National Institute of Electricity and Electronics
INELEC - BOUMERDES

DEPARTMENT OF RESEARCH

THESIS

Presented in partial fulfilment of the requirements of the

DEGREE OF MAGISTER

In Electronic Systems Engineering
by

Rabah IMACHE

COMPUTER AIDED MEDICAL
TRAINING SYSTEM

Defended on September 19, 1994 betfore the jury:
President: Mr. A. BOULARAS, Professeur, USTHB.
Members: Mr. B. MEZHOUD, M. A. Master, INELEC
Mr. S. ACHOUR, PhD. C. C,, U T O,
Mr. H. AZOUNE, T.U. C. C, USTHB.

Registration Number: 0171994,

AKNOWLEDGEMENTS

T s by o+
PO A BN R A

O express my sincere gratitude to My research advisor Mr.
Belkacem MEZHOUD for his assistance and guidance throughout the

present work, and for his moral support and encouragements.

4

am aisoc gratful to Professor Mustapha MAACUI for +w-3
collabocration and patience during the experimental development

of the medical CAL application.

I would 1like also to thank Dr. Kamel HARICHE for nis
encouragements and for the research facilities necessary to the
sucless cf this project, he offered; all the research department

members for their moral support, and all the library memte

Finally, I would like to thank all INELET students and 3taf who

contributed to the achievement of this work.

ABSTRACT

In this thesis, an approach to software projects and products is
suggested and investigated, then a medical Computer Asded
Learning, CAL, application is develcped.

The approac! under study is named Structured Evolutionary
Cevelopment Approach, or simply SEDA. It is a cocktail approach
which consists of two components, the evolutionary prototyping
concept, which involves developing the system in an incrementa)
fashion, and the structured paradigm, which follows a phased 1ife
cycle. The choice of this approcach is based on the evolutionary

process of software engineering through time. That’'s, software

engineering, which i3 the remedy to the software crisis, is the
Creation of systematic approaches or paradigms and tools such as
the wWaterfal) approcach, the evolutionary approach, the

Lrotoiyping approach, and so on. Despite all the created and

ied systematic scftware development approaches, the users and

develcpers are 3till not satisfied. Each developed approach has
its advantages and disadvantages.

The aim cf the present work is to suggest a new apprcach in order
to contribute in the improvement of software products and

projects development. The idea behind this concept is tc maximize

ii

he advantages while minimizing the disadvantages of the cocktail
approach. And this can be achieved by the combination of the
evoluticnary prototyping paradigmwith the structured methodology
which show high complementarity.

In order to check the efficiency of the proposed approach, an
experiment is conducted. This experiment consists of developing
a medical CAL application named, Computer Aided Medical Training
System, or simply CAMTS. It is interactive and microcomputer -
based training system designed to be used in a hospital by
surgery medical personnel, physicians of all the degrees and
medical students, in order to learn, review, self-evaluate thair
knowledge, and prepare examinations. This system will help the
medical staff to be aware of the state of the art of their
profession, and allow them to attain and maintain an acceptable

level of competence which will improve patient care.

TABLE OF CONTENTS

THE ORGANISATION OF THE PRESENT WORK ARE
CHAPTER 1 INTRODUCTIONu.u'uuiunnnn 1
CHAPTER 2 SOFTWARE ENGINEERING 5
2.1 History of software engineering 5
2.2 What 1is Software Engineering ? 8
2.3 Software Metricso.... .. 8
2.4 Software Qualities00...... . 3
2.5 The Software Life Cycle Models 11
2.5.1 The Slum Dunk Model 12
2.5.2 The Barogue Modelu.... 13
2.5.3 The wWaterfall Model 13
2.5.4 The V-diagram Model 18
2.5.5 The Exploratory Programming Model 17

2.5.6 The Prototyping Model 17
2.5.7 The Evolutionary Model 19
2.5.8 The Spiral Model 21
2.5.9 The Fourth Generation Technigues

Model 21

CHAPTER

(@)

1>

0

m

-
-

(@)

(@8]

{a

N

=

FEN

ia

%]

[6V]

ro

(€8]

o

ro
wn

V]
[&)]

.10

1

The System Assembly from Reusable

Components Modelc...cc..

Transformation Models

STRUCTURED METHCDS ittt

Introduction

Definitions

The structured

Methods and the Life Cycies

3.2.1 Analysis Phasettt ittt etennnnaa
2.3.2 Design Phases ...ttt ittt trenenenas
3.3.2.1 System Design Phase
3.3.2.2 Detailed Design Phase
3.3.3 Implementation Phase
3.23.4 Testing Phases,
2.3.4.1 Unit Testing Phase
3.3.4.2 Integration Testing Phase
3.3.4.3 System Testing Phase
3.2.5% Maintenance Phase
MODELLING TECHNIQUES it o

Introduction

Data Flow Diagrams ... v vttt i nmeeennens

Data Dictionary ittt eneeneeaceas

Pseudocode

................................

