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Stability analysis of the pitch angle
control of large wind turbines using
different controller strategies

H Bouregba1 , M Hachemi1, M Bey2 and A Hamidat3

Abstract
Reducing the environmental impact necessitates a boost in renewable energy conversion systems. Wind energy is
regarded as one of the most essential energy sources. For this purpose, the high wind variations in the energy conver-
sion chain require robust and reliable control. This research aims to implement a regulation based on artificial intelli-
gence toward a blade orientation mechanism to improve the stability of energy conversion. On the other hand, an
energy maximization technique called Maximum Power Point Tracking (MPPT) is integrated into the control system. A
developed program in MATLAB estimates the turbine performance with two different strategies, namely the MPPT tech-
nique and the Pitch control mechanism. For the best control and more stability of energy conversion, three artificial
intelligence controllers, which are Neuronal Network (PI-ANN), Fuzzy Logic (PI-FLC), and Neuro-Fuzzy (PI-NFLC),
were employed. They are compared with the conventional controller (PI-C). This comparison is made to distinguish the
most robust regulator against wind speed variations. The different performance indices showed that the controller PI-
NFLC has an excellent response, with an Integral Time Absolute Error (ITAE) of 375.28, whereas the Integral Absolute
Error (IAE) and Integral Time Square Error (ITSE) equal 13.87 and 406.59, respectively.
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Introduction

Energy is a major factor in socioeconomic develop-
ment, durable development, and enhancing the human
quality of life. In the future decades, the world’s popu-
lation and economic activity will increase energy
demand.1–4

In recent years, wind energy has grown rapidly and
steadily. Over the next 30years, wind energy will contrib-
ute to 18% of the worldwide electricity generated.5–7 Two
consecutive records for the amount of new capacity cre-
ated in a single year were broken in 2014 and 2015, with
52 and 63GW installed, respectively. This brought the
total capacity of the globe to over 433GW.8–10 As envi-
ronmental challenges have grown, renewable energy has
grown in popularity. One of the most significant

obstacles that wind energy must overcome in the present
day is that of maximizing energy output from wind
farms, which is dependent on the ideal power of each
wind turbine located inside the park.11,12
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However, wind turbines (WTs) provide power that is
exactly proportional to the cube of the wind speed.13,14

This results in a lot of variety, especially as the wind
speed fluctuates constantly and arbitrarily. The tur-
bines will not be able to produce constant power indefi-
nitely. These variable-speed wind turbines use different
strategies like the MPPT (Maximum Power Point
Tracking) technique and the pitch control mechanism.
The MPPT maximizes the power in the second and
third operation zones of the system. Pitch control is
dedicated to protecting wind turbines against strong
winds by the orientation of the blades. Aerodynamic
torque management is needed for wind turbine moni-
toring. Variable-speed variable-pitch technology is rec-
ommended for medium and large-scale wind farms to
enhance generated energy and convert aerodynamic
power efficiently and inexpensively.15–17 In order to do
this, a device that can optimize the power taken from
the wind at times when the turbines’ output is in differ-
ent zones.18 The variable mode of operation also helps
mitigate the effects of the intermittent nature of wind
power, which may put unnecessary strain on mechani-
cal parts. Figure 2 illustrates the three primary zones in
which the wind system runs, each with its own goals
determined by the available wind speed. In the first
zone, when the wind speed is insufficient for starting,
control is exercised. This means that no power is being
harvested since there is no torque. The goal of the regu-
lation in the second zone is to maximize electricity har-
vesting. Here, while maintaining a fixed pitch angle, the
rotating speed is varied to achieve a maximum power
coefficient. As long as the wind speed does not exceed
the rated value that corresponds to the rated generator
speed, the system will continue to function in this par-
tial load zone. When the wind speed in the third zone
exceeds the rated quantity, the pitch angle control is
used to keep the generator speed at the rated value by
maintaining the rated power. The amount of energy
that can be extracted decreases as the blade angle
increases.

The scientific literature contains descriptions of proj-
ects that made use of the pitch angle control approach.
Others use the turbine’s power maximization technique
with different controllers, such as P. Venkaiah and
Sarkar, who developed a fuzzy anticipation PID con-
troller for pitch control of horizontal axis wind turbines
using an electro-hydraulic pitch actuation system.17

Civelek, used the genetic algorithm in this implementa-
tion to optimize a fuzzy logic controller (Takagi-
Sugeno) with intelligent auto-tuning for the control of
the stall angle of a wind turbine powered induction gen-
erator to make the output power even better.19 Chen
et al., implements a fuzzy hybrid control of the caged
synchronous generator of a low-power wind turbine by
controlling the stall angle using RNN.20 Zhang et al.
suggested an interesting tool for robust design

optimization of airfoils with random aerodynamic fac-
tors. Their presented technique is straightforward and
accurate, based on aerodynamic simulation.21

Asgharnia et al., recommends using sophisticated con-
trollers like FPID and FOFPID to improve pitch con-
trol performance.9 Tauseef Aizedet al. examined how
wind speed data can be collected, how a wind-driven
water pumping system can be designed, and how the
design can be analyzed under a variety of wind condi-
tions in Pakistan.22 Anil Naiket al. used Type 2 fuzzy
logic proportional-integral controller to manage the
turbine torque (WTs).3 Yunfeng Li looked for a way to
calculate the internal load distribution of a pair of
single-row tapered roller bearings that double as sup-
port for the main shaft of a wind turbine using a 5-
degrees-of-freedom mechanical model. The technique
involved analyzing the main factors that affect how the
internal load is distributed, such as axial preload, ring
tilt, and roller crown.23 An FDI system for a 4.8MW
wind turbine was developed by Ayoub EL Bakri and
Boumhidi which was described using numerous
Takagi-Sugeno (T-S) models.24 When a PMSG is con-
structed in MATLAB, some study employs ANN-
based pitch control for MPPT in wind turbines.

