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Abstract

The factorization (root finding) of scalar polynomials is

an important tool of analysis and design for linear systems.

This thesis is a part of an ongoing effort to generalize

these tools to multivariable systems via the factorization of

matrix polynomials.

The main contributions of this thesis can be summarized as

follows:

(1) the development of the Q.D. algorithm, which is a

global method capable of producing a complete factorization of

a matrix polynomial;

(2) establishment of an existence theorem for the Q.D.

algorithm;

(3) production of convergence theorems for the Q.D.

algorithm;

(4) study of the initialization of the algorithm;

(5) applicability of Broyden's method to matrix polynomial

problems.

As a by-product, some important results have been

produced:
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(6) location of the latent roots of a matrix polynomial

in the complex plane;

(7) Investigation of the existence of the solvents of a

monic matrix polynomial;

(8) derivation of an incomplete partial fraction expansion

of a matrix rational fraction.

- v -



Table of Contents

Acknowledgements i^

Abstract ^v

Chapter 1 Introduction 1

Chapter 2 Theory of Matrix Polynomials 7

2.1 General Definitions 7

2.2 Latent Structure of Matrix Polynomials 9

2.3 The Division Algorithm 17

2.4 Spectral Divisors 25

2.5 Complete set of solvents and complete
factorization 28

Chapter 3 Global Methods 35

3.1 Some Definitions 35

3.2 The Homogeneous Difference Equation 37

3.3 Bernoulli's Method 42

3.4 Traub's Algorithm 47

3.5 The Block Power Method 49

Chapter 4 The Quotient-Difference Algorithm 51

4.1 Introduction 51

4.2 The Algorithm 52

4.3 Applicable Class of Matrix Polynomials 53

4.4 The Linear Diophantine Equation 54

4.5 Power Series 57

4.6 A Generalization of Linear Independence 61

4.7 A Generalization of the Power Method 64

4.8 Relation with Dennis et Al. Algorithm 81

vi -



4.9 The Left Q.D. Algorithm 82

4.10 An Existence Theorem for the Q.D. Algorithm 85

Chapter 5 The Q.D. Algorithm: Block Matrix Methods
92

5.1 Introduction g2

5.2 The Block L.R. Algorithm g3

5.3 The Right Q.D. Algorithm 98

5.4 The Row Generation of the Q.D. Tableau 101

Chapter 6 Local Methods 107

6.1 Introduction 107

6.2 General Definitions 107

6.3 Newton's Method 113

6.4 Broyden 's Method 114

Chapter 7 Implementation and Numerical Results .... 117

7.1 Data Structure 117

7.2 The Q.D. Algorithm 118

7.3 Broyden's Method lig

7.4 The Complete System 120

7.5 Numerical Results 121

Chapter 8 Conclusion 134

References 138

vn -



Chapter 1

Introduction

In the early days of Control and System theory, frequency

domain techniques were the principal tools of analysis,

modelling and design for linear systems. The work of Nyquist

[29] and Bode [3] laid down the foundations of feedback and

control science. However, only dynamic systems that can be

modelled by a scalar mth order linear differential equation

with constant coefficients are amenable to this type of

analysis (see ref. [9] for example). Those systems have a

single input and a single output (SISO).

In this case, the transfer function is a ratio of two

scalar polynomials. The dynamic properties of the system (time

response, stability, etc..) depend on the roots of the

denominator or in other words on the solution of the

underlying homogeneous differential equation (difference

equation)1.

1 It is understood that the same results apply to discrete
time systems. The use of the z operator as forward shift
operator transforms a scalar mth order difference equation
with constant coefficients into a mth order transfer function.
This transfer function is also a rational fraction.
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The advent of powerful computing facilities modified the

view of system engineers and the emphasis was put on time

domain analysis (the State Space approach) [44,45]. This

approach is essentially the modelling of the system by a first

order differential (difference) equation. It allows the use of

matrix theory [26] and powerful numerical procedures [41].

In the state space approach, the dynamic properties of the

system under study depend mostly on the eigenvalues of a state

matrix. This method has the advantage to model with the same

ease single input single output systems and multiple input

multiple output systems (MIMO).

When one studies high order MIMO systems, the size of the

matrices involved becomes prohibitive. This is why there is a

reappearance nowadays of transfer function (which become

rational matrices) description [5,21,24]. In this context, the

dynamic properties of the system under study are determined by

the latent roots of a polynomial matrix. This is why we find

quite a lot of publications at the present time about those

matrices in system and control journals. References

[1,31,32,35] are a few sample of this trend.

To clarify these concepts, let us consider the following

dynamic system:

yt0yl"°(0+ ^iy<m"l)(0 +.-. +AmyW- *,u(0*Bzu\t) +...♦ Bmuim-l\t) (1.1)

y(QeCr u(0€Cp

AteCrxr 5t€Crxp
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The "modes" of this system are the solutions of the

homogeneous equation:

^oy("°(0+^iyc""l,CO*... +ii»y(0 -o (i .2)

using y(0-Ca , CtC, \ is a complex number, equation

(1.2) is transformed to:

[A0hm+Alkn-l +...+Am]CaK'-0 (1.3)

In other words, (1.3) implies that y(t) belongs to the null

space of the following square matrix:

A(k)-A<)km +Alkm-i +...+An (1.4)

The square matrix A(\) is a matrix polynomial of degree m.

The general solution of (1.2) is derived in reference [10].

Another approach to equation (1.1) can be found by using

the Laplace transform. (1.1) is transformed to:

>'(s)-[^(s)]-,5(s)£/(s) (l.S)

where A(s) is the previously defined matrix polynomial,

B(s) is an r x p matrix polynomial with coefficients

Bi,...,B«x, U(s) and Y(s) are the Laplace transforms of u(t)

and y(t) respectively. Equation (1.5) defines a matrix

transfer function for the system (1.1)2. This particular

2 We obtain the same result by applying the z-transform to a
difference equation. Thus \ as a variable in a matrix
polynomial can represent either the variable s of the Laplace
transform or the variable z (or z_1) of the z-transform.
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matrix is called the "left matrix fraction description" (LMFD)

of the system (1.1). A right matrix fraction (RMFD) can be

defined [24]. In this representation the matrix polynomial

A(s) is a sort of denominator of the transfer matrix.

A state space description of system (1.1) can be found by

transforming the mth order differential equation (1.1) into a

first order differential equation. For details on this

analysis, the reader should consult references [5,21,44].

To see the importance of factorization, let us consider

equation (1.2). we assume that A(\) - /,(X.)i42(X.). In this case

(1.2) can be simplified to:

»a[^Jy(0-V,(O (1.6)

X. is the derivative operator in this case [10]. Thus the

mth order differential equation has been transformed into two

smaller order differential equations.

In chapter 2, we will derive a partial fraction expansion

for the inverse of a matrix polynomial and in chapter 4, we

will demonstrate that a factorization of the "denominator" of

a transfer matrix leads to an incomplete partial fraction

expansion. Those partial fractions are of course transfer

functions of reduced order linear systems.
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The purpose of this thesis is to derive a global method

for computing a particular factorization. This global method

is then followed by a local (but fast converging) method.

There have been some algorithms that have been published

[8,23,34,39]. However, those methods can factorize only a

linear factor at a time. The global method that we propose to

use is a generalization of the scalar quotient-difference

(Q.D.) algorithm [15-18]. The use of the Q.D. algorithm to

matrix polynomial factorization has been suggested by Hariche

in [14]. The local method that we propose in our work is

Broyden's algorithm [6] which presents some advantages over

the classical Newton's method [23,34].

In the following section, we give a brief presentation of

the thesis.

Chapter two provides the basic theoretical tools for the

rest of the thesis.

Chapter three examines the existing global methods. The

proofs presented therein are different from the original ones.

Chapter four constitutes the heart of the thesis and

represents the main contribution of this work. In this

chapter, we study the convergence and the conditions of

existence of the matrix Q.D. algorithm.

Chapter five completes our analysis by providing an

alternate proof of convergence using block matrix methods.
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In chapter six, we analyse local techniques and look at

the applicability of Broyden's method to our problem.

In chapter seven, we present some numerical results. We

have tested the Q.D. algorithm and Broyden's method on a large

number of matrix polynomials.

Finally, in chapter eight, we provide the conclusions of

this thesis and we suggest topics for further research.
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Chapter 2

Theory of Matrix Polynomials

2.1 General Definitions.

We have seen in the introduction that matrix polynomials

arise naturally in the study of linear time invariant dynamic

systems. In this chapter we will attempt to give a more

precise meaning to these polynomials. There exist a quite

large confusion in their definition. Dennis et Al. in [7],

Gohberg et Al. in [10] and Kucera in [24] give three different

definitions that do not correspond to the same entity. The

definition we will use in our work will be the one used by

Gohberg et Al.

Definition 2.1:

Given the set of rxr complex matrices A0,AX Am, the

following matrix valued function of the complex variable \ is

called a matrix polynomial of degree m and order r:

A(k)- A0km +A^*'1 +... +A^k* An. (2.1)

An equivalent definition is the one of \-matrices which

are also called polynomial matrices in Kucera [24]:
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Definition 2.2:

The following rxr matrix:

/an(M ... alr(\)\
"(*•>- (2.2)

VaM(M ... arr(M/

is called a \-matrix of order r where a„(X.) are scalar

polynomials over the field of complex numbers C.

Dennis et Al. definition of a matrix polynomial [7] is

called in our work the right evaluation of the matrix

polynomial A(\).

Definition 2.3:

The following rxr matrix valued function of the rxr matrix

X is called the right evaluation of the matrix polynomial /1(X.)

at X:

AK(X)-A0Xm+AlXm-l +...+ An. (2.3)

Me also define the left evaluation of A(\) at X by:

AL(X)-XmA0 +Xm-1Al +...+Am. (2.4)

So we can see that the two definitions 2.1 and 2.2 are

equivalent. However, definition 2.1 emphasises the polynomial

character of the matrix polynomial while definition 2.2

emphasises the matrix one. We will use most of the time

definition 2.1. Definition 2.3 is very different and will be

mostly used when we will present the local methods.
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The following definitions are also useful.

Definition 2.4:

The matrix polynomial A(k) is called:

- Monic if A0 is the identity matrix

- Comonic if An is the identity matrix

- Unimodular if its determinant is a nonzero constant and

- Regular if its determinant is not identically zero.

There are also definitions (i.e. the Smith and Hermite

normal forms) which are very useful in the study of

\-matrices. However, because we will not use those concepts in

the rest of the presentation, we will not present them here.

The interested reader should consult the appropriate

literature on matrix theory (i.e. Lancaster et Al. ref.[26]).

2.2 Latent Structure of Matrix Polynomials.

Definition 2.5:

The complex number k0 is called a latent root if it is a

solution of the scalar polynomial equation deM(K)-0.

The non trivial vector v, solution of y1(\0)v-0 is called a

primary right latent vector associated with kQ.

From the definition we can see that a latent problem of a

matrix polynomial is a generalization of the concept of

eigenproblem for square matrices. Indeed, we can consider the

classical eigenvalue/vector problem as finding the latent

root/vector of a linear matrix polynomial kl - A . An
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interesting problem is the number of latent roots in a given

region of the complex plane. This is answered by the following

theorem.

Theorem 2.1:

The number of latent roots of the regular matrix

polynomial A(k) in the domain O enclosed by a contour T is

given by:

N--^—.ftraca[A~\k)A\k)]dk (2.6)
2a; Jt

each latent root being counted according to its

multiplicity.

Proof:

In this proof, we will make use of the following result

from the theory of functions of a complex variable (see

Henrici ref.[15] for example):

"The number of zeros of a function /(z) analytic in a

domain V enclosed by a contour r is given by:

2njJr f(z)

each zero being counted according to its multiplicity."

1 A'(k) is the derivative of A(k).
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Let us now consider the scalar polynomial d(\)- detA(k).

Being analytic in any domain in the complex plane then the

number of its roots inside a curve r is given by:

2jijJr d(k)

in ref. [25] Lancaster shows that:

^Q}-trac*[A-\k)A'(k)]

(Q.e.d).

At this point, we can also define the spectrum of a matrix

polynomial A(k) as being the set of all its latent roots

(notation o(/1)). It is essentially the same definition as the

one of the spectrum of a square matrix.

A generalization of the latent root/vector is the Jordan

chain which is defined by:

Definition 2.6:

A set of vectors *0>*i x»eC is called a right Jordan

chain of length k+1 associated with the latent root X.0 and

primary right latent vector x0 if they satisfy the relations:

L^rAi'\k0)x).p-o. y-o.i * (2.6)

2 Alp\k) is the pth order derivative of A(k).
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The set of all Jordan chains of a particular monic matrix

polynomial can be grouped in the following triple:

Definition 2.7: (the Jordan Triple)

The following matrices X,J and Y of size respectively

rxmr, mrxmr and mrxr is called a Jordan triple of the monic

matrix polynomial A(k) of degree m and order r.

J is a block diagonal matrix composed of Jordan blocks

each corresponding to a particular latent root.

Each column of X is an element of a Jordan chain

associated with the appropriate Jordan block in J and Y is a

matrix of left latent vectors which can be computed by:

Example 2.1:

let

X "0"

XJ

y-

0

_XJm~l. _/_

A(k)'
( k* J2k*-k\
\j2k2 +k k> J

this matrix polynomial has the following spectrum

o(>i)-{0.1.-l}

each latent root has an algebraic multiplicity of 2
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To the latent root 0 correspond 2 independent latent

vectors which can be taken as:

•P-(i) - *"(?)
To the latent root 1 correspond only one latent vector,

and we have to complete it by a generalized latent vector

belonging to the Jordan chain associated with the latent

root 1. vW is the primary latent vector:

•c-(-'f)

and v\Y is a generalized latent vector

«?•(*;')
the latent root -1 has exactly the same character. We have

the following Jordan chain associated with it:

.s"-^*1). ^"-{rT)
and hence the Jordan triple associated with A(k) is

J-

0 0 0 0 0

0 0 0 0 0

0 0 1 1 0

0 0 0 1 0

0 0 0 0 -1

0 0 0 0 0

0>\0 \

0

0

-J

-(;
1 0 -^2+1 /2-2 ^2+1 V2+2J+2>

0 )0
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/
0 1 \

-1 o \
^2*2

0
4

-V5-i 1

4 4

-•/2+2

W-y
Another triple which is very important in the study of

matrix polynomials is the standard triple defined by:

Definition 2.8: (Standard triple)

A set of 3 matrices (Z,T,W) is called a standard triple of

the monic matrix polynomial A(k) if it is related to the

Jordan triple (X,J,Y) by the following similarity

transformation :

Let S be a nonsingular mrxmr matrix, then

Z-XS'1 : T-SJS'1 ; W-SY (2.7)

The standard triple allows a representation of a matrix

polynomial using its spectral information and this is shown in

the next theorem:

Theorem 2.2:

Let A(Jk) be a monic matrix polynomial of degree m and

order r with standard triple (X,T,Y), then AQC) has the

following representations:
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1) right canonical form:

«-i-A(k) - kmI - XTn(Vx +Vzk+... +Vnkn-1)

where V, are rmxr matrices such that:

[V, Vm\-

X

XT

XT"'1

2) left canonical form:

AQi)-knI- (!•, ♦ \W1*...*\.m'gWm)TmY

where W', are rxrm matrices such that

3) Resolvent form:

-[Y,TY r""1/]"1

W.

[A(k)Yl-X(kl-TYlY

kta(A)

(2.8)

(2.9)

(2.10)

(2.11)

(2.12)

Proof: see Gohberg et Al. ref. [10,11,12].

The following standard triples associated with A(k) will

be used quite extensively in the rest of the presentation:
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The Lower Block Companion Form:

C,-

/»,-[/.0 0] Q,-

0 I 0 0 0

0 0 / 0 0

0 0 0 0 /

Am -Am.t "Am.z .. • ~At -A,

The Right Block Companion Form:

Pz-[0 0./] Qa.

