure 4-15. We have seen in chapter 5 that the

MFCC parameters form the "best" set of parameters. Therefore, we select 13 MFCC

parameters using 26 channels. We add the MFCC and the MFCC to have a better

representation of transient phonemes. This means that we have a feature space of

size 39.

The system to be designed is continuous speech recognition. Therefore, we

model every phone (monophone) by a tri-state HMM. The data is manually labeled and

we use the training system built in HTK. The training is based on the Baum-Welch

algorithm. The generation probability density functions bj(x) are multivariate Gaussian

densities. Because of the high dimensionality, the covariance matrices are assumed

diagonal. This eliminates the risk of singular covariance matrix due to a lack of data in

the training set. This diagonality of the estimated covariance implies that we have

assumed that the components of the observations are independent. This assumption is

not always true but reduces the computation of the covariance matrix to the computation

of 39 variances and the computation of the inverse covariance to the inverse of the

diagonal elements. It also happens that this assumption is not detrimental to the

recognition rate of the final system.

Figure 6-11 Silence Model

Figure 6-11 shows a tri-state model for silence. We do not use a classical left to

right HMM. We can remark a reverse path from right to left. The backward skip

impedes the model to transit to the following word in case of impulsive noise. A short
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pause single state HMM has also been added. This short pause shares the center state of

the silence model. These models have also been trained. An interesting feature of HTK

is the possibility to create triphone models from the previously defined monophones.

This is achieved by tying the models together. Triphone modeling allows the

recognition system to take into account coarticulation, which is the influence of one

phoneme on the next one.

Benchmark system results [76]:

The system was tested with 200 test utterances (test sentences). The test

utterances were taken at random from the collected database. 194 were recognized

correctly and there were five substitution errors. This gives a sentence recognition rate

of 96.90%. The substitution errors affect only some words in the sentences. At the word

level, from a total of 855 words, 853 were recognized correctly. The recognition rate is

then 99.0%. There was one deletion error, no substitution error and one insertion error.

We see clearly that the designed recognizer is very accurate.

6.5 Sequential Decoding Applied to Speech Recognition [20]

In the previous part, we have described a powerful system designed around

HMM's. One drawback of the HMM systems is the large amount of data needed for

training. The Baum-Welch algorithm will compute the transition probabilities along

with the production densities. We decided to design a continuous speech recognition

system that requires much less data for training but that keeps the flexibility of the

HMM modeling. Our approach is based on the model of Figure 1-3, which is repeated

below for convenience.

Figure 6-12 Speech Recognition Model

When we want to produce a word, the human brain will translate the word into a

sequence of phoneme. Then every phoneme is translated (encoded) into a sequence of

realizations (phones). The output of the channel is going to be a sequence of

measurements (MFCC coefficients in our case).

Features

(x1, x2, …)
Channel

Phones

(w1 , w2 , …)
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In general, the channel is a non-stationary memory type of channel. However,

considered as such, it will lead to an almost intractable problem. This representation can

be simplified by modeling the channel as a stationary, discrete input, continuous output,

memoryless channel. Therefore, if we consider the conditional probabilities of

sequences of output vectors given a particular sequence of phones, we have:

1 2

1 2

Pr[ ] Pr[ ]

( , , ... )

( , , ... )

i iw

w w

X W x

X x x

W

(6.14)

It has been shown in many previous works [73, 74] that such assumption is not

detrimental to the final result, which is a good recognition rate.

The assumed encoder is going to be modeled by a finite state automaton. When a

word is pronounced, a path is traced in the corresponding trellis. The speech recognition

task will be the identification of the most likely path.

6.5.1 Speech Production Model

The models used for representing the previously described system are

deterministic finite state automata. FSA can be shown to be equivalent to HMM's if all

the transition probabilities are equal. So, in our case, we use the following definition:

The phone production model is completely defined by the quadruple (S, , f, g)

where:

1. S = {1, 2, ..., N} is a finite non empty set of states. A specific state visited

at frame index t is denoted qt.

2. = {z1, z2, ..., zM} is a finite non empty set of output symbols. The

symbols are the phone transcriptions.

3. f : S S is a state transition function which take the previous state and

produces the present state qt = f (qt-1).

4. g : S S is a production function which takes the previous and the

present state and returns an output symbol.

As defined, the speech production model is going to be a Mealy type of FSA.

Our model is going to be based essentially on phonemes characteristics. We have

already classified phonemes according to their durations and parameter variations in

two main classes:
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Sustainable or non-transient phoneme that can have a quite long

duration (such as vowels).

Non-Sustainable or transient phonemes, which have a very short

duration but a quite large parameter variations (such as plosives).

In this work, we model speech an ordered sequence of the previously classified

speech units. In our model even the natural silence is modelled the same way. Our

approach is intermediate between the one taking by Scagliola and Marni [80] and the

mostly used speech modelling method in speech recognition which h is HMMs method.