Table 1 summarizes the key contributions to the
development of universal dynamic WTs. The key con-
tributors to each work published are identified using
this categorization. These studies are of great interest
for manufacturers of wind turbines.

The performed studies are not sufficient for the wind
conversion chain in the technical literature. The best
control and better protection of the wind turbine infra-
structure is a significant challenge. Using control based
on artificial intelligence with different strategies is
highly recommended to solve these challenges. On the
other hand, The regulation mechanism based on the
conventional regulator is sensitive to wind variations,
which causes loss of control and minimizes the reliabil-
ity of the conversion system.30–32 In this study, Sun
et al. improved the weaknesses of the conventional reg-
ulator in different research fields. The standard propor-
tional integral (PI) speed loop was abandoned in favor
of a sliding mode controller in the first research to
boost steady-state performance.33 In a second study,
researchers compared the efficiency of the suggested
technique to that of the conventional, low-speed sen-
sorless approach using a battery of experiments using
PMSG. The suggested low-speed sensorless system has
been shown successful in experiments.34 This article
provides a sensorless approach for controlling
permanent-magnet synchronous motors. The suggested
technique has been experimentally tested and compared
to the standard PLL under various settings. This novel
approach maintained excellent steady-state perfor-
mance and reduced speed, angular, and transient
oscillations.35
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In the present work, a performance study based on
artificial intelligence (PI-ANN, PI-FLC, PI-NFLC)
monitoring is used. Results of the adaptive neuro-fuzzy
controller (PI-NFLC) are compared with the results of
the conventional controller, along with those of the
neuronal networks and fuzzy logic controllers to
improve the stability of the pitch angle mechanism and
limit the output power at the rated value in the full
load conditions. The main reason for this work was the
lack of research on neuro-fuzzy control based on a mix

of these two techniques, where tuning the three main
parameters is the most important thing. There are scal-
ing factors, membership functions, and rules tables that
make out these parameters.

The hybridization of the neuro-fuzzy controller with
the regular PI controller approach is then used to con-
struct an adaptive law. Consequently, the scaling fac-
tors will be automatically modified based on the
correction factor produced from the gain scheduling PI
approach. This increases the flexibility of the controller

Table 1. Summary of typical wind turbine model contributions.

Refs Year Main contribution Power system software WT Type

Lopez et al.25 2019 The suggested model predicts yaw
angles, air turbulence levels, and
thrust coefficients similarly, but at a
fraction of the computational cost.

Numerical methodology
(RSM simulations)

Reynolds Averaged
Navier-Stokes (RANS)

Ti et al.6 2020 A back-propagation (BP) ANN
model is suggested to develop the
spatial relation between inflow
conditions and wake fields.

Numerical framework of
RANS/ADM-R

Standalone Vestas V80
2 MW

Keramat Siavash et al.14 2020 The authors developed a
mathematical model for shrouded
wind turbines, correcting prior
research and identifying a logic
domain for regulating parameters.

MATLAB Software Classical Wind turbine
aerodynamics

Venkaiah and Sarkar17 2020 In this study, a model-free fuzzy
feedforward PID pitch controller is
constructed.

MATLAB SIMULINK
environment

(HAWT, NACA 6515, FX
63 137)

Civelek19 2019 Genetic algorithm-optimized fuzzy
logic (Takagi-Sugeno) wind turbine
blade pitch angle controller.

MATLAB/Simulink
environment

Three blade wind turbine

Chen et al.20 2011 Using RNN pitch control for hybrid
fuzzy control of a wind turbine’s
generator.

MATLAB/Simulink
environment

WTG 500-kW

Asgharnia et al.9 2018 Chaotic optimization techniques
are employed to control the pitch
of a wind turbine using FPID and
FOFPID controllers.

Simulator FAST
developed by NREL.

2-mass model of 5-MW
wind turbine model

Naik et al.3 2020 An adaptive controller for DFIG-
based wind energy systems that is
based on type-2 fuzzy logic and PI is
presented.

OPAL-RT digital simulator DFIG, WETS

Van et al.26 2014 Fuzzy logic pitch angle control
versus PI, PID, and PI with gain
scheduling for variable-speed wind
turbines.

Wind turbine simulator
(experimental setup

2-MW PMSG, Wind
turbine

Pham and Månsson27 2017 For Pitch Angle Control of a WT-
FIG, an Intelligent Self-Tuning Fuzzy
Logic Controller is compared to PI
and PI-Fuzzy.

MATLAB Simulink WT-FIG

Navarrete et al.28 2007 Induction Motor Drives: The
Development of a Self-Tuned
Neuro-Fuzzy Controller for Those
Drives.

DSP board DS1104. WT-based induction
Machine (IM)

Zhang et al.29 2008 Control of the Pitch Angle for WTs
Operating at Variable Speeds

MATLAB/SIMULINK tool 1.5-MW Three blade
wind turbine

Dahbi et al.10 2016 A completely original combination
MPPT and pitch angle control for
large range variable speed WTs
based on neural control.