C2-

0

0 0 . . 0 -Am
/ 0 . .. 0 -An.x

0 / . . 0 ~ An-2

0 0 . .. 0 ~A2

0 0 . .. / -A,

(2.13)

(2.14)

We must remark that all the matrices defined above have

block elements which are themselves rxr matrices. From the

previous definition, it is clear that the Jordan structure of

a matrix polynomial A(k) is directly related to the Jordan

structure of its block companion matrices. The relation

between the eigenvectors of C, and the latent vectors of A(k)

is shown in Hariche ref. [14].
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2.3 The Division Algorithm.

One can also remark that the coefficient space of matrix

polynomials is the non-commutative ring of square matrices. It

is useful at this point to present some general theorems from

Algebra. The most important ones being the "division theorem"

and the "remainder theorem".

For this presentation we consider a ring R with identity

and x is an indeterminate over R. We define also R[x] as the

space of polynomials over R.

Theorem 2.3: (The division theorem)

Let:

a(x)- a^'+a^""1 +... +a„e R[x]

b^-boX^-f^x""1 +... +bneR[x]

where a0»*0 and b0 is not a zero divisor, then there exist

unique polynomials q(x) and r(x) in R[x] such that:

a(x)-£7(*)b(x) + r(x) (2.15)

and r(x)-0 or degree of r(x) < degree of b(x) .

Similarly, there exist unique polynomials s(x) and u(x) in

R[x] such that:

a(x)-b(x)s(x) + u(x) (2.16)

and a(x)-0 or degree of ix(x) < degree of b(x) .

Proof: see Marcus ref. [28].
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Theorem 2.4: (The remainder theorem)

If a(x)e£[x], a(x)*0 and ceR, then there exist unique

polynomials g(x) and s(x) in R[x] such that:

a(x)-<7(x)(x-c) + a,(c)

a(x)-(x-c)s(x) +at(c) (2.17)

where a,(c) and aL(c) are respectively the right and left

evaluation of a(x) at c.

Proof: see Marcus ref. [28].

If at(c)-0, c is called a right solvent of a(x) and if

ai(c)-0, c is called a left solvent of a(x). If the ring R is

commutative, c is called a root of a(x).

One can now specialize theorems 2.3 and 2.4 to matrix

polynomials and state the following corollaries:

Corollary 2.1: (The division theorem)

Given the matrix polynomial A(k) with A9 + 0 and B(k) with

B0 nonsingular, there exist unique matrix polynomials Q(k) and

R(k) such that:

A(k)-Q(k)B(k) + R(k) (2.18)

/?(\)-0 or degree of /?(X) < degree of B(k).

- 18 -



Similarly, there exist unique matrix polynomials S(k) and

i/(K) such that:

A(k)-B(k)S{k) + U(k) (2.19)

U(k)-Q or degree of U(k) < degree of fl(\).

When the divisor is linear, i.e. fl(X.)-K/-X, we can write:

Corollary 2.2: (The remainder theorem)

Given y1(\)*»0 and XeCrXr, there exist unique matrix

polynomials Q(k) and S(\) such that:

A{K)-Q(\XK1-X)+AM(X)

A(k)-(k!-X)S(k) + AL(X). (2.20)

Corollaries 2.1 and 2.2 are simply a rewriting of theorems

2.3 and 2.4. We can now state the following relation between a
»

matrix polynomial and its right and left evaluation:

/(>,)- A,(kn-AL(kI) (2.21)

Corollary 2.2 also gives the fundamental relation that

exists between right solvent and right linear factor, left

solvent and left linear factor:

/!f(Jf)-0 iff Atk)-Q(k)(kl-X)

AL(X)-0 iff A(k)-(kI-X)S(k) (2.22)

Along with this algebraic framework, the following

definitions (from Kucera ref.[24], Gohberg et Al.

ref.[10,11,12] and Hariche ref.[14]) will be used:
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Definition 2.9:

Consider matrix polynomials A,B and C of order r. If

A = BC then B is a left divisor of A and A is a right multiple

of B, while C is a right divisor of A and A is left multiple

of C.

Consider matrix polynomials A and B of order r. If Gi is a

left divisor of both A and B, then it is termed a common left

divisor of A and B; furthermore, if Gi is a right multiple of

every common left divisor of A and B, then Gi is a greatest

common left divisor of A and B.

Similarly, if G2 is a right divisor of both A and B, it

is termed a common right divisor of A and B and if G2 is a

left multiple of every common right multiple of A and B, then

G2 is a greatest common right divisor of A and B.

According to these definitions, it is clear that if a

matrix polynomial divides another, then the remainder of the

division is equal to zero. However, we can also remark that we

can define divisors even in cases where the division algorithm

cannot be used.

Another property of divisors of A(k) is that their Jordan

chains are part of the Jordan chain of A(k) [14]. Thus if we

have an algorithm that can factorize matrix polynomials, we

will have a tool for the study of their Jordan structure.

Linear factors become thus very important and it is apparent

that the Jordan structure of solvents is part of the Jordan
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structure of A(k)- Given a particular matrix R, establishing

whether it is a solvent of a matrix polynomial AQk) or no is

important because this might lead to discover methods for

solving the matrix equation At(X)mO. Hariche in ref.[14]

characterizes R via its Jordan structure.

Theorem 2.5:

Given the matrix polynomial A(k) and the rxr matrix

R = MJM-i, R is a right solvent of A(k) if and only if A is

rank deficient. 3

7- (Jr)M9 A0 +(J7)*'1 • A,* ... +JT* An.x +/•Am

Proof: see Hariche ref. [14].

Gohberg et Al. in [10] provide another characterization

via invariant subspace of the block companion matrix Ci.

Theorem 2.6:

The monic matrix polynomial A(k~) has a right solvent R if

and only if there exists an invariant subspace U of the block

companion matrix Ci of the form:

U-lrn

I

R

3 • is the Kronecker product of matrices (see [13]).

4 Im T stands for the range space (or image) of the matrix T
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Proof: see Gohberg et Al. ref.[10].

This theorem is the basis of the block power algorithm

[39] and as we will see later it can be used also to

characterize the block Bernoulli method [8]. The next theorem

is based on the algorithm of synthetic division applied to

matrix polynomial.

Let R be a right solvent of the matrix polynomial A(k),

then using the relations (2.22), we can write:

A(k)-Q(k)(kl-R)

where

Q(M-X.""1Qo +k",~2Qi +-- +(3-.-.

Qo-/

we can compute the coefficients Q, using the algorithm of

synthetic division:

Qi-Qo^i-Qo^

Qz'QoA2*QlR (2.23)

QtmQoAt + Q*-iR *-! m-l

0-QoA^ + Q^R

let us introduce the following notation for the block row

vector Q of size rxmr:

Q-dQm-i Qn-z ••• Qo)
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then the set of equations (2.23) can be rephrased in block

matrix form:

QC.'CQm-lH Qm-Z* ... Qo*)

so finally

QC^QVR] (2.24)

we can thus state the following theorem:

Theorem 2.7:

R is a right solvent of the monic matrix polynomial A(k)

if and only if *(u/Y[C, -/•/?]- r .=

Proof:

Let C-Ct-ItR then equation (2.24) can be written as

QC-O. However, the last block element of Q is the rxr

identity matrix. This implies that Q has a rank of r. So the

dimension of the null space of C is larger than r.

We also have:

c,-/«/e

•R I 0 0

0 -R / 0
"c„ C 12

0 0 0 / .c„ c*_

Am "/»«-! -An.t .. • ~Al-R_

5 fiulC stands for nullity.
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with:

0

C„- C*i-[-Am]

'•22m[~Am-l ••

/ 0

-R I

0 0

-Ax-R]

... 0'

... 0

... /

Cl2 is a square matrix of size (m-1 )rx(m-1 )r and is

clearly nonsingular, this implies that the rank of C is larger

(or equal) than (m-l)r so 1iu.t([Cx-19 R] <, r and finally

tf»tf[C,-/«*]-r.

Conversely:

let Hu.[[[Cl-I9R]-r, then %ank{Cx - I*R]T - (m- l)r. This

implies that we can find a full rank block row vector

Y-(Yn.x ... Y0) of size rxmr such that:

(2.25)Y[Cl-I9R]-0

If we develop equation (2.25), we obtain

Yt-Y0Ak + Yt.xR fc-1 m-1

solving recursively this set of equations, we obtain

Y0AM(R)- Y0(Rm+ AxRm-1 *...* Am) - 0 (2.26)

and
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Yk-Y0Ak + Yt.xR jfc-l m-1 (2.27)

so if Y0ml then (2.27) defines the remaining blocks of Y

in a unique manner and in this case (2.26) implies that R is a

right solvent.

(Q.e.d.)

2.4 Spectral Divisors.

In the next sections we will consider only monic or

comonic matrix polynomials. It is evident that results that

apply to monic matrix polynomials apply also to comonic ones.

If A(k) is a monic matrix polynomial of degree m, then

F(z) - zmA(z~i) is a comonic matrix polynomial of same degree

with inverse spectrum and same latent vectors (assuming that A

does not have zero as latent root).

We have seen in the preceding section that the spectral

information of a monic matrix polynomial is given by its

standard triple. If we multiply two matrix polynomials, then

the resulting triple is determined by the following rule:

Theorem 2.8:

If Ak(k) are monic matrix polynomials with standard triple

(Qt.7**.**) for k = 1,2, then A(k) -A zik)Ax (k) has the following

standard triple.

Q-[«. 0] r-[70' *£'] *-[£] (2.28)
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Proof: see ref. [10].

The algorithms that will be described in later chapters

will all deal with a particular type of factorization of

matrix polynomials: The spectral factorization [10].

Definition 2.10:

If A(k)-Ax(k)A2(k) is a particular factorization of the

monic matrix polynomial A(k), with o(.Ax)no(A2) - 0, then the

monic matrix polynomials Ax(k) and A2(k) are called spectral

divisors of A(k).

Clearly, if a matrix polynomial possesses spectral

divisors, then there exists a similarity transformation that

can transform the block companion matrix C, associated with

A(k) to a block diagonal one (see theorem 2.8). We can

accomplish this transformation directly on Cx (see Bavely et

Al. ref.[4]) or act on the matrix polynomial A(k) using the

Q.D. algorithm.

A particular class of spectral divisors is the class of

left and right spectral divisors corresponding to the same set

of latent roots. In this case, the matrix polynomial A(k) has

at least two different factorizations, A(k)- A2(k)Ax(k) and

A(k)- Bx(k)B2(k) with At and Bt being monic matrix polynomials,

o(/lt)-o(flt).
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The following theorem from ref. [10] gives explicitly the

conditions under which the matrix polynomial A(k) has the

above mentioned property.

Theorem 2.9:

Let A(k) be a monic matrix polynomial and T a contour

consisting of regular points of A(k) having exactly kr

eigenvalues of A (counted according to multiplicities) inside

r. Then A has both a T-spectral right divisor and a r-spectral

left divisor if and only if the following kr x kr matrix Mtt

defined by

Mt.t 2njJr

A'\k) ... kk'lA'\k)

k'-'A-'dk) ... k2t-*A-\k).
dk

is non singular. In this condition, the T-spectral right

(resp. left) divisor Ax(k)- X.*/ + ^n*.*'1 + ...+ Axt (resp.

A2(k)-k*I + A2lk'~l +... + /„) is given by the formula:

[Axt ... ^n]---i-£[x.«/-«(^) ... k2k-lA-\k)]dk.Ml]t

resp.

•zt k'A'\k)

l_"2U

'"'•*-2n;Jr
,kzt-lA-\k)_

dk

Proof: See ref. [10]
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An interesting consequence of theorem 2.9 is the case

k = 1, i.e. the existence of spectral right and left solvent.

Let r be a contour that contains r latent roots and let the

rxr matrix

M-2T]£A'l™dK <2-29>

be nonsingular, then we have as right solvent:

R-^-fkA-'C^dk.M'1 (2.30)

and as left solvent:

L-M-l.^-:fkA-\k)dk (2.31)

and we see that R M = M L, i.e. M is a similarity

transformation between R and L.

2.5 Complete set of solvents and complete factorization.

We have seen that solvents are quite important in the

study of matrix polynomials. In this section we are going to

study matrix polynomials which are completely described by a

set non-interacting solvents. However, we have to present

certain definitions first.

Definition 2.11:

Given the set of rxr matrices Ri, R2, . . ., Ric, the

following rk x rk matrix
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V(RX.R2 Rt) -

/

*i

/

R,

I

**

ptl p t I oil
Aj /%2 • • • A *

(2.32)

is1 called a block Vandermonde matrix of order k.

Definition 2.12:

Given a monic matrix polynomial A(k), the following set of

solvents Ri, R2, . . . , /?«, is called complete if the following

conditions are met:

o(/?t)no(/e/)-0 ; k + j

~a(Rk)-a(A(k))

d<ttV(Rx,R2 Rn)*0 (2.33)

In this case, we can find a particularly simple standard

triple and we can express the inverse of a matrix polynomial

in partial fraction [14,40]. This is given by the following

theorem.

Theorem 2.10:

Let Ri,R2,. ..,Rm form a complete set of solvents for the

monic matrix polynomial A(k), then A(k) admits the following

standard triple:
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*-[/ / ... /] r-
0 R;

o o

Y-WWx *•)]'

.. o

.. o

•• *-J

(2.34)

Proof:

Let us consider the standard triple corresponding to the

lower block companion form: Pi, Ci, Qi. From theorem 2.6, we

have:

/ /

** **

c, • - •

_RT'l_ _*r_,_

,Rt

k m 1,2 m

so, the block Vandermonde matrix V{Rx,...,Rm) is a

similarity transformation matrix (it is non singular by

definition). We have:

Rx 0

0 *2

0

0

*«J

[f(*. R~)Yl.cx.V(Rx Rm)

while X-Px.V(RX Rm) and Y-[V(RX *„)]"\Q,

(Q.e.d)
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Let us write the block column vector Y as

y:

y-

/«

Using theorem 2.2, we have the following result:

[A(k*)YlmX(kI-TYlY

giving:

mcmi"-£(*./-**)".>'* (2.35)

The above result is a partial fraction expansion of the

inverse of A(k^) [14,40]. Furthermore, since Y is the last

block column of [^(flj #«)]~l > its block elements Yic can be

computed if the m block Vandermonde matrices:

Vk-V(RX Rk.x, Rt.x Rm) k-l m

are nonsingular. The kth block element of Y is:

i,,-i
y«-{*r',-(*rI ^r-V.^r:.1 /?:-,).^i,.(/./?t./?f....*ri)>

We can remark that this element is the inverse of a right

evaluation of a monic matrix polynomial of degree m-1, Bt(k).

Bt(k)-kn-lI +Btxkm-z +... +Bt<m.x

(*..-i fl*,)--(*rl ^r-V.«r.v j*:-1).^1

-iSo, finally: Yt-[Bt,(Rt)]
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Another standard triple is defined when A(k) has a

complete factorization:

A(k)- (kl -Qn)(kl -Qn.x)...(kl -Qx)

and it is the following one

*,-[/.0 0] /,-

7-,-

0

_/

Q. / 0 ... 0 '

0 Qa / ... 0

0 0 0 ... /

0 0 0 ... Qm_

(2.36)

(2.37)

This result can be established either by repeated

application of theorem 2.8 or by using the concept of

linearization [10,14,26]. This is what we do in the next

theorem.

Theorem 2.11:

kI-Tx is a linearization of A(k),

i.e.