Structure Chart i ittt it e it

Flowcharts

P
W

w
O

wn
AN

CHAF I ER D iHE COCKUTALL APPROACH : SEDA ... eviin. .. 56

S.1 Introduction ... e 56

5.2 The Structured Approachuuuuoii. .. 57

5.3 The Evolutionary Approach 60

5.4 The Cocktail Approach 63

5.5 CoNncCluUSTON ittt it i e 66

CHAPTER € THE APPLICATION : COMPUTER AIDED MEDICAL
TRAINING SYSTEM (CAMTS) DEVELCPMENT 69

8.1 Introduction ... e 68

.2 Computer Assisted Learningo.o..... 70

€.2.1 Integrating Conventional Teaching and
CAL Schemesttt i, 70

6.2.2 Factors Influencing Learning and CAL 71

§.2.3 CAL and the Computer Aided Medical
Training System ... it 72

§.23 CAMTS Development Processuuuuuuoo .. 75
€.3.1 Problem Definition and Feasibility
Study Phase 78
6.3.1.1 Problem Definition 78
6.3.1.2 Feasibility Study 793

§.3.2 Reguirements Arnalysis Phase an
5.3.2.1 Data Flow Diagrams S3
6.3.2.2 Data Dictionary 35

5.3.3 Design Phases ..ot &9
6.3.3.1 System Designh Phase 30
£.3.3.2 Detailed Design Phase 30
6.3.3.3 System Pseudococde 32

v -‘

BIBLIOGRAPHY

U.3.9.4 Udld UICTTIONATIY v e v vt v taesaens

(@]
(€3]

.4 Implementation Phasevvvvun..

£.3.5 Testing Phases ...ttt i,
6.3.5.1 Unit Testing Phase
£€.2.5.2 Integration Testing Phase
6.3.5.3 System Testing and Decision

Making Phasec0...

6.2.85 System Delivery and Maintenance

6.4 Cost-Benefit Analysis ...t

7

APPENDIX A

CONCLUSIOCN

4

>

r

GUIDELINES FOR THE MODELLING TECHNIQUES

Data Flow Diagrams ... et i ittt tnenenns

Structure Charts ... ittt i i eunn

Data Dictionary ...ttt it i

SYSTEM FLOWCHARTS .. . it e e e e

Vvl 1

THE ORGANISATION OF THE PRESENT

WORK

The order of presentation in the present work is organised as
follows: first software engineering is introduced from the point
cf view history, evolution, and maturing; secondly, the existing
paradigms and modelling technigues are dealt with; thirdly, the
proposed apprcach, namely Structured Evolutionary Development
Apprcach, or simply SEDA, is studied theoretically, then computer
assisted learning is introduced; finally, the proposed approach
15 applied to a medical CAL application development to make a
comparison between the theoretical previsions and the
experimenrtal results.

The fir-3t chapter deals with the birth of scftware engineering,
identifies the problem we are dealing with, and introduces the
Jtion and the application domain, namely Computer Assisted

—earrning, or CAL. After considering a number of objectives and

O
e
O
O
e}
=
9]
O
-
7]

cftware product*ion, the software crisis is discussed
then, zcftware engineering 1is presented as a remedy toc that

crisis. The remedy is the creation of a number of sys

~+

ematic
apprcaches that are introduced in chapter two. Chapter three

deals with the structured methods throughout the 1ife cycles. The

Viii

moge i iing

~t

gchnigues which are used to develcp the specification
documents throughout the development phases are discussed in
chapter four. VWhereas chapter five deals with the theoretical
study cf the suggested cocktail approcach whose components are the
structured approach and the evolutionary prototyping approach.
The first sections of chapter six deal with Comguter Aided
Learning , CAL, then the approach under study, namely structured
evolutionary development approach or simply SEDA, is studied
experimentally in the remaining sections of chapter s3ix in which
it 15 tested by applying it to the development of a medical CAL
application, namelly computer aided medical training system
(CAMTS). It i3 interactive and microcomputer-based training
system designed to teach at the level of a hospital, the surgery
medical personnel, students and physicians. And the
implementaticn is done using the dBASE IV programming language.
The purpose of this experiment 1is to evaluate the proposed
apprcach tc scftware products and projects development, and

results are drawn. That 13 cur objective is to tri

3
(&)
[
-
®
3
+
ny
®

o~
A

O

improvement of software projects and products development.

Finally, a general conclusion i3 given in chapter seven.

CHAPTER ONE

INTRODUCT ION

Scftware engineering 13 the systematic apprcach to the
development, operation, maintenance, and retirement of software
t1l, [21, (31, [41, (51, (61, [7], [8], [91, [10], [11]. It deals
with software systems for which it uses engineering principles
in the development of these systems, and is made up of both
technical and non-technical aspects [12], [13].

During the sixties, computer scientists, systems analysts,
designers, and programmers, were faced with one major problem
which v .5 their failure tc develop reliable software procducts,
cr systems [5]. One reason for the difficulty of producing
reliatle scftware 1is the nature of software itself; that’s,
ware 13 abstract rather than physical in nature. Ancther
r2ason 15 that the computer hardware on which software products
rur has become cheaper and more sophisticated, giving rise to
'Yy increased expectaticons about what computer systems can
achieve [14]. That’'’s, as the hardware costs came down due to
technological advances and the economics of mass production, the
costs of software became more and more significant in most system

development projects [9].

As a result, the size, capabilities and complexity of software
systems are also increasing, putting further demands on the
software developers ability to produce reliable software. A
further reason lies in the way in which software is developed.
The emphasis is on coding, with insufficient time given to
requirements analysis and design [14]. All these problems in
systems and software development resulted in a critical
situation, the so-called "Software Crisis” [1], [31, [5]. The
guestion that arises concerns how the software developers are to
overcome these obstacles to the production of reliable and
effective software. Software engineering 1is the response or
remedy, that’s, software engineering is intended to assist the

development of good-quality software within budgets and

mescales. A central aim is to overcome the software crisis I
1. The process for constructing software systems contributes
a great ceal to the reliability and effectiveness of the and
produc [14]. There has been a growing emphasis on viewing
ware engineering as dealing with more than just "coding".
Instead, the software is viewed as having an entire life cycle,
starting from conception and continuing through design
cpment, deployment, and maintenance and evolution. The shift
emphasis away from coding has sparked the develcopment of
nethodolocgies and sophisticated tcocols to support teams invclved
in the entire software life cycle [3]. Royce (in 1970) was the

Tirst t3 coin the phrase " The waterfall model to characterize
the series c¢f software engineering stages [1], [15]. It is
important, therefore, to look at how sofware production 1is

rganized, what activities are undertaken, what priorities are

rd

Sel ara wnere costs are 1ncured (14]. In other words, a major
objective of software engineering is the search for an adequate
develcpment approach to guide the process of developing software

roducts ar~ projects; this will cvercome the prcblems encountred

o

Oy both the users and developers of the products. That 15, the

right development process will help produce the right product.