MATLAB Simulink. WECS based with PMSG
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to maintain high performance and to deal optimally
with the highly nonlinear behavior of the turbine on
one hand and the load disturbances caused by wind
speed variations on the other hand. The proposed
adaptive neuro-fuzzy controller’s transient perfor-
mances are compared to those of the classical PI con-
troller (PI-C), neuronal network PI controller (PI-
ANN), and fuzzy logic controller (PI-NFLC) using
four performance indices: Integral Absolute Error
(IAE), Integral Time Absolute Error (ITAE), Integral
Square Error (ISE), and Integral Time Square Error
(ITSE). The electrical power smoothing capability of
the aforementioned controllers is also evaluated, as is
the steady state performance by using the standard
deviation and Total Harmonic Distortion (THD) as
performance indicators.

The article is broken down into five sections. The
methodology is described in the first section. The wind
turbine (WTs) model is briefly described in the next sec-
tion. A simpler mathematical model is derived in the
third section. The fourth section summarizes the differ-
ent types of controllers used with pre-existing propor-
tional integral controllers with the control techniques.
Finally, a section presents the comparison performance
results of the types of controllers (PI-C, PI-ANN, PI-
FLC, PI-NFLC) applied to a high-power WT.

Methodology

In the face of severe disturbances, the performance of
fixed-gain controllers (PI) does not accurately forecast
the system’s response, short circuits and wind speed
variations, for example. For a certain operating point,
the PI controller’s fixed gain provides excellent steady-

state performance. Even though the operating point of
the converter changes all the time because of how the
plant works, it is not unusual for it to have bad transi-
ent performance. Figure 1 represents the proposed arti-
ficial intelligence controller integrated in wind turbine
conversion chain for predicting performance.

The five-step workflow is described as follows:

� The relative wind data is simulated based on a
Nikita’s model at the predicted capacities of the
high-power wind turbines, which are collected in
a first step.

� The turbine’s modeling contains two masses, and
the second phase involves using a simulation tool
to depict the energy performance.

� Integration of control technique for extracting
the maximum power and pitch control mechan-
ism for the third operation zone based on a lin-
ear PI controller is planned in the third step.

� The synthesis of artificial neuronal network,
fuzzy logic and neuro-fuzzy logic regulators is
based on software simulation. For good perfor-
mance, control in transient systems with severe
wind disturbances is projected in the fourth step.

� The fifth step is to examine the wind turbine’s
performance parameters, such as electromagnetic
torque, generator speed, turbine speed and tor-
que, power coefficient, relative wind speed, and
pitch angle.

System description

Two control systems are combined in a high-power
three-bladed WT. This system has a pitch control, a

Figure 1. Bloc diagram of suggested pitch control using regulators.
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mechanism to control how the blades turn, and
mechanical power. The MPP approach is used in order
to get the most possible power from the wind. The dou-
bly fed induction generator, often known as the DFIG,
offers more flexibility in terms of connecting to the
electrical grid.30,31 The four zones in which a variable
speed wind turbine operates are as follows:

Zone 1: The wind speed is lower than starting inertia
turbine condition that mean the importance of the
turbine’s inertia, resulting in no power being
provided.
Zone 2: The wind turbine operates in partial load
mode, when the wind speed variation exceeded (Vd)
until nominal speed (Vn). The pitch control mechan-
ism is operated under fixed angle b=2� in this zone.
The power range between the synchronous speed
(Os) and (0.7Os) below the synchronous speed. In
this zone, the wind speed creates kinetic energy that
drives the turbines. The turbine can sustain power
levels that are typically greater than the power levels
necessary to run the generator. This zone incorpo-
rates algorithms to maximize the power transferred
using MPPT.
Zone 3: Figure 2 shows how the wind turbine works
when the MPPT method with pitch control is used.
The speed of the generator (Og) controlled when the
wind speed (WS) is between the nominal value (Vn)
and the maximum value (Vmax). The speed generator
exceeds (1.3Os) above the nominal speed, this
decreases the blade angle and creates a variation in
the power coefficient (Cp). Therefore, it requires reg-
ulation of the turbine speed to provide a supportable
power level.
Zone 4: The wind turbine is operating under
mechanical locking caused by the high-speed genera-
tor. On the other hand, the blade angle exceeds the
saturation states b=bmax.

As long as a particular speed (l) greater than the cut
speed is achieved, wind energy may be harvested to the
greatest extent feasible even when the wind speed falls
below the rated wind speed. The MPPT control is
another name for this frequently used control method.
According to this analysis, in order to keep the output
of the wind turbine at the nominal value while reducing
mechanical torsion and extending the wind turbine’s
life cycle, we must keep the wind turbine at the nominal
value by controlling the pitch angle mechanism of the
step power coefficient to a suitable value to maintain
output power stability.36

On the basis of the preceding assessment, Figure 2
shows that the working zone of the wind turbine (WT),
in zone 2, is a step of MPPT, generator velocity, and
power growth as wind velocity increases. Zone 3 is a
period of continuous operation where the change in
pitch must be controlled to keep the generator’s output
power and speed at their nominal values.37

Modeling system

Figure 3 depicts a conventional variable-speed wind
turbine, which includes an aerodynamic system, a gear-
box, and a generator. Everything that contributes to
mechanical torque being transmitted to the axis of
rotation is put together as a powertrain or mechanical
transmission system. Mechanics modeling can range
from simple to complex, with some models employing
as many as six masses depending on the complexity of
the system being modeled.37,38

The model’s inputs will be aerodynamic and electro-
magnetic torque, while the output will be rotation
speed. The model’s simplifying assumptions are as
follows:

� The blades’ flexible modes are thought to be high
enough to be ignored, while the flexible modes
are found in the slow shaft’s flexible element.
The fast shaft, on the other hand, is regarded as
indefinitely stiff.

� The inertia of the gearbox and the slow shaft is
integrated with that of the rotor (Jr), which rep-
resents the whole.