""•• - [T 1]

Proof:

We define the following two matrices
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F(k) -

and

E(k)

/ 0 0

Ckl-Qx) I 0

0 0 0

Bn_x(k) Bn.2(k)

-I 0

0 -/

0

0

0

0

-dkl-Qm) /J

5,(M B0(k>
0 0

0

-/ 0

fioOW

Bk(k)-Bk.x(k)(kl-Qn_k.x) fc-1 m-1

We see that det£(\)-*l and detF(k)-\. So E and F are

unimodular matrix polynomials. Furthermore, by simply

computing the product, we have:

E(k)(kl -,, - [(kI-Qm)...(ikI-Qx) 0

0 /
F(M

(Q.e.d)

We now show that Xi, Ti, Yi is a standard triple by using

the resolvent form of A(k) equation (2.12).

[AC^Y'-X^kl-T.Y'Yx

Theorem 2.12:

If A(k) admits the complete factorization (2.36), then Xi,

T\, Yi is a standard triple for A.

Proof:
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'[A(k)Yl o
0 /

FdkKkl-T^E'^k)

the first r columns of E~x(k) are

Yx («o(M-/)

(2.38)

and we have: XxF(k)- Xx. Let us multiply (2.38) by Xx on

the left and X\ e on the right. This gives:

A'\k)- XxF(k)(kI-T,)"'E~\k)X\

<4 A-\k)-Xx(kI-TxYlYx

This implies that Xi, Ti, Yi is a standard triple.

(Q.e.d)

Theorem 2.12 and the standard triple given by (2.37) will

be useful when we will present an algorithm that can factorize

A(k) completely.

6 XT is the transpose of X
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Chapter 3

Global Methods

3.1 Some Definitions.

In this chapter, we are going to present some existing

algorithms that can factorize a linear term from a given

matrix polynomial. We will see later that the Q.D. algorithm

can be viewed as a generalization of these methods. The

methods of interest are Bernoulli's method [8,10] and

Traub's method [10]. However, we have first to define what a

global method is and what a local method is. Global methods

are defined by opposition to local ones.

Definition 3.1:

A numerical method for solving a given problem is said to

be local if it is based on local (simpler) model of the

problem around the solution.

From the definition, we can see that in order to use a

local method, one has to provide an initial approximation of

the solution. This initial approximation can be provided by a

global method. As we will see later, local methods are fast
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converging while global ones are quite slow. This implies that

a good strategy is to start solving the problem by using a

global method and then refine the solution by a local method.

The convergence of the global methods that will be

presented in this chapter is based on the following relation

of order (partial) between square matrices.[8,10]

Definition 3.2:

A square matrix A is said to dominate a square matrix B

(not necessarily of the same size) if all the eigenvalues of A

are greater, in modulus, than those of B.

As a notation, we will write A > B. This definition is

important because of the following lemma. In the remainder of

the thesis, we will use matrix norms for our convergence

proofs. Since we are working in a finite dimensional space,

all matrix norms are equivalent. The only specific property

that we require is the consistency property: \AB\ 5M||B|.

Lemma 3.1:

Let A and B be square matrices such that A > B then A is

nonsingular and

UmU"|U-"|-0 (3.1)

Proof: see ref. [10]

The same lemma (in a slightly different form) is proved in

Dennis et Al. ref.[8]. In some of the results that we will
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present, we need to estimate the convergence rate. In that

aspect, the following result is interesting. Let the largest

modulus eigenvalue of the matrix A be kA, then for any matrix

norm [36,37], we have:

limUT " \K (3.2)

In particular, for any positive number p > e >0, we have

the following result:

at-0(p-*) -> aji|-| -°(|p^P) (3.3)

We will extend definition 3.2 to matrix polynomials by

saying that the matrix polynomial >4|(M dominates A2(k) if

7"i>7"2, Tk being a linearization of Ak.

3.2 The Homogeneous Difference Equation.

The numerical methods that will follow are based on the

exponential nature of the solution of a homogeneous constant

coefficient matrix difference equation. This matrix difference

equation is associated with the matrix polynomial that we want

to factorize. In fact, we can associate two difference

equations with a particular matrix polynomial A(k): a right

matrix difference equation and a left one.
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To:

A(k)-kmI + Alkm~, +...+ A„ (3.4)

we associate the following right matrix difference equation:

Ut + AxUt.x + ... + AmUt.m-0 (3.5)

U,eCr*r y-o. 1....

and the following left matrix difference equation:

V>*V*-iAl + ... + Vk.mAm-0 (3.6)

V,eCrXr y-0. 1....

We should point that the left difference equation (3.6)

can be written as a right difference equation associated with

[i1(X.)]r and the right difference equation (3.5) can be written

as a left difference equation associated with [A(k)]r. So, for

the rest of the presentation, result will be presented only

for right difference equation. The result for the left one can

be obtained by transposition.

The general solution of (3.5) is derived in ref. [10] and

in ref. [8], we can find the solution for the complete set of

solvent case (see definition 2.12). This solution is presented

as a function of the standard triple in the following theorem.

Theorem 3.1:

Given a matrix polynomial A(k) having (X,T,Y) as a

standard triple, the general solution of (3.5) is:

Uk-XTkC (3.7)

CtC""'
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and the general solution of (3.6) is.

Vk-DTkY (3.8)

DzCr*mr

Proof:

Using the definition of a standard pair [10,11,12], the

following identity is satisfied:

XTm + AlXTn'l + ... + AmX-0 (3.9)

If we multiply (3.9) on the right by Tk'nC , C 6 CmrXr, we

obtain:

XTkC + AxXTk~lC + ...+ AmXTk-mC-0

and thus XTkC verifies the equation (3.5).

The proof of (3.8) can be derived by using the fact that

the standard triple of [A(k)]T is (YT, T*, XT).

(Q.e.d).

Corollary 3.1:

The solution of (3.5) corresponding to the initial

conditions:

£/0 - t/,-...-£/„.,-0 Um.x-I (3.10)

is :

Uk-XTkY (3.11)

Proof:
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Using (3.7), we can write the following set of equations

giving:

XC - 0

XTC - 0

XTm'2C - 0

XTm'lC - /

X 0

XT

C -

0

T""1 _/L.XT J

which is the definition of Y.

(Q.e.d).

By using transposition, we obtain the following result.

Corollary 3.2:

The solution of (3.6) corresponding to the initial

conditions:

V0-Vx-...-Vn_2-Q Vm.x-I

is:

Vk-XTkY

We remark that for this particular set of initial

conditions, the right and left difference equations produce

the same result.
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The solution of the difference equation becomes

particularly simple if we have a complete set of solvents.

Corollary 3.3:

If the matrix polynomial A(k) has a complete set of

solvents then the solution of (3.5) subject to the initial

conditions (3.10) is:

U* " f.*',Yt

Yx

/•J

Y-

(3.12)

Proof:

From theorem 2.10, relations (2.34) give us the standard

triple:

X'U.i /] r-

rx o ... o

0 R2 ... 0

0 0 *«J

Y-

Yx

Y2

Replacing in (3.11) produces (3.12).

(Q.e.d)

The result (3.12) could have been obtained directly from

the partial fraction expansion (2.35) by using the inverse

z-transform. Of course, in this case, we are considering that

\ is the forward shift operator z.
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3.3 Bernoulli's Method.

In this section, we are going to present a global

algorithm, the Bernoulli's iteration, that is based on the

form of the solution of the difference equation (exponential)

and on lemma 3.1. Just as in the scalar case [15,17], the

matrix Bernoulli's method is based on the "ratio" of two

successive iterates of the difference equation (3.5) (or

(3.6)). In the literature, we can find two different

statements for the convergence of the matrix Bernoulli's

iteration. In Gohberg et Al. ref.[10], it is stated in terms

of a general standard triple while in Dennis et Al. ref [8],

it is stated for the particular case of a complete set of

solvents. The next theorem, similar to the one in Gohberg et

Al. is thus the more general one.

Theorem 3.2:

Let A(k) be a monic matrix polynomial of degree m and

order r. Assume that A(k) has a dominant right solvent R and a

dominant left solvent L. Let Ut,k -0.1.... be the solution of

(3.5) subject to the initial conditions (3.10).

Then Uk is not singular for k large enough, and:

UmUk.xU\x - R (3.13)

llmy;1^,, - L (3.14)

Proof:
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The existence of a dominant right solvent and a dominant

left solvent implies (see theorem 2.9) that A(k) has the

following Jordan triple:

where Xx, Jx and /, are rxr matrices. Xx and Yx are

nonsingular and from the relations (2.30) and (2.31), we can

write:

R-XXJXX\X L-Y\XJXYX (3.16)

We now use the result of corollary 3.1:

Uk - XJkY - Xx JkY, + XZJ\Y2

-[XxJkxX-xx +(X2Jk2Y2)Y-xxX-xx]XxYx

let M'XXYX and Ek-X2Jk2Y2, then

Uk - (Rk +EkM~x)M
Uk - (I +EkM'xR~k)RkM

(3.17)

The same factorization can be done from the left, in which

case we obtain:

Uk - MLkV +L'kM'xEk) (3.18)

As a general remark, from lemma 3.1, we know that R and L

are nonsingular.

For k large enough, we have:
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\E>H-lR"\<\EA\R"\\H-l\

and the right handside of the above inequation converges

to zero by lemma 3.1. This implies that Uk is nonsingular for

k large enough. The same argument can be applied to equation

(3.18).

Finally:

U*.iU~* -(/♦F*.,Af"'«"*"')/?**'MM'xRk(l +EkH'x*"*)"'

So:

Um Uk.xL/'kx - R
t-»

and from (3.18), we obtain:

UmU'kxUk.x-L

(Q.e.d).

It is interesting to look at the case of a complete set of

solvents. In this particular case, the convergence is stated

in terms of block Vandermonde matrices [8].

Theorem 3.3:

Let A(,k) be a monic matrix polynomial of degree m and

order r such that:

(i) it has a complete set of solvents Ri, R2, ... ,Rtn,

(ii) Ri is a dominant right solvent,

(Hi) V(Ri, ... ,Rm) and V(Rz, ... ,Rm) are nonsingular,
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then :

Um Uk.xU'kx - Rx
k—

Proof:

From corollary 3.3, the solution of the difference

equation (3.5) is:

Vk-tt'Y,
i-i

Looking back at relations (2.35), we see that Yx is not

singular if V(R2, ... , Rm) is nonsingular. So:

Uk - R\YX+Y.R)Y,
i-z

^k - (/+I*;y,x;'*;*J/??y1
Uk - (1 + Hk)RkxY x

and \Hk\ converge toward zero. Thus, for large enough k,

Uk is nonsingular and we can write:

Uk.xUkx-U +Hk.x)Rk:xYxY-xxR\kV +HkY'

So, finally:

\imUk.xU\x "Rx

(Q.e.d)

There are some general remarks that we can make about the

conditions for convergence of the Bernoulli method. In the

above theorem, V(R2, ... , Rm) nonsingular implies the
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r-xxjxx-xx-[i0 :}]

We can remark that Yi is singular. This precludes the

existence of a dominant left solvent. In this case Bernoulli's

iteration breaks down. The solution of (3.5) using

Uo = Ui = 0, U2 = I as initial conditions is:

"•-[-°. 0] "•-[! 0] "•-"• "•-"•
So, we see that the sequence of matrices, solution of the

difference equation associated with the matrix polynomial, is

a sequence of singular matrices.

3.4 Traub's Algorithm.

In Dennis et Al. ref. [8], another algorithm is presented.

This method is a generalization of Traub's algorithm [38] to

matrix polynomials. The algorithm is presented without a proof

of convergence in this section. However, since the Q.D.

algorithm of chapter 4 can be seen as a generalization of both

Traub's and Bernoulli's algorithm, the interested reader can

adjust the proof that we will present in chapter 4.

The Algorithm:

Let A(k) be a monic matrix polynomial of degree m and

order r. We define the following sequence of matrix

polynomials of degree m-1 and order r by:

*„.,(*•)-a.CW-^iCM (3.20)
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This implies that this algorithm has a built in deflation

process. And one can think of repeating the same iteration

starting from the limit of the iteration (3.20).

3.5 The Block Power Method.

Using block matrices, we can show that both Bernoulli'

iteration and Traub's method can be seen as an application of

the power method. For this purpose, we are going to use the

standard triple (Pi,Ci,Qi) defined in (2.13).

With the square matrix CI, we can in fact associate two

iterations: a right block power method and a left block power

method [8]. The right block power method is considered in

[39].

The Bernoulli's iteration (3.5) can be written as:

U t-n*Z
0

0

/

0

~Am - An.x

Ui-m.x

(3.25)

-Ax]

Iteration (3.25) is a right block eigenvector powering

iteration if we define 0, as:

o,-

tfl-.I

Ui-x

Ux

(3.26)

Theorem 2.6 shows that the fixed point of the above

defined iteration is the following invariant subspace:
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/m

/

R

R2

and this property is used in reference [39].

Using now block row vectors, we can define another

iteration:

B»*i " B„C, (3.27)

where:

B.-C«5Tii a™] (3.28)

It is not hard to show that (3.27) is equivalent to

Traub's iteration (3.20) (see ref. [8]). And thus the block

power method can be seen as a unifying concept between

Bernoulli's and Traub's iteration. In the next chapter, we

will generalize (3.27) to obtain a method that can produce a

complete factorization of the monic matrix polynomial A(k).
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Chapter 4

The Quotient-Difference Algorithm

4.1 Introduction.

In this chapter, we are going to present a new algorithm

for factorizing matrix polynomials: the quotient-difference

algorithm (Q.D.). The proposed algorithm is a generalization

of the scalar Q.D. [17,18] algorithm to matrix polynomials.

The use of the Q.D. algorithm for such purpose has been

suggested by Hariche in reference [14]. The scalar Q.D.

algorithm is just one of the many global methods that are

commonly used for finding the roots of a scalar polynomial.

Another global method that is quite popular is the Graeffe's

iteration [2,19]. However, it seems that it is quite dependent

on the fact the scalar polynomial coefficients commute. So, we

do not see how we can generalize it to matrix polynomials.

A major problem that we encountered when we wanted to

generalize the convergence (and existence) proofs of the

scalar method to matrix polynomials is the fact that those

proofs are given in terms of determinants [15,16,18]. The

proofs that we present in this chapter are based on a
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generalization of Traub's iteration as presented in chapter 3.

It is essentially the same approach as Stewart's [37], but

applied to matrix polynomials.

We have seen in the preceding chapter that we have two

Bernoulli's iterations due to the lack of commutativity in the

algebra of square matrices. Likewise, there exist two matrix

Q.D. algorithms: the right Q.D. algorithm and the left Q.D.

algorithm. The subsequent presentation will be given only for

the left Q.D. algorithm. We can obtain the same results for

the right Q.D. algorithm by transposition. In the next

chapter, we will be using block matrix methods to provide a

convergence proof for the right Q.D. algorithm.

4.2 The Algorithm.

The Quotient-Difference scheme for matrix polynomials can

be defined just like the scalar one [15,17,18] by a set of

recurrence equations. The algorithm consists on building a

table that we call the Q.D. tableau (in this chapter, we

define the left Q.D. tableau, the right one can easily be

defined by transposition).

The left Q.D. scheme is generated via the following

relations (the "rhombus" rules):

Qk*~li +Eft" - Q™ +E?

Qrx>Eri)-EirQkVx (4.n

A:- 1 ,...,m- 1 ; n- 1,2....
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These rules define the following table (the Q.D. tableau)

0 £(0)

Q\n Q20)

0 £d) £(0)

Qi2) Qil>

E<21 £2,}

Qi3) Q22)

(4.2)

The Q.D. tableau can be generated by columns (we need the

first two columns as initial conditions) or by rows. In this

chapter, we will study the column generation of the Q.D.

scheme (from Bernoulli's iteration) and in the next chapter,

we will show that it is possible to generate the Q.D. tableau

by rows. This alternate generation of the scheme is more

stable numerically.