There are many different paradigms described in the literature

[ON

nd used duri..g the evolutionary process of software engineering

)

develcopment through time. These paradigms are discussed in the

Cur objective here is to imprcve software systems developmant.
fience we suggest a cocktail approach that can be named Structured
~volutionary Development Approach, or simply SEDA, which combines
the advantages of the structured apprcach and the advantages of
the svolutionary prototyping approach, that are complementary.
“his progosed agpprcach will be tested by applying it to the
coment of a medical CAL application, namely computer aided
medical training system, or simply CAMTS. This scftware system

will te used in a hospital by the surgery medical personnel,

are 'y students and physicians of all degrees, in corder to attend
tZurses and self evaluate their knowledge in their field. OQOur
mcUivation to use a medical CAL as the experimental domain is to

CSntritute in this research erea. The behavicral control teaching
model [1€] suits this application, hence integrated. Through the
Juesticn-answer process, a physician may el:minate the doubt by
thecrning his or her thoughts before taking any action when

ying a patient. This system provides the user flexibility in

(&%)

w
m
—

joV]

can

(]

¢}

O
-+

e

be

3
[{e]
(3]

-

ng h

used by medical

m tc progress at his

students

ither to perform a test, or attend a course, and in

own speed. Moreover, this system

to prepare their examinations.

F &8

TWO

CHAPTER

ENGINEERING

SCFTWARLE

SCFTWARE ENGINEERING

c
1

(@]

[

gy

(1]
@

.
Y
]

)]

(1

O
3]
em

ke

)

A

.

(W]

Fw)

)

4

Y -
)

o

@D

4
[$h)
[$2]
)

4o

(@]
19

(@]
4+

42

>

D
L2
4

4o
(s}

jo
O
(4]
<.
®
[}

D
o

1!

QY
-
.

sD

4o
3]

F

I

-~

®

o
)

(1

+
"y
[}

4

(@)

Fe)

)

44

iofy

V)

rate 1350s, this increased the level of abstraction in the
programmer-computer interactions, in other words, HLLs made
he communication with the machine. It was at this time
that grogramming reached the status of profession, that's, ,cu
could ask a programmer to write a program for you instead of

doing it yourself., This introduced a separation between the User

and the machine. Nocw the user had to specify the task in a

—
O
3
3

different than the programming notation, the programmer

o+
I
@
3

interpreted this specification and translated it ints its
corresponding eguivalent set of instructions. This, socmetimes
resu-ted in the programmer misinterpreting the user’s intentions,
even in the small tasks.

At this time, the early 19603, only few large softwarsz croj;ects

@
3
®
o
-
ot
o
O
O
3
je]
<
+
®
3
jo]
O
3
3
@®
(1]
-3
w
<
)
O
z
@
=3
©
o
x
jo]
®
3
+
[

in the middle to late 19€60s, large software systems aere

attempted commercially, and the best documented of them was *the
CS 227 cperating system for the IBM 260 computer family. The

-+

tentative to build large software sytems were the scurce of the
reavizatsion of the difference between the building of Jlarge

t=ms and the building of small sytems. In other words, the

w
‘e
U

scfisare systems developers and users were faced with vari-us
L7t ems ahich are: the software fails to do what users wanrt :
I Zz, 1t i3 sxpensive, it cannot be transferred tc ancthe-

machine gasily, maintenance 13 expensive, it is unreliable, ara
it i3 often delivered late. This situation was called the
software crisis, and as a remedy to it "Software Engineering” was
invented aroun this time. Many so0lutions were suggestsd and

tried for improving that situation; there was no lack of ideas,

o8]
3
Q

ine Tinai concensus was that the problem of building scftware

tem

v
(73]
v)

y shcu'd be approached in the same way that other complex

+

-~

ems such as factories, ships, and airplanes, were built. The

w
w

y3
point was toc view the final scftware Sytem as a complex product
and ts building as an engineering job. The engineering apprcach
required management , organization, tocols, theories,
methodologies, and technigques [3]. The solutions are not mutually
exclusive, but they complement each other. Typically, the
P

0T l'owing ideas are considered: all the development phases must

be carried out systematically; use of fourth generation languags

(2]

(4Gls), software development environments, and Computer Aided
Software Engireering (CASE):; find out "exactly” what the users
really want, demcnstrating an early version of a system to its

[
m
.y
[0)]
C
w
3

g prototyping, using new programming languages, and try
© ensure that the software is free of errors. And thus was
software engineering born [2], [11].

cftware engineering is intended to assist the development of
jocd guality scftware within budgets and timescales t1], [11]
. It deals with software systems for which it uses
gngineering principles in their development, and it consists of
c3th the technical and non technical aspects.

wally, the man cbjective of software engineering is toc look
Cr an adeguate development approach to guide the process of
de.e’zping scftware systems in order to overcome the shortcuts
ed from the crisis and the developer-user communication
problems [4], [12]. Many models are propcsed and described in the
literature, They, are used during the evolutionary process of

scftware engineering develspment through time; and these will be

- C e . e ~ CEERNC VYRSV -2

2.2 WHAT IS SOFTWARE ENGINEERING ?

~are engineering i3 the application of scientific principles

i-the orderly transformation of a problem into a working
software solution, and
D+

2-the subseguent maintenance of that software until the end of

tts useful 1ife " 1], [15].