Figure 2. Wind turbine aerodynamic power generated.

Figure 3. Wind turbine dynamics.
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� The inertia of the hub can be ignored because it
accounts for only 1% of the total inertia of the
turbine. The inertia of the fast shaft connected to
the generator is represented by (Jg).

� The torsion of the turbine axis, in terms of stiff-
ness constancy, can be calculated analytically,
provided that its geometric shape is known.

� The torsional forces of the blades, hub, multi-
plier, and slow shaft are all included in the total
elasticity coefficient (Kls) of the slow shaft.

� Viscous friction on the bearings of the drive unit
is taken into account by the coefficients (Kr)
and (Kg).

� The inertia of the turbine is substantially equal
to that of the blades.

The aero turbine, gearbox, and generator are all illu-
strated in Figure 3 of a variable-speed wind turbine.
For the rotor’s aerodynamic power capture, the non-
linear expression is38:

Paer =
1

2
r:p:R2Cp l,bð Þ:v3 ð1Þ

The power coefficient (Cp), which is the linear blade tip
speed, is proportional to the wind speed (v). The blade
pitch angle (b) and the tip-speed ratio (l) both have an
impact on the power coefficient.39

l=
R:Ot

v
ð2Þ

Due to the tip-speed ratio being affected by the wind
speed or rotor speed, the power coefficient shifts. This
affects the amount of electricity produced. According
to the following equation, the power coefficient is pro-
portional to the aerodynamic torque coefficient, profit-
ing from a partnership.

Paer =Ot:Taer ð3Þ

The following equation is used to determine the aerody-
namic torque expression:

Taer =
1

2
r:p:R3:Caer l,bð Þ:v2

Caer l,bð Þ= Cp l,bð Þ
l

ð4Þ

The power coefficient (Cp) for a 2MW wind turbine
can be calculated using the equation below.40,41

Cp(l,b)= c1(c2

1

R
� c3b� c4bx � c5)e

�c6
1
R

1

R
=

1

l+ 0:08b
� 0:035

b3 + 1

ð5Þ

C1=0.5, C2=116, C3=0.4, C4=0, C5=5, C6= 21,
and x=0

The dynamic response of the rotor driven at a speed
(Or) by the aerodynamic torque (Taer) is shown

jr

dOt

dt
= Taer � Tls � Br:Ot ð6Þ

The high-speed shaft torque (Ths) drives the generator,
while the generator electromagnetic torque brakes it
(Tem).

jg

dOg

dt
= Ths � Tem � Bg: Og ð7Þ

The rotor is slowed down by the low-speed shaft torque
(Tls). Because of the discrepancy between (Ot) and (Ols)
which occurs from torsion and friction effects.

Tls =Bls(ut � uls)+Kls(Ot � Ols) ð8Þ

By applying the Laplace transformation, we obtain:

Ot =
1

jrS +Br

(Taer � Tls) ð9Þ

Og =
1

jgS +Bg

(Ths � Tem) ð10Þ

Using an ideal gearbox and transmission ratio, the fol-
lowing equations may be derived (G).

G =
Tls

Ths

=
Og

Ols

=
ug

uls

ð11Þ

It is possible to represent the turbine as a single mass by
using equations (8) and (11) with a completely stiff low-
speed shaft:

Jtot

dOt

dt
= Taer � Ttot � Btot:Ot ð12Þ

with

Jtot = jr + G2:jg

Btot = Br: + G2:Bg

Ttot =G: Tem

8<
: ð13Þ

The total inertia, friction coefficient, and torque of the
generator returned to the slow shaft are represented by
the parameters (Jtot), (Btot), and (Ttot). The generator’s
inertia is frequently disregarded in favor of the rotor.
The last equations allow the block diagram of the tur-
bine model Figure 4 to be created.

Electrical performance of wind turbine
generator controllers

Two different techniques are used in this study. The
turbine has developed its approach to pitch control
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mechanism and its MPPT technique. Figure 5 illus-
trates the use of many controllers to evaluate their con-
tribution to the wind energy conversion system
(WECS).42,43

Controller strategies

MPPT control. In below-rated circumstances, the goal is
to capture as much wind power as possible. Figure 2
shows that for each wind speed, the turbine gets more
speed until the speed limit supported by the turbine is
reached, which means that the turbine gets maximum
power at a certain rotor speed, and power follows a
cubic regression in terms of rotor speed.44,45

In order to obtain better results, the system will need
to make use of the MPPT approach while operating at
variable wind speeds. In this particular investigation, a
control strategy known as Tip Speed Ratio control,
which is based on the PI controller, is used. When the

TSR is set to its best value and the wind speed is mea-
sured at that point, the rotor’s best speed, which can be
written as46:

Ot�opt =
v: lopt

R
ð14Þ

The regulator uses quick dynamic speed adjustment in
order to create an electromagnetic torque with a steady
state reference value of the rotor’s steady speed31:

Paer ref =
1

2l3
opt

Cp maxrpR5O3
t ð15Þ

The functional diagram for the direct torque approach
may be seen in Figure 6. The DFIG has two cascading
control loops, as can be shown. Iqr is controlled by the
vectorial command, which was discussed before. It is
thus possible to relate the speed of the control loop
rotor to the torque produced by this component. It is
determined by comparing the recorded wind speed with
the TSR value.

There is more dynamic activity within than outside
of the inner loop, thus PI gains are calculated using the
pole cancelation approach and a crossover frequency in
open mode that is an order of magnitude lower than
the internal loop’s crossover frequency.