4.3 Applicable Class of Matrix Polynomials.

Because it simplifies notation, we are going to present

the Q.D. algorithm for comonic matrix polynomials. The reader

should recall that if /(X.) is a monic matrix polynomial of

degree m and order r, then ^(z)- zmA(z'x) is a comonic matrix

polynomial of same degree with inverse spectrum and same

latent vectors. This of course imposes the restriction that
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zero is not a latent root of A(k)- In this chapter, we are

going to consider comonic matrix polynomials that have a

nonsingular leading coefficient.

F(z)- I + Axz+ A2z2 +...+ Anzn (4.3)

AkeCr*r ; Jfc-1.2 m ; zeC

In order to have more concise statements in the

convergence theorems, let us define the following property

(see theorem 2.9).

Definition 4.1:

We say that F(z) has the property Tk if it possesses a

right and left T-spectral factor of degree k.

In other words, if F(z) - n k(z)Fk(z) where T\k is a comonic

matrix polynomial of degree k, Then F(z) - Fk(z)fik(z) along with:

degUk- degfik ; dagFk-dagFk

o(nt)-o(fTt) ; o(Fk)-o(Fk)

o(nt)no(Ft)-0 ; o(ff,)no(Ft)-0

In particular, if F(z) has a right solvent R, it will also

have a left solvent L that possesses the same spectrum.

4.4 The Linear Diophantine Equation.

If we have a comonic matrix polynomial F(z) of degree m

and order r that possesses the property Tk, then any matrix
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polynomial of degree less than m can be expressed in terms of
its factors. In order to show this property we need the

following fact.

Theorem 4.1:

The following equation

X(z)A(z) +Y(z)B(z)~C(z) (4-4)

(X, Y, A, B and Care matrix polynomials) has a solution
if and only if the greatest common right divisor of A and B is

a right divisor of C.

Proof: see Kucera ref.[24].

Corollary 4.2:

If A(z) and B(z) are right coprime matrix polynomials,

then (4.4) has always a solution.

In our work, we consider matrix polynomials that have the

property Tk. Then the factors of F(z) have disjoint spectra by
definition. In this case and using the notation of definition

4.1, we can state the following proposition.

Proposition 4.3:

Any matrix polynomial G(z) of degree less than mand order

r can always be written as:

GQz)-X(z)fik(z) +Y<iz)Fk(z) (4-5)

degY<k ; dagX <m-k
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Proof:

(4.5) is a linear diophantine equation and since

o(ffll)na(FJt)-0, then it has always a solution. The general

solution of (4.4) is [24]:

X(z)~X0(z)-T<iz)Bxiz)

Y(z)-Y0Cz)*Tiz)AxCz)

where T(z) is an arbitrary matrix polynomial, X0(z) and

Y0(z) is a particular solution of (4.5) while Ax(z) and fl,(z)

are coprime matrix polynomials such that:

5I(z)fft(z)-y11(z)F,(z)

Using the fact that F(z) has the property Yk,

F(z)-nt(z)f»(z)-Ft(z)-fft(z), so vl, -n» and Bx-Fk. We divide Y0

by nt giving:

X0(z)-£/(z)nt(z) + I/(z) ; degV<k

/(z)- £/(z)nt(z) +V(z) + nz)xltiz)

Using T(z) = -U(z) (T being arbitrary), we obtain:

Y(z)-V(z)

X(z)-X0(z) + U(z)Fk(z)

So:

G(z)-y(z)F.(z) +;r(z)fTt(z)
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and since :dagFk<m-k, dagY < k and degG<m, then

dogX(z)nk(z)<m. So d&gX <m-k .

(Q.e.d.).

The above proposition has the consequence that proper

matrix rational fractions can be expanded in incomplete

partial fractions. Let F(z) have the property rt, and C(z) be

the following matrix rational fraction, C(z)-G(z)F~x(z), Q(z)

being a matrix polynomial of degree less than m. In this case,

proposition 4.3 applies to G(z) and we can write:

/r(^)-nt(z)ft(z)-Ft(z)iTt(z) (rt)

C(z)-i/(z)F4(z)*/(z)!Tt(z)

degif <m-k ; d&gV<k

So, the rational matrix C(z) becomes:

C(z)-U(z)n'kx(z) +V(z)F~k\z) (4.6)

Each term in the above sum is a proper matrix rational

fraction.

4.5 Power Series.

In this section, we are going to present some useful

bounds on the elements of a Bernoulli's iteration. This is

achieved by identifying the solution of a difference equation

with the coefficients of a formal power series.
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Proposition 4.4:

Let V(z) and F(z) be matrix polynomials with:

V(z)-V0 + Vxz +... + Vn_xzm-x

F(z)- A0*Axz + ...*Amzm

along with A0 nonsingular. C(z)-V(z)F~x(z) can always be

developed into the following power series:

C(z)-C0 +Cxz +C2z2+... (4.7)

Proof:

let C(z)-£c(z', we have
(-0

V0 - C0A0

/, - CXA0 * C0A,

V^-x - Cm.{A0 * Cm.2Ax + ... + C0A„.X

0 - CkA0 + Ck.,A, +...*Ck.mAm ; kirn

(4.8) is a recursion that can always be solved since A0 is

nonsingular.

(Q.e.d. ).

The power series defined in (4.7) converges under the

following circumstances.
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Proposition 4.5:

Let X. be the latent root of smallest modulus of F(z) (\ is

different from zero since A0 is nonsingular). The power series

(4.7) converges for all z such that |z|£p< k and the

coefficients C» are given by:

C* " 2i//rCCZ)Z~"",dZ (4'9)

r is a circle of radius p.

Proof:

So the elements of C(z) are scalar rational fractions and

the denominator of each element is a factor of det F(z). So

all the elements of C(z) are analytic in r and we can develop

each one in Taylor series.

(Q.e.d.).

Corollary 4.6:

Under the conditions of proposition (4.5), the sequence of

coefficients C„ is bounded as:

|C.|2Mp-* (4.10)

Proof:
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Let M-max|C(z)| ; zcT then using the Riemman definition

of the integral:

|Cj^£|C(z)||z-1^p-

(Q.e.d.).

If now F(z) possesses the property Tk, we can factorize it

and under this condition we can have a cancellation of factors

between the "numerator" and "denominator" of C(z). Keeping the

same notation as in definition 4.1, we can state:

Proposition 4.7:

Let F(z)-nt(z)Ft(z)-Ft(z)fft(z) (property Tk) and

C(z)-Q(z)F~x(z) along with Q(z) -V(z)Fft(z), then C(z) is analytic

for all z such that |z|<p<|X.*| where kk is the latent root of

smallest modulus of Ft(z).

Proof:

F(z) - n4(z)Ft(z) -F*(z)fft(z)

-> C(z)-V(z)fik<iz)nk\z)Fk\z)

-> C(z)-V(z)F"k\z)

(Q.e.d.)
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4.6 A Generalization of Linear Independence.

The following definitions will be used in our work. In

this section, we show that matrix polynomials of a given

degree can be seen as elements of a left (right) module over

the non-commutative ring of square matrices.

Definition 4.2:

Let 3-(fl0,B, Bn.x) be a block row vector (a rxmr matrix)

where each block is an rxr matrix. The set {§x,~§2 ~§k} is said

to form a linearly independent set of block row vectors if and

only if the following matrix is of rank kr:

B

3/
5,

LaJ

An easily proved proposition follows:

Proposition 4.8:

Let <5,.32 B*k} be a set of linearly independent block row

vectors, then.

A,5i*A2^2+...+At54-0 H A,-A2-...- At-0

A,eCrx' ; rc-1,2 k
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The interest of proposition 4.8 is that it allows us to

write any matrix polynomial of degree less than m as a linear

combination of m linearly independent matrix polynomials. Let

us introduce the following notation.

Notation:

Let £(*)• B0+ Bxz + ... + Bm.xzm~ be a matrix polynomial. To

B(z), we associate the block row vector formed by it

coefficients B - (fl0.fl, Bm.x).

We have the following relation between B(z) and 2:

/

zJ

5(z) - ~§

_zm'xI.

zeC ; I - rxr identity

The above notation allows us to define linear independence

for matrix polynomials.

Definition 4.3:

The matrix polynomials fl,(z) Bk(z) are said to be

linearly independent if and only if their associated block row

vectors form a linearly independent set.
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Proposition 4.9:

Let 5i(z).S2(z) 5TO(z) be a set of m linearly independent

matrix polynomials of degree m-1 and order r. Any matrix

polynomial G(z) of degree m-1 or less and of order r can be

expressed in a unique manner as:

Proof

Let:

keC

B -

A.

(4.11)

Because of the hypothesis of the proposition, B is a

square nonsingular matrix. Thus the equation 5-AB has a

unique solution.

(Q.e.d.).

A particular set of linearly independent matrix

polynomials is defined in Dennis et Al. ref.[7].
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4.7 A Generalization of the Power Method.

In this section, we are going to generalize Traub's

iteration using a Treppen like iteration [41]. Our

presentation of the Q.D. algorithm is essentially a

generalization of Stewart's paper on companion operators [37]

to matrix polynomials. Let us consider the following matrix

polynomial:

F(z)- znA(z~x) -/+Axz+ Azz2 + ...+ Amz" (4.12)

Ak are rxr matrices and Am is nonsingular.

To F(z) we can associate the following block companion

matrix:

C, -

0

0

-x
-A

I

0

A~mlAl

0

/

0

~AnxA2

0

0

A'1 A.

0

0

A'mlA,

(4.13)

Since Am is nonsingular and (4.12) is comonic, this matrix

is nonsingular and has the following inverse:

-ax -Az .. • ~An.x -A

/ 0 0 0

c;1 - 0 / 0 0

0 0 / 0

(4.14)

It is clear that the spectrum of F is the same as the one

of A(k) and is of course composed of the inverses of the

latent roots of F(z).
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To a matrix polynomial fl(z) -B0 +fi,z +...+ Bm.xzm'1, we

associate the block row vector I-(fl0.5, Bn.x) as in section

4.6.

We are going to apply the block power method to the block

matrix F. The iteration can be written more compactly as an

iteration between matrix polynomials.

Proposition 4.10:

If T-'Sf then

5'(^)-z-l[fl(z)-fl(0)F(z)] (4.15)

Proof:

In the equation (fi0 B'm.x)-(B0 B„-,)F, we use the fact

that fl0-5(0). We obtain:

-B0I + B0-Q

-B0AX + Bxm B0

-BqAz + B2 mBx

-B0An mBn.x

We multiply each equation respectively by z°,zx,z2 z" and

we add them. The result is equation (4.15).

(Q.e.d.).

Notation:
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In the remainder of the thesis, we will sometimes use the

notation <Z?F}(z) instead of the notation of equation (4.15).

Remark:

Equation (4.15) is the same as Traub's iteration (3.27).

The use of F instead of Ci comes from the fact that we are

using comonic matrix polynomials.

In the rest of the chapter, we will consider matrix

polynomials that have the property Tk according to definition

4.1. So:

F(z)-nt(z)Ft(z)-Ft(z)ff4(z) (4.16)

where nt(z)-/ +ntilz +... +nt>4z* and F»(z) -/+ Ak%xz* ... +Akitn.kzn'k.

Let kk be the largest modulus latent root of nt(z) and kt.x be

the smallest modulus latent root of Ft(z). We assume that

l^-tl <l^-fil • In this case Fk(z) dominates nt(z). We have also:

a(Ft(z))no(nt(z))-0

o(Ft(z))ua(nt(z)) -a(FCz)) -a(C,) -a(FM)

From proposition 4.3, any matrix polynomial G(z) of degree

less than m can be written as:

G(z)-£/(z)F,(z) + l/(z)nt(z)

along with degl/(z')<k and dagV(z)<m-k.

For this particular factorization of F(z), we can define

two classes of matrix polynomials:
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*. - <P(z) IP(z) - l/(z)Fk(z) ;digU(z) < k} (4.17)

t>k m<Q(*) IQ(*) " V(z)fft(z) ;d*gV(z) <m-k} (4.18)

It is not hard to show that if a matrix polynomial H(z)

belongs to Tk (resp. Vk), then its image by the operator F

defined by (4.15) belongs also to Tk (resp. Dt). The case k=l

is particularly interesting.

Let F(z)-(/-Z.z)F1(z)-F,(z)(/-/Jz). L and R being

respectively the dominant left solvent and the dominant right

solvent of the matrix polynomial A(k). Let us consider also

the block row vectors associated with Fx(z) and F,(z).

F x- (/ ,AXX ^i,„-i)

3«

Fx - (/. j4,i A.m-l)

Applying the operator F to F,(z) gives:

<F1F}(z)-z-1[F1(z)-Fl(0)F(z)]

-z-xlFx(z)-(I-Lz)Fx(z)]

<F1F>(z)-IFI(z)

In other words, ?, represents the span of a left invariant

subspace for the block companion matrix F.

f\f-if\

Applying now the operator F to F,(z) gives:
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{F1F)(z)-z-,[F1(z)-?1(0)F(z)]

- z'l[Fx(z)- F,(*)(/ -Rz)] - Fx(z)R

The above relation can be rephrased as:

FXF-FX(I9R)

which is the same as equation (2.24).

For the general factorization of F(z), the set Tk

dominates J>k in the following sense:

Proposition 4.11:

Let 3«"3oF* with Q0(z)eVk, then, for any w such that:

\w\ <p<|k»..i|, we have:

IC.WU^i^ (4.19)
1-p x\w\

Proof:

We have:

Q„-1(z)-z"l[Q„(*)-Q,.(0)^(2:)]

Let us define the following rational matrices:

#»(*)"Q*(z)F~x(z). If we replace the definition of <2„M in H^x,

we obtain:

H„x(z)-z'x[H^z)-QAQ)]

However: tf„(0) - Q»(0)F"1(0) -Q„(0) because F(0)-/. Hence:
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^.♦i(«)-«',[^.(ar)-//.(0)] (4.20)

So if H0(z)-C0 +Cxz +Czz2 +... then //„(z)- Cm + CK.xz +CK.zz2 +...

Now, proposition 4.7 shows that H0(.z) is analytic for

|z| £p <|k»*i|. In this case, corollary 4.6 implies that:

|C„|Stfp-

Thus, for |tu|<p, we can write:

1//.(uO|s2>p-«-'M'*1 ^' .
fro 1 -p M

Since Q„(ty)- H%(w)F(w) then:

|Q.(w)|S|//.(«;)||F(w)|

i-p 'M

(Q.e.d.).

Corollary 4.12:

Under the same conditions as proposition 4.11, if

Q.(z)-Q..o +Q..iZ*...*Q../Z/ then

|Q«.»| SZ.p~* lt-0.1 ; (4.21)

Proof:

Any polynomial can be considered as a Taylor series around

zero. So we can compute the coefficients of Qh(z) from:
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2JljJr

r being a circle of radius r-|io|<p. Thus

Let

|Q..I^£|Q^)IU-^

|Q-Ini-P-1MJM5P

i" max—• ——:— ; *€{0,1 /}
k l-p-'|">

then

lQ..»hip-"

(Q.e.d.).

Proposition 4.11 suggests that if we use the block power

method as defined by iteration (4.15) with an almost arbitrary

polynomial G(z) of degree less than m, then after a number of

iterations, the part of G(z) that belongs to f>k will be

dominated by the part that belongs to Tk. As a consequence, we

can use a combination of matrix polynomials that will converge

toward an element of Tk. This is shown in more details in the

following theorem.
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Theorem 4.13:

Let G(0)(z), i=l,2, . . . ,k matrix polynomials of degree less

than m, define C((*}(z) such that £|*}-£{0)F" and F(z) as in

(4.16), then, under certain restrictions1 on G,<0)(z),

i=l,2,...,k, for large n, there exist rxr matrices

**Ti•**?a *t?i such that:

^i*)(z)-*^G«*)(z) +<t»^2G2*)(z) +...*<l>^Gk(z)-zk-,[/ +B^^ +5i*2z2+...](4.22)

and if \kk\ < p < \kk.x\ and |z|£p then

\Uk*\z)-zk-xFk(z)\-o(\±^ (4.23)

Proof:

Let G\*\z)-P\m\z) + Q\*\z), i=l,...,k along with

P\*\z)-P\*l(z) +P\*\z +...z'Pk and Q\*\z) -Q\*l +Q£\z + ... eDk and let

w<"}-

and

A/<*>-

p(») p(»>
*1.0 rX.X

pC«> p<»>
.' *.0 rk.X

0o»>
Vl,0

0<«>

<«)

{«)
V», 1

pl»)

pt»J
r k.k-X.