Hence each word will be represented by a finite state automata constructed following

the given word sound units (phonemes) models.

Actually all of the words, which form the vocabulary, to be recognized will be

represented by a single finite state automaton.

In this model, sustainable phonemes are supposed to have an infinite duration

while plosives (transients) have a finite duration. We have seen in chapter 2 that a

transient can have at most duration of 100 ms. In this implementation, we have used a

sampling rate of 16 kHz. The frames are translated by 100 samples every time and each

frame is 256 samples (we are using overlapping frames as in the previous system).This

means that a transient cannot have a duration that exceeds 10 frames.

So, a sustainable is represented by a single state with an input from the previous

phoneme, a self loop and an output to the coming phoneme (see Figure 6-13) while a

transient (plosive) is a ten states automaton where we have possibility of transition from

the initial state to any other state in the automaton, transitions from all succeeding states

up to the final state and there is no self loop for any state (see Figure 6-14 where only 5

states are represented).

Figure 6-13 State Diagram for the Vowel /aa/
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Figure 6-14 State Diagram for the Plosive /tt/

The symbol /**/ represents any other phonemes but one that is in our state

diagram. When a word is pronounced, it will define a path in the trellis corresponding to

the considered vocabulary. Using the above representation, an isolated word single

locutor system has been developed. It provides a recognition rate of nearly 100% for a

limited vocabulary [1]. Using the same model, a single locutor word-spotting algorithm

has also been developed [60]. It also provides the same recognition rate.

Table 6-2 shows the definition of the first five words in our vocabulary

("wahed", "zoudj", "tleta", "arb3a", "khemsa") with only 5 state for transients as

illustration. In the training part, we have developed a software program that updates

automatically the automaton every time a new word is added.
Present State Next State Path Label

0 1 /wa/
1 1 /wa/
1 2 /ha/
2 2 /ha/
2 3 /ad/
2 4 /ad/
2 5 /ad/
2 6 /ad/
2 7 /ad/
3 4 /ad/
4 5 /ad/
5 6 /ad/
6 7 /ad/
0 8 /zz/
8 8 /zz/
8 9 /oo/
9 9 /oo/
9 10 /jj/
9 11 /jj/
9 12 /jj/
9 13 /jj/
9 14 /jj/
10 11 /jj/
11 12 /jj/
12 13 /jj/
13 14 /jj/
0 15 /tt/
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0 16 /tt/
0 17 /tt/
0 18 /tt/
0 19 /tt/
15 16 /tt/
16 17 /tt/
17 18 /tt/
18 19 /tt/
19 20 /ll/
20 20 /ll/
20 21 /aa ita/
21 21 /aa ita/
21 22 /tt/
21 23 /tt/
21 24 /tt/
21 25 /tt/
21 26 /tt/
22 23 /tt/
23 24 /tt/
24 25 /tt/
25 26 /tt/
26 27 /aa ita/
27 27 /aa ita/
0 28 /aa/
28 28 /aa/
28 29 /rr/
29 29 /rr/
29 30 /bb/
29 31 /bb/
29 32 /bb/
29 33 /bb/
29 34 /bb/
30 31 /bb/
31 32 /bb/
32 33 /bb/
33 34 /bb/
34 35 /3a/
35 35 /3a/
0 36 /kh/
36 36 /kh/
36 37 /mm/
37 37 /mm/
37 38 /ss/
38 38 /ss/
38 39 /aa ita/
39 39 /aa ita/

Table 6-2 State Transition Table for the First 5 Words

Every phone wi is a path label and defines a conditional probability density
function | |

iw if wX x . These phones are trained individually. During the development of

the system, the different phonemes have been extracted manually from the training data.

The PDF's are multivariate Gaussian. Therefore, they are completely defined by their

mean vector and covariance matrix.
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6.5.2 The Stack Algorithm

When the vocabulary is limited, the corresponding state diagram is quite small

(small number of states). The recognition can be performed using the Viterbi algorithm.

When the size of the vocabulary increases, the number of states becomes prohibitively

large for the Viterbi algorithm to perform properly. In this case, we suggest using the

"stack algorithm" [48, 105]. The stack algorithm is a member of the family of sequential

algorithms [102], which are commonly used to decode long constraint length

convolutional codes.

Sequential algorithm are algorithms that make the hypothesis that a given path is

the optimum path and they will extend it until the end of the path or until the hypothesis

is proved wrong. At that time, there should be a strategy for going back, select a new

path and repeat the process. If it is possible to store all possible hypotheses, the

sequential algorithm will be optimal (just as the Viterbi algorithm). However, it is

generally impossible to do so. At that time, the correct hypothesis can be dropped out of

the selected data structure and it will be impossible to decode correctly the given word.

The stack algorithm follows the subsequent steps:

1. The stack algorithm maintains in a stack partial hypotheses of all paths

sorted in descending order of likelihood (path metric). A partial

hypothesis accounts for an initial frame of the input speech.