Pitch control. A controller and an actuator compose the
variable pitch system. Servo control of the blade’s rota-
tion is provided by the actuator, which is a nonlinear
system. The height controller’s output signal can be
thought of as a dynamic system with an amplitude and
a saturation point.47

Figure 4. The aerodynamic model’s block diagram.

Figure 5. Diagram of a variable pitch control based DFIG.
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The aim is to allow the rotor to get the most wind at
all times. The blades can have a different pitch angle
adapted to the wind that faces them. The explanation
diagram for pitch angle regulation in wind energy con-
version systems can be seen in Figure 7, which can be
found here.48

In Zone 02, the blade angle is fixed, the rotor speed
is in a steady state, and the specific speed is at its opti-
mal value. To prevent damaging the structure in Zone
03, it is important to control the blade angle. This var-
iation starts from a maximum speed supported by the
generator with a value higher than 30% of the synchro-
nization speed. The variation of the blade angle con-
trols the aerodynamic torque. It is constant, and the
wind turbine produces its power.

This section is going to concentrate on the control
system, and Figure 8 is going to depict the actuator of
the pitch control.

The following is a description of its dynamic behavior44:

db

dt
= � 1

tr

b+
1

tr

bref ð16Þ

where b, bref are respectively the actual and given pitch
angles, tr is the actuator time constant. Normally, beta
e(0�; 90�), The rate of change of pitch angle is within
210�/s; +10�/s.

Figure 9 depicts the pitch control strategy’s block
diagram.

The electromagnetic torque is maintained at its rated
value in order to ensure that the correct amount of elec-
trical power is being regulated. As a result of the blades
being controlled by a hydraulic electric actuator, the
pitch angle is confined and limited to falling within the
range of 2� to 90�, which is illustrated by the saturation
block in the same figure.40

Controller design

Proportional-integral controller. Because of its straightfor-
ward design, the PI controller is the type of controller
that finds the most use in industrial settings. It causes
the angle of the blades to change based on how fast the
rotor is moving, which is an error in pitch control.31,47

In the Laplace domain, the conventional PI control
is defined as33:

Db Sð Þ=KpDOt Sð Þ+Ki

1

S
DOt(S) ð17Þ

Equation (20) may also be stated in the s-domain to
provide the result shown below:

DOt Sð Þ S � A½ �=BDb Sð Þ+DDvw(S) ð18Þ

Figure 7. Operating diagram of a wind turbine generator.

Figure 6. Diagrammatic representation of the MPPT method.

Figure 8. Diagram of variable pitch actuator.
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The closed-loop transfer function T(s) is found by sub-
stituting equation (20) with equation (21):

T Sð Þ= DOt(S)

Dvw(S)
=

Ds

S2 + �A� BKp

� �
S +(� BKi)

ð19Þ

The stability condition is the first factor to consider
while choosing PI gains.49 For a stable closed-loop sys-
tem, the denominator roots should be negative or the
polynomial coefficients should be positive: (-A-
BKp . 0) and (-BKi. 0).

Finding the right controller gains is done by com-
paring the denominator to the standard form, which is
written as:

S2 + 2 jvnS + v2
n ð20Þ

Where j is the damping ratio and vn is the undamped
natural frequency.

Thus, Ki and Kp are given by:

Ki = � v2
n

B

Kp = � A
B
� 2jvn

B

(
ð21Þ

There is a link between B and the angle of the blades
and the partial derivative of the turbine torque. the
angle of the torque curve changes considerably from
one equilibrium point to the next. Because of this,
choosing this equilibrium point as the operating point
is a challenging task that must be performed in order
to get good results.49

Fuzzy logic controller (FLC). Non-negative linearity is miti-
gated via fuzzy logic, which increases performance.
Unknown parameters, input parameter variations, and
external perturbations are among issues that traditional
controllers must face. Gains are planned using FLC. In
terms of dynamic input parameters and external
disturbances, conventional controllers outperform
appropriately developed FLCs.32 This is due to the fact
that it does not rely on a mathematical model to utilize.
Variations in aerodynamic torque susceptibility are
compensated for by the blade pitch control gain
regulation.

The fuzzy controller manages the two parameters
proportional and integrator gains (Kp, Ki) as indicated
in Figure 10.47

After fuzzy reasoning and function clarification,
they input the adjustments of the two parameters K#p
and K#i into the PI controller, setting them in real-time
using the following equation 50:

Kp =Kp0 + K
0
p

Ki =Ki0 +K
0
i

(
ð22Þ

In general, the FLC consists of two steps

� Fuzzification

The fuzzy field of the input variables error (e) and error
variation (de) is defined as [21;1], according to our
standards. Negative big, negative small, around zero,
positive small, and positive big are the seven language
value variables that are used for input and output,
respectively. These language value variables are abbre-
viated as ‘‘NB, NS, AZ, PS, PB.’’ The membership
function that is shown in Figure 11 is a hybrid of the
triangle function and the trapeze function.

The 3D image simulation of two inputs (e, de) and
output variation control (du) is given in Figure 12.

The fuzzy control rules of PI controller’s two para-
meters Kp and Ki are shown in Table 2.

� Fuzzy rules

Figure 10. Schematic representation of the T-S fuzzy PID
topology.

