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Chapter General introduction

General introduction

Many real-world physical dynamical systems exhibit complex nonlinear behavior

that cannot be adequately captured by traditional linear modeling approaches. While

linear control techniques relying on linearization around operating points can work

for small ranges, they become ineffective and potentially unstable when dealing with

large operating ranges where nonlinearities play a significant role. This limitation

is especially pronounced in applications like hydraulic and mechanical systems with

inherent nonlinearities. Furthermore, precise mathematical modeling of such systems is

often impractical due to uncertainties in parameters and lack of full input-output data.

To address these challenges, this thesis explores the application of the Takagi-Sugeno

(TS) fuzzy modeling approach for accurately representing nonlinear hydraulic systems.

The TS fuzzy model employs a multi-model fuzzy architecture composed of multiple

linear sub-models that locally capture the system dynamics, combined through fuzzy

rules to represent the overall nonlinear behavior. Where this thesis is structured as follows :

Chapter 1 establishes the fundamental theoretical background by introducing key

concepts in automatic control systems such as linearity, non-linearity, static and dynamic

system analysis, as well as instrumentation principles for hydraulic systems. This lays

the groundwork for subsequent discussions on nonlinear modeling and control.

Chapter 2 establishes the essential notations and theoretical foundations required

for this work. Specifically, it introduces the dynamic Takagi-Sugeno fuzzy system

formulation that will be employed throughout the thesis, the chapter also presents two

key methods used for constructing TS fuzzy models from a given nonlinear system,

the first approach, the sector nonlinearity method, enables deriving an exact TS fuzzy

representation of the nonlinear system within a compact region of the state-space.

Alternatively, the second technique utilizes Taylor series expansions around mul-

tiple operating points, these model construction methods lay the groundwork for the

subsequent application of TS fuzzy modeling to the hydraulic system under consideration.

In Chapter 3, the TS fuzzy modeling approach is applied to develop an accurate

multi-model representation of a complex nonlinear hydraulic three-tank system, using

simulations to validate the TS fuzzy model against a conventional dynamic model,

demonstrating its capability to precisely capture the system’s behavior while providing a

simpler modeling framework.

1



Chapter General introduction

Chapter 4 delves into stability analysis and control design techniques for TS fuzzy

models using linear matrix inequality (LMI) constraints and lyapunov’s direct method.

Stabilization results based on quadratic lyapunov functions are presented, showcasing

the advantages of the TS fuzzy approach for control applications.

Overall, This thesis presents an innovative fuzzy modeling and control approach speci-

fically designed for intricate nonlinear hydraulic systems, proving that TS fuzzy approach

overcomes limitations of linear techniques while providing an intuitive multi-model archi-

tecture amenable to stability analysis and control design.

2
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Chapter I.Generalities

I.1 Introduction

In this chapter, we embark on a journey through the fundamental concepts that un-

derpin the analysis of systems. We will explore the fundamental principles of automatic

control systems, with a focus on the key concepts of linearity and non-linearity and key

distinctions between the two. Dynamic and static systems emerge as essential categories

within our discourse, with dynamic systems exhibiting evolving behaviors, contrasting

with static systems characterized by unchanging states. Through dynamic system ana-

lysis, we unravel the intricate interplay of variables and dynamics that shape system

behavior, paving the way for precise modeling.

Understanding these concepts is essential for effectively designing, modeling, and control-

ling various types of systems. Furthermore, this chapter will also cover the basics of

instrumentation, particularly concentrating on the instrumentation of hydraulic systems,

where we shine a spotlight on the sensors and actuators employed in hydraulic systems,

showcasing their indispensable role in translating physical phenomena into measurable

signals and actionable commands.

This chapter will lay a solid foundation for our deeper exploration of automatic control

systems, providing us with the essential knowledge for a thorough understanding of the

upcoming concepts and applications.

I.2 Preliminary definitions

Before we can discuss control systems, some basic terminologies must be defined.

• Controlled Variable and Control Signal or Manipulated Variable : The controlled

variable is the quantity or condition that is measured and controlled.The control

signal or manipulated variable is the quantity or condition that is varied by the

controller so as to affect the value of the controlled variable. Normally, the controlled

variable is the output of the system, control means measuring the value of the

controlled variable of the system and applying the control signal to the system to

correct or limit deviation of the measured value from a desired value. In studying

control engineering, we need to define additional terms that are necessary to describe

control systems.

• Plants : A plant may be a piece of equipment, perhaps just a set of machine parts

functioning together, the purpose of which is to perform a particular operation.

• Disturbances : A disturbance is a signal that tends to adversely affect the value of

the output of a system. If a disturbance is generated within the system, it is called

3
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internal, while an external disturbance is generated outside the system and taken

as an input.

• Processes : A process is a natural, progressively continuing operation or development

marked by a series of gradual changes that succeed one another in a relatively fixed

way and lead toward a particular result, or an artificial or voluntary, progressively

continuing operation that consists of a series of controlled actions or movements

systematically directed toward a particular result or an end. In this book we shall

call any operation to be controlled a process. Examples are chemical, economic, and

biological processes.

• Feedback Control : Feedback control refers to an operation that, in the presence of

disturbances, tends to reduce the difference between the output of a system and some

reference input and does so on the basis of this difference. Here only unpredictable

disturbances are so specified, since predictable or known disturbances can always

be compensated for within the system.

I.3 The concept of a system

In the field of automation and automatic control, a system refers to an interconnected

set of components that work together to regulate, command, or control an operation or

process without direct human intervention.

1. Physical Process/Plant : This is the entity being controlled, such as an industrial

process, machine, vehicle, or other operational technology. It has inputs that cause

its behavior.

2. Sensors : Devices that measure and provide signal feedback about the current state

or output of the physical process.

3. Controllers/Control System : This computational component takes in sensor data as

inputs, processes it through control algorithms or logic, and determines the necessary

control actions.

4. Actuators : Devices that can influence or manipulate the physical process based on

the commands from the controller.

The goal is to automatically maintain desired operating conditions or outputs from the

physical process/plant by constantly measuring outputs, computing necessary corrective

inputs using the control system, and implementing those inputs via actuators - all in a

closed loop without human involvement.

4
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External disturbances like noise, environmental changes, etc. can also influence the pro-

cess, which the control system must compensate for.

So a control system is a combination or arrangement of a number of different physical

components to form a whole unit such that combining unit performs to achieve a certain

goal. They are used in many fields, such as industry, robotics, or defense, to perform

complex and repetitive tasks more efficiently, quickly, and precisely, while reducing costs

and risks of errors[1].

I.4 Linear and Non-Linear System

I.4.1 Linear System :

When discussing a linear system, the focus is on its response to inputs. Imagine a

hypothetical machine, named SystemS which performs tasks based on given instructions.

This machine adheres to two key principles :

1. Homogeneity : If the instruction’s magnitude increases or decreases, the system’s

output changes proportionally. In other words, increasing the workload (input) yields

a proportional increase in output.

2. Additivity : When given separate tasks, the machine produces individual results,

combining these tasks results in a collective task, with the machine’s output mir-

roring the sum of the individual outputs. Linear control systems abide by these

principles, exhibiting predictable responses to changes in task magnitude and com-

bining tasks.

Figure I.1 — Linear system principals.
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I.4.2 Non-Linear System :

A non-linear system deviates from the aforementioned simple rules. Unlike linear sys-

tems, where changes in one aspect produce proportional changes elsewhere, real-world

systems tend to be more complex [2].

Consider a DC machine’s magnetization curve, illustrating how the magnetic field

varies with electrical input. Initially, increasing electricity leads to a proportional increase

in the magnetic field, representing the linear phase. However, beyond a certain point, the

system behaves differently. Despite continued increases in electricity, the magnetic field

doesn’t follow a linear trend but saturates, akin to a sponge reaching maximum absorption

capacity.

Non-linear systems exhibit varied behavior, departing from straightforward, predictable

patterns over their operational range. While they may initially conform to rules, they

eventually diverge, displaying unexpected behaviors, as seen in the magnetization curve

of a DC machine.

Figure I.2 — Output possibilities of (a) a linear system and (b) a nonlinear system.

I.5 Static and dynamic systems

Static System : A static system is one whose output depends only on the present

input, and not on the previous inputs or outputs. The system has no memory and the

6
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relationship between input and output is an algebraic equation.

Dynamic System : A dynamic system is a system whose output depends not only on the

present input but also on the past inputs and/or outputs. This means that the resulting

output can vary depending on the preceding input values and the amount of time that has

elapsed since they were used. Such a system has memory and the relationship between

input and output is governed by differential equations. The key difference is that in a

static system, the output is determined solely by the present input, with no dependence

on past inputs or outputs. In a dynamic system, the current output depends on both the

current input as well as past inputs and/or past outputs of the system. Dynamic systems

have a "memory" effect from prior states, this dynamic nature introduces effects like lag,

resonance or integration over time. In this study, we employ the state space framework to

model dynamic systems, this involves utilizing a state transition model, which delineates

how states evolve over time, and a measurement model, which establishes the relationship

between measurements and states. The system is mathematically described as follows :

ẋ(t) = f(x(t), u(t), θ(t))

y(t) = h(x(t), u(t), ζ(t))

Here, f represents the state transition function governing the evolution of states over

time, while h denotes the measurement function connecting measurements to states, x is

the vector of state variables, u is the vector of input or control variables, and θ and ζ

represent unknown or uncertain parameters, y represents the measurement vector.

I.5.1 Dynamic System Analysis

This phrase refers to two very important concepts in the analysis and control of dynamic

systems, namely controllability and observability.

Controllability refers to the ability to transfer a system from any initial state to any

desired final state within a finite time interval, using an admissible control input. In other

words, a system is controllable if it is possible to find a control input that can drive the

system to a specific state, regardless of its initial conditions.

Observability on the other hand, refers to the ability to determine the system’s current

state from its output measurements over a finite time interval. A system is observable if

it is possible to reconstruct the system’s internal state from the knowledge of its inputs

and outputs over a finite time period [3].

These concepts are particularly relevant in the context of state-space representations

and modern control theory, where the controllability and observability of a system are

7
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analyzed using certain conditions related to its state-space representation. The rules for

controllability and observability are as follows :

Controllability : A linear time-invariant (LTI) system represented in state-space form :

ẋ(t) = Ax(t) +Bu(t) (I.1)

y(t) = Cx(t) +Du(t) (I.2)

is controllable if and only if the controllability matrix :

C =
[
B AB A2B · · · A(n−1)B

]
(I.3)

has full rank, where n is the order of the system (i.e., the dimension of the state vector

x). In other words, the system is controllable if the controllability matrix C has rank n,

which means that its columns are linearly independent.

Observability : For the same LTI system in state-space form, the system is observable if

and only if the observability matrix :

O =



CT

(CA)T

(CA2)T

...

(CA(n−1))T


(I.4)

has full rank n, where n is the order of the system.the system is observable if the obser-

vability matrix O has rank n, which means that its rows are linearly independent.

Both controllability and observability are essential properties for the analysis and

control of dynamic systems. If a system is not controllable, it means that there are certain

states that cannot be reached, which may limit the system’s performance or prevent it

from achieving specific objectives. Similarly, if a system is not observable, it becomes chal-

lenging to determine its internal state accurately, which can hinder the design of effective

control strategies.

I.6 Modeling and identification of dynamic systems

I.6.1 Notion of a model

A model is a mathematical or computational representation of a real-world system,

process, or phenomenon. It aims to capture the essential characteristics and behavior of

the system using equations, algorithms, or other mathematical constructs. A model is
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a simplified and abstract representation of reality, designed to facilitate understanding,

analysis, and prediction.

I.6.2 Modeling

Modeling is the process of creating a model that accurately represents a real-world

system or process. It involves identifying the relevant variables, formulating mathemati-

cal equations or computational algorithms, and validating the model’s predictions against

observed data or known behavior. Modeling is an iterative process that may involve refi-

ning or updating the model based on new information or improved understanding.

Types of Models :

1. Theoretical or White-Box Models : These models are derived from fundamental

principles, laws of physics, or well-established theories. They are based on prior

knowledge and understanding of the system’s behavior.

2. Empirical or Black-Box Models : These models are constructed solely from observed

input-output data, without relying on prior knowledge of the underlying physical

principles or mechanisms.

3. Grey-Box Models : These models combine elements of both theoretical and empirical

models, incorporating prior knowledge and observed data to obtain a more accurate

representation of the system.