2. It pops out the best path of the stack (top of the stack) and expands it by

all possible state extensions predefined in the state diagram (automaton).

It evaluates the resulting partial hypothesis with respect to the input

speech and re-inserts them in the sorted stack.

3. If the hypothesis is completed, it is output. Otherwise, the algorithm

reiterates the second step until a complete hypothesis is found.

We say that the hypothesis is complete when the path exits the last state of a

given word. At that time, we can declare that the word has been recognized. The data

structure used to hold the partial hypotheses must have a finite size. This means that the

paths with very small metric (highly unlikely) will be dropped from the stack. In

adjusting the size of the stack, we must make sure that the probability of dropping the
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correct hypothesis is very small. For the implementation of the stack algorithm, we need

a path metric that remains constant or near zero we are following a correct path.

Alternatively, the path metric should drop very rapidly when we are following an

incorrect path. The proposed path metric is:

( )i
path k

L L x (6.15)

where 2( )i iL p dx and 2 T

id -1
i i ix - m x - m is the Mahalanobis

distance between the received utterance x and the local path reference mean mi. p is the
dimensionality of the feature space and i is the ith class covariance matrix. The above

path metric has practically the same properties as the Fano [27] metric used in

sequential decoding of convolutional codes. We can show that Li(x) remains small on

average if we are on the correct path and has a large negative value on an incorrect path

(on average). In order to do so, we must compute the average of the Mahalanobis

distance on a given branch of a path under analysis.

If the samples are drawn from population i and classified as belonging to

population j, then we can compute the following average:
2[ ] ) ( , , )T
ij j j j i iE d d1(x m ) (x m x m xN (6.16)

where ( , , )i ix mN is the normal density with mean mi and covariance matrix

i. Let mij = mj mi, it is easy to show that:
2[ ] ) ( ,0, )T
ij ij j ij iE d d1(x m ) (x m x xN (6.17)

Using the eigen decomposition of the matrix i, i.e. , let us consider the

orthonormal matrix Vi composed of the normalized eigenvectors of the matrix I and

the diagonal matrix I composed of the eigenvalues of i:

i i i i (6.18)

By making the transformation: x = Viy, we obtain:
2[ ] ) ( ,0, )T T T T
ij i ij i j i i ij iE d d1(y V m ) V N (6.19)

Now, we have two possibilities. Either we are on a correct branch, and i = j, or

we are on an incorrect branch of the path, and in this case i j. In the first case, i.e. the

correct branch, we obtain:
2[ ] ( ,0, )T T
ii i j i iE d d1y V N (6.20)
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In this case, 2
iid is just a sum of squares of zero mean, unit variance, uncorrelated

Gaussian random variables. Therefore, it is a chi-square random variable with p degrees

of freedom and the above mean has the value of the dimension of the observation

space p.

When we are on an incorrect path, i.e. i j, the above mean is much more

difficult to compute. However, a great simplification can be made if we assume that

i = j = . In this case:
2 1[ ] ) ( ,0, )T T T T
ij ij ijE d d(y V m ) V N (6.21)

or
2 1[ ] ) ( ,0 , )T T T
ij ij ijE d d(x V m ) N (6.22)

We assume that the covariance matrix is positive definite. We can then make the

following simplification:
1 1

1 2 2T T Tx (6.23)

Meaning that we make the following change of variables:
1
2z (6.24)

and we obtain:
1 1

2 2 2[ ] ) ( ,0, )T T T
ij ij ijE d d(x V m ) N

1 1 1 1
2 2 2 2 2[ ] ) ( ,0, )T T T
ij ij ijE d d( N (6.25)

and finally:
1 1

2 2 2[ ] ( ) ( ) ( , )T T
ij ij ijE d dtz N (6.26)

This implies that 2
ijd is a non-central chi-square random variable with p degrees

of freedom with a mean for each of the variables being:

( )T
k ij k

1
2 (6.27)

Therefore, the above mean is:
2[ ] 2ijE d p N (6.28)

where 2

1

1
2

N

k
k

N (6.29)
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so
2

2

1

[ ]
N

T
ij ij

k k

E d p
1
2 (6.30)

The above expression can be further simplified by noticing that:

22

1

p
T

k
k

z z z z (6.31)

So:

2

1

1

[ ] ( ) ( )T T T
ij ij ij

T T
ij ij

T
ij ij

E d p

p

p

1 1
2 2

m V

m m

(6.32)

We can remark that if we use p- d² as local path metric, then on a correct path,

it has a high probability to be equal to zero. However, on an incorrect path, the average
of the above path metric is the negative number 1T

ij ijm m . So, it is proved that p - d² is

a good candidate for a path metric.

When we are on a wrong path, the local path metric is going to decrease.