An other definition is given by [8]: "Software Engineering is the
establishement and use of sound engineering principles and gcod
management practice, and the evolution of applicable tcols and

methods, and their use as appropriate, in order toc obtain, within

’

known but adequate resources limitations, scftware that's of high

@

Guality in an explicitly defined sense. {Marco and Buxton 1337:°

2.3 SOFTWARE METRICS

scfiware means general utility programs such as operatin

[(Q]

v
.
)

ems, compilers, data base management programs and the 1like

wo

Sc®tware i3 an engineering industry with its scale and degree of
risk “avolved. There was enough failures in software projects and
products development tc motivate the software develcpers

community to look for new and better approaches offering high

quaiity software preograms. In order to reach this gcal we have

tc use metrics {8], [19]. In other words, we must always measure
what we are doing, and in practical we must measure the critical
factors, not simply the easily availabe ones, such as space and
time <consumption which have been the major ones 30 far.

Particul

o8]

riy, maintainability and portability are becoming the
major factors because of their high cost compared to the cheap
computer machine resources. An other important factor i3
reliability which is related *o the complexity and documentation
of programs [20].

Software development may be viewed as a continuous prccess in
which the following types of change take place: refinement of the
specifications through several levels and corrections to the
scftware when bugs are detected. It is recognized that thre

absence of metrics leads to lack of control over S

-+

ems, and
firally to failure [19]. The software metrics are used in order
to control the software development and to yield high quality
scftware programs [21]. The next section deals with the major

scftware metrics which are the gqualities of a well engineeread

2.4 SOFTWARE QUALITIES

{8
rt
)
[¢)]
(%]

oftware production process deals with analysis,
£3:gn, and implementaticn, rather than manufacturing, it has to

meet some criteria toc ensure the producticn of high quality

{(22] help a 1ot in the evaluation of products.

There are man. desirable software qualities; some of them apply

)}

@

4

[§o]

(@]
4

)

.-

4]
D
4
0N
4
4
(§s}

42

«3
oy
(V]

[®]
%9

e
['9]
(.

-
o]

o]

a1
A2
(]
4o

]
(3

]

-
u?
[

4
W
n

(1]

£Z

v
[{)]

D

.

[9)]

3]

[47]
o]
£
42

+
3

o
D

4o
©
a0

£
O

w

Y-

)

(Y]

[
[(}]

Q2

[T
)

™

3

0

maintaina

* Maintainabitlity

N
4
e

—

4

-

4+

-

")

[®]

err

C
4
Q
o

O
Q

O

)

4

-

O
(o

-2
L)

~N
)
—

w
4o
)

1]

-
D
-

[

)

Q]
«

{
4o

o

)

)

)
L2
40

4-
@]

4
-

o

A2
(]

W

-~

u)

[

]
)

[

10

»
m
-4
.—"
-
O
-
4]
3
O

~
O
e
s
®
-
—t
@]
>
3
o1
3
O
(¥
o]
2]
(o]
-
—~+
z
o8]
-3
®
()]
~
(@]
~+
®
3
— -
[0
®

—

-

O

®

3

~+

—+

* User interface: a software system i3 user friendly +f <t 4

n

w
—

tailored in such a way its users find it easy to use [3],

>
O
*
c
jv)

'y, the problem encountered by the software developers

w

the ncn linear relationships that exist between these quali

~+

attritutes, that 3 they affect each other; for example,

13ing a better user interface may reduce the efficiency

~h

)

the s3ystem, and any improvement of these qualities can

[¢V]

iy

gipens-ve. Thus, in order to attain the optimum level of the
system under development, for each type of applicatizn the

b

crade-offs which are regquired must be made explicit early 1n tha

-

development ©process [37, [5]. In the case of medica)

igpl-caticons, it is identified that the user interface and the

rsliad>itity guality attributes are the most important for the
scftware s,stems to be accepted by the medical personnel [22].

[N
wn

THE SOFTWARE LIFE CYCLE MODELS

-
3¢}

~ o~
(ORREH

()

tdering a number of objectives and problems in s.

~h

tware

6]

L6

sve'opmrent, there was a debate about the zriszsis +n softtware

groduczt-on. The response to these problems i3 the creation of =z
number c&f 3systematic approaches to the software development.,
From the inception of an idea for a software 3ystem, until 1%t s

implemented and delivered to a user, and even after that, the

system uncergces gradual development and evolution. The zoftware

11

—
(73]

said o have a life cycle composed of several phases that are:
reguirements analysis, design, coding, testing, and maintenance.
Cach of these phases results in the development of either a part
of *tre system cor something associated with the 3ystem, such as
documents 21, [11], [20). The 1ife cycle 1is generally defined
as follows: The life cycle may be regarded as a management and
technical toc) for organizing, planning, scheduling, and
controling the activities associated with a socftware prcject

development and software maintenance efforts [11, [2], (3], (931,

(173, [24], [25], [26].
A maior objective of software engineering is the search for an

adequate develcopment approach to guide the process of develcping
software products and projects in order to overcome the problems
ancountred by both the users and developers of the products.
There are many different paradigms described in the literature
and used during the evolutionary process of so0ftware engineering
s-n=e its birth. They vary according to the degree of deta:i’
seing considered and the prevailing philoscphy used to interpret
the development task [1]. The next sections deal with the

exiz® ng mccdels of the life cycles.