Vl,t-i

1 The restrictions will be defined in the proof
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Let $t">-(+,",i.+«"i +£**) be a block row vector of size

rxkr. We must have

PfiMF +N?) - (0.0 0./)

We have to show that the matrix Afi*'+ A/jf} is nonsingular

for large n, so that i>ta) is uniquely defined.

Let Ft(z)- /+Ak<xz + AkiZz2 +... and let us define //{"}(z) such

that /»{",(z)-//[,°(z)Ft(z) (because F{")(z)c?t). So we can write:

r<»> j. o(«) C«) ,*-i//J"'(z) -H^i*H\yiz*...*H\^.lz

Let us also define the following square matrices

and

A«-

^ A*,x AkZ

0 / /til

0 0 0

rt 1,0

At,k-2

I

" l.*-l

H^ -
jjC«J ul»l

_™*.0 •" "*.*-!_

We can see that lrf,*}-H,"}A».

Let us consider also the inverse of the block companion

matrix associated with nt(z): FBi. We can use it to perform a

block power iteration on matrix polynomials of degree less

than k, i.e. ft' -77fBi with //"(z)-z_,[//(z)-//(0)nt(z)].

Furthermore, if /»(z) -H(z)Fk(z), then ?'- ?F gives:

- 72 -



/>'(z)-z-,[/>(z)-P(0)F(z)]

?*(z)-z-,[//(z)Ft(z)-//(0)Ft(0)nt(z)Ft(z)]

F*(z)-z-,[//(z)-//(0)nt(z)]Ft(z)

So we can write:

{?F}(z)-PFj(z)F,(z)

and if P\*\z)-H\h\z)Fk(z) then P\"l\z) - Hlrx\z)Fk(z) along

with Ht -//, Fni-W, F„4 .

Hence

H^-H^F^

where

Finally, if H»0) is nonsingular2, then M?} will be

nonsingular and we have:

["i'V-A^tHrr1

From (4.20) and corollary 4.12, we can write:

|Nt"5|-0(p"") since p<|k».i|

and from (3.3), the previous relation implies that:

2 This is the restriction stated in the theorem,
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|[iO",Af.',|-o(|^|'1)

where e is an arbitrary small positive number ( less than

p). Thus there exists an integer N such that: for n>N Al,"'* A/,10

is nonsingular and

with:

I'fi-KIrD
p' is practically equal to p (taking into account that e

is arbitrarily small).

To show (4.23), we introduce the following block column

vectors:

C.(z)-

We can write

and

P.Cz)-^/1

Ci"'(z) QV'Cz)

Q.C*)- P.(z)-

LC,-J(z)J LQr(z)J

/or |z|<p |Q„(*)|-0(p-)

At.k-z Akk.x

I Ak<x
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where the above matrix is a block Sylvester matrix. We can

thus write the following relations:

e*[^i")]"1P.(z)-z*-,Ft(z)

|e/[Afi")]"'P,,(z)|-0(l) for j +k

where ey-(0 0./.0 0) is a block row vector with k block

elements (each being an rxr matrix) and the jth block is an

rxr identity matrix. So:

Ul;\z) - S^G.Cz) -e.CAI."'* AW'G.Cz)

-e,(/*£,li»)[Af,i,,]"1G.(z)

-et(/ ♦ E™XM™Yl (P-(z)+Q.(z))

So:

i/<*,(z)-et[Wi")]"lP.(z) +etFi")[Af(/)]",P.(z) +e,(/ +Fr)[AYi")]",Q.(z)

-z'-lFt(z)+/r.

where |/f.| -0(|\t/pT) •

Thus, if the matrix polynomials G$0) are selected such that

Hc»0) is nonsingular and if |^»| <p <|*-t-i|, then, for |z|<p we

have :

lim£/(t',>(z)-z*",Ft(z)

(Q.e.d.)

Remark: we have ^,"'(0) -0 so {?i"1F}(z)-z''yi,J(z).
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The set of polynomials defined by (4.22) is essentially

the same as Bauer's Treppen-iteration [41], but generalized to

block vectors. In [41] Wilkinson shows that the

Treppen-iteration is related to the scalar Q.D.. It is thus

normal that we find such relation for matrix polynomials.

Theorem 4.13 allows us to extract a factor from a matrix

polynomial F(z). The next proposition shows that it is

possible to generate the matrix polynomials Uk^(z)

recursively. However, we need the following definition first.

Definition 4.4:

Me say that the matrix polynomial i/i*'(z) is well defined

if the corresponding matrix Mk^*NkA) is nonsingular and if the

coefficient <J>£"^ is nonsingular also.

Proposition 4.14:

Let U\.*xx\z), U\*\z) and £/{"M)(z) be well defined, then

there exists a nonsingular matrix Q\^ such that:

z"I^[*}(z)-i/[!rn(z)-Q{",d/{**,}(z) (4.24)

Proof:

Let us compute z~xU\*\z)- U\1\x\z). According to (4.23) and

the previous remark, we have:
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(•)_ D<«*l>wl-1z",f/Iw(z)-i/,l.;,,cz)-(B,i."l,-Bj:;.,1,)z

-(Z7!')f)(z)-^;:,,(z)

Equation (4.22) implies:

(«♦>)/z-i/r,cz)-^:r,j(z)- t*V?? r)w-lt*™Grl\z)
L/-»

i-i

/-I

-♦{.vcr"* I (♦{."/-♦J-r.li)c<;*,,c*)
l-x

So, we find that z~xU\*\z)-U\1\x\z) is a linear combination

of CC,"M) G{"*1> and its lowest power is i-l. U\**l\z) is well

defined, we can write:

uirx\z) - z'-1+... - ♦{.•r,)c<1"*l>cz) ♦... ♦+!,v"cr"(z)

Let

So, we have

7.r*(",-*<"M) *(*' -a4"*0 *("hA V*|,] ^1-1.1 »••••*!,t-1 ^t-X.t-X'^t.t J

yr-C*<**l) *°"n ♦("*1h' k.^1, 1 »M.2 M.l '

?(AYr,}+A/r")-(0.0 B^-Sj."^)

F(Af^I) +A/{**1>)-(0.0 0./)

7 being of rank r and Aff**1'* A/{"*n being nonsingular, the

above relation implies that B1,*} - B\.*xxl is nonsingular. So,

X*-Q\R)? along with Q{"}- Bft - B[rxxl nonsingular.

(Q.e.d.).

We can rewrite (4.24) as:
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i/f.":u(z)-z-,i/{->(z)-Q[",^ri)(z)

and this relation can be iterated if the whole table of

£/{"}(z) is well defined. This generalization is given by the

following theorem.

Theorem 4.15:

Let the whole table U\*\z), i=l, . . . ,m-l ,n=0,l,... be well

defined, then there exist unique constants rxr matrices

C^ii.p) such that:

Ulr/\z)-z-pUr +C\'\i,p)z->-xuri\z) +... +Ci;\i,p)Ur'\z) (4.25)

Proof:

Relation (4.25) is trivially verified for p=0 if we define

C0"}(i.p)-/. For p=l, (4.25) is just a rewriting of (4.24) with

Cc1")(i.l)--Qj"'.

Let us assume that (4.25) is true for p.

U\-7\z) -z-'U\*\z) *C\*\i, p)zpMi/[**l>(z) +... ♦ C(p'\i. p)£/<"*p)(z)

multiplying the above relation by z'x, we obtain:

z-1^j:;p)(z)-z"p-,i/{",(z)*c(1«,(t.p)z-p(/<"*n(z)+...*c(;,(i.p)z-li/rp}(z)

Using (4.24), we can write:

z-,[/{;;"(z)-(/{.v;,,(z)+Q{_v,f/f.Vl}(z)

So:
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However, i/{"*p*n(z) can be expressed as:

i/!71,(z)^'pC^)+cri,(t,p)z-'*1yr,(z)^..+ct;,,,(i.p)i/r',"(z)

So, finally, we have an expression of U\1*pt\X){z) as:

U\:^xx\z)'z-'-xU^\z)^C\A\i.p*lwrx\z)^...*C^U^P*\)UrptX\z)

if we define the matrices cy°(i,p+l) by the following

recursion:

C^(i.p)-/

c{/)(i.p+i)-c(/")(i.p)-Q[.*;p,cc;.;1)(t.p) (4.26)

j- 1 p+1

The uniqueness of the set of matrices C is demonstrated by

defining the following block row vector:

/•-(/.c^a.p) c(;J(i.p))

We can express (4.25) in block matrix form as:

// b\:i ... jw

\o 0 ... /

Since the block matrix on the left is nonsingular, V is

uniquely defined.

(Q.e.d.).
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The set of matrices C for a given i,n,p can be constructed

from the recursion (4.26). Those coefficients can also be used

to defined a new set of matrix polynomials. Let:

^(z)-/ +Ci*)(<,p)z +... +C£°(t,p)zp (4.27)

The comonic matrix polynomials V can be generated

recursively using the following algorithm:

V\:i(z) -/

^{."i.,(z)-^lriCz)-zQj.";'V{t*;1,(z) (4.28)

The matrix polynomials V are important because they

converge to factors of F(z) if the conditions of the following

theorem are satisfied.

Theorem 4.16:

Let F(z) be a comonic matrix polynomial of degree m and

order r that satisfies the properties rk and r,; k<l. Let F(z)

have the following factorization: F(z)m nt(z)Gt/(z)F<(z). Let

also kk be the latent root of largest modulus of nt(z), kk.x

the latent root of minimum modulus of G»<(z), X., the latent

root of maximum modulus of Gkt{z) and X.JM the latent root

minimum modulus of F{(z) (degllk(z)m k and dagnt(z)G„(z)" O• I?

I*.«l<l*-«.il*l*.il<l*-i.i|, then

Cu(z)-limO«)

Proof:
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If we take the limit when n-*» in theorem 4.15 (along with

i=l and p=l-k), we find:

nmUkK"-k\z)~ Um[z-'ttI + C\'\l,l-k)z-'tk*[+... +C\''.l(l,l-k)]UTrx[/ll'''-k)<iz)
«-•» »-»« «••»

Using now theorem 4.13, we find:

^«(z)-[,J™,''.«-<2r>]/?I(z)

(Q.e.d.).

The recursion (4.28) for the particular case of p=l

generates the following first degree polynomial:

PJftCzW-Qy'z

and this form of V provides the following corollary.

Corollary 4.17:

If F(z)-nt.,(z)(/-C",z)Ft(z), F(z) has the property Tk and

r\_, and \kk.x\ < min |X.| £ max \k\ < \kk.x\ then:
X.f((C) Kf«(C)

limQ^-C"1

4.8 Relation with Dennis et Al. Algorithm.

Using the relation (4.24) given by proposition 4.14 with

i=l, we obtain:

z-xui:\z)-uirxxtz)-Q\"uirx)(z)

Let l/l0k\z)- F(z), we have:
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z"1i/i")(z)-F(z)-Q(l,°C/(1"M)(2)

We introduce now k-z~x and A(k) - \"F(\"'), we find:

kGlR>(k)- A(k)- QC1")G("M,(\)

with G^M-^tfV0^-1). If we define also

^"'(M-WiVi^"1)). Corollary 4.17 shows under which condition

the above relation converges and at the limit, we have:

W[*\(k) * kl - L and Gc">(>0 -» G(\), the corresponding quotient (L

being the dominant left solvent). So we see that Dennis et Al.

algorithm I. is just a special case of this more general

algorithm.

4.9 The Left Q.D. Algorithm.

In the previous section, we started the block

Treppen-iteration with an almost arbitrary set of matrix

polynomials GtC0)(z). Let us now use only one starting

polynomial: G<iox(z) and use G*[0) -G^V-1, i=l,...,k. This implies

that Gf',3(z)-G<,',*,~l>(z).

For this particular choice of starting polynomial, the

conditions for convergence as stated in theorem 4.13 can be

expressed as conditions on G?\z) only. However, the fact that

the starting polynomials are now related introduces another

recurrence relation among the matrix polynomials £/{"}(z).
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Proposition 4.18:

If i/{"'(z), U\"x\z) and U\Vx(z) are well defined, then there

exists a nonsingular rxr matrix £{*' such that:

Ulrl\z)-U\*\z)-E\»U\:\rz) (4.29)

Proof:

Let us compute the difference i/J"*,)(z)-i/[*)(z). We have:

.♦<v,)cr,,(ar)+...**:.v,)crow-»{:1)c{,>cz)-...-*(to1>cr")(r)

So, let

A V ^l.l'V^l.l ^1,2^' •••• ^1.1-1 *l.»J»*t.l J

We can write:

7(Af((:! +AO-(0 0.fl[,"1M)-fl{.-1))

However, £/{:}(z) is well defined, so 7-(+{:jil *[♦"}.,♦,)

satisfies:

>?(wf;} +A/j;j)-(o o./)

so 7-(5,cj";n-5[",))7 and both 7 and ? are of rank r. So

F{"'- fl{i"*,)-flf>",) is of same rank and hence nonsingular.

(Q.e.d.)
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In this section, we have made the assumption that all the

matrix polynomials £/f*5(z), i=l,...,m-l, n=l,2,... are well

defined. In this particular case, we can combine (4.24) and

(4.29) to obtain the Rhombus rules (4.1).

Proposition 4.19:

Let all the table i/{"'(z) be well defined, then:

Q{"*,»£["*»»-fC-jQ<-l

i- 1 m- 1 ; n- I.2....

Proof:

Since we make the assumption that the whole table defining

the matrix polynomials U\*\z) is well defined, then we can

write from (4.29):

z-,i/J*M,(z)-z-1f/{"1(z)-z-,f{",t/{:}(z)

Using (4.24), we obtain:

Now, from (4.29), we have:

u\i\x\z) - u\::2\Z) --E\rx"urx\Z)

uir2\z)-u'rxx(z)-E'r"u\:\xx(z)

We obtain the following identity:
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{Qlr"+e<:;l> - <?<•> - £<•>]£/<•• i3(z) - [fj-'Qirj - <?r ,jfr M]*/!:;n(z)

The above expression is an identity between two matrix

polynomials of different degree. So, each term between

brackets must be identically zero.

(Q.e.d.)

Using the above iterations, we can construct the Q.D.

tableau (4.2). If we look back at corollary 4.17, we can see

that if some conditions are satisfied (the ones that are

stated in corollary 4.17), then the ith Q column of the

tableau converges. In this particular case, (4.29) shows that

both F{?! and £{"' converge to zero. If a particular column E[*x

does not converge to zero, we can extract factors by

generating the matrix polynomials V[*l(z) and use the more

general result of theorem 4.16.

4.10 An Existence Theorem for the Q.D. Algorithm.

The Q.D. Tableau (4.2) as defined by the rhombus rules

(4.1) cannot be generated unless all the matrices Q, and Et

are nonsingular. This condition is satisfied if all matrix

polynomials £/f°(z) are well defined. In this section, we are

going to show that is possible if and only if certain block

Hankel matrices are nonsingular.
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Theorem 4.20:

The Q.D. algorithm exists for all n and all k if and only

if the following block Hankel matrices are nonsingular:

(£« C «*i ••• Gk*k-X

G**x G«*2 ." C**k

'-■♦i-l '-n-** ••• '-»-»2t-2.

for n=0,l, . . . and k=l,2, . . . ,m and C, are the coefficients

of the formal power series:

V\°\z)'G\f'\z)F-x(<z)-C^Cxz^C2z2^...