Averaging over all classes, the following result is obtained. Consider that the phones are

clustered in M different equiprobable classes. The average decrease of the local path

metric is proportional to following summation:

1

1 1

1

1 1

1

1 1

1

1 1

[ ]

[ ]

M M
T
ij ij

i j

M M
T
ij ij

i j

M M
T

ij ij
i j

M M
T

ij ij
i j

S

tr

tr

tr

m m

m m

m m
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(6.33)

Introducing now the overall average:

0
1

1 M

i
iM

m m (6.34)

We can decompose the product T
ij ijm m as:

0 0 0 0 0 0 0 0( )T T T T T
ij ij i i j j i j j im m m m )(m m ) (m m )(m m ) (m m )(m m ) (m m )(m m

and the double summation becomes:
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(6.35)

The last two terms are zero, so, finally, if we introduce the between mean

covariance (scatter) matrix B:

0 0
1

1 ( )( )
M

T
i i

iM
B m m m m (6.36)

The summation S becomes:
2 12 [ ]S M tr B (6.37)

Finally, we have shown that minimizing the average decrease of the local path

metric p- d² over all possible classes amounts to maximizing ][ 1Btr . Therefore, the

above path metric is a good candidate for a path metric if the feature set is selected such

that the above quantity is maximum. The value S given by equation (6.37) is the same

as the J criterion given by equation (5.30) in chapter 5. In our analysis, we have

assumed that the features are Gaussian. We have seen in chapter 5 that the MFCC

parameters are practically Gaussian and it is the set that maximizes the J criterion.

6.5.3 Implementation of the Algorithm

In this implementation, we are going to use a sampling rate of 16 kHz. The data

is windowed using the same Hamming window of 256 samples as the previous system

and this window is translated by 100 samples for each frame. The set of parameters

used to represent every frame is the set of 13 MFCC parameters. We did not use the

derivative and the acceleration parameters in our system. The language to be recognized

is the same set of Algerian numbers as the previous system. Every phone from

Table A-1 has been manually trained and we have used a full (not diagonal) covariance

matrix for each class.

We have used a stack algorithm where we extend the path with the highest

metric. The different words that compose the vocabulary are identified by the beginning

and ending state. So, a word is recognized if the winning path finishes by a branch that
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comes out from the ending state of a word in the vocabulary. In order to limit the size of

the stack, we are going to use a stack with a size of about twice and a half the size of the

vocabulary. The drawback of the limitation of the stack size is the fact that if the correct

path happens to be eliminated (being at the bottom of the stack), then it is impossible for

the system to recognize the word. However, it is shown below that such event is very

improbable.

We have used also the following property for rejecting a very improbable path.

If we are on a correct path, then d2 is a chi-square random variable with p degrees of
freedom (p = 13 in our case). At that time, 2Probability 29.82 0.005d (0.5%). So,

if we are on the correct path, then the local path metric 2( )i iL p dx is larger

that -16.82 with a probability of 99.5%. So, if after K steps, we find that a path has a

global metric L smaller than -16.82K, then there is a high probability for that path to be

incorrect. We have used the algorithm for colloquial Algerian Arabic numerals. For the

word "thmania", we found that the winning path oscillates between 35 and -45 for a

path length of about 130 sections. Incorrect paths for this particular case all go down at

a rate faster than the above mentioned one ( -16.82K ). One rule for pruning the tree

search is: if a path has a global metric of about 168.2 after 10 steps, it has a very small

probability of being part of the correct one since each one of its branches has a

probability of 0.5% of belonging to the correct one. This particular value of d2 is also

used in the training program for generating a new class.

An advantage of having a global metric that averages to zero is the fact that we

can start a new recognition without having to reset the previous search. The wrong path

will drop down through the stack and the correct one will start from a value that is close

to zero. The extension will come from the grammar that is imbedded inside the finite

state automaton. We have started by a word spotting system.

Figure 6-15 Winning Path for theWord "wahed"
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Figure 6-15 shows the winning path for two different speakers. The black path is

the winning path for the first locutor (male speaker), while the pink one corresponds to

the second one (female speaker). We distinguish between the male and the female

speaker because the actual probability density function for almost all the different

classes (phones) appears to be bimodal. Therefore, we replace every bimodal one by

two unimodal distributions with the same label. The light lines in Figure 6-15 show

some paths that were rejected by the algorithm. So, the male speaker has pronounced

the phone /wa/ from time frame 4 all the way to time frame 42 and then /ha/ from time

frame 43 to 50 and finally /ad/ for the last time frame. (A frame consists of 256 samples

of speech taken at rate of 16 kHz translated by 100 samples). For the spotting of words

in a continuous flow of words, we have added a state "not in the vocabulary" in the

automaton.

When we tested the word-spotting algorithm with the training data, we obtained

a 100% recognition rate. However, when we used the same 200 utterances as in the

previous system, we obtained 182 correct utterances; this provides a recognition rate of

91% at the sentence level. At the word level, from a total of 855 words, 843 were

recognized correctly. The recognition rate is then 98.0%.