Figure 9. Schematic representation of the pitch-controlling approach.
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The establishment of a database and the formulation
of fuzzy controller action rules are both required at this
stage of the process. As opposed to formal predicate
compute statements, it may be explained using words
or straightforward phrases spoken in a language that is
commonly used. The rules are organized in an IF-
THEN pattern.38

Mamdani Inference Model: IF: e = NB and De = AZ
then Db = NS

Takagi-Sugeno-Kang: IF: e = NB and De = AZ then Db

= f (NB, AZ)

A fuzzy set is transformed into a precise action with a
real value. To satisfy mathematical expressions, the
center of gravity method is used. We used Mamdani’s

‘‘MAX-MIN’’ method for numerical processing of
inferences related to the RLF5 fuzzy controller, such
as:

� The operator AND: establishing a minimum
� The operator OR: maximum training
� Involvement THEN: training of the minimum
� Aggregation: formation of the maximum

The output power error (e) and error variation (de) are
used as input variables in this study, and the system is
fuzzified to transform the accurate input quantity into
a fuzzy quantity, which is expressed by the appropriate
fuzzy set. The power fluctuation range of wind turbines
should be kept to less than 10%. The error range is
defined as 20.2MW; 0.2MW, and the associated error
rate is set as 20.4MW/s; 0.4MW/s, because the rated
power of the direct-drive wind generator analyzed in
this work is 2MW. The fuzzy area of error (e) and error
variation (de) could be regarded as {21; 1}, and the
scaling factor of error and error time variation can be
calculated as follows50:

Ke =
1

200000
= 5e�6

Kde =
1

400000
= 2:5e�6

�
ð23Þ

The corresponding model of a two-input, one-output
fuzzy PI controller is created as illustrated in Figure 13
based on the previous model.

Artificial Neural Network Controller (ANN). A Multi-layer
perceptron-type (MLP) non-recurrent network model
is chosen for identification and control.41

The Figure 14 shows the principle of direct identifi-
cation of a conventional controller.43

Different techniques can be used with one or more
hidden layers, in which each neuron in one layer is con-
nected to those in the next layer. The neurons in the
various hidden levels have sigmoid, tangential, or loga-
rithmic activation functions. At the same time, those of
the output layer are linear.51

Figure 12. 3D image of e, de, and du simulation outputs.

Table 2. Fuzzy logic control rules.

e

de du NB NS AZ PS PB
NB NB NB NB NS AZ
NS NG NS NS AZ PS
AZ NS NS AZ PS PS
PS NS AZ PS PS PB
PB AZ PS PS PB PB

with: e: Mistake (e), de: Error derivative, du: Control derivative

Figure 11. Membership function.
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Due to the internal feedback loop, the RNN is
robust to various environmental conditions and wind
torque perturbations, allowing it to perform nonlinear
dynamic mapping. Furthermore, the RNN outperforms
other frequently used NNs in terms of speed and effi-
ciency, making it ideal for real-time control and identi-
fication applications.43 As illustrated in Figure 15, The
RNN the type multi-Layer-perceptron (MLP) has two
inputs in the input layer, 25 neurons in the first hidden
layer, 10 neurons in the second hidden layer with ‘‘log-
sig’’ function in both layers. One output neuron in the
output layer with ‘‘pureline’’ function, is employed to
approximate the dynamics of the generator.

The activation function is a LogSig:

f xð Þ= 1

1+ e�x
ð24Þ

Neuron output identification:

Oj = f
XN

i= 1
xj:vij +vbj

� �
ð25Þ

Update of synaptic weights:

vij n+ 1ð Þ=vij nð Þ+m:ej:f
0 XN

i= 1
xi:vij +vbj

� �
xj

ð26Þ

Bias update:

Figure 14. Schematic of a system for pitch control with a direct identification PI controller.

Figure 15. RNN topology.

Figure 13. T-S fuzzy PI model of variable pitch system control.
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vb1 n+ 1ð Þ=vbj nð Þ+m:ej:f
0 XN = 2

i= 1
xi:vij +vbj

� �
:1

ð27Þ

By increasing the number of interconnecting weights
and neurons in the hidden layer, the RNN approxima-
tion’s accuracy may be greatly improved. By choosing
proper connection weights and a reasonably high num-
ber of neurons in the hidden layer, the approximation
error may be greatly decreased to arbitrarily small over
a compact set.20

The appropriate model of two input and one-output
Neuron PI controller is created according to the afore-
mentioned configuration, as illustrated in Figure 16.

Neuro-fuzzy controller. As shown in Figure 11, the ‘‘if-
then’’ rules below define a fuzzy controller (FLC),
which can be easily implemented as a neural network.
The speed error and speed error derivative input nodes
on the controller are used, with one presenting the con-
trol. The input node feeds the intermediate layer, also
known as the hidden rules layer, through weighted
connections.5,10

The definitions of these weights are linguistic vari-
ables or fuzzy sets. Using these shared weights, the
input error is translated into linguistic variables and
delivered to the rule layers. Each rule layer responds to
the data in a parallel manner. The input layer’s input
(error and error derivative) conditioned by the fuzzy
weights is used by the ruling layer to identify the inputs’
conjunction (fuzzification).19

The rule layer’s output is transmitted through
weighted connections to the output layer (control

layer). The weights are output fuzzy set definitions,
and a defuzzification technique is applied at the end.
It is referred to as the ‘‘modified center of gravity’’
strategy. The synthesized NFC regulator is shown in
Figure 17.