2.5.1 The Slum Dunk Life Cycle Model

In o tnis model, we begin coding (implementa*ion) as soon as the

V]
O
>
-
w
-+
oy
88}
—+
—+
>
o

project =atarts. The idea behind this apprc
develcper supposes the generation of many errors from the code,
that's why he deals with coding from the beginning in order o

~inimize those bugs. Therfore, the system code is generated with

12

+
)
[
w

S
2]
r+

em reguirements analysis. In this model the different

5

phases are confused or melted in orne phase which is the coding
chase [2]. This mcdel 1is depicted in figure 2.1.

2.5.2 The Baroque Life Cycle Model

The concept of this approach 15 a response to the lack of
discipiine and structure exhibited by the Slum Dunk approach. Thre
concept i3 that each stage of the development process will be

completed before the next begins. Actually, this approach i3 nct

as gr

[

at a3 it sounds, because we may face the situation in wh:ch
one phase, say the analysis phase, is undeterminate; that’'s, thsz
exit criteria i3 not reached. The fact may arise frcocm refining
“he s3ystem reguirements indefinitly, hence, neglecting ths=s

remaining phases. This 1ife cycle model! does not work fcr tre

simgle rz2ason that software development is nct a determinist:

O

activity [2]. This model is shown in figure 2.2,

2.5.3 The Waterfall Life Cycle Model

(2]

vodel, which is the most widely known, i3 introduced by

22yce in 1270 and popularized by Bocehm [37]. It describes the
j2ter iz process that many software developers follow, at least
1< 3cme extent This model attempts tc correct the shortcomings
of the Sarcgue approcach by recognizing an advantage in havinrg
interact-cns amocng phases. By interacticn i3 meant phase

overlapping with respect to time; namely, the results of cne

phase are fed into the next, beginning with the arnalysis phase.

Regin Coding. . Continue Coding. . Quit

time

Proiect stapt

Figure 2.1 © The Slum Dunk life cycle mode]l time line (51, sec 1.2, p &

—tine

Analysis

Design

inpiementation

687 of flow tine =

time

Project start

figore 2 31 Time line assnciated with the Waterfall life cycle model 121, <er 1 4, p R

14

REQUIREMENTS
ANALYSIS T

CODING —_—

—_— .

TESTING _—

—_—

OPERATION
Tiqure 2.4(a) Classical Waterfall life cycle model [37] sec. 5.2.1, p83

REQUIREMENTS
ANALYSIS

—_—
-

DESIGN —_—

S N —

CODING —_—

Y
—_—

——— TESTING — -
—
- e
OPERATION
Figure 2.4(b)" Standard Waterfall life cycle nodel [15), sec 1.1.2, p 8

15

v
@L
4o

.

tn
\.c

[Lo]
.
L7
o

(93]
-
O

>

(]

s}
(03

4=
&}

«3

4o
3

o
[¢}]
4

0

-

3
4o

[&]

(N

(f}

o]
d

-
(9]

+<
0
Y

~-

O
O

4
[y
(9]
«

Srm

[0}

mm

o)

1|
[e)
O
.
A,

-

w

£2

(2]

‘D
40

13
@}

)
41

D
[92]

4
]

o

€]
«d

3
[

n
3

(8]
<t

develcpoment

term

[

«

agram Life Cycle Model

5
]

.4 The V--D

[=
~

[a]
o

Bl

4

44
]

<)

.

[

i)
()]
m
3
o
[§a}

[
4
«J

-

)
3

4

o)
o

4

)

w
(9]

3
4o
19N
O
@}
5

(v
44

2
W
¥)]
1P

[§0)
4
i}
)
)

v

a1

@

4

W)

)
4
Y

e
3

+-
(s}

)

+-!

)
4.2

m
o
O
m

4=

44
o1
<

16

41
o)
"
4

3

(@2}

W

4!

[G)]
«

(2

o
4+

.

D
™

0

~
ud
-
()

™

[L¢]

Y
™

The Exploratory Programming

5

o

'

1]

e
<
[b]

«f)
1))
tn
1
4
)

44

[
(Y

[

0
)

-
<y
v

@

[y
4
1

@
73
[}

[]

)

3

8]

4o
Q
o
(W)

O
Q

o

£
4

£
9]
3
)
A9
()
(2
3

O
4

4

- -

)

Y-
Y-

R

o)

N
<)
)
)
"
()]

4

)

aq)

)

o
19

Q
4]

oy
o
[}
©
®)

<
(]
oy

[$)]
4o

-

[4)]

Lo
[

$%)

"rototyping Life Cycle Mode!

vy
0]
)

13
(8]

L2

)
¢
O

[@%
(@3
g

‘7
ay
v~

[§]
18}
)

(0%
(2

m
$ 2
2

4
)
4
(D]

fL
[

so
4

M

e

(W]
9]

<
[

e
«3
(9]

Y-
(]

Q
]

in

oy
41

M)
O)

40
)
ot

[®

3
3
'y
44}

o)

~~

YSTEM Sunere SYSTEM
REQU [REMENTS roor SISTER e
ANALYSIS nr ot TESTING ACLLPTANCE
A rLANNING & DEPLOYHMENT
- INTEGRATION .