I.6.3 Identification

Identification is the process of determining or estimating the parameters of a model

from observed data. It is a crucial step in modeling, as it allows the model to be tailored

to accurately represent the specific system or process under study. Identification involves

various techniques, such as least-squares estimation, maximum likelihood estimation, or

other optimization methods [4].

Important Tasks in Identification :

1. Experiment Design : Designing informative experiments or data collection proce-

dures to ensure sufficient information for accurate parameter estimation.

2. Model Structure Selection : Choosing an appropriate model structure (e.g., linear,

nonlinear, static, dynamic) that can accurately represent the system’s behavior.

3. Parameter Estimation : Estimating the unknown parameters of the chosen model

structure using optimization techniques and observed data.

9
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4. Model Validation : Evaluating the identified model’s accuracy and predictive capabi-

lities using different validation techniques, such as residual analysis, cross-validation,

or statistical hypothesis testing.

5. Model Refinement : Attentively refining the model structure or parameter estimates

based on validation results or new data to improve the model’s accuracy and pre-

dictive power.

I.7 Stability of linear and non linear systems

Stability is a fundamental concept in the analysis and control of both linear and nonli-

near systems. However, the methods and techniques used to assess stability differ between

linear and nonlinear systems. Here’s an overview of stability analysis :

Stability of Linear Systems : For linear time-invariant (LTI) systems, stability analysis is

well-established and can be performed using various methods, including :

1. Eigenvalue or Pole Analysis : The system is stable if and only if all eigenvalues

(poles) of the system matrix A have negative real parts, i.e., they lie in the left-half

of the complex plane.

2. Routh-Hurwitz Criterion : This algebraic method involves analyzing the coefficients

of the characteristic equation associated with the system matrix A to determine

stability.

3. Nyquist Criterion : This frequency-domain method involves analyzing the Nyquist

plot of the system’s open-loop transfer function to determine the number of unstable

poles.

4. Lyapunov’s Indirect Method : This technique involves constructing a positive-

definite Lyapunov function and analyzing its time derivative to establish stability.

Stability of Nonlinear Systems : Stability analysis for nonlinear systems is more complex

and often relies on advanced mathematical tools and techniques, including :

1. Lyapunov’s Direct Method : This is a powerful and widely used technique that

involves constructing a suitable Lyapunov function and analyzing its properties to

establish stability. It can be used to determine both local and global stability.

2. Describing Function Analysis : This method approximates the nonlinear system with

a quasi-linear model and analyzes the stability of the resulting linear system.

3. Phase Plane Analysis : This graphical technique involves analyzing the phase por-

traits and trajectories of the nonlinear system in the state space to determine sta-

bility.
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4. Linearization and Perturbation Methods : These techniques involve linearizing the

nonlinear system around an equilibrium point or a nominal trajectory and analyzing

the stability of the linearized system.

5. Energy Methods : These methods involve analyzing the energy or dissipation pro-

perties of the nonlinear system to establish stability.

It’s important to note that for nonlinear systems, stability can be classified as local or

global, and the specific techniques employed depend on the system’s complexity and the

desired level of analysis [5].

I.8 Automatic Control Theory

The field of automatic control theory focuses on the purposeful regulation of a system’s

dynamics. Across numerous industrial sectors and equipment, it is paramount to keep cri-

tical physical variables at prescribed levels, withstanding any fluctuations or disturbances,

whether originating from within the system or from external sources, that might otherwise

cause deviations from the desired values.

Open-Loop Control Systems : Open-loop control systems are those in which the output

has no influence on the control action. In other words, in an open-loop control system,

the output is neither measured nor fed back for comparison with the input. A practical

example of an open-loop control system is a washing machine, where the soaking, washing,

and rinsing cycles operate on a predetermined time basis, without measuring the actual

cleanliness of the clothes (the output signal).

In any open-loop control system, the output is not compared to the reference input. Conse-

quently, for each reference input, there is a fixed operating condition, and the system’s

accuracy depends on its calibration. If disturbances are present, an open-loop control

system will not be able to perform the desired task accurately. Open-loop control can

only be practical when the relationship between the input and output is known precisely,

and there are no internal or external disturbances affecting the system. It is important

to note that any control system that operates solely based on time, without feedback, is

considered an open-loop system.

The major disadvantages of open-loop control systems are as follows :

1. Disturbances and changes in calibration cause errors, and the output may be dif-

ferent from what is desired.

2. To maintain the required quality in the output, recalibration is necessary from time

to time.
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Figure I.3 — Linear system principals.

Closed-Loop Control Systems : Systems that employ feedback control are commonly

referred to as closed-loop control systems. In practical applications, the terms "feedback

control" and "closed-loop control" are used interchangeably. In a closed-loop control sys-

tem, the error signal, which is the difference between the input signal and the feedback

signal (either the output signal itself or a function derived from the output signal and

its derivatives and/or integrals), is fed back to the controller. The controller then acts to

reduce this error and bring the system’s output to the desired value. The use of feedback

control action to minimize system error is an inherent characteristic of closed-loop control

systems [6].

Figure I.4 — Closed-Loop Control Systems

I.8.1 Regulation

Regulation and servomechanisms (or control and servomechanisms) is a branch of auto-

mation engineering that deals with the design and analysis of control systems.Regulation

refers to the process of maintaining a specific output or state within a system, while servo-

mechanisms (or servos) are devices or mechanisms that use feedback control to maintain

a desired output or position.
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I.8.2 Instrumentation

Instrumentation is the study and application of measurement and control techniques,

encompassing the design, development, and implementation of instruments and systems

for acquiring, processing, and analyzing data. It involves the use of sensors, transducers,

signal conditioning circuits, data acquisition systems, and control systems to measure and

control physical quantities such as temperature, pressure, flow, level, humidity, and many

others.

I.8.3 Piping and instrumentation diagram (P & ID)

A piping and instrumentation diagram (P & ID) is a detailed diagram used in pro-

cess industries to represent the interconnection of piping, instrumentation, and major

equipment in a plant or processing facility. It provides a comprehensive overview of the

entire process, including the flow paths of materials, the location and purpose of instru-

mentation, and the interconnections between various components. Here’s a more detailed

explanation of a piping and instrumentation diagram :

1. Piping : The P&ID shows the arrangement and interconnections of pipes, including

their sizes, materials, and flow directions. It depicts the flow paths of liquids, gases,

or other process materials through the plant.

2. Instrumentation : The diagram clearly identifies and locates all instrumentation

devices, such as sensors, transmitters, controllers, and actuators, within the process.

These instruments are represented by standard symbols and are labeled with their

tag numbers and descriptions.

3. Equipment : Major equipment, such as pumps, compressors, vessels, heat exchan-

gers, and reactors, are represented by their respective symbols on the PID. Their

connections to the piping system and associated instrumentation are shown.

4. Process data : The PID typically includes important process data, such as flow rates,

temperatures, pressures, and compositions, at various points in the system.

5. Control loops : The diagram illustrates the relationships between instruments and

the control loops they form, allowing for the monitoring and control of process

variables.

6. Safety and regulatory devices : Safety devices, such as relief valves, rupture discs,

and emergency shutdown systems, are also depicted on the PID.

PIDs are essential for the design, construction, operation, and maintenance of process

plants. They serve as a comprehensive reference for plant personnel, enabling them to un-
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derstand the process flow, identify potential issues, and troubleshoot problems efficiently.

Additionally, PIDs are used for training purposes, risk assessments, and regulatory com-

pliance.

I.8.4 Measurement fundamentals

I.8.4.1 Concept of Measurement :

Measuring a quantity involves comparing it with another quantity of the same kind,

taken as the unit. It is the expression of any quantity, most often by a number followed

by a symbol (the number expresses the value of the measured quantity, and the symbol

expresses its nature, which is defined by a unit).

The measurements to be performed in an industrial environment or in university research

laboratories are extremely varied. Several categories can be distinguished : simple measu-

rements, complex measurements, and multiple measurements.

I.8.4.2 Measurement Chain :

It is the set of elements necessary to know the value or evolution of parameters of a

physical system [15]. To capture a physical quantity and make it usable for a user, we use

a measurement chain that includes the following elements :

1. A sensor

2. A signal conditioner that processes the signal delivered by the sensor to extract a

usable signal

I.8.4.3 Measurement Error

The measurement error is the difference between the measured value of a quantity and

a reference value. For a measurement to be complete, it must include the measured value

and the limits of the possible error on the given value.

Classification of Errors : Depending on the causes there exist two types of errors :

Systematic errors : These are errors due to a known cause. Their causes can be : the

measurement method, the operator, or the measuring instrument.

Random errors : These are errors that do not obey any known law when taken on a single

result. They obey the laws of statistics when the number of results becomes very large.

They can originate from the operator, the instrument, or the setup.
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I.9 Sensors and actuators used in hydraulic systems

Sensors and actuators are essential components in a hydraulic system, Where sensors

provide feedback on the system’s operating conditions by measuring and monitoring va-

rious parameters in a hydraulic system, such as pressure, flow rate, temperature, position,

and fluid level.On the other hand, actuators are responsible for carrying out the desired

actions based on the input from the hydraulic power source and control system. The pro-

per selection, placement, and integration of sensors and actuators are crucial for ensuring

the safe, efficient, and precise operation of hydraulic systems in various applications [7] .

I.9.1 Sensors

I.9.1.1 Pressure sensors

They measure the pressure of the hydraulic fluid in different parts of the system, such

as pipes, cylinders, or accumulators. Common types include :

Piezoresistive Sensors : These sensors use a piezoresistive element that changes resistance

proportionally to the applied pressure. They are highly accurate and widely used in hy-

draulic systems.

Diaphragm Sensors : They consist of a diaphragm that deforms under pressure, and this

deformation is measured using strain gauges or capacitive elements.

Bourdon Tube Sensors : They use a curved, hollow tube that straightens or twists in res-

ponse to pressure changes. The movement is typically measured by a mechanical linkage

or electronic transducer.

I.9.1.2 Flow sensors

They measure the volumetric flow rate of the hydraulic fluid in the pipes. Common

types are :

Turbine Flow Meters : These sensors have a rotary turbine that spins proportionally to

the fluid flow rate. The rotational speed of the turbine is measured and converted to a

flow rate.

Vortex Flow Meters : They rely on the principle of vortex shedding, where vortexes are

formed downstream of an obstruction in the flow. The frequency of vortex shedding is

proportional to the flow rate.

Electromagnetic Flow Meters : They operate based on Faraday’s law of electromagne-

tic induction. The flow of conductive fluid through a magnetic field induces a voltage

proportional to the flow rate .
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I.9.1.3 Level sensors

Level sensors are a type of sensor used in hydraulic systems to monitor and measure

the level of hydraulic fluid in tanks or reservoirs.Here are some common types of level

sensors used in hydraulic systems :

Float Sensors : They use a float that rises or falls with the liquid level, and this vertical

movement is detected by various mechanisms, such as mechanical linkages or magnetic

sensors.

Figure I.5 — Float Sensor

Ultrasonic Sensors : They emit high-frequency sound waves and measure the time it takes

for the reflected waves to return, which is proportional to the distance to the liquid surface.

Radar Sensors : They operate similarly to ultrasonic sensors but use electromagnetic waves

instead of sound waves to measure the liquid level.

I.9.1.4 Temperature Sensors

They measure the temperature of the hydraulic fluid, which is important for controlling

viscosity and preventing fluid degradation . Two types are the most commonly used are :

Thermocouples : They consist of two dissimilar metal wires joined at one end. The tem-

perature difference between the junction and the free ends generates a small voltage

proportional to the temperature.

Resistance Temperature Detectors (RTDs) : They rely on the change in electrical resis-

tance of a pure metal (typically platinum) as its temperature changes.

I.9.1.5 Position Sensors

Position sensors are critical components in hydraulic systems as they provide feedback

on the position or displacement of hydraulic actuators, such as cylinders and motors. This
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information is essential for precise control and monitoring of the system’s movements.Here

are some common types of position sensors used in hydraulic systems :

Linear Encoders : They use a linear scale and a readhead to measure the linear position

of a hydraulic cylinder or other linear motion component.

Rotary Encoders : They measure the rotational position or speed of a shaft or motor by

detecting the rotation of a coded disk or scale.

Wire Displacement Sensors : They use a wire connected to the moving component, and

the displacement of the wire is measured using a potentiometer or other transducer.

I.9.2 Actuators

Actuators are devices that convert energy from one form (typically electrical, hydraulic,

or pneumatic) into motion or mechanical force. They are essential components in control

systems and are responsible for implementing the desired action or movement based on

the control signals received.