The 3D image simulation of two inputs (e, de) and
output variation control (du) is given in Figure 18.42

Results and discussion

The proposed artificial intelligence controller is put to
use on a wind system that has been modeled in Matlab/
Simulink. This is done to show how well it can control
mechanical speed and keep wind disturbances from
happening. To model the WT, the characteristics of a
three-blade WT model are used. Table 3 includes a list
of these parameters.48

In general, each manufacturer’s brochure provides
extremely minimal information. The characteristic
curves and certain rating parameters are generally the
constrained data collected from manufacturer docu-
mentations. The goal is to explain some important rules
that can be used to get the parameters needed for mod-
eling from curves.37,48

For 100 s of simulation time, the four aforemen-
tioned controller responses were evaluated in terms of
robustness and precision, utilizing a variable WS and
turbulent WS profile. The wind speed that was selected
by using Nichita’s model, as shown in Figure 19, has a
value of 11m/s on average, with minimum and maxi-
mum values of 9 and 13.5m/s, respectively. This was
done to make sure that the wind speed chosen stayed

Figure 16. Variable pitch mechanism is controlled using a PI-ANN model.
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higher than the rated wind speed for the whole
simulation.29

As the wind speed increases from 12 to 13.5m/s, the
generator speed reacts to the initial scaling variables as
shown in Figure 22. The neuro fuzzy (PI-NFLC)

regulator curve provides better dynamic characteristics,
as seen in this figure. The rise time was increased from
4.5 to 1 s around the conventional regulator, and the
overshoot was minimized.

On the other hand, the neuronal network and fuzzy
logic regulators (PI-ANN), (PI-FLC) successfully pro-
vided a satisfactory response.

Integral Time Absolute Error (ITAE), Integral
Absolute Error (IAE), Integral Time Square Error
(ITSE), and Integral Square Error (ISE) are the four
performance indices used in the study. The wind varia-
tion change from 11m/s to 13.5m/s characterizes the
equilibrium point. Figure 20 illustrates the generator
speed responses, while Table 4 lists the performance
index values for each controller

It has been shown that the suggested method, the
PI-NFLC, generates the desired performance, whereas
the traditional controller generates the weakest results
(PI-C). It is essential to keep in mind that the ideal con-
troller is referred to as the one that reduces the values
of those indices.

Figure 18. 3D image of e, de, and du simulation outputs.

Table 3. Simulation parameters.

Parameters of turbine Ratings

Nominal turbine power rating Pn (MW) 2.5
Rated wind speed V (m/s) 12
Cut in speed (m/s) 03
Cut out speed (m/s) 25
The radius of the blades R (m) 40
Multiplier gain G 95
Turbine inertie j (kg.m2) 6.3 106

Damping coefficient j 0.707
Air Density r (kg/m3) 1.225
Friction coefficient fv 10-3

Kp �A=B� 2jvn=B
Ki Ki = � v2

n=B

Figure 19. Wind variation profile.

Figure 17. PI-NFLC control model of variable pitch system.
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The FLC might be regarded as the second-best
option if IAE, ITAE, and ISE are taken into consider-
ation. On the other hand, the ITSE index recommends
the neural network controller (PI-ANN) as a good con-
trol solution. This indicates that the PI-ANN controller
is more effective than the PI-FLC controller in the sec-
tion of the transient process that is near to the steady
state. This problem is made very clear by the fact that
the FLC method results in an undershoot while the
ANN method does not.

For the purpose of providing more evidence about
the efficacy of the proposed controller, the model of the
wind system is sustained in the simulation by a chang-
ing wind intake coupled with a turbulence level of 2%.
Figure 19 depicts the wind profile as a whole. In this
particular evaluation, the performance indicators that
are being used are the standard deviation (STD) and
the total harmonic distortion (THD).

The adaptive neuro fuzzy logic (PI-NFLC) can tol-
erate significant wind disturbances and produce good
rotor speed regulation around its nominal value, as
shown in Figures 21 and 22. The conventional control-
ler, on the other hand, produces substantial generator
speed variations that can exceed 250 rad/s, or 17% of
the rated value. The rotor overcurrent may cause dam-
age to the power electronic converters. A satisfactory
result can also be obtained with a fuzzy controller.

Figure 23 shows the necessary pitch angles for speed
control. It is evident that when the wind speed is strong,
the pitch angle increases to reduce the amount of wind

power captured. The suggested controller provides for
greater pitch action at a faster rate than the previous
controllers. This explains the rated speed tracking’s
high dynamic performance. The pitch activity of the
neuron network controller (PI-ANN) and fuzzy logic
regulator (PI-FLC) is still acceptable, and the pitch
angle actuator is requested at a lower level than the
neuron fuzzy controller (PI-NFLC).

The power coefficient and relative speed curves are
shown in Figures 24 and 25 respectively. As expected,
the fluctuations in Cp were inversely linked to those of
the pitch angle. This was because raising the blade angle
decreased the power factor, which was done to restrict
the amount of energy transferred.

The STD and THD are utilized as performance
indices to compare the controllers under investigation
in order to evaluate mechanical vibrations and power
quality.

The aerodynamic torque oscillations are depicted in
Figure 26, and the performance indices are summarized
in Table 5. Neuron fuzzy control (PI-NFLC) provides
the best results, since it has less oscillations and disper-
sion of variability around the average than other con-
trollers. As a result, the suggested controller can reduce
the mechanical stresses imposed on the turbine and
gearbox.

As shown in Figure 27 and Table 6, the turbine
mechanical power regulation performance is quite satis-
factory when utilizing adaptive neuron fuzzy control.
Under full load, the controller can keep the power gen-
erated at a level close to the nominal value, and the
quality of the power has been greatly improved, with
the lowest THD and STD. When compared to the tra-
ditional PI controller, the suggested technique achieves
a significant gain of 19.62%, and 8.42% when com-
pared to the second-best solution based on fuzzy logic
controller. The THD index may be significantly
reduced with the proposed controller.

Conclusion

This paper deals with the design of a pitch angle con-
troller based on an adaptive artificial intelligence

Table 4. Under wind speed fluctuation, a comparison of generator speed responses based on four performance indices.