In order to obtain better results, we have embedded the finite state automaton

representing the vocabulary inside the finite state automaton representing the task

grammar defined in section 6.4. We have also added some pre-processing as described

in chapter 3 (when the acquired speech is clipped) and denoising using time varying

Wiener filters as shown in chapter 4. We repeated the same tests. We obtained better

results. The results are of the same order as the ones obtained using HTK. For the 200

utterances, 193 were correct. The recognition rate has increased to 96.5% at the

sentence level. At the word level, we obtained six errors so the recognition rate in this

case is 99%. We have also remarked that most of the errors occurred for words that

contain transient phones. We think that the addition of MFCC will provide a better

recognition rate.

The stack algorithm along with the adopted path metric has provided very

interesting results despite the fact that we did not use the derivative and acceleration

parameters. The main difficulty comes from the training. In the next chapter, we are

going to show an automatic way of segmenting speech in order to extract training

parameters.
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Chapter 7

Automatic Training

In the previous chapter, we had to train the speech recognizer. This means that

we had to acquire data from spoken sentences. Since the recognition is phoneme based,

speech had to be manually segmented in these basic units. And since we are using

supervised parametric learning [35, 88], the means and covariance matrices of the

different classes are computed. In order to have satisfactory statistical results, a large

amount of data is needed. Manual segmentation is a tedious process and it is quite error

prone. In this chapter, we are going to show that we can automatically segment speech

and update pre-computed parameters.

7.1 Finite State Automaton Update

The first step in the training is the introduction of the word state sequence in the

total vocabulary automaton. The word is introduced as a sequence of basic phones. The

system scans the dictionary and incorporates the word model at the proper place in the

state transition table. Figure 7-1 show how the word "mars" is inserted inside the state

diagram given that the word "mama" is already inside the vocabulary. The word

beginning and ending states are also inserted in another table so that the recognition

program will identify the identity of the winning path in either the stack search or the

Viterbi search.

Figure 7-1 Insertion of the word "mars" inside the state diagram
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7.2 Speech Segmentation

Speech segmentation consists of determining the boundaries between words,

syllables, phones, etc on the continuous acoustic signal. The main difficulty of speech

segmentation lies in the fact that speech is not clearly composed of distinct segments

because of co-articulation [97, 99]. We have already described simple segmentation in

chapter 2. Using mean magnitude and average zero crossing rate, we can label every

frame as voiced, unvoiced or silence segment. Using mean magnitude ratio and average

zero crossing rate, we have also developed a segmentation of speech segments into

voiced non plosive, voiced plosive, unvoiced non plosive, unvoiced plosive and silence

frames. However, these techniques are not directly related to the phonemic transcription

of speech. The techniques of speech segmentation used in our system are based on

clustering methods if the phone is not already trained. If the phone has already been

trained, a Viterbi based segmentation procedure will identify the phone boundaries and

the mean vector and covariance matrix will be updated.

7.2.1 Clustering Methods

We decided to use statistical clustering methods to group data obtained from a

raw speech signal into similar classes. Clustering is the process of organizing data into

groups [46, 49]. The resulting groups are referred to as clusters. This grouping is done

according to some similarity criteria. In many cases, the criterion is some distance

measure between data or group of data. Depending on the type of data, we can use

different type of distance. However, the most commonly used type is the Euclidian

distance. It lends itself well for our purpose because of its interpretation as a measure of

proximity. There exist two families of clustering methods: the hierarchical methods and

the non-hierarchical ones [46].

7.2.1.a Hierarchical Clustering

Hierarchical clustering algorithms generate a sequence of clusters by either:

Starting with single element clusters and merging them successively into

larger clusters; ultimately, we will end up with a single cluster containing

all the objects. This type of algorithm is called agglomerative.

or

Starting with the whole set of data as a single cluster and proceeding to

divide it successively into smaller clusters; ultimately, we will end up
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with as many clusters as objects in the set. This type of algorithm is

called divisive.

The result of both approaches can be represented graphically in a form of a tree

called dendrogram as shown in Figure 7-2. By cutting the dendrogram at the desired

level, a clustering of the data is obtained.

Figure 7-2 Example of a Dendrogram

We have selected the agglomerative approach in our system because we are

looking at the speech signal frame after frame. Ideally, adjacent frames should cluster

together. To merge clusters, we have to use some measure of distance between them.

These distances are called linkages and we distinguish three different types of linkage:

single, complete and average linkage as shown in Figure 7-3.

Single linkage refers to the minimum distance d(x, y) where x belongs to

one cluster and y belongs to the other one (nearest neighbor).

Complete linkage refers to the maximum distance d(x, y) where x

belongs to one cluster and y belongs to the other one (furthest neighbor).