In the context of hydraulic systems, actuators are the components that convert the hy-

draulic energy (pressure and flow) into mechanical motion or force. The main types of

hydraulic actuators are :

I.9.2.1 Hydraulic cylinders

These are linear actuators that convert hydraulic power into linear motion. They can

be single-acting or double-acting and are used for lifting, pushing, or pulling loads.

— Single-acting Cylinders : They have a single port for fluid entry and rely on an

external force (e.g., gravity or a spring) for the return stroke.

— Double-acting Cylinders : They have two ports, one for extending the piston and

another for retracting it, providing controlled motion in both directions.

I.9.2.2 Hydraulic Motors

These are rotary actuators that convert hydraulic power into rotational motion. They

are used to drive pumps, compressors, or other rotating machinery.The most common

ones are :

Gear Motors : They use meshing gears to convert the hydraulic pressure and flow into

rotational motion.

Vane Motors : They have a slotted rotor with vanes that slide in and out, converting the

hydraulic pressure into rotational motion.
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Piston Motors : They use reciprocating pistons arranged radially to convert the hydraulic

pressure into rotational motion.

Figure I.6 — Hydraulic vane motor.

I.9.2.3 Hydraulic valves

Hydraulic valves have the main role of the control of flow, direction, and pressure of

the hydraulic fluid in the system. Common types are control valves, directional valves,

sequence valves, and safety valves .

Control Valves : They regulate the flow rate, pressure, or direction of the hydraulic fluid,

such as flow control valves, pressure relief valves, and check valves.

Directional Valves : They control the direction of fluid flow, such as spool valves and

poppet valves, allowing for the extension or retraction of hydraulic cylinders.

Sequence Valves : They ensure that specific operations occur in a predetermined order by

controlling the sequence of fluid flow.

Safety Valves : They protect the system from excessive pressure buildup, such as relief

valves and burst discs.

Figure I.7 — Control valve and symbolic representation.
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I.9.2.4 Hydraulic pumps

The pump are instruments that provide the necessary flow and pressure for the ope-

ration of the hydraulic system. Common types are gear pumps, vane pumps, and piston

pumps.

Gear Pumps : They use meshing gears to displace and transfer hydraulic fluid, creating a

continuous flow.

Vane Pumps : They have a slotted rotor with vanes that slide in and out, drawing in and

expelling fluid as the rotor rotates.

Piston Pumps : They use reciprocating pistons to draw in and expel hydraulic fluid,

creating an intermittent flow. These sensors and actuators work together in a hydraulic

system, with the sensors providing feedback to the control system, which then adjusts the

actuators accordingly to maintain the desired operating conditions.

I.10 Conclusion

This chapter have provided a comprehensive overview of control systems by explaining

the concepts of dynamic systems, modeling, and identification, while introducing the

notions of open-loop and closed-loop control, as well as regulation and servomechanism

behaviors. Additionally, it expressed an overview of sensors and actuators used in hydraulic

systems.Where it has explored the different types of sensors employed to measure critical

parameters such as pressure, flow, level, temperature, and position. As well as the various

hydraulic actuators responsible for converting hydraulic energy into mechanical motion

and force.

Overall, this chapter provided a comprehensive understanding of the critical components

like sensors and actuators as well as techniques and concepts that enable the monitoring,

control, and execution of desired actions in hydraulic systems across various industrial

and research applications.
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II.1 Introduction

The majority of physical dynamical systems encountered in reality exhibit nonlinear be-

havior and cannot be adequately described by linear differential equations. Linear control

methods, predicated upon the assumption of a small operating range obtained from li-

nearizing nonlinear systems. But when confronted with large operating ranges, a linear

controller is prone to be unstable, because the nonlinearities in the plant cannot be pro-

perly dealt with. Moreover, linear control relies on the assumption that the system model

is indeed linearizable and the linear model is accurate enough for building, so as the as-

sumption of accurate linearization and precise knowledge of system parameters, which is

often impractical for highly nonlinear systems such as mechanical and electrical systems.

In cases where mathematical modeling is challenging, particularly for nonlinear systems

control design is constrained by limited access to input-output data for parameter estima-

tion. Uncertainties in model parameters further compound control challenges, potentially

leading to performance degradation or instability.

To address these complexities, a nonlinear modeling approach comprising simpler sub-

models which are simple, understandable, and responsible for respective sub-domains,

has been proposed, with fuzzy modeling utilizing fuzzy sets theory offering a novel tech-

nique for multi-model construction based on input-output data or original mathematical

models. The Takagi-Sugeno fuzzy model, characterized by fuzzy IF-THEN rules represen-

ting local input-output relations, employs linear system models to capture local dynamics,

culminating in an overall fuzzy model achieved through blending these linear models.

II.2 Multi-model approach

The multi-model approach is a technique for modeling (or controlling) industrial pro-

cesses that exhibit inherent non linearity, have a wide operating range, or are subject to

load disturbances. This approach is based on the "divide-and-conquer" strategy, where

the overall problem is divided into smaller, more manageable sub problems (sub models).

Then by combining the solutions of these sub-problems the overall complex system can

be accurately represented.

There are two main families of multi-model structures :

1. Coupled Multi-Model Structure (Takagi-Sugeno) : In this structure, all the sub-

models share a common global state space. The global state vector x(t) is a weighted

sum of the states of the local models. The representation of the coupled multi-model is

obtained by interpolating "r" local linear models as shown in equation :
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ẋ(t) =
r∑

i=1

wi(zC(t))[Aix(t) +Biu(t) +Diu(t)]

y(t) = Cx(t) + Du(t)

Here, wi(zC(t)) are the weighting functions that determine the contribution of each local

model to the global model. This structure is the most commonly used and is also known as

the Takagi-Sugeno multi-model, local parameter networks, or coupled-state multi-model.

2. Decoupled Multi-Model Structure : In this structure, each sub-model has its own

independent state space. There is no common global state vector shared among the

sub-models. The global model is obtained by interpolating decoupled sub-models, as

shown in equation :

ẋi(t) =
i∑

i=1

wi(z(t))(Aixi(t) + Biu(t))

yi(t) = Ci xi(t) + Di u(t)

The decoupled structure can be viewed as a parallel connection of weighted affine models,

This structure was initially proposed by each sub-model evolves independently in its own

state space, and their outputs yi(t) are weighted to obtain the overall output. These yi(t)

are artificial modeling signals used solely to describe the nonlinear behavior of the real

system.

In summary, the coupled multi-model structure uses a shared global state space, while

the decoupled structure allows each sub-model to have its own independent state space.

The choice between these two structures depends on the nature of the nonlinear system

being modeled and the desired level of complexity in the multi-model representation, The

major benefits of the multi-model strategy is that it allows the use of well-established

linear system theories and techniques for the design and analysis of the local models. By

breaking the nonlinear or time-varying problem into smaller linear sub models, we can

leverage the rich body of knowledge and tools available for linear systems.

II.3 Takagi Sugeno Fuzzy models

II.3.1 Fuzzy systems overview

A fuzzy system involves the process of establishing a mapping from given inputs to

outputs using fuzzy logic. This mapping serves as a foundation for decision-making and
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pattern recognition. Fuzzy inference has been successfully applied across various domains

including automatic control, data classification, decision analysis, expert systems, time

series prediction, robotics, and pattern recognition. Due to its interdisciplinary nature,

the fuzzy inference system is referred to by several names such as fuzzy-rule-based sys-

tem, fuzzy expert system, fuzzy model, fuzzy associative memory, fuzzy logic controller,

and simply, albeit ambiguously, fuzzy system. Fuzzy Inference System (FIS) serves to

interpret input vector values and, guided by a series of fuzzy rules, allocate corresponding

values to the output vector. It functions as a means of mapping input to output through

the utilization of fuzzy logic. Through this mapping process, the system facilitates

decision-making and pattern recognition [8].

The Mamdani fuzzy rules (systems) : pioneered by Ebhasim Mamdani, initially aimed

at controlling a combination of a steam engine and boiler by employing a set of linguistic

control rules derived from experienced human operators. In the Mamdani inference system,

each rule’s output is defined as a fuzzy logic set. In a Mamdani fuzzy system, the knowledge

base consists of a set of fuzzy rules in the form :

IF (Antecedent 1) AND (Antecedent 2) AND ... THEN (Consequent)

Where both the antecedents (premises) and consequent (conclusions) of the rules are

expressed using fuzzy sets and linguistic variables, which allow for the representation of

imprecise or vague information. These fuzzy rules are designed to capture knowledge or

observations about the system being modeled or controlled.

Takagi Sugeno fuzzy models : The TS fuzzy model, first introduced by Takagi and Sugeno

in 1985, comprises an if-then rule base. In this model, the antecedents of the rules divide

a portion of the model variables into fuzzy sets. Each rule’s consequent is represented by

a straightforward functional expression. The description of the ith rule is as follows :

If z1 is Z1i and . . . and zp is Zpi, then y = Fi(z).

where the vector z has p components, such j = 1, 2, ..., p, and stands for the vector of

antecedent variables ; these variables are also called scheduling variables, as their values

determine the degree to which rules are active. The sets Zj i, j = 1, 2, ..., p, i = 1, 2, ...,

m,are the antecedent fuzzy sets , where m is the number of rules . The value of a scheduling

variable zj belongs to a fuzzy set Zi
j with a truth value given by the membership function

ωij : R → [0, 1]. The truth value for an entire rule is determined based on the individual

premise variables, using a conjunction operator such as the minimum [9] .

φi(z) = min
j

{ωij (zj)}
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or the algebraic product

φi(z) =

p∏
j=1

ωij (zj)

The obtained truth value is normalized

wi(z) =
φi(z)∑m
j=1 φj(z)

with conditioning that
∑m

j=1 φj(z) ̸= 0, i.e., that for any combination of the scheduling

variables at least one rule has a truth value greater than zero.So wi(z) is now referred to

as the normalized membership function.

The output of rule i is determined by the consequent vector function Fi,typically depends

upon scheduling variables ;The model’s output y is calculated as a weighted sum of the

outputs from all rules. By using wi(z), he model’s output can be represented as a function

of z expressed as :

y =
m∑
i=1

wi(z)Fi(z)

In general, the consequents of the rules (the functions Fi ) may also depend on exo-

genous variables, i.e., on variables that do not appear in the scheduling vector. In such a

case, the output of the fuzzy model is given as

y =
m∑
i=1

wi(z)Fi(z,θ)

where θ denotes the vector of exogenous variables and pθ denotes the number of these

variables.

II.4 Dynamic TS Fuzzy Models

Since our work focuses on dynamic non linear systems,we have to consider a TS models

that enable us to represent such systems, So lets consider a dynamic system as follow :

ẋ = f(x,u,θ)

y = h(x, ζ)
(II.1)

where f and h are smooth nonlinear functions, with f representing the state model and

with h representing the measurement model, x ∈ Rn+ is the state vector, u ∈ Rn− is the

input vector, y ∈ Rnv is the measurement vector, and θ and ζ represent vectors of constant

parameters or other exogenous variables that act on the system [10].

A TS fuzzy system, which models or approximates such system is described as a collection
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of m fuzzy rules structured as follows :

Model rule i : If z1 is Zi
1 and ... and zp is Zi

p then

ẋ = f̂ i(x,u,θ)

y = ĥi(x, ζ)

where zj, j = 1, 2, . . . , p, represent the scheduling variables, and f̂ i and ĥi are the

consequent functions of the ith rule. The scheduling variables are usually chosen as a

subset of the state, input, output, or other exogenous variables in the system, or they are

functions of the states, inputs, outputs, or exogenous variables. The membership functions

ωij (zj) are chosen such that their truth values are in [0, 1], and for any allowed value of

z at least one of the rules is active. Then, the truth values of the rules are computed and

normalized.then finally combined into :

ẋ =

∑m
i=1 φi(z)f̂ i(x,u,θ)∑m

i=1 φi(z)
=

m∑
i=1

wi(z)f̂ i(x,u,θ)

y =

∑m
i=1 ψi(z)ĥi(x, ζ)∑m

i=1 ψi(z)
=

m∑
i=1

wi(z)ĥi(x, ζ)

The consequent functions f̂i and ĥi are usually less complex than the original nonlinear

functions f and h, and are in general chosen as constant, linear or affine functions. Since

these consequents are typically valid only locally where the value of the corresponding

normalized membership function is nonzero, So they will be referred to as “local models”.