— SYSTEM TTSY — INTEGRATION HAINTE A
—— DERIGN oo gl o HINTENARCE
- PLANNING TESTING AND
\ o ENHANCEMENT

— DETAILED — uN1T TEST UNIT —_
—— DERIGN . pIANNING — TESTING
COD ING —_— Obhcnlecrenre

Figure 2.5 U-diagram iife cycie model (151, sec 1.1.2, p 18

Pevelop

nut]ine _—_—

cpecification

v

Build softuare Use zcftware
system sysiem
*
- A .
NO System -

DDA
-7 ' -
“.._adequate?

-

YES

......

sof tuare zysten

Expicratory programming approach {51, sec 1.2.Z, p ic

'Yosrwe wne uscei s nidve an early Teel of the final system before
it 13 built: moreover, prototyping is a powerfu means of

defining and refining the sy

«
[O)]

tem requirements and improves

communication with the end users (2], [5], [14], (151, [27],

-
ro

8]. This mcdel i3 pictured in figure 2.7,

This apprcach extends the reguirements analysis with the
intention of reducing cverall life cycle costs. It is basad on
the assumption that the prototype is developed from the
requirements, delivered for experiment and modified until the and

4se” or client 1is satisfied with its functionality. Than a

specification i3 delivered from the prototype and the system -

Wy

re-implemented in a final version following the phased 1:%e cych

[£]

model [5], [15].
The prototyping approach is compatible with the traditicna! life
cycle. A throwaway prototype can be built during any development

phase of the 1ife cycle [(15], [29].

2.5.7 The Evolutionary Development Approach

The z«ploratory programming approcach adcpted to system

develspmert provides the user with an incremental inccmplete

"eQurremerits tecome apparent until the fing) system is obtained.
The cutput of this approach is an executable system.

The evciuticnary development model combines the advantage

-~ ~ €
> (]
exploratory crogramming with the control required for
development, R wolves developing the requirements and

delivering the system incrementally. This model is depicted n

13

Requirements ——

gathering
—_——— Quick -
design +
e Built
' pratotype S .
Evaluate and ——
eef ine
requirenents .
—_— ng ineep
product

Figure 2.7! Prototyping 63, sec 1.5 3, P 23

DEF INE
SYSTEM —

OELIVERABLES

—_—
SPECIFY BUILD
SYSTEM ———— SYSTEM
INCREMENT © INCREMENT
—_
DELIVER
—————— SYSTEM
INCREMENT

UALIDATE
-+ INCREMENT

NO - SysTEM ™.
" CONPIETE .~

YES

CUMPLETE
SYSTEM
DEL [VERY

Figure Z2.8: Evolutionary development nodel [5], sec 6.1, p 115

20

Sy DL T

[

3

0

-

~

4

{s]
£z
)

)
S_
(2

1

ud
()

)

w1

The Spiral Model

@D

L

4

4]

S
4
1
(2

[
)

(B}

)

o

<
3

<
™
N

L
3

4
]

Tre

]

[
3

(8]

2
(4]

o

iV
f;
[b]

(2
O
«3
L

4o
(v}

o)
-
£
4o

@M

~

D
ST

[0}

)

8
(D]

[92]
)

--

[$3]
—
[t}
3
o

w
4
4o

(2

O
4

ra
)
[

£
(8}
(57}
)

i

v

)]

42

P

1

)

The Fourth Generation Technigues

40
[$)]
(3]

&

«

[

o)
(4]
]

Y]

[}
)

.;
(]
(%)
2
)

©
4

o)

«

&)

44
]
(W]
O
4o

[0

-

4))
4

<
Q

13}

)

)
w

"

(e

finalysic Design Coding Testing

Figure 2.9 Spiral life cuycle model [38], sec 18.1.1, p 225

Requirements

gathering .
"Design’
stratequ
Implementation
using 4 G.L.

+

Froduct

Figure 2 18 Fourth Generation Techniques [A), cec 1 5.4, p 24

22

j
(s}
O

H))

@

P

]

o

RY

w

W
[49]
(s}
42
3
4o

kS

"

14
O
]

4

(]

tion, 3Creen

a

q
I

manipu

data

[

3
)

(1
)
4
(]

4+

—

£

o
w
Q
Q

)

o
o
o

[§Y)

)
(

[£]
[}
m
(s}
4
-
[}

1
3
[

AP

m
Q
0

Y-

-4

)
4
[{H)

a1

)
0

o
()]

)
D
W

1]
£

)
)
n
Ty

(1
b
o
0

4.

3

o
T4

N
4

0

[4)]

%)
4

1}
k9]
(@]
)

o

o)
-
[§3]

o)

@

4+

8]

.,
40
[50]

Fu)

Ww

44

[{4]

G

4+
«

)

-~
(Sl
L.

A
Lo
[

stem Assembly From Reusable Components

v

<
Yy

83}
13
g

D

1

(n

oy

o
1

[

[{}]
[}

iy

[
[{}]
R

o
(]

4

(o
40

:w
[

(

[}

[90]
Q]

[®]

4
«
3]
4
)

[1g}

T

T

4]
1

)

0

"3
Y

3

]

[8]

)

3

(]

Fes)

4

]
<)
(e
[

-
.-
)

(]

o
ud
[

Y]
)

WA

[SOr—.
(RIS

o

40

tH

44

gy

[{g}
A
rJ

.-

n

3

3

-
)
(]

[

~

Transformation Model

The

[0}
4

N

4

concep

)
D]

13}

4

U

3

N

[82]
Q
[
4
12}

1))
y

5]
]

ot

[N
PO B NI

-
P4

+

"3

m
o
-
)
23

3y

«d
4

(]
w

@

M

)