Proof:

We have proved (4.24) and (4.29) under the conditions that

all the matrix polynomials Uk*\z) are well defined, i.e.

Af^' + A/y0 is nonsingular and 4>knk is also nonsingular.

To obtain the Q.D. algorithm, we started the block power

method (4.15) with the m-1 degree matrix polynomial G\°\z) and

we used G[°\z)~ ^'""(z).

Let us define the following matrix rational fraction:

V\*x(z)-G\*\z)F~x(z)

We have seen in the proof of proposition 4.11 (equation

(4.20)) that:

^*>u(z) -Gf^WF-'Cz) -z~I[l/,f>(z) -l/{"}(0)]
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We can also write:

G\*\z) -Gf'^tz) -V\K\z)F(z) -l/c1"*'",)(z)F(z)

with V\°\z)-C0 +Cxz +Czz2 + .... Using theorem 4.13, we have

t/<«)-<t>^1Gc1")(z)*4»i">2G(r1)(^)*---**L"^r*-,)(z)-z*-,[/*...]

so

^l.O ^l.l ••* °" !.*-!

(*♦*-!) ^(a**-!) ~(***-l)
1.1 ••' °" 1. *"1

Thus from equation (4.8), we can write:

[C* C**x ••' C„.t_i\ // Ax A2 ... Ak
C„ C..a ... C... 0 / AX ... ^

c..,., c„k ... c„.2k_zJ\o 0 0

Af^+A/^-H^F^

Ft being nonsingular, for a given n and k, the matrix

A/oo +A/oo is nonsingular if and only if Hjf} is nonsingular. So,

in order to have the whole table of UkA)(z), H^1 has to be

nonsingular for all k and n.

In this case, we can have an explicit expression for 4>^")t.

We have:

si"1-«',.♦& ♦i:),)-(o o./)F;i[Hrrl
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♦oo
So, 4>k is the last block row of ^'[H,"']-1. F'kx is a block

triangular matrix with identity matrices on the diagonal, ♦ <*)t

must be the last block element of [Hi"']"1 .

Let us express H(t"> as a function of H£"\.

AX2

Hr-f"*"' "V A2X C„,
12

2k-2,

C**k-X \
r

c' ;

"21 " (£*♦*-! .C „»t, .... C,<.2t.j)

Since HkR), H<"\ and Hi"*""2' - C„.„_a are nonsingular, we

obtain

♦^-[Hr^-zi^tH^]-1/,,]"1

So we see that *£i is nonsingular for all k and n and thus

:C»)QkR> and fi*' are nonsingular for all k and n.

(Q.e.d.).

Since <bk*\ can be expressed as a function of C„, we can

also give an expression for Qckmi and E^K From proposition

4.14, we can write:

and from proposition 4.18, we have:

- 88



Remark:

Since H^-C.we find that ♦ <•> -c;1 and ♦<1";,)-c;i, so:

Qi^-C^C.., (4.30)

and this is the left Bernoulli's iteration.

Equation (4.30) provides us with an initial column for the

Q.D. iteration. If we use also the fact that £ja>-0, we can

generate the Q.D. tableau by columns:

Column Generation:

F^-<3r,,-(3<t",-F<t-V, (4.3Ia)

Qiv,-[*rr,Qr,,£ru C4.3i«»

The derivation of the above relations was done using

comonic matrix polynomials, however we can use directly the

Q.D. tableau for monic matrix polynomials. We should keep in

mind that the spectrum of a comonic matrix polynomial is

composed of the inverse of the latent roots of the

corresponding monic matrix polynomial.

So, if all £j."} converge toward zero then, for a monic

matrix polynomial /(\) of degree m and order r, we have the

following result:
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where the following dominance relation exists:

Qi>Qa>->Q*>0

and the matrices Qt are the limits of the columns Q£° when

n becomes very large. This is just a consequence of corollary

4.17. If it happens that a particular column EltK} does not

converge, we can use the more general result of theorem 4.16.

In this particular case, we extract a set of matrix

polynomials using the relations (4.28) which can be rewritten

for monic matrix polynomials as:

c^..-xc<«(m-q{-v,c!:;,,(m (4.32)

Exasple:

Let us assume that /(X.) is a fourth degree monic matrix

polynomial, that the Q.D. scheme exists and that

limE^'-O, limf^'-O, while £^} does not converge. In this case

we have a right factor of degree two that can be extracted

from /4(M-

G&CM-/

cc4:,2(M-^*/-\Q{4")-Qr,)[^/-04,*l>]

In this case, we have the following factorization:
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/K>0 -(X./ -Q,)(X./ -Q2)(X*I - \C * D)

along with:

We also have the following dominance relation:

Qi>Q2

min \\\ > max \\\

However, the column generation of the Q.D. tableau is

numerically unstable. This can be understood from equation

(4.31a). If the Q.D. scheme converges, then in (4.31a) we will

be subtracting numbers that are almost equal. This will lead

to a catastrophic cancellation of significant digits. And

since the matrices F{*) converge to zero, we will be adding a

large error to a small number. A more stable way for

generating the Q.D. scheme will be studied in the next

chapter.
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Chapter 5

The Q.D. Algorithn:

Block Matrix Methods

5.1 Introduction.

In the previous chapter, we have introduced the Q.D.

algorithm using power series. The derived algorithm was shown

to be a generalization of Bernoulli's iteration. In chapter 3,

we have seen an equivalence between Bernoulli's method and the

block power method. In this chapter, we are going to present a

block matrix method which is a generalization of the block

power method: The block L.R. method. This technique is a

generalization to block matrices of Rustishauser's L.R.

algorithm [41]. The interest of this presentation is that it

provides us with an alternate way to start the Q.D. algorithm,

the row generation, which is more stable numerically.

In this chapter, we will present the Q.D. algorithm for

the more restrictive case of a complete factorization of a

monic matrix polynomial. We will present only the right Q.D.

keeping in mind that the left Q.D. algorithm can be derived by

transposition.
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Note:

All the block matrices that will be used in this chapter

have rxr square matrices as block elements.

The matrix polynomial that we will consider in this

chapter is:

/(\) - \ml * /l,*.""1 +... ♦ A*^* Am

/l(X)-(),/-Qm)(>c/-Q„-1)...(\/-(2l)

(5.1)

(5.2)

5.2 The Block L.R. Algorithm.

In chapter 2, we have seen that monic matrix polynomials

have standard triples which define their spectral properties.

A important set of standard triple is the set of block

companion matrices (2.13) and (2.14). However, in our case,

since /1(X) can be factored as shown in (5.2), we can use

theorem 2.12 and use the standard triple (2.37). The problem

that we have to solve in this section is to find a

transformation (or a sequence of transformations) that will

lead us from a block companion matrix to a block bidiagonal

matrix 7*, as defined by (2.37). The use of block companion

matrices is obvious since their elements are the coefficients

of the matrix polynomial.

Let us first consider the block lower companion form:
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c,

/*,-[/.o o] y,-

0 I 0

0 0 /

0 0 0

An -Am-t ~ ^«-2

0

0

0

-A,

0

0

-^i.

(5.3)

In reference [32], it is shown that the block companion

matrix (5.3) is similar to a matrix in block Jacobi's form:

M.-

A*i..
M

2. 1

0

2.2M

M
3.2

0

/

M
3,3

0

0 0

0 0

0 0 (5.4)

Being block tridiagonal, W, can be decomposed (under

certain conditions) into a product of two block bidiagonal

matrices Z., and /?,. I, is a lower block triangular matrix with

identity matrices on the main diagonal and £, is an upper

block triangular matrix. By using a "block LR" algorithm, we

obtain a sequence of similar matrices M.:

l."

MnmLHRH M„,, - R%Lf

I 0 0 . 0 0

£C»)
/ 0 . 0 0

0 E? / . 0 0

0 0 0 . £•<«> /
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*.-

Q<«> / 0

0 Q?> /

0 0 Q?

0

0 0

0 0

0 0

(*)o qi:

(5.7)

By identifying M^-RKLm and *#„.,-£,,♦,*,,., we obtain the

following "rhombus" rules:

Er"Qri)-Q<w (5.8)

i- 1 m- 1 ; rt- 1,2....

It is clear from the expression of I, that if the matrices

£c"} converge to zero, then the block companion matrix C, will

be similar to the following matrix:

M-

Qr / o . .. 0 0

0 Qz / . .. 0 0

0 0 Q3 •.. 0 0

0 0 0 . .. 0 Q.

(5.9)

The following theorem shows that under certain conditions,

the "block LR" algorithm converges.
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Theoren 5.1:

Let Mi-XAX'1 where.

A -

'/?, 0 ... 0 '
0 R2 ... 0

.0 0 ... *._

If the following conditions are satisfied:

a) dominance relation between Rt: Rx > R2 > ... > Rm> 0

b) X'l-Y has a block LR factorization LyRy

c) X has a block LR factorization LXRX

then the block LR algorithm Just defined converges (i.e.

£.-»/;.

Proof:

The proof is similar to the one in reference [30].

We have Mk-LtRk and AftM -/?tIt thus:

Mt.l-LllL-tli...L-liMlL1...Lt-1Lt-E-tlMlEt (5.10)

Defining Ht- RkRt.1...Rl and using (5.10), we have

EtHk-M\ (5.11)

Et being a product of block lower triangular matrices

having identity matrices on the main diagonal, will also have

the same form. So EtHt is the block LR factorization of Aff and

we will express M\ as a product of a block lower and a block

upper triangular matrix. We have:
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Ml-XA'X'1

M\-XA*LyRy

M*-X(A*LyA~t)(A'Ry)

Since the main block diagonal of Ly is composed of

identity matrices, we can write:

A*Z.yA"*- l + Bk where Bt is strictly block lower triangular

and the (i,j) block of Bt is:

RUHR'S for i > j and 0 for i Sj.

Using condition a) and lemma 3.1, we have:

lim(flt)-0 (5.12)

Using condition c), we have also:

Mtl-LxRx(I +Bt)(AtRy)

since flt-»0, then:

I + RxBtR~xl -* f and it will eventually have an LR

factorization for k large enough. Thus:

/+RxBtR'xl -LkRt and both Lt and Rk converge to the identity

matrix. So:

Aff-C^XM.A'*,)

- 97 -



We see that we have factored Mk into a product of a block

lower triangular matrix and a block upper triangular matrix.

Then:

Et-LxLt and Ht -RtRx AkRy

using (5.10), we finally have:

Mk*imLk Lx M1LxLt

and as k-*<», the limit is:

M- L'xlMtLx- RxA/?;1

Thus the sequence {M t} converges to a block upper

triangular matrix.

(Q.e.d.).

5.3 The Right Q.D. Algorithm.

in theorem 5.1, we have made the implicit assumption that

an LR factorization exists at each step. If such factorization

cannot be made, it will lead to a breakdown of the algorithm.

Furthermore, this theorem is too general for our purpose. It

is not directly related to the matrix polynomial. In this

section, we are going to rephrase theorem 5.1 in terms of the

matrix polynomial and its solvents. We need first the

following lemma.
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Lemma 5.2:

The nonsingular block matrix A of size mrxmr has a unique

block LDU^ factorization if and only if all leading block

minors A?1 of size krxkr, k=l,...,m are nonsingular.

Proof:

A particular factorization can be found by using a block

gaussian decomposition.

Let

A\.m.-\ AXf

5,2
jh-1. 1 ^«i-i,«-i An.t n I \B2l B

(Bn
Uai '22

Am.n-l A,

where Ba-A^ and Bu-A[n'l].

We can factorize A in the following form:

(Bn B12\ fl QUA, OV/ y\
"U21 bJ"{x i)\o aJ[o i)

In order to have a unique solution X and Y, Bu-A[m~11 has

to be nonsingular. We can now repeat the same process on fl,,,

which can have the same decomposition if A[m~zy is nonsingular.

We reiterate this procedure until we arrive at k=l.

(Q.e.d.).

1 L is a unit block lower triangular matrix, U is a unit block
upper triangular matrix and D is a block diagonal matrix.
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There is a converse lemma which will be stated without

proof.

Lenna 5.3:

The nonsingular block matrix A of size mrxmr has a unique

block UDL factorization if and only if all trailing block

minors Alfl of size krxkr, k=l, . . . ,m are nonsingular.

Lemma 5.2 and 5.3 can be used now to rephrase theorem 5.1

in terms of solvents of A(\).

Theorem 5.4:

The right Q.D. algorithm defined by (5.8) converges under

the following sufficient conditions:

a) 3 m solvents Ri.R2 Rn such that: /?,> R2 >...>Rn> 0

b) the following block Vandermonde matrices are

nonsingular:

V(.*i *•) ; ^(*«-t.i *«) ; *-i rn

Proof:

In order to show the convergence of the algorithm, we have

to satisfy to conditions a), b) and c) of theorem 5.1. Let C,

be the block lower companion matrix of A(_\~). If V^Rl Rn) is

nonsingular, then (from theorem 2.10):

[V(Rx /?„)]",clK(/?1 /?„)-
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So condition a) of theorem 5.1 is satisfied. Condition c)

means that X-V(RX Rn) has a block LR factorization.

According to lemma 5.2, this is possible if all leading

principal block minors X[kl of X are nonsingular. To satisfy

condition b), X'1 -Y must have a block LR factorization. This

means that X must have a block RL decomposition. X can also be

decomposed into *-£/,£>,Z.i if all the trailing principal block

minors XlTt} are nonsingular according to lemma 5.3. Thus we

must have

Xl?-V(RX Rn) nonsingular for k=l,...,m and

*!•*'" f(**-*.i Rn)BLockDiagonalCRkn.k^ R*m)

nonsingular for k=l,...,m.

(Q.e.d.)

Theorem 5.4 provides us with a convergence proof which is

a generalization of theorem 3.3. The reader should remark that

if the conditions stated in theorem 5.4 are satisfied then

Bernoulli's iteration converges to the dominant right solvent

5.4 The Row Generation of the Q.D. Tableau.

We have see in the previous chapter that we can generate

the Q.D. tableau by columns starting from the column produced

from Bernoulli's iteration. In section 5.2, the initial block

tridiagonal matrix (generated from the matrix polynomial by
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the algorithm in reference [32]) corresponds to a generation

of the tableau by diagonals. In this section, we are going to

see that we can generate the Q.D. tableau by rows.

The main problem that we have to solve is to find a

transformation from a block companion matrix to a block

tridiagonal matrix. We are going to use block LR

decompositions starting from a block companion matrix. So let

us consider the following standard pair (the block left

companion form):

/S3-[/.0 0]

-1, I 0 . . 0

-Az 0 / . . 0

-**-* 0 0 . . /

-*m 0 0 . . 0

(5.13)

C3 is similar to C2 defined by (2.14). The transformation

matrix is the following permutation matrix:

The transformation

decompositions. Let:

/>-

0 0..

0 0..

/ 0 ..