In TS fuzzy systems with linear or affine local models, the rules will have the following

form :

Model rule : If z1 is Zi
1 and . . . and zp is Zi

p then

ẋ = Aix+Biu

y = Cix

for linear models : If z1 is Zi
1 and . . . and zp is Zi

p then

ẋ = Aix+Biu+ ai

y = Cix+ ci

for affine models. In the expressions above, Ai, Bi, Ci are the matrices and ai, ci are the

biases of the ith local model. The final outputs of the TS system are computed as :

ẋ =
m∑
i=1

wi(z) (Aix+Bix)

y =
m∑
i=1

wi(z)Cix

(II.2)
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And for models with linear consequents :

ẋ =
m∑
i=1

wi(z) (Aix+Biu+ ai)

y =
m∑
i=1

wi(z) (Cix+ ci)

(II.3)

The utilization of normalized membership functions results in the linear dynamic TS

model being effectively a convex combination of local linear models. This particular at-

tribute simplifies the stability analysis of the fuzzy system.

Example 2.1. Consider the nonlinear dynamic system

ẋ1 = −x1 + x1x2 y = x1

ẋ2 = x1 − 3x2
(II.4)

with x1, x2 ∈ [−1, 1]. This system can be exactly represented (using the sector nonlinearity

approach, that will be introduced later on ) by the following TS fuzzy system with linear

consequents .

Model rule 1 : If z1 is around -1 then :

ẋ =

 −2 0

1 −3

x

y = x1

Model rule 2 : If z1 is around 1 then :

ẋ =

 0 0

1 −3

x

y = x1

In the model above, the scheduling variable z1 is chosen as x2, the fuzzy sets are

Z1
1 = ’around -1 ’, Z2

1 = ’around 1 ’, and the corresponding membership functions are

ω11 = (1− z1) /2 and ω21 = (1 + z1) /2, respectively. It can be easily seen that with these

membership functions, we have

1− x2
2

 −2 0

1 −3

(x1
x2

)
+

1 + x2
2

 0 0

1 −3

(x1
x2

)
=

(
−x1 + x1x2
x1 − 3x2

)
1− x2

2
x1 +

1 + x2
2

x1 = x1 = y
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i.e., the fuzzy model is an exact representation of the nonlinear system demonstrated

earlier in this example (II.4), in the compact set S = {x1, x2 ∈ [−1, 1]}.

II.5 Constructing TS Models

There are two main approaches (strategies) to obtain Takagi-Sugeno (TS) fuzzy mo-

dels :

1. Data-driven identification : In this approach, the TS fuzzy model is identified and

constructed based on measured or simulated data from the system.

2. Analytical construction : This approach involves constructing a TS fuzzy model

that precisely represents or approximates a given nonlinear dynamic system through

analytical methods.

So far, the data-driven identification approach has been primarily applied to the de-

velopment of discrete-time TS models. However, our focus is on continuous-time TS sys-

tems. Therefore, methods for identifying continuous-time TS models from data will not

be covered here. Several analytical methods exist for constructing fuzzy representations

or approximations of nonlinear systems . One notable method is the sector nonlinearity

approach, which can be used to obtain a TS model that serves as an exact fuzzy represen-

tation of a given nonlinear system. By following the method described in [11], a TS fuzzy

model can be constructed that approximates both the nonlinear system and its derivative.

Another approach for approximating nonlinear systems is dynamic linearization, which

essentially involves performing a Taylor series expansion around multiple operating points.

In summary, TS fuzzy models can be developed either through data-driven identification

or analytical construction from a known nonlinear system. While data-driven methods

have focused on discrete-time models, analytical approaches like the sector nonlinearity

technique and dynamic linearization allow for the approximation or exact representation

of continuous-time nonlinear systems using TS fuzzy models.

II.5.1 The Sector Nonlinearity Approach

This method stands out as one of the most commonly employed strategies in building

TS models for fuzzy control design. It allows us to obtain the precise fuzzy representation

of a nonlinear system within a region of the state space . Originally this approach was

designed for systems of the form :

ẋ = fm(x, u)x+ gm(x, u)u

y = hm(x, u)x
(II.5)
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but we will be considering the following form of non linear systems :

ẋ = fm(x, u)x+ gm(x, u)u+ a(x, u)

y = hm(x, u)x+ c(x, u)
(II.6)

this expression is more broad, which makes it commonly used to obtain TS fuzzy models

with linear consequents.In fact, most nonlinear dynamic system can be written in this

form.

In the expression above (II.6), fm, gm, and hm are smooth nonlinear matrix functions,

x ∈ Rn+ is the state vector,u ∈ Rn+ is the input vector, and y ∈ Rn+ the measurement

vector , The elements of the matrix functions fm, gm, and hm are assumed to be bounded.

Also, the variables are assumed to be defined on a compact set.

With the assumptions above, the terms of the matrix functions fm, gm, and hm, and of

the vector functions a and c are either constants or bounded. The scheduling variables

are chosen as zj(·) ∈
[
nlj, nlj

]
, j = 1, 2, . . . , p, where zj represent the non-constant terms

in fm, gm,hm,a, and c, and nlj and nlj are the minimum and maximum 2, respectively,

of zj. Then, for each zj, two weighting functions can be constructed as

ηj0(·) =
nlj − zj(·)
nlj − nlj

ηj1(·) = 1− ηj0(·) j = 1, 2, . . . , p

Note that :

— These weighting functions are normalized in whiche ηj0(·) ≥ 0, ηj1(·) ≥ 0, and ηj0 +

ηj1 = 1, for any value of zj.

— zj has the capacity to be articulated as zj = nljη
j
0 (zj)+ nljη

j
1 (zj)as the weighted

sum of the two extreme.

— The fuzzy sets corresponding to both weighting functions are established upon[
nj, nlj

]
, i.e., the domain where zj takes its values. These fuzzy sets are represented

(denoted) in the sequel by Z̄j
0 and Z̄j

1 .

The rules of the TS system are devised to encompass all terms zj, j = 1, 2, . . . , p, where j

ranges from 1 to p, ensuring that the rules adhere to the form :

Model rule i

If z1 is Zi
1 and ... and zp is Zi

p then

ẋ = Aix+Biu+ ai

y = Cix+ ci

where Zi
j, i = 1, 2, . . ., m, j = 1, 2, . . ., p, can be either Zi

1 or Zi
0. As a result the TS

system consists of m − 2p rules. The membership function of rule i is computed as the
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product of the weighting functions that correspond to the fuzzy sets in the rule such as :

ωi(z) =

p∏
j=1

ωij(zj)

where wij(zj) is either ηj1(·)(zj) or ηj0(·)(zj), Depending on the weighting function em-

ployed within the rule. Thanks to the design of these weighting functions, the resulting

membership functions are normalized ωi(z) ≥ 0 and
∑m

i=1wi(z) = 1 . The matrices A, B,

C, and the vectors ai and ci are constructed by substituting the elements corresponding

to the weighting functions used in rule i like nlj (min) for ηj0 and nlj (max)for ηj1 ,res-

pectively, into the matrix and vector functions fm, gm, hm, a, and c. Finally by using the

membership functions given we can now represent the nonlinear system precisely by the

TS fuzzy model given by :

ẋ =
m∑
i=1

ωi(z)(Aix+Biu+ ai)

y =
m∑
i=1

ωi(z)(Cix+ ci)

(II.7)

It’s important to note that the general form of nonlinear systems (II.7) aren’t unique,

thus resulting in non-uniqueness in the TS representation of the nonlinear system

obtained through the sector non-linearity approach.

The primary benefit of the sector non-linearity approach is that it offers the main ad-

vantage of providing an exact representation of the nonlinear system through the obtained

Takagi-Sugeno (TS) model.

However, this approach has two significant drawbacks. Firstly, the resulting consequent

linear or affine models are not guaranteed to be stable or observable (detectable), even

if the nonlinear system itself possesses these properties. Most methods for analyzing the

stability of TS systems require the local models to be stable. Similarly, observer design

methods necessitate the local models to be observable or detectable. Depending on the

specific nonlinear system under consideration, instability or unobservability of the local

models may be avoidable by choosing an alternative representation of the nonlinear sys-

tem. Otherwise, methods that obtain an approximate fuzzy model, whose local models

share the same properties as the nonlinear system, such as the one presented in the next

section, can be employed. Secondly, the number of rules, or local models, in the obtained

TS model grows exponentially with the number of nonlinearities. In practical applica-

tions, a large number of local models may render the design problems computationally
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intractable or incompatible with current algorithmic limitations. Consequently, unless in-

stability or unobservability of the local models is a concern, a fuzzy representation with

a minimal number of rules should be preferred.

II.5.2 Linearization approach

An alternative method for acquiring a TS fuzzy approximation of a provided nonlinear

model is linearization, as outlined by Johansen et al. (2000). This approach is actually

a Taylor series expansion at various representative points, which may or may not be

equilibrium points.

Consider the following dynamic nonlinear system where x ∈ Rn+ is the state vector,

u ∈ Rn− is the input vector, y ∈ Rnv is the measurement vector f and h are smooth

nonlinear functions :
ẋ = f(x,u)

y = h(x)

The objective is to achieve an approximation of this nonlinear system through a set of m

rules formatted as Model rule i : If z1 is Zi
1 and ... and zpis Zp

l then

ẋ =
m∑
i=1

wi(z) (Aix+Biu+ ai)

y =
m∑
i=1

wi(z) (Cix+ ci)

or, equivalently, a TS model of the form

ẋ =
m∑
i=1

wi(z)(Aix+Biu+ ai)

y =
m∑
i=1

wi(z)(Cix+ ci)

where Ai, Bi, ai, Ci, and ci are the matrices and biases of the local linear models, z is

the scheduling vector that determines which of the rules are active at a certain moment,

and wi(z, i = 1, 2), . . . ,m are the normalized membership functions First,One needs

to determine which variables characterize the nonlinearities and which variables should

serve as the scheduling variables. This entails making decisions regarding the selection

of inputs, states, and measurements for the variable z. Second, a sufficient number of

m linearization points z0,i, i = 1, 2, . . . ,m have to be chosen, together with a partition

of the space where the variables are defined . By increasing the number of well-chosen

approximation points, the approximation accuracy of the fuzzy model increases. However,
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by increasing the number of the the linearization points, the computational costs of the

controller or observer design also increase. then the consequent matrices are obtained as

Ai =
∂f

∂x

∣∣∣∣
z0,i,0

Bi =
∂f

∂u

∣∣∣∣
z0,i,0

Ci =
∂h

∂x

∣∣∣∣
z0,i,0

where z0,i represents the evaluation of the expression on the left in the value corresponding

to z0,i for those state and input variables that are scheduling variables and 0 for those

states and inputs that are not z. Because linearization is typically not conducted at

equilibria, it necessitates the addition of affine terms.

ai = f(x, u)|z0,i,0 − (Aix)|z0,i,0 − (Biu)|z0,i,0

ci = h(x)|z0,i,0 − (Cix)|z0,i,0

To obtain the desired TS system the membership functions of each rule are computed and

normalized [9].

The advantage of constructing TS models using linearization lies in the fact that al-

though the fuzzy system is an approximation of the original nonlinear system, the conse-

quents retain crucial properties of the nonlinear system at the linearization points. For

example, if the nonlinear system is locally observable in a vicinity of the linearization

point, then the corresponding local model is also observable or detectable. However, a

drawback of this method is the absence of general guidelines for selecting the lineariza-

tion points or determining how many should be chosen. Depending on the nonlinearity, a

considerable number of points may be required for an accurate approximation, resulting

in significant computational costs. Moreover, since linearization is typically not performed

at equilibrium points, this method yields affine TS models.

Consequently, stability analysis and controller design become more challenging. Never-

theless, as previously mentioned, affine models do not pose difficulties in observer design.

II.6 Conclusion

In this chapter, we have introduced the Takagi-Sugeno (TS) fuzzy models which will

be used in the subsequent parts of the work. Furthermore, two methods for constructing

dynamic TS models from a nonlinear dynamic system were discussed. The first method,

called the sector non-linearity approach, allows for the construction of exact fuzzy repre-

sentations of the nonlinear system where we presented how this method can modulate

a complex nonlinear system. The second method, linearization, yields a TS model that

approximates the nonlinear system. This approximation method has the advantage of

retaining the local properties of the nonlinear system in the resulting TS model.
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Chapter III.Modeling and validation of the hydraulic system TS model

III.1 Introduction

The focus of this chapter is on modeling a hydraulic system by employing a multi-model

approach based on the Takagi-Sugeno fuzzy system .Where we will begin by introducing

and describing the three-tank system, which will be the focus of our modeling efforts.