Average linkage refers to the average distance d(x, y) between elements

of each cluster.
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Figure 7-3 Intercluster distance for: (a) Single linkage; (b) Complete linkage; and (c)

Average linkage.

7.2.1.b Non-hierarchical Clustering

Non-hierarchical methods do not proceed sequentially. The number of clusters

may be specified by the user or determined during the clustering procedure. The starting

step in a non-hierarchical method is either an initial partition of the objects into groups

or an initial selection of seed points (cluster centroids, cluster means) forming a nucleus

of clusters. One of the simplest and most widely used non-hierarchical clustering

methods is the K-mean algorithm. It can be summarized as follows:

Given the data, we assume that the number of clusters is K.

Step 1: Initialization: select K centroids ( 1 , 2, …, K).

Step 2: Assign each data point to the nearest centroid.

Step 3: Recompute the new cluster centroid (by averaging).

Step 4: Repeat step 2 and step 3 until some stopping criterion is satisfied

(assignment of data does not change).

This clustering technique is quite dependent on the initial choice of centroids

(step 1). If there is no a priori information, the initial centroids can be selected at

random. However, we have better results if we select the centroids according to some

prior knowledge. Another natural choice for the initial centroids is to select the K points

that are the furthest away from each other.
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7.2.2 Clustering results

Clustering is used to obtain a preliminary segmentation of the speech signal. If

the segmentation is judged satisfactory, every cluster will be labelled as a phone.

Assuming a Gaussian distribution for each class, initial values for the mean vector and

the covariance matrix are computed. If the class w contains N elements, the initial value

of the mean is:

1

1 ;
N

N k k
k

w
N

m x x (7.1)

If the number of frames N contained in the class w is much larger than the

dimension p (13 in our case) of the feature vectors, then most probably the covariance

matrix will not be singular. At that time, the covariance matrix can be computed the

usual way.

1

1 ;
1

N
T

N k N k N k
k

w
N

C x m x m x (7.2)

If N is smaller than p, then equation (7.2) will produce a singular matrix since it

is a sum of N rank one matrices. At that time, we will make the assumption that the

initial value of the covariance matrix is diagonal. The full matrix will be computed

during the Viterbi updating. The diagonal of the covariance matrix is then a p

dimensional vector given by:

22

1

1 ; 1
1

N

N iN ik iNii
k

x m i p
N

C (7.3)

where xik is the ith component of the k th feature vector and miN is the ith

component of the class mean vector.

In order to be able to use the above equations, we have to select a clustering

method. We are going to test first the hierarchical methods and then we will compare

them with the K-mean. The agglomerative clustering methods for the word "ouahed"

are presented in Figure 7-4. The output of the clustering algorithm is an integer varying

between 1 and 5. The value of the integer is plotted on top of the acoustic waveform

(taking into account that the frames are translated every 100 samples). The clusters are

expected to be poorly separated due to co-articulation. This implies that single linkage

is expected to perform weakly [46, 49]. We can remark that the average linkage

provides better segmentation than either the single or the complete linkage.
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Figure 7-4 Agglomerative test: (a) Single linkage; (b) Complete linkage; (c) Average linkage
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Tests conducted on other words confirm that the average linkage gives always

better segmentation than the other two methods of agglomerative clustering. So, we will

compare now average linkage agglomerative linkage with K-mean clustering.
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Figure 7-5 Clustering of "ouahed" into 5 clusters using the K-mean with random centroids

We notice from Figure 7-5 that we obtain very different results for every run of

the K-mean algorithm when the centroids are selected at random. However, a detailed

observation of the three graphs shows that the results of the clustering can be exploited.

However, Figure 7-6 shows clearly that the K-mean with selected centroids (inside the

presumed phones) produces a segmentation that can be matched with the manual
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segmentation shown in Figure 7-7. It is also observed that the K-mean produces a better

segmentation that the agglomerative method with average linkage.
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Figure 7-6 Clustering of "ouahed" into 5 clusters using the K-mean with selected centroids
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Figure 7-7 Manual Segmentation of the Word "ouahed"

Tests have been conducted with several words in the vocabulary and we have

observed that the K-mean algorithm with selected centroids is the clustering method

that has the best results. Therefore, if the phones composing a particular word have not

been trained, initial data will be obtained using a K-mean clustering algorithm with

selected centroids.