Regulator Performance index

IAE ITAE ISE ITSE

Conventional PI controller 112.54 1.9.103 34.435.103 7.436.104

PI-ANN 47.51 738.32 264.471.102 1.505.103

PI-FLC 21.57 444.29 887.44 2466.16
PI-NFLC 13.87 375.28 241.34 406.59

PI = proportional-Integral, PI-ANN = Artificial Neuronal Network regulator, PI-FLC = Fuzzy Logic Control, PI-NFLC = Neuron Fuzzy Logic Control.

Figure 20. Generator speed response under different
regulators.
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control, aiming at enhancing the power quality and
reducing the mechanical loads when the wind system
operates at the above rated wind speeds. The necessary
results are summarized as follows:

- Firstly, four of the aforementioned controller
responses (PI-C, PI-ANN, PI-FLC, PI-NFLC)
were evaluated in terms of robustness and preci-
sion, utilizing a variable wind speed and turbulent
wind speed profile. This last was selected using
Nichita’s model, and has a value of 11m/s on
average, with minimum and maximum values of
9 and 13.5m/s, respectively.

- The Integral Absolute Error (IAE), Integral Time
Absolute Error (ITAE), Integral Square Error

Figure 22. Turbine speed responses.

Figure 23. Pitch control profile under wind speed variation.

Figure 26. Aerodynamics torque responses.

Table 5. Under variable wind speeds, aerodynamic torque
responses for different controller systems are analyzed.

Controller Average value Performance index

STD (s) THD (%)

Classical PI controller 0.961.108 0.881.107 21.35
PI-ANN 0.649.108 0.639.107 18.60
PI-FLC 0.446.108 0.527.107 13.75
PI-NFLC 0.219.108 0.498.107 7.73

THD = Total harmonic distortion, STD (s) = Standard deviation.

Figure 21. Generator speed responses. Figure 25. Relative Speed variations.

Figure 24. Power coefficients variations.
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(ISE) and Integral Time Square Error (ITSE) are
the four performance indices used in the study to
judge the principal parameters that are analyzed
of the WTs under wind speed fluctuations, as well
as generator rotor speed and aerodynamic tor-
que. On the other hand, the STD and THD are
utilized as performance indices to compare the
controllers under investigation in order to evalu-
ate mechanical vibrations and power quality for
the turbine power transferred to the grid.

- The wind variation changes from 11 to 13.5m/s
and characterizes the equilibrium point. In Table 4,
it has been shown that the suggested method for
the generator rotor speed and the neuro fuzzy (PI-
NFLC) regulator curve provides better dynamic
characteristics. The rise time was increased from
4.5 to 1 s around the conventional regulator (PI-
C), and the overshoot was minimized. On the other
hand, the neuronal network and fuzzy logic regula-
tors (PI-ANN), (PI-FLC) successfully yielded a
satisfactory response, whereas the traditional con-
troller generated the weakest results (PI).

- The pitch activity of the neuron network control-
ler (PI-ANN) and fuzzy logic regulator (PI-FLC)
is still acceptable, and the pitch angle actuator is
requested at a lower level than the neuron fuzzy
controller (PI-NFLC).

- The aerodynamic torque oscillations are analyzed
by the performance indices, which are

summarized in Table 5. Neuron fuzzy control
(PI-NFLC) provides the best results since it has
fewer oscillations and dispersion of variability
around the average than other controllers. As a
result, the suggested controller can reduce the
mechanical stresses imposed on the turbine and
gearbox.

- As shown in Table 6, the turbine mechanical
power regulation performance is quite satisfac-
tory when utilizing adaptive neuron fuzzy con-
trol. Under full load, the controller can keep the
power generated at a level close to the nominal
value, and the quality of the power has been
greatly improved, with the lowest THD and
STD. When compared to the traditional PI con-
troller, the suggested technique achieves a signifi-
cant gain of 19.62%, and 8.42% when compared
to the second-best solution based on the fuzzy
logic controller. The THD index may be signifi-
cantly reduced with the proposed controller.

- The results indicate that the proposed controller
(PI-NFLC) can both achieve an accurate regula-
tion of the generator speed and electrical power
and give the best mitigation of the mechanical
load effects compared with the other controllers.
The tests reveal that fuzzy logic and neuronal net-
work controllers give almost the same results and
can be adopted as the second choice.

It is critical to use the neuron fuzzy to save the electri-
cal device and extract the maximum power with quality
transfer, which is demonstrated with STD (s) and FFT
analysis.
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Appendix

Notation

bopt Optimal pitch angle, (�)
Cp Power coefficient
Ct Aerodynamic coefficient
Or Rotor speed, rad.s21

Og Generator speed, rad.s21

jr Rotor inertia, kg.m2

jg Generator inertia, kg.m2

Jtot Turbine total inertia, kg.m2

Tem Generator (torque) torque, N.m
G Gearbox ratio
Ttot Generator torque in the rotor side, N.m
V Wind speed, m.s21

Tls Low speed shaft torque, N.m
r Air density, kg.m3
Ths High speed shaft torque, N.m
b Pitch angle, (�)
Br Rotor external damping, N.m.rad21.s
R Rotor radius, m
Bg Generator external damping, N.m.rad21.s
lopt Optimal tip speed ratio
Bt Turbine total external damping,

N.m.rad21.s
Paer Aerodynamic power, W
Kls Low speed shaft damping, N.m.rad-1.s
Taer Aerodynamic torque, N.m
Bls Low speed shaft stiffness, N.m.rad21.s
l Tip speed ratio
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