Then, we aim to create a mathematical model that comprises multiple subsystems whose

dynamics mimic the overall system’s behavior. After creating the model using the Takagi-

Sugeno (TS) approach, we will validate this approach by comparing the dynamic model of

the system( derived from the underlying physical laws) with the model obtained through

the TS approach. By comparing the results from both models, we will assess the accuracy

and relevance of our work using the TS approach. This validation process will involve

simulations conducted using MATLAB software. By juxtaposing the outcomes derived

from the two models, the accuracy and appropriateness of the proposed multi-model

approach for the studied hydraulic system can be assessed.

In simpler terms, we will first model the three-tank system using the TS approach, which

combines multiple subsystems. Then, we will validate the TS model by comparing it to

the dynamic model based on physical laws. This comparison, done through MATLAB

simulations, will help us evaluate the accuracy of our TS model.

III.2 System description and modeling

The hydraulic nonlinear system consists of three tanks (cylinder reservoirs ) Tank 1,

Tank 2, and Tank 3, interconnected in series by two connecting pipes for the transfer of

liquid between them as shown in (Figure 3.1).

Figure III.1 — Three tank system
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Pumps 1 and 2 supply the tanks T1 and T2 with a flow rate Q1 and Q2.The liquid

levels (h1, h2, and h3) within the tanks can be monitored using level sensors or visual

indicators, which would provide feedback on the system ( both levels h1,2,3 and flow

rates Q11 and Q2 are measurable ). The connecting pipes and the tanks are additionally

equipped with manually adjustable valves and outlets(in tank 2).

Where hi(t), i = 1, 2, 3, are the water levels in each tank,Q1 and Q2 are the incoming

flow rates that supply the tanks T1 and T2.

Qij is the mass flow (cm3/s) from the ith tank to the jth tank (example : the flow

rates between the tanks T1 and T3 is denoted as Q13) which are calculated using the

Torricelli’s law as :

Q13 = a1s15 sgn (h1 − h3)
√
Rg (h1 − h3)

Q32 = a3s23 sgn (h3 − h2)
√

2g)h3 − h2

Q20 = a2S0

√
2gh2

(III.1)

System’s physical parameters : Where all these parameters will be converted to (IS)

Parameters Symbol Value Unit

cross section area of tanks A 154 cm2

cross section area of pipes sn 0.5 cm2

max. height of tanks Hmax 62 cm

max. flow rate of pump 1 Q1max 100 cm3/s

max. flow rate of pump 2 Q2max 100 cm3/s

coeff. of flow for pipe 1 a1 0.45

coeff. of flow for pipe 2 a2 0.45

coeff. of flow for pipe 3 a3 0.45

III.2.1 Nonlinear Analysis(study)

The objective is to develop a nonlinear model based on an understanding of the system’s

behavior( knowledge model ).This model will be derived from the mass balance equations

for each tank (reservoir) within the system.

By applying the principles of conservation of mass and considering the inflows and outflows

of fluid in each reservoir, a set of nonlinear equations will be formulated. These equations

will capture the dynamic relationships between the various parameters, such as liquid
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levels, flow rates, and other relevant variables. The resulting nonlinear model will provide

a mathematical representation of the system’s behavior, allowing us for further analysis,

simulation, and to compare its behaviour with the TS model that will be constructed later

on. This approach leverages the fundamental physical principles governing the system to

obtain a comprehensive and accurate description of its nonlinear dynamics.

III.2.1.1 Obtaining the non linear model

The mass conservation law of a fluid is given by :

ρ.
dV

dt
= ρ.

(∑
input flow rate −

∑
output flow rate

)

Where ρ is the volumetric mass density of the fluid ,and by applying this we get :

For tank T1 :

ρ.
dV1
dt

= ρ.(Q1 −Q13) (III.2)

For tank T2 :

ρ.
dV2
dt

= ρ.(Q2 +Q32 −Q20) (III.3)

For tank T3 :

ρ.
dV3
dt

= ρ.(Q13 −Q32) (III.4)

Knowing that V = A.h , Where h is the fluid level in the reservoir and A is the cross

section area of the tanks . So we get :

V1 = A.h1

V2 = A.h2

V3 = A.h3

(III.5)

by replacing this in (III.2),(III.3) and (III.4) we get :
A.ρ.ḣ1 = ρ(Q1 −Q13)

A.ρ.ḣ2 = ρ(Q2 +Q32 −Q20)

A.ρ.ḣ3 = ρ(Q13 −Q32)

(III.6)
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Aḣ1 =Q1 - Q13

Aḣ2 =Q2 +Q32-Q20

Aḣ3 =Q13 - Q32

giving :


ḣ1 =

1
A
(Q1 −Q13)

ḣ2 =
1
A
(Q2 +Q32 −Q20)

ḣ3 =
1
A
(Q13 −Q32)

(III.7)

where :


Q13 = a1s15 sgn (h1 − h3)

√
Rg (h1 − h3)

Q32 = a3s23 sgn (h3 − h2)
√
2g)h3 − h2

Q20 = a2S0

√
2gh2

with the condition : h1 > h3 > h2 > 0 :

Q13 = C1

√
h1 − h3

Q32 = C3

√
h3 − h2

Q20 = C2

√
h2

where :

C1 = α2S13(2g)
1/2

C2 = a2S0(2g)
1/2

C3 = a3S23(2g)
1/2

(III.8)

replacing this in the previous equation (III.5) :

ḣ1 =
1

A
(Q1 − C1Q13)

ḣ2 =
1

A
(Q2 + C2Q32 − C3Q20)

ḣ3 =
1

A
(C1Q13 − C3Q32)

where :

ḣ1 =
1

A
(Q1 − C1sqrth1 − h3)

ḣ2 =
1

A
(Q2 + C3

√
h3 − h2 − C2

√
h2)

ḣ3 =
1

A
(C1

√
h1 − h3 − C3

√
h3 − h2)

we finally get :


ḣ1 =

Q1

A
− C1

A
(
√
h1 − h3)

ḣ2 =
Q2

A
+
C3

A
(
√
h3 − h2)−

C2

A
(
√
h2)

ḣ3 =
C1

A
(
√
h1 − h3)−

C3

A
(
√
h3 − h2)

(III.9)
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III.2.2 State space representation

Our three tanks system is considered as a multi variable system that has two input

variables, u1 and u2, representing the flow rates Q1 and Q2, respectively. Additionally,

the system has three output variables, y1, y2, and y3, corresponding to the liquid levels

h1, h2, and h3 in each of the tanks,T1,T2 and T3 respectively. Such as :

The system’s outputs :

y =


y1

y2

y3

 =


h1

h2

h3


The system’s inputs :

u =

 Q1

Q2

 =

 u1

u2



The state space victor :

x =


x1

x2

x3

 =


h1

h2

h3


Now by replacing this notions in equations (III.9) we get the following nonlinear repre-

sentation : 
ẋ1 =

u1
A

− C1

A
(
√
x1 − x3)

ẋ2 =
u2
A

+
C3

A
(
√

3 − x2)−
C2

A
(
√
x2)

ẋ3 =
C1

A
(
√
x1 − x3)−

C3

A
(
√
x3 − x2)

Giving :



ẋ1 =
u1
A

− C1

A

√
x1 − x3
x1

x1

ẋ2 =
u2
A

+
C3

A

√
x3 − x2
x3

x3 −
C2

A

√
x2
x2

x2

ẋ3 =
C1

A

√
x1 − x3
x1

x1 −
C3

A

√
x3 − x2
x3

x3

(III.10)
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giving the space state representation as :

ẋ =


−C1

A

√
x1−x3

x1
0 0

0 −C2

A

√
x2

x2

C3

A

√
x3−x2

x3

C1

A

√
x1−x3

x1
0 −C3

A

√
x3−x2

x3

 .

x1

x2

x3

+


1/A 0

0 1/A

0 0

U (III.11)

y =


1 0 0

0 1 0

0 0 1

x (III.12)

Linear Model : After a linearization at operating point h1 = 45cm, h2 = 15cm

and h3 = 30 cm, we have the following linear (nominal) model.

ẋ = Ax+Bu, y = Cx

where :

A =


−0.0085 0 0.0085

0 −0.0195 0.0084

0.0085 0.0084 −0.0169



B =


0.0065 0

0 0.0065

0 0



C =


1 0 0

0 1 0

0 0 1


So in these functioning point : 

x10

x20

x30

 =


0.45

0.15

0.30


The corresponding commends are :u10

u20

 = (10−4)

0.3859
0.2082


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In steady-state conditions, the system dynamics are considered to be null, which

implies that the time derivative of the output variables is zero : ẋ(t) = 0. Under these

circumstances, the system of equations becomes :
0 = u10

A
− C1

A
(
√
x10 − x30)

0 = u20

A
+ C2

A
(
√
x20)− C3

A
(
√
x30 − x20

0 = C1

A
(
√
x10 − x30)− C3

A
(
√
x30 − x20)

Where :


u10 = C1(

√
x10 − x30)

u20 = C2(
√
x20)− (

√
x30 − x20)

0 = C1

A
(
√
x10 − x30)− C3

A
(
√
x30 − x20)

III.3 Constructing a TS model of the dynamic system

To apply the multi model approach, we have first transformed the system where we

obtained its state-space representation while minimizing and isolating the nonlinearities

that compose it as :

ẋ =


−C1

A

√
x1−x3

x1
0 0

0 −C2

A

√
x2

x2

C3

A

√
x3−x2

x3

C1

A

√
x1−x3

x1
0 −C3

A

√
x3−x2

x3

 .

x1

x2

x3

+


1/A 0

0 1/A

0 0

u (III.13)

y =


1 0 0

0 1 0

0 0 1

x (III.14)

We can now see that our nonlinear functions (The scheduling variables that are the

non-constant elements in the matrix functions) take the following terms :

z1(x) =
√
x1−x3

x1
; z3(x) =

√
x3−x2

x3
; z2(x) =

√
x2

x2
;
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Since we have j = 3 functions, our model will have 23 = 8 subsystems,In result we will

have the states vector like :

ẋ =


−C1

A
z1(x) 0 0

0 −C2

A
z2(x)

C3

A
z3(x)

C1

A
z1(x) 0 −C3

A
z3(x)

x+

1/A 0

0 1/A

0 0

u (III.15)

from here on we will be referring to the constant Ci/A as Cii (ex :C11 =
C1

A
)

ẋ =


−C11z1(x) 0 0

0 −C22z2(x) C33z3(x)

C11z1(x) 0 −C33z3(x)

x+

1/A 0

0 1/A

0 0

u (III.16)

We aim by using this approach to obtain a TS model of the form :

ẋ =

j∑
i=1

wi(z) (Aix+Biu)

y = Cx

(III.17)

III.3.1 Calculating membership functions

By supposing that x1(t) ∈ [0.03, 0.58], x2(t) ∈ [0.01, 0.56], x3(t) ∈ [0.02, 0.57], (these

born values are only initial to get us starting with the simulation, once it’s started and we

get zn graphs we have to re-calibrate this values in order to get the correct membership

functions ). The scheduling variables are chosen as zj(x) ∈ [βj, αj] ,j= 1, 2, 3.zj represent

the non-constant terms in the previous representation and βj and αj are respectively

the minimum and maximum of zj. Then, for each zj, two weighting functions can be

constructed as :

Zj1

(
zn(x)

)
=
zj(x)− βn
αj − βj

and Zj2

(
zn(x)

)
=
αj − zj(x)

αj − βj

Moreover, zj can be expressed as :

zj(x) = αjZj1

(
zj(x)

)
+ βjZj2

(
zj(x)

)
,calculated as follow :
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n αn βn Zn1(x(t)) Zn2(x(t))

1 α1 = 3.33 β1 = 0.017 Z11 (z1(x, u)) =
z1(x,u)−β1

α1−β1
Z12 (z1(x, u)) =

α1−z1(x,u)
α1−β1

2 α2 = 10.5 β2 = 1 Z21(x(t)) =
z2(x,u)−β2

α2−β2
Z22(x(t)) =

α2−z2(x,u)
α2−β2

3 α3 = 8 β3 = 0.9 Z31 (z3(x, u)) =
z3(x,u)−β2

α3−β2
Z32 (z3(x, u)) =

α3−z3(x,u)
α3−β3

III.3.2 Fuzzy rules model :

Since we have j = 7 non linear function, our model will have 23 = 8 fuzzy rules.