7.2.3 Segmentation using the Viterbi Algorithm

If there is initial data for every phone composing the word, the Viterbi algorithm

can be used to refine and find better boundaries for the different speech segments. Once

those segments have been identified, the data composing the phones will be used to

update the mean vector and the covariance matrix of the phone density function. The

refinement of the data is obtained as follows.
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Let us call mN and CN the mean vector and the covariance matrix for the class w

computed using N frames. The addition one more frame xN+1 will produce the following

mean:

1 1
1

1 1N N N
N

N N
m m x (7.4)

We are not going to update the covariance matrix but its inverse. This is because

the inverse is required in the computation of the Mahalanobis distance. In order to do

so, we are going to use the Sherman-Morrison-Woodbury formula [24]. Let A be a non-

singular matrix and u and v be two vectors, then (A + uvT) is not singular if and only if

= 1 + vTA-1u 0 and:

1 1 1 11T TA uv A A uv A (7.5)

Using equation (7.2), we can express the covariance matrix as:

1 T
N N N NN NC R m m (7.6)

where
1

N
T

N k k
k

R x x (7.7)

then 1 1 1
T

N N N NR R x x (7.8)

The application of equation (7.5) leads to:

1 1 1 1
1 1 11

1 1

1
1

T
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R R R x x R
x R x
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Equation (7.6) has also the same shape, so (7.5) can be applied to give:

1 1 1 1
1 1 1 1 1 11

1 1 1

1
1 1

T
N N N N N NT

N N N

N
N

N
C R R m m R

m R m
(7.10)

Therefore, every time a new datum is added, we can use in sequence equations

(7.9) and (7.10) to update the inverse of the covariance matrix.

The Viterbi algorithm is going to be used to obtain a path in the given trellis

representing the FSA associated with the word used in the training. We use the model of

production described in section 6.5.1. For instance, the word "zoudj" is represented by

the state diagram shown in Figure 7-8. The corresponding state trellis is presented in

Figure 7-9. The optimum path followed by the Viterbi algorithm is displayed in red.
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Figure 7-8 State Diagram of the Word "zoudj"

Figure 7-9 State Trellis of the Word "zoudj"

The form of the Viterbi algorithm used in this section is slightly different from

the one used to decode HMM's. We use the path metric (6.15). The algorithm used is

directly the one given by Forney in reference [33]. The state qk at frame time k is a finite

number m from N different states; 1 m N. Among all the paths passing by the node

qk, at time k, the one with the largest path metric is called the survivor terminating at qk

and is denoted S(qk). At any time k > 0, there are N survivors, one for each qk. The

optimum path must begin with one of these survivors. At any time k, we must remember

the N survivors and their metric. Along with the metric, we must also keep track of the

path labels.

Once the optimum path found, a backtracking algorithm is used to obtain the

label of every frame of the speech segment. For example, the word "zoudj" will produce

the sequence: /zz/ /zz/ …/zz/ /oo/ /oo/ …/jj/ /jj/ /jj/ /jj/. Using this labelling, we can

identify the phone boundaries and identify the different segments of the speech signal.

We can then use equations (7.4), (7.9) and ( 7.10) to update the preliminary data
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obtained by the K-mean clustering. In order to minimize the probability of using an

outlier during the update process, we use the fact that the square Mahalanobis

distance d2 is a chi-square random variable with p degrees of freedom (p = 13 in our

case) when we are on the correct path. The chi-square distribution with 13 degrees of

freedom will give the probability P[d2 > 29.83] = 0.005 (0.5%). So, on a correct path,

the value of the local path metric is L(x) = p d2 and it is larger than 16.82 with a

probability of 99.5%. Therefore, in a given segment labelled w, a frame with

L(x) > 16.82 can be safely used to update the mean vector and the covariance matrix.

(a)

(b)

Figure 7-10 Segmentation of the word "ouahed" using (a) the K-mean, (b) refined

segmentation using Viterbi Algorithm

Figure 7-10 shows the result of Viterbi segmentation on the word "ouahed". We

see clearly the different phones that compose the word: /oo/ /aa/ /Ha/ /Dd/. The

corresponding speech data are used to update the parameters corresponding to each

phoneme. This automatic segmentation has detected the voiced-voiced transition around

sample 1100 between the phone /oo/ and the phone /aa/. This transition is very difficult

to detect manually.
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(a)

(b)

Figure 7-11 Segmentation of the word "zoudj" using (a) the K-mean, (b) refined

segmentation using Viterbi Algorithm

(a)

(b)

Figure 7-12 Segmentation of the word "tleta" using (a) the K-mean, (b) refined

segmentation using Viterbi Algorithm
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(a)

(b)

Figure 7-13 Segmentation of the word "reb3a" using (a) the K-mean, (b) refined

segmentation using Viterbi Algorithm

Figure 7-11, Figure 7-12 and Figure 7-13 show the result of Viterbi

segmentation for three other words ("zoudj", "tleta", "reb3a"). Here also, the resulting

segmentation is better than a segmentation that would be performed by hand. We

remark also that the Viterbi refinement corrects the segmentation errors that are

introduced by the K-mean algorithm. The only problem with our segmentation

procedure is the fixed number of classes (phones) that must be user defined. However,

the training becomes completely automatic and the user is freed from the tedious task of

labelling every speech segment. The stack recognition algorithm developed in chapter 6

did not use our training method for its initial vocabulary. Yet, we are using the training

method for adding new words in the automaton defining the vocabulary.
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Chapter 8

Conclusion

Speech recognition has entered our every day life. Dictation software programs,

modern telephone sets, even cars are examples of this trend. The new systems are more

and more sophisticated. Most of them are oriented toward continuous speech

recognition. In previous years, the research in speech used to employ complex and

costly systems whereas actual systems are more oriented toward immediate use. Our

work in this thesis has essentially the same objective. We wanted to develop a

continuous speech recognition system that uses standard hardware such as personal

computer sound card as acquisition system.