(@]

)

[t

o)

)
(3]
€
N

3

1Y)
tfy

‘D
&2

ot

(3]

<
o]

-

48]
(]

[S]
w®
(@}
(7]

4]
[}
3
N

]
3

L)
48]
o

4
3y}

3

-
“2
Y

(W]

w
e}
®
(@]
-
(@]
[}
-t
)
@)
3
w
r
n
_a

-

t form of formal specification 13 axiomatic

o
(¥}]

(6]
TS
(4]
O
-h
s

caticn where a system is represented as a set of functions

~+

<
I

"

O
w

ard zach furcticn is specified using pre- and pcst-cond

Q
+

These -ornditsions are predicates over the inputs and ou of

[

out

)
o)

a function. And a predicate is simply a bcolean expression whic

i3 true or false and whose variables are the parameters of th

Y]

function teing specified [5].

Tre transformation approach has been studied for smal! programs

a3 a dua! method for proving program correctness. Przgram
correctness proofs represent an analytic, mathematica'ly S33=232

approach. Transformations, instead, are a constructine

~athematically based approach. The transformaticn orcIes:

e
[

y from the programmer [2].

-1
W
£l
-
S
@
(V]
[0}
p
s
8}
33
a
(@)
-
)]
jal]
-+
—a
<.

Formal transformations

T 12 13 T4

~ . ¥ ; T 7

'3 . . Y H Iy : 5
Formal - R1 . RZ ‘ - Executable
srecification » ‘ program

P1 P2 B3 P4

Proofs of transfornation correctness

tigure Z2.11. Transformational sof tware deveiopnent {5

—

, sec 7.1, p 127

25

CHAPTER THREE

(417,

STRUCTURED METHODS

o)

models we

=

i

i

1
who
e

q

[
v

)

i
clear

“
'
)

~
()

Zzati
a

for
So the pr

crgani
have

and programmers
not
it.

a need

his

igners
do

cart of
but

who has
while the software deve

K

v

er
!

us

e a
L

+ .
L

+
1‘
1f they understand

-

he
1
are
compu

o
ommunication gap between the u

s01ve

compute
Jcrganization
the
cannot
it,
being a ¢

but

order to
as

+-

«
Q

languages nd each

different

speak

~
[an]
)

{

ception

con:

Until the development of

+

he structured systems, (analysis and
design, tools, there was no means of showing a clear picture of
he system and how 1its parts fit together to meet the user’s

needs. The prcoblems encountered in the analysis can be summarized

1-The analyst has difficulties in understanding the needs

o]
3]

2-The user community does 10t know enough about data processin
o know what is feasible and what i3 not.
-The analyst i5 overwhelmed with both the detail of the systenm

and the technical detail of the new system.

i3y

-The document of the details of a new system which forms a
contract between the users and the system develcopers i3 generally

=m0t understood by the users because of its technical aspectiz.

w

-1f +the specification document i3 written 1in a Jser’

[0))

£ s
i

view, 1t may not make a sense to the physic

i~~~ . —- - -
concestion goind O

|6

develcopers who have to build the system [30].
The characteristics of a classical model are:

- S*rong tendency toward bottom-up development of the system.

- In
N

Wy

sstence on linear, seqguential progression from one phase
1t the next [27]
T~ o~

~¢ structured methods consist of an evolving set of tsols and
schrigues which are resulted from the maturing of structured

programming [73, [11], {481 and structured design [2], [15]

[281, [221, [423, (4231, [44]. The underlying approach 13 the
building of a logical (non physical) mcdel of a system, u3sing
graphical techniques and tools which enable users, analysts, andg
designers to get the " right " picture of the project and how 13

[AS]
~J

parts f1t together to meet the requirements or the users’ needs.
However, some of the problems are always with the develnpers
Le-cause there i3 no way to know what is in user’s mind without
beirg told [20]. Hence, system development involves both
and non-technical aspets [121, [13], [30].

The need for structured methcds i3 evident from the many problems
encountered with the classical methods of developing software
systems; among these problems we find:

+-

The products do not meet the user's needs.

(@)

-High maintenance cost.

O

+

cttom-up approach which has the following difficulties:

Nothing is donme until it is all done.

—
o
3
O
w
(ad
lak 3
1

<vial bugs are found at the beginning of the
esting period but the most seriocus bugs are found last.

-Debuging tends to be extremely difficult during the fina’

-The reguirement for computer test time wusually ri

13}
@
o

exponentially during the final stages of testing [37].

-The system i3 telling us just what it is structured Tike,

whi-h i3 the contrast of the top-donw approach in which th
des2l-pers impose their view of how the system will be structured
IS | rfraa1
esd [S S
Actually, there are better ways of developing software prcgrams

and 3,stems; if we understand logically what we want to do,

3

that’'s, *nhe problem, we can construct a scftware progra
ution) to do it. In other words, there is a theory to guide
the activities of the software development process. The 1dea

behind this thecry i3 to work all the logical possibilities 1n

(a0
co

detai! ancd build the software program, or system

fierarchical logic fashion. This wil} yield correct scfrware

-t

systems or produc

s (84

O]

ne structured methods i~prove the guality of the Tinal product
réasze the maintenance cost. The Characteristics of the
structured methods are- top-down modeling, iteration, modularit,
flexibility, Tow development cost, less complexity

maitainability, and reliability [13], (18], [24], I[207, rce

ra=n

Ly

3.2 DEFINITIONS

A methcdology is a document set of practices and proceduras thar

Jetine the development 1ife Cycle and specifies hew Systevrs ars
tc be developed [48].