Model rule 1 :

If z1 is Z11 and z2 is Z21 and z3 is Z31 then :

ẋ = A1x+Bu

Where : A1 =


−C11β1 0 0

0 −C22β2 C33β3

C11β1 0 −C33β3


Model rule 2 :

If z1 is Z11 and z2 is Z21 and z3 is Z32 then

ẋ = A2x+Bu

Where : A2 =


−C11β1 0 0

0 −C22β2 C33α3

C11β1 0 −C33α3


Model rule 3 :

Ifz1 is Z11 and z2 is Z22 and z3 is Z31 then

ẋ = A3x+Bu

Where : A3 =


−C11β1 0 0

0 −C22α2 C33β3

C11β1 0 −C33β3


Model rule 4 :

Ifz1 is Z11 and z2 is Z22 and z3 is Z32 then

ẋ = A4x+Bu
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Where : A4 =


−C11β1 0 0

0 −C22α2 C33α3

C11β1 0 −C33α3


Model rule 5 :

Ifz1 is Z12 and z2 is Z21 and z3 is Z31 then

ẋ = A5x+Bu

Where : A5 =


−C11α1 0 0

0 −C22β2 C33β3

C11α1 0 −C33β3


Model rule 6 :

Ifz1 is Z12 and z2 is Z22 and z3 is Z31 then

ẋ = A6x+Bu

Where : A6 =


−C11α1 0 0

0 −C22α2 C33β3

C11α1 0 −C33β3


Model rule 7 :

Ifz1 is Z12 and z2 is Z21 and z3 is Z32 then

ẋ = A7x+Bu

Where : A7 =


−C11α1 0 0

0 −C22β2 C33α3

C11α1 0 −C33α3


Model rule 8 :

If z1 is Z12 and z2 is Z22 and z3 is Z32 then

ẋ = A8x+Bu

Where : A8 =


−C11α1 0 0

0 −C22α2 C33α3

C11α1 0 −C33α3


III.3.3 defuzzification

We finally obtain this system’s TS fuzzy model as :

ẋ =

j∑
i=1

wj(zn(x)) (Aj x(t) + B u(t))
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where :

w1

(
z(t)

)
= F11

(
z1(x)

)
× F21

(
z2(x)

)
× F31

(
z3(x, )

)
w2

(
z(t)

)
= F11

(
z1(x)

)
× F21

(
z2(x)

)
× F32

(
z3(x, )

)
w3

(
z(t)

)
= F11

(
z1(x)

)
× F22

(
z2(x)

)
× F31

(
z3(x, )

)
w4

(
z(t)

)
= F11

(
z1(x)

)
× F22

(
z2(x)

)
× F32

(
z3(x, )

)
w5

(
z(t)

)
= F12

(
z1(x)

)
× F21

(
z2(x)

)
× F31

(
z3(x, )

)
w6

(
z(t)

)
= F12

(
z1(x)

)
× F21

(
z2(x)

)
× F32

(
z3(x, )

)
w7

(
z(t)

)
= F12

(
z1(x)

)
× F22

(
z2(x)

)
× F31

(
z3(x, )

)
w8

(
z(t)

)
= F12

(
z1(x)

)
× F22

(
z2(x)

)
× F32

(
z3(x, )

)

(III.18)

III.4 Model validation

Now that we have developed our TS Fuzzy Models for the three-tank nonlinear system,

it is imperative to validate them. This process involves several key steps :

1. Establishing and simulating the dynamic nonlinear system around an operational

point.

2. Constructing and simulating the TS model around the same operational point.

3. Conducting a comparative analysis of the outcomes generated by both models. The

model’s validity is contingent upon the magnitude of the error, which should be

minimal.

These calculations and simulations will be executed using Matlab Simulink to stream-

line the process.

III.4.1 Overall structure (block diagram)

Here we present the overall simulation blocks that contains both dynamic and TS

models(figure(III.2)), by comparison (subtraction) of the outing of each model in order

to Validate our TS model,in what below the simulation of each model separately .
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Figure III.2 — Overall simulation bloc of both TS and dynamic models

Figure III.3 — Dynamic model simulation
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Figure III.4 — TS model simulation l

Figure III.5 — Membership function generation bloc
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III.4.2 Simulation and results

III.4.2.1 First simulation :

Firstly,we will be running the simulation on the following parameters :

— Functioning point :


x10

x20

x30

=


0.45

0.15

0.30



— initial conditions : X0 =


0.05

0.01

0.03



— Simulation step : 0.1 sec .

— Simulation time : [0 ; 5000].

Figure III.6 — Comparison of the level H1 between the dynamic nonlinear model

and the TS model
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Figure III.8 — Comparison of the level H3 between the dynamic nonlinear model

and the TS mode

Figure III.7 — Comparison of the level H2 between the dynamic nonlinear model

and the TS model
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Figure III.9 — Membership functions of this system

Figure III.10 — Difference between the TS and the nonlinear model

III.4.2.2 Second simulation :

Firstly,we will be running the simulation on the following parameters :

— Functioning point :


x10

x20

x30

=


0.50

0.20

0.35


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— initial conditions : X0 =


0.05

0.020

0.035


— Simulation step : 0.1 sec .

— Simulation time : [0 ; 5000].

Figure III.11 — Comparison of the level H1 between the dynamic nonlinear

model and the TS mode

Figure III.12 — Comparison of the level H2 between the dynamic nonlinear

model and the TS mode
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Figure III.13 — Comparison of the level H1 between the dynamic nonlinear

model and the TS mode

Figure III.14 — Membership functions
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Figure III.15 — Difference between the TS and the nonlinear model

III.4.2.3 Results and observations

— First of all,we can clearly see that the results of the simulation are correct and as

expected , where wi(z) ≥ 0 and
∑m

i=1wi(z) = 1.(conditions are satisfied ) and each

bloc outing is right.

— The error results are e1 = 1.46e−16, e3 = 5.44e−17, e3 = 3.33−17.

— The responses from both models demonstrate remarkable precision, accurately

capturing the system’s behavior from the exact initial points we have set, to the

functioning points in both times ( even for additional operating points that were not

mentioned within the scope of this work).This consistent performance underscores

the reliability and robustness of this approach using the Matlab Simulink tool in

modeling and simulating complex systems with high fidelity.

— The responses of the TS model are identical to those of the nonlinear model, both in

the transient and steady-state regimes(permanent regime), with an almost negligible

error of (10−16).
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III.4.3 Conclusion

In this chapter ,we have successfully applied the Takagi-Sugeno (TS) fuzzy modeling

approach to model a complex hydraulic system (three tanks system).where by using the

techniques mentioned in the previous chapter we where able to create a TS model that

has the same behavior as our hydraulic nonlinear system .

By using the sector non linearity approach we managed to obtain a relatively precise

representation of the nonlinear system where the difference between this and the TS

model was so insignificant (10−16) proving that this method is a such powerful tool for

accurately representing the dynamic behavior of the system . So as a result we can say

that the obtained TS model is valid and we can count on it to further represent and

study our hydraulic system.

In the validation and simulation process it is key to highlight the importance of

re-calibration of the limits of the membership functions and always making sure that

the conditions wi(z) ≥ 0 and
∑m

i=1wi(z) = 1 are satisfied, in order to get the correct

responses that we look for .

Overall,we have manged to obtain a TS model that contains (8) local models(sub

models) that has the same behavior / representation of the overall hydraulic system, so

now instead of dealing with the complexities of this system we get to work on smaller and

more manageable sub models .
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Chapter IV.Stabilization control of the hydraulic system

IV.1 Introduction

In this chapter our main objective is to delve into the analysis of stability and control

design for Takagi-Sugeno (TS) models. When it comes to evaluating stability or designing

observers and controllers for TS systems, Linear Matrix Inequality (LMI) constraints are

widely employed. As such, the chapter begins with a concise overview of LMIs and their

advantageous properties. Furthermore, many challenges encountered can be transformed

into a multiple-sum co-positivity problem, a well-known issue for which several results

are provided. Typically, Lyapunov’s direct method is utilized to establish stability and

stabilization results for TS models. Generally speaking, for the sake of simplicity and to

facilitate expressing problems in an LMI format, the focus is primarily on employing a

quadratic Lyapunov function. This approach simplifies the concept of stability to quadra-

tic stability. However, the chapter also presents findings that extend beyond the quadratic

framework. The primary objective of this chapter is to highlight the advantages of using

Takagi-Sugeno fuzzy models for control applications. To ensure conciseness and readabi-

lity, the chapter focuses specifically on the stability analysis and state feedback control

for particular classes of TS models.

IV.2 Linear Matrix Inequalities fundamentals

IV.2.1 Fundamental notation

Let F = F T ∈ Rn×n be a symmetric matrix. In the sequel, F > 0 (resp. F < 0) stands

for positive (resp. negative)-definiteness, i.e., every eigenvalue of F is strictly positive

(resp. negative). The notation F ≥ 0 (resp. F ≤ 0) stands for semi-positive (resp. ne-

gative), i.e., the eigenvalues can be positive (resp. negative) or zero. Moreover, whenever

an expression is written as F > 0, it is assumed that the expression is symmetric, i.e.,

F̂ = F T > 0, even if the explicit notation is omitted.

With A, B ∈ Rn×n being two symmetric matrices A > B is equivalent to A−B > 0.

IV.2.2 Linear Matrix Inequalities

LMIs, or Linear Matrix Inequalities, are matrix inequalities that are either linear or

affine in a set of matrix variables. They essentially serve as convex constraints, making

them effective in optimizing problems with convex objective functions. This convex nature

makes them well-suited for efficiently solving various control problems with convex objec-

tives.This approach has gained significant popularity control engineering in recent years

because they can easily solve a wide range of control problems due to their standardized
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form and compatibility with existing software.

An LMI has the following form :

F (x) = F0 + x1F1 + · · ·+ xnFn = F0 +
n∑

i=1

xiFi > 0 (IV.1)

where x ∈ Rm is the vector of decision variables and F0, F1, . . . , Fn are given constant

symmetric real matrices, i.e., Fi = F T
i , i = 0, . . . ,m. The inequality symbol in the

equation means F (x) is positive definite, i.e., uTF (x)u > 0 for all nonzero u ∈ Rn. This

matrix inequality is linear in the variables xi.

The set of solutions of the LMI or the so-called feasibility set, denoted by S =

{x|x ∈ Rm, F (x) > 0} is a convex subset of Rm. Finding a solution to (IV.1) is a convex

optimization problem avoiding local minima and guaranteeing finite feasibility tests.

When no solution exists, the problem is said to be infeasible. The following well-known

convex or quasi-convex optimization problems are relevant for the analysis and the

synthesis of control systems [12].

The task of finding a solution x ∈ Rm for the LMI system (IV.1), or determining that

there is no solution (ineffability) , is known as the feasibility problem (FP). This problem

can be rephrased as minimizing the convex function f : x → λmin(F (x)), where λmin

represents the smallest eigenvalue, and then determining whether the resulting solution

is positive (strictly feasible), zero (feasible), or negative (infeasible).

On the other hand, minimizing a linear combination of decision variables bTx subject to

(IV.1) constitutes the eigenvalue problem (EVP), also referred to as an LMI optimization

problem.

Furthermore, the task of minimizing the eigenvalues of a pair of matrices that are

affinely dependent on a variable, subject to a set of LMI constraints, or determining the

problem’s infeasibility, can be expressed as solving the problem :

minimize λ subject to :


λB(x)− A(x) > 0

B(x) > 0

C(x) > 0

where A(x), B(x) and C(x) are symmetric and affine with respect to x,is called a

generalized eigenvalue problem (GEVP).
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IV.2.3 Proprieties

In control problems, LMI constraints don’t typically appear spontaneously. However,

leveraging optimization solutions allows us to transform control problems into LMI ex-

pressions. This process focuses on the inherent properties of LMIs. Below are some of

these properties :

Property 1 :(Congruence)Given a matrix P = P Tand a full column rank matrixQ it

holds that

P > 0 ⇒ QPQT > 0

Property 2 : (Schur complement) Consider a matrix M = MT =

M11 M12

MT
12 M22

, with

M11 and M22 being square matrices. Then

M < 0 ⇔

 M11 < 0

M22 −MT
12M

−1
11 M12 < 0

⇔

 M22 < 0

M11 −M12M
−1
22 M

T
12 < 0

Property 3 : (S-procedure) Consider matrices Fi = F T
i ∈ Rn×n, x ∈ Rn, such that

xTFix ≥ 0, i = 1, . . . , p, and the quadratic inequality condition

xTF0x > 0

x ̸= 0. A sufficient condition for (32) to hold is : there exist τi ≥ 0, i = 1, . . . , p, such that

F0 −
∑p

i=1 τiFi > 0.