0 I

1 0

0 0

we seek is a sequence of LR

[c„ cl2l r/ olfA b~\

where:
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C3

Cu

-Al I ... 0

L-^--i ° ••• oj

Cl2-[-Am.O 0] C„-[0]

We want to have C =0. Let:

X m[Xl,Xz Xn.l]

we obtain the following set of equations:

-XxAl- X2AZ-...- Xia.lAm.l --An

*,-x2-...-jr „_,-(>

*,.-,♦ 0-0

Finally, we obtain the following decomposition for C

0

Cu-

/ 0 . . 0 0 0" -Ax / . . 0

0 / . . 0 0 0 -*2 0 . . 0

0 0 . . 0 / 0 -*n-i 0 . . 0

0 0 . . 0 A W^»l-1 / 0 0 . . 0

0

0

~AnAn\

It is understood that we have made the implicit assumption

that An.{ is not singular. C3 has been decomposed into a

product of two matrices:

let:

^3 " ^-(m-2)£-(m-2)
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C3 is similar to C3 and the transformation does not modify

P3. We can continue this process on the block Cu. So, if all

the coefficient At of the matrix polynomial are nonsingular,

we can start the LR algorithm from C3 and we obtain the

following decomposition of C3:

where:

*o-

0

0

0

0

0

/

- A2At

0

0

0

0

^m-l^m-2

1 0 0

1 / 0

0 /

0 0

A2A

/

0

0

/

0 A,A -l

0

0

0

0 0'

0 0

0 0

0 /

0 0

0 0

0 0

0 /

0

0

/

" AnAn.i

etc... This set of matrices have the same format as in

equation (5.6). So, it means that we can start the Q.D.

algorithm with:

E\°>-A2A\l i E2-"-A,A-2l ; ... ; F^*' -AnAn\x (5.14)

and we deduce that:
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Q',0'--/!. : Qz'n-0 ; ... ; Q^-Q (5.15)

Equations (5.14) and (5.15) provide us with the first two

rows of the Q.D. tableau (one row of Q's and one row of E's).

So, we can solve the rhombus rules (5.8) for the bottom

element (called the south element by Henrici [17]). We obtain

the row generation of the Q.D. algorithm:

Qf»-QW*£C«-£C.:i, (5I6a)

As a conclusion, we can state that given a monic matrix

polynomial /t(\) as in (5.1) with all its coefficients

nonsingular, we can generate the following Q.D. tableau:

0-ll 0

0

Q\n

A2Al

Q20)

A3All

0

0

Qi2)

E\2}

E20)

£2I}

We have proved theorem 5.4 starting from the lower

companion pair C,, Px and the Q.D. tableau has been generated

from C3, Pz. However, C3 and P3 are given by:
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c3 - PC2P P3 - />/>

and from Gohberg et Al. [10], it is shown that

where

So

C2 - BC,B'1 P2 - PXB'

B

PB-

An-x An.2

Am-2 An.a

/I,

/

/

0

*y /

I 0

0 0

0 0

C3 - PBCiB^P

I 0 0 .. 0

Ax I 0 .. 0

^2 Ax / .. 0

««-l An-z *.-3 •.. /

In theorem 5.4, we can see that the transformation matrix

is a product of PB with the block Vandermonde matrix. So the

conditions of theorem 5.4 remain unchanged because all the

principal block minors of PB are nonsingular.
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Chapter 6

Local Methods

6.1 Introduction.

We have developed in chapters four and five a global

method for the factorization of monic matrix polynomials.

However, the Q.D. algorithm is only linearly convergent. It

can have a very slow convergence. This is why we will use it

only as a first step for a two stage algorithm. It will be

followed by a fast converging method derived from Newton's

method [6,23,34]: Broyden's method [6]. The proposed algorithm

enjoys superlinear convergence but needs an initial

approximation that is quite close to the solution (see

definition 3.1).

6.2 General Definitions.

In this chapter, we are going to change the statement of

the problem. Instead of looking for general factors, we are

going to look only for right linear ones. In this case, we can

invoke the remainder theorem (corollary 2.2) and use the

equivalence given by relation (2.22). So, for the monic matrix

polynomial /!(X.) of degree m and order r, we have:
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A,(X)-0 iff A(\)-Q(K)(\/-X) (6.1)

where:

AM (X)-Xn +AxXn-' *...*Am (6.2)

and An(X) is the right evaluation of A(k) at X according

to definition 2.3. AM is a nonlinear operator that maps the

space of square rxr matrices onto itself. Since the space of

complex rxr square matrices is a Banach space under any matrix

norm, we can use powerful results from functional analysis

[22,43]. This space is also a finite dimensional space and as

such the equation /JI(Ar)-0 is a set of r2 nonlinear equations

with r2 unknowns. In reference [6], Dennis et Al. provide the

general theory for solving this type of problems using Newton

and secant methods. From functional analysis, we have the

following definition for a derivative [43].

Definition 6.1:

Let flj and B2 be Banach spaces and F a nonlinear operator

from Bx to B2. If there exists a linear operator L from 5, to

B2 such that:

I F(X +H)-F(X)-LH | - o(|//|)

H,X€Bl F(X),LHzB2

then LH is called the Frechet differential of F at X and

is written dF(_X,H). L is called the Frechet derivative of F at

X and is written as £(X).
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The Frechet derivative is also called strong derivative by

Kantorovitch et Al. in [22]. This concept of derivative is

used by Kratz et Al. in [23] to prove the convergence of

Newton's method. We can relate the Frechet derivative concept

and the Jacobian of a vector valued function of a vector by

introducing the "vec" operator [13,26].

Definition 6.2:

Let X be an rxr matrix of complex numbers:

• XX Xxr

X -

>XrX .. X.

then x - vec(X) is a r2 column vector consisting of the

columns of X written one after the other:

h\
*rl

' 12

x - vec(X) -

xr2

\J
The vec operator can be used because we are working in a

finite dimensional space. We obtain the following result:

use(dF(*.//)) - V(x)v«c(tf) (6.3)
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where F is a nonlinear operator from the space of rxr

square matrices to itself, dF(X,H) is the Frechet differential

of F at X, x=vec(X) and J(x) is the Jacobian of the r2 column

vector valued function vec(F(X)).

The vec operator can be used also to rephrase the initial

problem.

The problem that we have to solve is to find an rxr matrix

X such that At(X)-0. Let x = vec(X) and /(x) = vec( A^X)),

then the problem that we have to solve becomes:

Find x eC* such that /(x) = 0, i.e. solve a set of r2

nonlinear equations with r2 unknowns.

At this point, we can derive the expression of the Frechet

differential of the right evaluation of the matrix polynomial

and as a consequence of (6.3) the expression of the Jacobian

matrix of the function /(x).

In reference [23] and in reference [34], we can find the

following expression for the Frechet differential of AM

evaluated at X:

dAM(X.H) - ftBkiX)HXm-t (6.4)
t-x

where:

Bk(X) - £A,Xk-'-1 (6.5)
/-o
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Using the properties of the vec operator (see reference

[13,26]), we obtain the following expression for the Jacobian

of /(x):

•/(*) - ZyT)n"9Bt(X) (6.6)

As a general remark, we can see from the expression of the

Jacobian of /(x) that it is quite expensive to evaluate and

furthermore that it is an r2xr2 matrix.

The numerical methods that we are going to use will

produce a sequence of matrices (or vectors if we use the vec

operator). This sequence will ultimately converge to the

solution. The speed of convergence is an important factor in

the selection of a particular numerical procedure. So, we

present in this section some important definitions.

Definition 6.3: (order of convergence)

Let B be a Banach space and x.zB, x»eB, k=0,l,2, . . . then:

the sequence <x»> -<x0,x, ,x2,...} is said to converge to x.

if:

lim|xt-x.| - 0
t-»-

If 3c6]0,I[ and an integer NiO such that:

VkiW |*».,-x.|*c|x»-x.|

then {xk} is said to be q-linearly convergent to x..
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If for some sequence of positive numbers <c»> that

converges to zero, we have:

|**.i-*.| i ck\xk-x,\

then {xt> is said to converge q-superlinearly to x..

If 3p>l. c>0, p.ceR and an integer N>0 such that:

Hmxk-x. and VkZN |x,.,-x.| Sc\xk-x.\p

then {xk} is said to converge to x. with order at least p.

If p - 2 or p = 3, the convergence is said to be q-quadratic

or q-cubic respectively.

In order to present the methods, we need also the

following notations.

Definition 6.4:

Let g be a mapping from a Banach space B to itself. We say

that g is Lipschitz continuous in WCB with constant y if for

every x.yel/, we have:

l0(*)-0(y)l * Yl*-y|

As a notation, we use: ge!ipY(l/).

We define also the neighborhood of a point x in B by:

N(*.P) - {yeB | |y-x|<p>
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6.3 Newton's Method.

All the published local methods for finding the solvents

of a matrix polynomial use Newton's method. This method enjoys

q-quadratic convergence for solvents for which the Jacobian is

nonsingular. The most general convergence theorem is given by

Kantorovitch in reference [22]. Kratz et Al. present a

particular proof of convergence for the special case of right

evaluation of matrix polynomials in reference [23]. However,

in our work, we are going to present Dennis et Al. theorem [6]

because we are going to use it for the next section.

The Algorithm:

Given /(x), an n-dimensional vector valued function of an

n-dimensional vector x, with Jacobian J(x) (it is an nxn

matrix) and an initial vector x0, at each iteration, we solve:

-K**)st--/(xt) (6.7a)

***i - ** + s» (6.7b)

The convergence is given by the following theorem:

Theorem 6.1:

Let /(x):£*-+£" be continuously differentiable in an open

convex set DCR*. Assume 3x.e/?" and p,p>0 such that A/(x.,p)c£,

/(x.)-0, J'\x.) exists with \j~\x.)\i$ while JeZ.ipY(A/(x..p)),

then there exists e>0 such that for all x0eAf(x.,e), the

sequence generated by:
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Xt*xmxk-J-\xk)fixt) Jfc-0.1....

is well defined, converges to x. and obeys:

|*f,-x.| S Pv|x»-x.|2 Jfc-0.1....

Proof: see Dennis et Al. reference [6].

Theorem 6.1 simply states that if the Jacobian is

nonsingular at the solution, then Newton's method converges

quadratically to the solution if the initial approximation x0

is close enough from the solution. The Lipschitz continuity of

the Jacobian of /(x) = vec( ^(X)) can be proved by noticing

that the elements of this Jacobian are polynomials with r2

unknowns and as such they are continuously differentiable. So

the above theorem is immediately applicable to right

evaluation of matrix polynomial with the following

adjustments:

n = r2, fix) = vec< ji.(Jf)), x = vec(X), J(x) evaluated by

(6.6).

6.4 Broyden's Method.

We can see that the use of Newton's method means that we

have to evaluate the Jacobian J(x) and the function /(x), then

we have to solve a system of r2 linear equation at each step.

So Newton's method has a quite high computational cost.

Broyden's method is a generalization of the secant method to
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the multivariable case. It is shown in [6] that it has only a

superlinear convergence rate. However, it is much less

expensive in computations for each step.

The Algorithm:

Given /(x), an n-dimensional vector valued function of an

n-dimensional vector x, an initial approximation x0 and an nxn

matrix A0, at each iteration, we compute:

**m - xk - A'kfixk) (6.8a)

a - a ^ (yt-Aksk)sTk
At.x - Ak + j: (6.8b)

y. - /(**-i) - /(*«)

St m xt+x ~ xt

The convergence is given by the following theorem:

Theorem 6.2:

Let all the hypothesis of theorem 6.1 hold. Assume also

3e.6>0 such that, if |x0-x.|t*E x and \A0-J(x.)\2 <6 2, then the

sequence generated by Broyden's algorithm is well defined and

converges q-superlinearly to x..

Proof: see Dennis et Al. reference [6].

Theorem 6.2 states that we have to provide not only a good

approximation of the solution but also a good approximation of

the Jacobian evaluated at the solution. Its applicability to

1|.^ is the Euclidean norm.
2 This is the induced matrix norm.
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right evaluation of matrix polynomials is the same as the

previous theorem. We can remark also that the evaluation of

the Jacobian is avoided in Broyden's method (aside from

initializing the algorithm). Step (6.8a) implies the solution

of an r2xr2 system of linear equations. This computation can

be avoided if we calculate directly the inverse of the matrix

Ak at each step. This can be accomplished by using the

Sherman-Morrison-Woodbury formula as stated in [6].

Proposition 6.3:

Let u.veR* and let the square nxn matrix A be nonsingular.

Then A+uvT is nonsingular if and only if:

o - 1 + vTA~lu + 0

Furthermore:

(/l +ui/)"1 - A-l--A-luuTA~l (6.9)

The use of (6.9) in (6.8b) provides directly the following

update for the inverse of the matrix Ak:

,-x ,-i (St-Al'y^slA;
At.x~Ak * —— (6.10)

s*^» y*

The use of (6.10) requires 0(n2) operations (0(r4)) then

the update (6.8a) requires only an additional 0(n2) (0(r4)

operations since it is only a matrix vector multiplication.
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Chapter 7

Implementation and Numerical Results

7.1 Data Structure.

In order to test the algorithms described in chapters

four, five and six, we have developed a set of computer

programs. The language used is VAX-11 FORTRAN which is a

dialect of FORTRAN-77.

The first problem that we had to solve was to provide an

appropriate data structure to represent matrix polynomials. We

have opted for a three-dimensional array. We made use of the

fact that FORTRAN stores arrays in column major order. So to a

matrix polynomial A(\) of degree m and order r, we associate

the array A( 1: r, 1: r, 1:m) * (The coefficient A0 is not

represented because we are using monic matrix polynomials).

The last index in A(I,J,K) is used to point to a particular

matrix coefficient while the first two ones point to a

particular element of this matrix.

We have also made use of the fact that FORTRAN passes data

to subroutines by reference.

1 This represents an rxrxm array.
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Example: A2 in A(\) is passed as A(1,1,2) to a particular

subroutine that will process it.

7.2 The Q.D. Algorithm.

The Q.D. algorithm basic iteration uses two

three-dimensional arrays as input (Q and E) and produces two

other ones as output. We have selected the row generation

algorithm of chapter five. Our implementation uses also an

in-place computation: the output is produced in the same

arrays that are passed as input.

The row generation of the Q.D. tableau is selected for the

following two reasons: numerical stability as discussed at the

end of chapter four and the fact that rows have finite size

while columns do not. So Q and E are declared as

Q(l:r,l:r,l:m) and E(1:r,1:r,0:m).

We have seen that there exist two Q.D. algorithms: one

that factorizes the matrix polynomial from the right and one

that factorizes it from the left. So, we have provided two

different subroutines: QDRF and QDLF for the right and left

factorization respectively. Those two subroutines are

straightforward applications of the formulas (5.16).

right factorization:

Er"-QXEr[Qrnr (z.n
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left factorization:

qU->_qC.) +£(.> _£<_.♦„

£ro.[Qr,>]-'fu>Qu> (72)

n is the iteration counter. In order to appreciate the

convergence of a particular algorithm, we have coded a real

valued function called AMAXNORM which produces the modulus of

the largest element of a two-dimensional array.

Cost of a Q.D. iteration:

We have used LU factorization in order to compute the

solution of a linear matrix equation AX=B or XA=B . (A, X and B

are rxr square matrices). So, from formulas (7.1) or (7.2),

for a matrix polynomial of degree m and order r, we have

0(2mr2) additions and 0(|(m-l)r3) multiplications for each

iteration (see reference [6,19,20]). For most machines, it is

the multiplication time that dominates the computation time.

7.3 Broyden's Method

Broyden's method has also been coded as a straightforward

application of formulas (6.8a) and (6.10). The initial value

of the matrix A0 in those formulas is taken to be the Jacobian

evaluated at the initial approximation. The function f(x) is

of course computed as vec( /!«(*)) and the variable x is equal

to vec(X). So, we have provided a subroutine that transforms

an rxr square matrix into a r2 vector (one-dimensional array).

The right evaluation of a matrix polynomial Ak(X) is computed
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by Horner's algorithm (see equations (2.23)).

Cost of a Broyden's method iteration:

For a matrix polynomial of degree m and order r, the cost

of one iteration seems to be mostly dependent on the order r.

The degree m appears in the cost only in the evaluation of

f(x) (computation of AK(X)). So, from chapter six, we have

0(kr4) multiplications for the evaluation of (6.8a) and

(6.10). To this number, we have to add 0((m-l)r3)

multiplications for the evaluation of f(x).