The stack algorithm developed in this thesis has provided very satisfactory

results. The obtained recognition rate is on the same level as the one obtained using

hidden Markov models. We obtained this result despite the fact that we did not make

use of derivative or acceleration parameters. The algorithm presents the advantage of

depending only linearly on the number of states representing the vocabulary. This is

quite advantageous in large size vocabularies and complex scripts. Another advantage

of the algorithm is the fact that it does not need any resetting when a word is

recognized. This is essentially due to the adopted path metric. Another particularity of

the recognition system is the assignment of multiple unimodal (Gaussian) distributions

with the same label instead of a single multimodal one.

While collecting data for training both our algorithms, we were faced with

typical defects of PC sound cards and low cost microphones. We have then developed a

novel method for clipped speech restoration. This method has proved to be very

efficient. The recovered speech can be used safely with either the training or the

recognition part of our system. It can also be used as a stand alone program for

enhancing the intelligibility of acquired speech.

The defect of using a single microphone is that the microphone picks useful

speech signal and unwanted noise. We have developed time invariant and time varying

Wiener filters for denoising the acquired speech. The time varying filter has produced

remarkable results. These results have been obtained with very low order filters (two).
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We have shown in chapter four that this is due to a time varying gain that depends on

the region of the speech segment we are in. Our denoising algorithm can be used in real

time application, such as telephony. This is due to fact that the algorithm requires just a

small delay (of the size of the noise-only section) to become operational.

The recognition algorithms used in our thesis are all based on the assumption

that the parameters representing speech are Gaussian. Among three different sets, we

have demonstrated that the MFCC parameters are the only ones that have this Gaussian

behavior. We have also shown that they provide the best separation between classes.

Finally, the segmentation and training method developed for our stack algorithm

frees the user from the tiresome job of manually segment and label speech segments for

training.

Suggestion for Further Research

The hidden Markov model methods provide very powerful design means for

continuous speech recognition. We suggest imbedding HMM phoneme models inside

the total finite state vocabulary. At that time, the stack algorithm will work in a top

down manner, starting from the sentence syntax all the way to the phoneme syntax. It is

evident that the path metric should change. This is the object of this further research.

We have analysed three different sets of parametric representation of speech:

LPC, PARCOR and MFCC. It is suggested to compare other sets. Another possibility is

the use of nonlinear transformations for the LPC parameters and the PARCOR

coefficients. For example, the PARCOR coefficients are numbers that have a magnitude

bounded by one, |ki | < 1. They have statistical properties that are similar to correlation

coefficients. We should test Fisher's transformation [28, 29] on PARCOR coefficients.

This transformation is commonly used to map correlation coefficients to near Gaussian

random variable. The LPC parameters on the other hand can be transformed to near

Gaussian variables using Box-Cox transformations [13] and the resulting variables

tested statistically.

In the training part of our system, we have used the K-mean clustering

algorithm. This method requires the knowledge of the number of clusters in advance. It

is suggested to use a method like the ISODATA [4]. This method does not require any

previous information on the number of clusters.
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AppendixA

The Adopted List of Phonemes

Number Arabic Symbol Pronounciation

1 ا aa The vowel /a/ following consonant or at the beginning of a
word.

2 ب bb As in English
3 ت tt A soft dental, like the Italian /t/
4 ث st Very nearly the sound of /th/ in thing.
5 ج Dj As in English
6 ح Ha A strong Aspirate
7 خ Kh Guttural, like the Scotch /ch/ in loch.
8 د Dd Soft dental
9 ذ th A sound between /dh/ and /z/, very near to /th/ in this
10 ر rr As in English
11 ز zz As in English
12 س ss As in English
13 ش sh As in English
14 ص sa A strongly articulated /s/.
15 ض da A strongly articulated /d/
16 ط ta A strongly articulated palatal /t/.
17 ظ dh A strongly articulated /th/

18 ع  3a A guttural, that is close to /aa/.
19 غ  gh The sound r in french.
20 ف ff As in English
21 ق qa
22 ك kk As in English
23 ل ll As in English
24 م mm As in English
25 ن nn As in English
26 ھـ hh As in English
27 و  wa As in English
28 ي ya As in English
29 ئ،ـ ؤ، أ ، ء ia /aa/ ,/ii/,/oo/ preceeded by a vowel.
30 ـ ii As in Italian
31 ِ oo As in Italian
32 aa ita As in Italian

TableA-1 The Adopted List of Phonemes [41]