IV.3 Stability Analysis of TS Systems

In this section we delve into methods that are used the stability analysis of TS

fuzzy systems. IN other words, we will present a stability analysis and stabilization of

TakagiSugeno models using LMI constraints. The TS model used is :

ẋ =
m∑
i=1

wi(z) (Aix+Biu)

y =
m∑
i=1

wi(z)Cix

(IV.2)
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IV.3.1 Quadratic Stability

The stability of TS models is investigated using Lyapunov’s direct method. The com-

monly employed Lyapunov function is a quadratic one, denoted as

V (x) = xTPx (IV.3)

where P = P T > 0 . When utilizing this quadratic Lyapunov function, the concept is

referred to as "quadratic stability." It is important to note that while quadratic stability

implies stability, the reverse is not necessarily true. Consequently, the conditions obtained

using the Lyapunov function are only sufficient. In other words, if the LMI conditions fail,

no direct conclusion can be drawn regarding the stability or instability of the TS model.

For the unforced (u = 0) TS model, quadratic stability is achieved if the Lyapunov

function decreases and converges to zero as t approaches infinity for all trajectories

x(t). The derivative of V (x)along the trajectories of the unforced model (IV.3) is given by :

V̇ =

(
m∑
i=1

wi(z)Aix

)T

Px+ xTP

(
m∑
i=1

wi(z)Aix

)

=
m∑
i=1

wi(z)x
T
(
AT

i P + PAi

)
x

Remembering that wi(z) ≥ 0, i = 1, 2, . . . ,m the following theorem is straight forwardly

obtained [13].

Theorem 1 : The fuzzy model ẋ =
∑m

i=1wi(z)(Aix = is globally asymptotically

stable if there exists a common positive definite matrix P = P T > 0, such that :

AT
i P + PAi < 0 i = 1, ..., r

The condition states that for the continuous fuzzy model to be globally asymptotically

stable, there must exist a common positive definite matrix P, which satisfies these crite-

ria(inequality).

Property :If there exist positive definite matrices Ri = RT
i > 0, i = 1, 2, . . . ,m such

that :
m∑
i=1

(
AT

i Ri +RiAi

)
> 0

then there is no matrix P = P T > 0 such that the theorem conditions hold .
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IV.4 State Feedback Stabilization

To achieve stabilization of a Takagi-Sugeno (TS) system using state feedback, several

control laws can be employed, one of which is the linear feedback u = −Kx. A more

general solution is the Parallel Distributed Compensation (PDC) scheme. The PDC

is composed of linear state feedback controllers that are blended together using the

nonlinear membership functions ωi associated with each mode or regime of the TS

model.such as

u = −
m∑
i=1

wi(z)Kix

And by introducing this in the TS model (IV.2) we get :

ẋ =
m∑
i=1

wi(z)

(
Ai −Bi

m∑
j=1

wj(z)Kj

)
x

=
m∑
i=1

wi(z)


m∑
j=1

wj(z)︸ ︷︷ ︸
=1

Ai −Bi

m∑
j=1

wj(z)Kj

x

(IV.4)

and finally, the closed loop is composed of m2 linear models

ẋ =
m∑
i=1

m∑
j=1

wi(z)wj(z) (Ai −BiKj)x (IV.5)

In other words, the PDC approach involves designing multiple linear state feedback

controllers, each tailored to a specific operating region or mode of the TS system. These

linear controllers are then combined in parallel, with their outputs weighted by the cor-

responding nonlinear membership functions that describe the system’s current mode of

operation. This blending of linear controllers, based on the nonlinear membership func-

tions, results in an overall nonlinear control law that can effectively stabilize the TS system

across its entire operating range. Compared to the simpler linear feedback law, the PDC

scheme provides a more comprehensive and flexible solution [14].

Furthermore, going withe quadratic stability as discussed earlier, pertains to examining

the derivative of the Lyapunov function along the trajectories of system (IV.5)

V̇ =
m∑
i=1

m∑
j=1

wi(z)wj (z)x
T
(
(Ai −BiKj)

T P + P (Ai −BiKj)
)
x
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Where V̇ < 0 is ensured if the double sum negativity problem (3.3) is satisfied, in which

this case can be written as

m∑
i=1

m∑
j=1

wi(z)wj(z)
(
AT

i P + PAi − PBiKj −KT
j B

T
i P
)
< 0

This analysis helps determine the system’s stability characteristics, such as whether

it tends towards an equilibrium point or exhibits oscillatory behavior around it.

Note also that due to the quantity PBiKj, this expression is not an LMI.To ex-

press it with LMI conditions, the following change of variables can be performed :

Ẋ = P−1,Mi = KiX, i = 1, 2, . . . ,m and with the property of congruence with full rank

matrix X is equivalent to

m∑
i=1

m∑
j=1

wi(z)wj(z)
(
XAT

i + AiX −BiMj −MT
j B

T
i

)
< 0

The conclusion results is presented as in the following theorem.

Theorem : The continuous TS model with the PDC control law (??) is globally asymp-

totically stable if there exist matrix P = P T > 0 that satisfies the condition :

(Ai −BiKj)
T .P + P.(Ai −BiKj) < 0 , j = 1, ..., r

IV.5 Stabilisation of the three tank system

Now that we have successfully established the Takagi-Sugeno (TS) model that accu-

rately represents the three tank system, with a resulting TS model comprises 8 linear

subsystems, each capturing the system’s dynamics within a specific operating region of

the overall operational domain.Now pur primary objective in this synthesis is to conduct a

comprehensive stability analysis of these local linear subsystems and ensure the global sta-

bility of the overall TS fuzzy model. Achieving global stability is crucial for guaranteeing

the reliable and robust performance of the three tank system across varying operating

conditions. To this end, we will investigate the stability properties of TS fuzzy models.

For the stabilization of the system, we will employ the Parallel Distributed Compensa-

tion (PDC) control strategy. In summary this approach involves designing and integrating

multiple linear controllers, each tailored to a specific operating region represented by a

local linear subsystem within the TS fuzzy model. The outputs of these local controllers

are then blended using the nonlinear membership functions of the TS model, resulting in
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a comprehensive nonlinear control law capable of stabilizing the overall system across its

entire operational domain.

IV.5.1 Achieving stability of the three tank system

As previously established our model is in the form :

ẋ =
m∑
i=1

wi(z) (Aix+Bu) , i = 1, ..., 8

y =
m∑
i=1

wi(z)Cix

(IV.6)

For the stabilization of the system, we will employ a nonlinear state feedback control

approach with constant gains K, weighted by the same membership functions used in the

Takagi-Sugeno (TS) model. The control law takes the following form :

u(t) = −
r∑

i=1

wi (z(t))Kix(t)) (IV.7)

By replacing u(t) in (IV.6) :

ẋ(t) =
r∑

i=1

wi(z(t))(Aix(t) +Bi

(
−

r∑
j=1

j (z(t))Kjx(t)

)
)

ẋ(t) =
r∑

i=1

r∑
j=1

wj (z(t))wi(z(t))(Ai −BiKj)x(t)

(IV.8)

According to the preceding theorems, for our system to be stable, the candidate Lyapunov

function V (x(t)) must be positive definite, This means that the function V (x(t)) is positive

for all non-zero values of the state vector x(t),And derivative V̇ (x(t)), must be negative

definite.

So :

V
(
x(t)

)
= xT(t).P.x(t) Where P = PT > 0

V̇
(
x(t)

)
= ẋT(t).P.x(t) + xT(t).P.ẋ(t)

And by replacing x with (??) :

v̇(x(t)) =

(
r∑

i=1

r∑
j=1

wj (z(t))wi(z(t)) (Ai −BiKj)x(t)

)T

(t).P.x(t)

+ xT(t).P.

(
r∑

i=1

r∑
j=1

wj (z(t))wi(z(t))(Ai −BiKj)x(t)

)
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V̇
(
x(t)

)
= xT (t).

(∑r
i=1

∑r
j=1wj

(
z(t)

)
wi

(
z(t)

)[(
Ai −BiKj

)T
P + P (Ai −BiKj)

])
.x(t)

Taking into consideration that :
∑r

i=1wi

(
z(t)

)
And

∑r
j=1wj

(
z(t)

)
= 1

(Ai −BiKj)
TP + P (Ai −BiKj) < 0

Ai
TP−BT

i K
T
j P + P Ai − P BiKj < 0

Ai
TP + P Ai − (BT

i K
T
j P + P BiKj) < 0

(IV.9)

By multiplying from both sides with P−1 we get :

P−1AT
i +AiP

−1 − (P−1BT
i K

T
j +BiKjP

−1) < 0

Notice that this is expression is not an LMI, where P and Kj are unknown variables so

this expression is not linear (which makes it not an lmi),to solve this issue we will preform

a variables change where Q=P−1 and Xj = KjP
−1 = KjQ giving :

QAT
i +AiQ− (XT

j B
T
i +BiXj) < 0 wherej = 1, ..., 8.

Our TS system contains 8 sub models (sub systems) meaning j = i = 1, ..., 8. This

gives us a feasibility problem of a linear matrix inequalities (LMIs), which has 82+1 = 65

constraints that need to be solved constructed as follow :

Q > 0

QAT
1 +A1Q− (XT

1 B
T +BX1) < 0

QAT
2 +A2Q− (XT

1 B
T +BX1) < 0

......................................................

QAT
8 +A8Q− (XT

1 B
T +BX1) < 0

QAT
1 +A1Q− (XT

2 B
T +BX2) < 0

QAT
2 +A2Q− (XT

2 B
T +BX2) < 0

......................................................

QAT
8 +A8Q− (XT

2 B
T +BX2) < 0

......................................................

QAT
7 +A7Q− (XT

8 B
T +BX8) < 0

QAT
8 +A8Q− (XT

8 B
T +BX8) < 0
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In order for the system to be stable, there must exist a common matrix Q that satisfies

all of these 65 constraints.

IV.6 Solving LMI Using MATLAB Toolbox

The LMI (Linear Matrix Inequality) toolbox in MATLAB offers a set of useful functions

to solve LMI problems. Some of these functions are discussed here, along with sample

codes.

Step 1 : Initialization

To begin, initialize the LMI description by using the command setlmis([]). Note that this

function does not require any parameters.

Step 2 : Defining the Decision Variables

Next, it is necessary to define the decision variables, which are the unknown variables of

the LMI problem. Consider the example LMI CTXC < 0, where C is a constant matrix

and X is the matrix of decision variables. The decision variables are defined using the

lmivar function, which has the following syntax :

X = lmivar(type, structure).

This command allows us to define several forms of decision matrices such as symmetrical

matrices, rectangular matrices or matrices of other type. Depending on the selected matrix

type, the structure contains different information. Thus, first we define the type and then

define the structure which depends on the type.

Step 3 : Constructing the LMI Constraints

After defining the decision variables, we can now construct the LMI constraints using

lmiterm which takes the LMI expression as an argument.

lmiterm(termID,A,B, flag).

Step 4 : Solving the LMI Problem

Finally, you can solve the LMI problem by invoking the solver function getlmisolvers and

selecting an appropriate solver based on the problem characteristics and requirements.

This LMI toolbox in MATLAB provides a powerful and flexible framework for defining

and solving LMI problems [15].
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IV.6.1 Application

By using the Matlab toolbox for solving LMIs we managed to generate the LMI

constraint needed in our system by defining the decision variables Q=P−1 and Xj =

KjP
−1 = KjQ and introducing all the 65 constraints that where established earlier as (Fi-

gure IV.1) shows :

Figure IV.1 — Matlab LMI solver results

Now that the conditions are satisfied We can now identify the PDC gains (Kj) of our

TS model , where :

Xj = KjP
−1 = KjQ So Kj = XjP = XjQ

Giving the PDC gains of our TS model as :

K1 = (103).

0.0053 −3.8810 0.0116

3.8767 −0.0053 0.7360

 , K2 = (103).

0.0024 −1.7488 0.0052

1.7469 −0.0024 0.3317



K3 = (103).

−0.0039 2.8489 −0.0085

−2.8457 0.0039 −0.5403

 , K4 = (103).

0.0022 −1.5892 0.0047

1.5874 −0.0022 0.3014


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K5 = (103).

0.0222 −9.1868 0.0293

9.1766 −0.0037 1.7426

 , K6 = (103).

0.0060 −4.3765 0.0130

4.3716 −0.0060 0.8300



K7 = (103).