7.4 The Complete System.

The complete program starts with the Q.D. algorithm. It is

then followed by a refinement of the right factor by Broyden's

method. After deflation, Broyden's method is again applied

using the next Q output from the Q.D. algorithm and the

process is repeated until we are left with a linear term. Of

course, this process can be applied only to polynomial

matrices that satisfy the conditions of theorem 5.4 (i.e.

complete right and left factorization and complete dominance

relation between solvents). In cases where those conditions

are not satisfied, we extract second order matrix polynomials

using equations (4.32).

We can see that, for a complete factorization, we have to

run the Q.D. algorithm for N iterations then we have to use

m-1 times Broyden's method and perform m-1 deflations. It is

- 120 -



quite difficult to find an optimum value for N. We must not

forget that Broyden's method needs a good approximation of the

solution in order to converge.

7.5 Numerical Results.

To provide a reliable test of the proposed algorithms, a

quite large number of matrix polynomials have been used. Some

of them have been constructed especially to show a particular

property of the algorithms while others have been generated

randomly.

The first matrix polynomial has been used in reference [8]

and in reference [14]. This polynomial is not very informative

on the matrix Q.D. algorithm because its coefficients commute.

So basically, it behaves as a scalar polynomial.

*.<M-^-(;3 .%)^22, -42w' 18 66

65 r -33 -81

After 30 iterations of the right Q.D. algorithm, we obtain

If^'l-6.053 10-e and \E™\ -1.863 10'9 (The norm used is the one

computed by the function AMAXNORM). We obtain the following

factors:

0<*»_ (3.99999 -2.00002^
1 "11-00001 7.00002 J
(ao^p.OOOOl -1.99998^
2 "U-99991 4.99998 J

, f0.1810~8 -2.00000^
"\ 1.00000 3.00000 Jcr
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Because of commutativity, the left Q.D. algorithm will

produce essentially the same factorization. The only

difference is attributable to round-off error. In this case,

we obtain the following approximate factorization:

/I ,(M-(^/-Q^'X^/- Q,80')^/- Q',305)

The next example (from [34]) is more informative:

Using the right Q.D. algorithm, we obtain the following

tableau:

|F<"| |F<">| |F<"| |F<"'| n
0 6.6875 1.865 0 1

0 11.15 1.26 0 2

0 8.656 0.137 0 3

0 4.995 10"8 0.729 0 27

0 2.86310"8 1.03 0 28

0 1.26510"8 0.88 0 29

0 3.76610"9 0.26 0 30

It is apparent from the above tableau that the F2*' column

does not converge. So, we extract the following matrices:

.40678 -5.47458^
[5 -9.40678J

.50457^

.46236J

_(5.40671
Vl U3.491!

0(*,.(-7-09819 3.
Wa V-10.1949 4.

ncw.r "2.30859 -0.29998 10"^
3 "V- 1.29662 -2.05558 j
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and :

Ooo)_ (5.40678 -5.47458^
Vl "U3.4915 -9.40678J

0(30)_( -7.35051 3.61065^
Vz "V- 11.0796 4.83318J

0oo)-( -2.05627 -0.136071 ^
Wa '{-0.41 1944 -2.42640 J

It is manifest from the results that /12(\.) can be factored

only as a product of a second degree polynomial and a linear

one:

A2(V - (K2/ -C,\*D,)(\/ -Q'801)

where C, and £>, are evaluated according to (4.32)

transposed.

Cx-Qr +Q?"

Giving:

^.(M-^-C.^D.-^/.Jf;4^ -3.47458WI5.9831 -7.813S6>|
U 1-4915 -2.40678J V27.6610 -12.2712;

We can check the convergence of the algorithm by comparing

the spectra of the factors with the spectrum of A2(h). Using

the QR algorithm [41] on the block companion matrix of A2(k),

we obtain the following spectrum:

a(A2) - {-2.0+/4.3589.-2.0-/4.3589.-1.5+/l.65831,-1.5-/1.65831,-2.0.-2.0}

and the factors have the following spectra:
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oCOi"') - {-2.0 +;4.3589,-2.0-;4.3589>

0(^21) " {"1-5 + ;' 1.65831, - 1.5 -;1.65831, -1.99994, -2.00006}

We remark a total agreement between the spectrum of the

matrix polynomial A2(\) and the one of its factors as computed

by the right Q.D. algorithm.

Similarly, the use of the left Q.D. algorithm on the same

matrix polynomial shows the same type of convergence (|fi"}|

converges to zero while \E2A)\ does not). So, after 30

iterations of the left Q.D. algorithm, we obtain:

and :

tf-'-ft -I)
-0.642995 3.02245 ^

7371 -1.99283;
)<*>_("0-64
•a 1-0.91

(2,,_/ -2.35701 -0.224474 10"'>
3 "V-1.08263 -2.0017 J

(30)_ (-0.509438 3.3275 ^
Qz "\- 1.13930 -2.00789J

-2.49056 -0.32752410"')(30}_[ "2.
?5 1,-0.1.860699 -1.99211

We make use of (2.32) to obtain:

/12(M " (*•/ - Qci30})(^2/ - C2\* D2)

where:
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C2-Q2*» +Q<r>

d2-q™q<»>

Let us now consider the combined application of the Q.D.

algorithm and Broyden's method. The considered matrix

polynomial is:

^-^(;« :2).x(» »).(.-, -»)
15 iterations of the right Q.D. algorithm produce the

following matrices:

0U3j_ (2.00182 -0.206580 10"l>
2 U-01851 1.84523 )

QiiBi mf l-00066 1.00002 >
3 V0.59907910"4 0.999999;

Using Q<,8) as initial approximation for a right solvent,

Broyden's method needs 13 function evaluations to produce:

0 -f 3 2)
V-0.18103310"' 3)

We deflate \l-Qx from the right of A3(h) to produce:

"»0o-^.x(:3 :,)-(31)

2.99752 2.02064^
0.18573010"1 3.15478J
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We use now Q2,8) as initial guess for the right solvent of

A31(\). In this case, Broyden's method produced the following

result after 14 function evaluations:

(2 0.33997810",0,\
Q2"ll 2 J

The last factor is of course obtain by deflation from

<?3"\l0-27371310"9 \)

For this particular matrix polynomial, we have thus

obtained the following factorization:

A^)-(kI-Q3)(\I-Q2)(kI-Q,)

-Mi !))M? a))Ma D)
We have considered as zero any number less than 10~9.

We will obtain an alternate factorization if we use the

left Q.D. algorithm. After 20 iterations of the left Q.D.

algorithm, we obtain:

(20W-3.13121 -9.25156^
y' V4.08525 9.16344 J
0(20)_( 4.13207 4.25326 ^
Va V-1.08570 -0.164324;

0C20).( 4.99914 7.99830 \
^3 V- 1.99955 -2.999I1J
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We should point out that now Q9M) is the approximation of

the right solvent. So, we use it as an initial value for

Broyden's method. We obtain the following matrix after 7

function evaluations:

Q3-(-52 -83)

Deflating KI-Q, from the right of A3(h), we obtain:

Using the above matrix polynomial and starting from Q^20'.

Broyden's method need's 10 functions evaluations to produce:

(4 4
2"V-1 -0.929954 10"10

The dominant left solvent is obtained by deflation from

AnLM •

'-(-'« -'.)
So, we have obtained the following factorization for

A3(k):

<»-(-: v))M-4, ;))(-(-•» -83))

127 -



The next example is the same matrix polynomial as the one

given in example in chapter 2, but with a shift in order to

avoid singular coefficients (we can thus start the algorithm).

3 J 6 1.4142H ( 12 4.65685^ ( 8 3.6S68S>
^♦(M-*- '+*. [{ 41421 6 J+H6.6S685 12 ;+V7-6568S 8 J

It has the following spectrum:

o(/4)-{-1.-1.-2.-2.-3.-3}

10 iterations of the left Q.D. algorithm produce the

following tableau:

|F<*>| |f<">| |£2-J| |f3"J| «
0 0.6 0.3 0 1

0 0.3 0.24 0 2

0 0.410"1 0.1710"1 0 10

(10) (-5.56925 -1.53491\
Ql "U-203550 -2.40125;

0ci.f "2-10532 -0.156707^
Vz 1,0.4956510"1 -1.91053;

tl0) (-0.32S425 0.277404^
Q' "V-1.66733 -1.68822;

Q3,0> is an approximation of a right solvent. Broyden's

method needs 10 function evaluations to refine it to:

(-0.292893 0.292893^
^"V-1.70711 -1.70711 J

giving:
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and M«(Q3)| -0(10"u) . After deflation, we obtain:

2 ( 5.70711 1.70711W 7.41421 3.
4lC ;" + V-0.292893 4.29289; *{ -0.585786 4.

41421A

58579/

Broyden's methods needs 11 function evaluation to refine

Q2,0) to:

( -2 0.2 10~9>\
Q2"Uo.310-'° -2 J

and the right evaluation of A4i(k) at Q2 produces a matrix

whose elements are no greater than 10~9. Another step of

deflation produces the dominant left solvent:

m(-3.70711 -1.70711 \
Ql"U-292893 -2.292893J

The next polynomial has been constructed to have a triple

latent root. This should prevent the Q.D. algorithm from

converging.

w*i~i* I'M" \H-t "-'9S)

-(-a \w<-(i ?))(-e 3)
The constructed spectrum can be read directly from the

factored form of the matrix polynomial. However, the computed

spectrum (using the QR algorithm) does not contain any triple

root:

o(/ls)-<3.0 +yi.8810"?.3.0-;1.8810"',2.1.1-f ;10"s.l -;10"9}
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After 11 iterations, the right Q.D. algorithm produces

0(1I>-(
2.99993 3.01106^
72852910"3 3.02694J

(11)_(2.24182 -0.13338H
Qa "U-02353 0.961442 J

{1I, ( 0.758246 1.12232^
Qi "\ -0.22800510"1 1.01162;

We can remark that Q(,ll) is a good approximation of the

right solvent. However, Q2U) and Q3ll) are both quite far from

the correct factors. Starting from Q\U) as initial

approximation, Broyden's method needs 10 function evaluations

to produce:

(3 3
Ql'U-710-10 3

After deflation, we obtain the following matrix

polynomial:

"-cm-».•/♦*[:?, :2)*(4 i)

Using Q2U) as initial approximation, Broyden's method

applied to /431(\) needs the impressive number of 62 function

evaluations to produce:

„ 0.99945 0.2747510"3,\
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Newton's method needs 30 iterations to produce the same

result. So, we can see that for this particular case,

Broyden's method, even though slow, is still more economical

than Newton's method.

The left solvent is produced by another step of deflation:

( 1.00055
Q*m\- 0.301955 10"'

0.999725^

The spectra of the factors are:

a(Q,)-{3.2.9999}

a(Q2)- {2.0.99945}

o(Qs)- {!•00027 +/4.810"4. 1.00027-./4.8 10"4}

We remark a close agreement between computed spectra.

It appears from the previous example that if the

multiplicity of a latent root exceeds the dimension of the

matrix polynomial, then the local methods (Broyden and Newton)

have slow convergence. So this case affects adversely both

local and global methods (The Q.D. algorithm can converge

because round off will create the needed dominance relation).

The last example is a fifth degree matrix polynomial that

has been generated randomly.

-Ho '2°M: smt .Jo)
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After 21 iterations of the right Q.D. algorithm, we obtain

the following tableau:

l*ri i*ri i*£°i \e?\ \e?\ \e<t\ a
0 17.98 2.410"2 35.3 0.29 0 1

0 11.9 0.2 35.3 0.3 0 2

0 17.8 2 10"2 1.05 9.5 0 3

0 6.3410"4 2.910"10 39.2 5.7 0 21

The above tableau shows that the first two Q columns

converge, so we can extract two linear factors at the right of

At(k) and that there will be a third degree factor on the

left.

The output of the Q.D. algorithm is:

(1IJ ,'4.26379 -2.82957^
Ql "1,43.0452 -13.4859;
(ai,_( -5.46907 0.974266^

Qz V- 54.4052 5.50082 J

Ql32n> Q*2ii and Ql,2n are not used because the corresponding E

columns did not converge.

Using Qi2n as initial approximation, Broyden's algorithm

used 8 function evaluations to produce:

m(4.26427 -2.82974^
<2'" 1.43-0455 -13.4861 J

After deflation, a new application of Broyden's method

produces the following matrix with 8 function evaluations:
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_ -5.46955 0.974437^
^"'-^.4055 5.50098 J

_(-5.4C
"1-54.'

Another step of deflation produces the third degree left

factor:

A CM-*.3/*^"0-205281 °-144<596VJ-0.0177626 -0.110659A I 5.40769 -0.145837A
41 V0.639988 0.0149194; *\-0.733192 -0.073443J*I-0.270976 1.26159 J

We have obtained the following factorization:

*.(M--<1.i(*.)(K/-QaX*./-<?i)

The smallest latent roots of A^K) are the latent roots of

A6i(k) while the dominant ones go with the linear terms. In

this particular case, we could not obtain a complete

factorization.
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Chapter 8

Conclusion

As already expressed in the introduction (chapter one),

matrix polynomial have become an important mathematical tool

for the analysis and design of linear time invariant systems

[1,5,21,24,31,32,35,40]. The spectral data of the

"denominator" of the matrix transfer function determines the

dynamic properties of the system under study.

The work done in this thesis provides tools for the

analysis of the structure of complex time invariant linear

systems. The matrix Q.D. algorithm enjoys practically the same

properties as the scalar algorithm. We tried to present a

quite thorough theory of the algorithm (as complete as we

could).

In the development of the matrix Q.D. algorithm, some

important theoretical results have been produced as

by-products. We can cite theorem 2.1 which could be used for

the analysis of the stability of matrix polynomials, theorem



2.7 which characterizes solvents of matrix polynomials and

theorem 2.12 which provides the standard triple of a matrix

polynomial having a complete factorization.

In chapter four, aside from the main objective which was

the convergence of the Q.D. algorithm, proposition 4.3

provides us with an important tool for the decomposition of

matrix transfer functions into incomplete partial fraction

expansion.

In chapter five, theorem 5.1 is a convergence theorem for

a numerical method that is more general than the matrix Q.D.

algorithm.

finally, we have shown that numerical techniques that are

commonly used for solving nonlinear equations can be applied

with advantage for finding the solvents of a matrix

polynomial.

Looking back at the different numerical examples

presented, we can also view our numerical methods as tools for

investigation of the structure of a linear system.

If some E column in the Q.D. tableau converges, it implies

that there exists a factorization of the matrix polynomial

that splits the spectrum into a dominant set and a dominated

one. If the system under consideration is a digital system, we

know that the largest modulus latent roots have the
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preponderant effect on the dynamic properties of the system.

In such case, the Q.D. algorithm can become a tool for system

reduction (using the dominant mode concept).

Suggestions for Further Research.

(1) In the scalar case (i.e. SISO systems), the Q.D.

algorithm is directly related to continued fraction expansions

[16]. These expansions have been used to provide criteria for

studying the stability of scalar polynomials [5]. An

interesting idea would be to investigate relations between the

matrix Q.D. algorithm and matrix continued fractions. This

could lead to the discovery of criteria for the study of

stability of matrix polynomials.

(2) In chapter five, we have investigated the convergence

of a block LR algorithm. However, the proposed algorithm has a

slow convergence because of the lack of shift factor. In the

scalar case, the use of shift factors produces an important

acceleration of the LR algorithm [41]. We should explore the

use of matrix shift factors.

Another acceleration of convergence can be accomplished by

using an inverse power method. The research in this case

should be oriented toward the lines of theorem 2.7 and formula

(2.24).
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(3) The Q.D. algorithm as used in our thesis converges to

factors of a matrix polynomial. By using the transformations

defined in [33], we can derive the solvents. However, it would

be convenient to have a global algorithm that converges

directly to all solvents.
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