0.0030 −2.1927 0.0065

2.1902 −0.0030 0.4158

 , K8 = (103).

0.0053 −3.8631 0.0115

3.8588 −0.0053 0.7326



IV.6.2 Results and interpretations

The control matrices of our closed-loop system are presented as Aii = Ai−BKi, After

verification and calculation using Matlab, We have found that the eigenvalues of all the

control matrices are all negative.

Finally we determined the matrix P=


3.9474 −0.0022 −2.5480

−0.0022 3.4599 0.0365

−2.5480 0.0365 13.4206


such that the eigenvalues of P are strictly positive (P is symmetric and positively defined).

Therefore, we get to finally say that our global system is asymptotically stable in the

closed-loop. .

The solution of our LMI problem that was obtained using the Matlab toolbox is way

too big , where notice that the PDC gains value are too high (103), which resulted in

generating a substantial command u that where not acceptable in our system and matter

effect the value of k was so big to the point where even the simulation using Matlab failed

. Considering that the value of the gains Ki is the main factor in the value of the command

u ( u = −wkx ) we need to find another value of the decision variables in a way that we

can specify them to be smaller than the previous ones and within an acceptable range ,

to do that we introduce the LMI region.

IV.6.3 LMI region

The LMI region is a concept used in control theory and robust control analysis. It

represents a set of matrices that satisfy specific linear matrix inequalities. If a matrix

K belongs to this LMI region S(α, r, θ), it implies that K satisfies certain stability and

performance criteria.in our case it for stability of the nonlinear system .By checking if

a matrix A lies within the LMI region, one can ensure that the system meets certain

stability and performance requirements [16].
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Figure IV.2 — LMI region

The image shows the geometric representation of the LMI region, with the para-

meters α, randθ defining the shape and boundaries of the shaded area. The equations

(IV.10), (IV.11), and (IV.12) provided below , define the specific linear matrix in-

equalities that a matrix Âij must satisfy to be considered within the LMI region

S(α, r, θ).2αP + ÂijP + PÂij

T
< 0, (IV.10)

 −rP ÂijP

PÂij

⊺
−rP

 < 0, (IV.11)

(ÂijP + PÂij
T
)
sin θ

(
ÂijP − PÂij

T
)
cos θ(

PÂij

T
− ÂijP

)
cos θ

(
ÂijP + PÂij

T
)
sin θ

 < 0. (IV.12)

By applying this to our system,where the matrices is actually the control matrices of

our closed loop system such like :
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Âij = Aii = (Ai −BKi) (IV.13)

So will have a combination of 64 matrices which means 64 constraints for each of the

parameters α, randθ that defines the LMI region we want our solutions to be in .so in

total we will have 256 constraint . presented as :

Q > 0

QAT
1 +A1Q− (XT

1 B
T +BX1) < 0

2αP + Â11P + PÂ11
T
< 0 −rP Â11P

PÂ11

⊺
−rP

 < 0

(Â11P + PÂ11

T
)
sin θ

(
Â11P − PÂ11

T
)
cos θ(

PÂ11
T
Â11P

)
cos θ

(
Â11P + PÂ11

T
)
sin θ

 < 0

QAT
1 +A1Q− (XT

2 B
T +BX2) < 0

2αP + Â11P + PÂ11

T
< 0 −rP Â12P

PÂ12

⊺
−rP

 < 0

(Â12P + PÂ12

T
)
sin θ

(
Â12P − PÂ12

T
)
cos θ(

PÂ12

T
Â12P

)
cos θ

(
Â12P + PÂ12

T
)
sin θ

 < 0

(IV.14)

Until the 265 constraint :

Q̂AT
8 +A8Q− (XT

8 B
T +BX8) < 0

2αP + Â88P + PÂ88
T
< 0 −rP Â88P

PÂ88
⊺

−rP

 < 0

(Â88P + PÂ88

T
)
sin θ

(
Â88P − PÂ88

T
)
cos θ(

PÂ88
T
Â88P

)
cos θ

(
Â88P + PÂ88

T
)
sin θ

 < 0

(IV.15)

Finally,by reintroducing all the 256 constraints that where established earlier to Matlab

LMI toolbox with the parameters as (α = 0.0015; r = 0.01; θ = 20) we get the following

results : Giving the PDC gains of our TS model as :
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K1 = (10−3).

 0.0597 0.0193 −0.0285

−0.0250 0.0689 0.1775


K2 = K3 = (10−3).

 0.0595 0.0190 −0.0289

−0.0250 0.0686 0.1774


K4 = K5 = K6 = K7 = (10−3).

 0.0597 0.0193 −0.0285

−0.0250 0.0689 0.1775


K8 = (10−3).

 0.0614 0.0359 −0.0604

−0.0467 −0.0080 0.2296


With the eigenvalues :

λ1 =


−0.0078 + 0.0042i

−0.0078− 0.0042i

−0.0060 + 0.0000i

λ8 =


−0.0194 + 0.0020i

−0.0194− 0.0020i

−0.0109 + 0.0000i

All the eigenvalues of the gains K are strictly negative.

As planed, all the results of our LMI problem are within the LMI region that we specified,

and the values of the PDC gains are much smaller than before providing (generating) a

much more acceptable command u(u1, u2 =< 10−4)

IV.7 Simulation

In this part we simulate the nonlinear system in state feedback , in other words we will

be simulating system (IV.5) using Matlab simulink, Since we are dealing with stabilisation

of this system the outputs will converge from initial conditions to zero when achieving

stability ,only that now to avoid having a zero in the outings of our system will have to

change the equilibrium point to a new point that is different than zero, this is achieved by

adding the corresponding command to the already existing command that we have as :

u = −
m∑
i=1

wi(z)Kix+ u2
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So in these functioning point : 
x10

x20

x30

 =


0.05

0.020

0.035



The corresponding commends are :

u12
u22

 = (10−4)

0.1220
0.0659



with the following initial condition : X0 =


0.50

0.20

0.35


The overall new system (IV.5) is simulated as shown in (IV.3).

Under these following simulation parameters :

-Simulation step : 0.1 sec .

-Simulation time : [0 ; 5000].

We can finally get the results of h1,h2 and h3, as well as the command in stat feedback

u1 and u2 as the following figures shows .

Figure IV.3 — Overall TS nonlinear model in state feedback stabilisation
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Figure IV.4 — The level h1 of the nonlinear system

Figure IV.5 — The level h2 of the nonlinear system
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Figure IV.6 — The level h3 of the nonlinear system

Figure IV.7 — The flow rates Q1 and Q2

67



Chapter IV.Stabilization control of the hydraulic system

Figure IV.8 — The system’s membership functions

IV.8 Conclusion

The main aim of this chapter was to demonstrate the interest in using Takagi-Sugeno

(TS) fuzzy models for stability purposes. In order to keep it concise and easily readable,

this chapter focused on the stability analysis and state feedback control for particular

classes of TS models.

The first part of the chapter presents a brief overview of LMIs and their useful properties,

with the objective of using this LMIs for analyze the stability and to design controllers for

TS system. Then by introducing the Lyaponov’s theorem as an LMI we can have a basic

understanding of stability of a non linear system, we employed the Parallel Distributed

Compensation (PDC) control strategy to determine the stabilizing gain for the Takagi-

Sugeno (TS) fuzzy model of our hydraulic non linear system .

The PDC approach involves designing a set of parallel distributed controllers, one for each

linear sub-model of the TS fuzzy system. These parallel controllers are then combined

using the same membership functions as the TS model, resulting in a globally stabilizing

nonlinear controller for the overall system.

By employing the LMI region methods (adding the LMI region constraints ) we where

able to generate the right command gains that with the right eigenvalues lead our system

to stability, In other words , we can finally say that our quest in archiving the stability

(stabilisation) of this hydraulic system is finally fulfilled .
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GENERAL CONCLUSION AND OUTLOOK

This thesis focused on modeling, stability analysis, and control design for multi-

variables nonlinear systems using the Takagi-Sugeno (TS) fuzzy approach. The

motivation behind employing TS fuzzy models stemmed from the limitations of linear

control methods when dealing with large operating ranges and uncertainties in nonlinear

systems.This project afforded us the opportunity to delve into the intricate challenges

posed by intricate and nonlinear systems, while equipping us with a formidable arsenal

of powerful tools to confront them head-on.

We have meticulously developed an accurate TS model for our hydraulic system, paving

the way for a profound understanding of its intrinsic behavior and unlocking the doors to

advanced control potentialities. Our exploration of the stability and stabilization of TS

models, particularly through the lens of PDC control, has illuminated the path towards

maintaining the coherence and robustness of our system .

To demonstrate the effectiveness of the TS fuzzy approach, a complex hydraulic three-

tank system was modeled using this technique. The resulting TS model was validated

by comparing its behavior with the dynamic model derived from the underlying physical

laws. Simulations conducted in MATLAB revealed an excellent match between the two

models, with negligible differences (errors), demonstrating the accuracy and applicability

of the TS fuzzy modeling approach for the studied system .

Subsequently, the thesis delved into the analysis of stability and control design for TS

models. Linear Matrix Inequalities (LMIs) played a crucial role in this process, enabling

the formulation of stability and control problems as convex optimization problems.

Lyapunov’s direct method was employed to establish stability and stabilization results,

primarily focusing on quadratic stability for simplicity and ease of expressing problems

in LMI format.

The Parallel Distributed Compensation (PDC) control strategy was applied to design

a stabilizing controller for the TS fuzzy model of the hydraulic system. This approach

involved designing parallel distributed controllers for each linear sub-model and combi-

ning them using the same membership functions as the TS model, resulting in a globally

stabilizing nonlinear controller for the overall system.

In summery, this thesis demonstrated the effectiveness of the TS fuzzy approach for

modeling, stability analysis, and control design of nonlinear systems. The proposed me-

thods were successfully applied to a complex hydraulic system, highlighting the potential

of TS fuzzy models in capturing nonlinear dynamics accurately while leveraging the well-
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established linear control techniques. The results pave the way for further exploration

and application of TS fuzzy models in various domains involving nonlinear control chal-

lenges.This work is a testament to an enduring quest for efficiency and precision in the

automation and control of dynamic systems, thereby making a significant contribution to

the ever-evolving landscape of modern engineering.
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Abstract: 

This thesis explores the Takagi-Sugeno (TS) fuzzy modeling approach for accurately 

representing and stabilizing a multivariable nonlinear hydraulic system. The TS fuzzy 

model employs a multi-model architecture composed of linear sub-models combined 

through fuzzy rules to capture the overall nonlinear behavior. An accurate TS fuzzy 

model of a complex three-tank hydraulic system is developed and validated against a 

conventional dynamic model. Stability analysis and control design techniques using 

linear matrix inequalities (LMIs) and Lyapunov's direct method are investigated. A 

parallel distributed compensation (PDC) control strategy is applied to design a 

stabilizing controller for the TS fuzzy model. The proposed methods demonstrate the 

effectiveness of the TS fuzzy approach for modeling and control of multivariable 

nonlinear hydraulic systems, overcoming limitations of linear techniques while providing 

an intuitive multi-model framework.  

 

Keywords: Takagi-Sugeno fuzzy modeling, multi-model control , parallel distributed compensation, 

stabilization of nonlinear systems . 

 

 

 

Résumé :  

Cette thèse explore l'approche de modélisation floue Takagi-Sugeno (TS) pour 
représenter avec précision et stabiliser un système hydraulique non linéaire 
multivariable. Le modèle flou TS emploie une architecture multi-modèle composée de 
sous-modèles linéaires combinés à travers des règles floues pour capturer le 
comportement non linéaire global. Un modèle flou TS précis d'un système hydraulique à 
trois réservoirs complexe est développé et validé par rapport à un modèle dynamique 
conventionnel. Les techniques d'analyse de stabilité et de conception de contrôleur 
utilisant les inégalités matricielles linéaires (LMI) et la méthode directe de Lyapunov 
sont étudiées. Une stratégie de compensation parallèle distribuée (PDC) est appliquée 
pour concevoir un contrôleur stabilisant pour le modèle flou TS. Les méthodes 
proposées démontrent l'efficacité de l'approche floue TS pour la modélisation et le 
contrôle des systèmes hydrauliques non linéaires multivariables, surmontant les limites 
des techniques linéaires tout en fournissant un cadre multi-modèle intuitif. 

 

Mots-clés : Modélisation floue Takagi-Sugeno, contrôle multi-modèle, compensation 
parallèle distribuée, stabilisation des systèmes non linéaires. 
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