“hEn they were introduced first, structured methods wers
considsred as being a system of management ard technical

practices and procedures [27.

&

3.3 THE STRUCTURED METHODS AND THE LIFE CYCLES

4 iTructured method refers to structured analysis, structurass
Zg3°3n and structured coding. These are used 11n conjuncticrn with
a.l the life cycles (2].

Systems davelopment involves a set of activities suzh as
ana:ysis, design, implementation, and testing throghout thra 1:°¢
cylle. In this section, we will see the role of the structuraz

methods in esach phase of the software life cycle.

The Analysis Phase

.

ko]
<

o]
~

r to taking some

-t

solution

binds only the

)
s}

to some design and

necessary

"

3 the

cther word

In

communication,

the analyst-user

Ip

V&

g
i

and to

information gathered

organization of the

the

meanin

into a

st

by the araly

{non physical) model,

logical

a

b

ing tools

M

=
1=

and mod

-~
]

(21,

be built

n of a system that will

—
-
<t

[y

-
(@]
<t

(-]

[
-
(o]

1‘
(o}
[{g]

O
4+

0]
O]

9]
]

1,
[y]
9]

-

O

-

[

<L

[$)]

Q
n

+4

must be done

to determine exactly WHAT

]

[}

tages:

(U]

[9)]

)

,.(
+
.

Q
O

(]
(@)
—
[}
>

[
+7

of

1S

3

analy

an

y3tem through

49}

(€2
o)

be

;11
T

¥y

that

by both the user and

review

o~
[

ubject

5

(]

«3

0
(0]

Cu

V]
r

1‘
«
-

<[

1
4

(4]

@D

r

(S

w
)
«
£
(S8

(U]
-

1y

o~
-

3
«

.-

>

)
]
6]

4

)
[ts]

(B
4o

farrad

1))
L2
42

w

[}
tn
g

Q

n

.

—-

«

1

Phases

e

0]

(@]

-
[QV]
)

[

)
«
£

[{}}

[34]

o}
b
o

T
[

a)
"

[

3¥)

2]
(o]
<t

()

r

)

w ot

-
)
(9]
()

ra
<t
(Y]

-

[

|33}
)

o

)
)

1
4+

)
v
1]
)
(D]

{1

I
m

o)

()
4ol
)
‘NJ
)

1]
-
o
N
-—

3
&
(]

£
42

oy

]

4
)

)
[}

I

$
44

oy

)

- -

o

L]

9

4+

(]
42

(o]

Current physicai HOM the current

mode | system is impiemented?
Current logical WHAT the current
nodel system accomplishes?

Current sy

proble

sten
ns

Requiremen
new sustem

ts for

Tigure 3.1(b): Analysis phase [24], sec 1.8.3, p 13

Voed nmes i cnim)
(Ivitervieus)

wHRT the current
systen 15 required
to acconplish?

Required logical
node!

Sustem specification
(To design phase}

)
ry

i3
€
—+
]
+
O
+
v
—~a

'3 phase include the output of the analysis phase

(specificaticn documents, such as DFDs 3, experience, 3ystem
rncwiadge, and the method{(s) to be applied to arrive at a

C achieve high guality of desigrn, the s30ftware desigrer m
address twoe important related issues. first, a careful definition
of the mocdular structure of the software system under develcpment

must be provided, identify the modules and their relationships.

Secend, appropriate criteria must be chosen for decompgossing a

1]
-3
)
-r
O
=3
O
(o}
-
®
()]
m

37.

“e recall that we distinguish the work of analysis wh-

[0

dgefining "WHAT" the system will do from the work of des

1SN wa T o

3 defining "HCOW" it will do it, recognizing that analysts of*

W

30 design anc designers often dc analysis.
There arse two design phases, the system design phase and *rs
deta-lzd design phase

3.3.2.1 The System Design Phase

s phase, alsc referred to as 1lcgical design, preliminary
cesign, architectural design, and high level! design, crzates a
13n which will satisfy what was specified in the analysia

chase. I+ resu’ts in the identification of modules an

(08

Srresponding zentrol structure [2]. This design, however, does

not sactude Tmplementation considerations, constraints,
programming language features etc.
3.3.2.2 The Detailed Design Phase

'3 stage, alsc referred tc as physical design, produces the

(@]
(6]

stage and

logical

the

3~
etc

and hardware,

e

n
«
3
m

The

3

hm

IR BN
. .
T

=

4=

o

-

4

Q
4o

0

F-

)
(o]

1)

the deta-

resulted from

or solution mcdel

Implementat ion Phase

~

cdefined

algcrithms

M
m
«1
4o
(5]

[}

language pro

level

high

a

~—

4]
oy
a

[ha}

ware

o)

words

other

(1))

3
b

(3]
@D

[

flo

nformaticn

-
i

The

&=

o
wn
<)

4+

Y
9]

9]
]

O

4

)]
)]
(4]

Q

Q
0
1]
4+
3
O
[¢]
<
ul
IAN
|

Code

£ !
o
+
(]
™~
9]
.
. -
| @
; &
|2 b
I Qo I
A 1S
-
|
\——
N
|
|
|
|
I
4o —
I @©
r~ v
S Q
(9] =
[§3]
3 .
-- (@)
£ e
'
: 3
Y] ~-
4 O
) [0D)]
7 .
)

3.3.4 Testing Phases

)

40

at

ends

process

develcpment

L
0]

)

not the

is

Unfortunately this

+ o
CionN.,

ta

lemen

(03

.

4+
o

Q
€

cugs.

zt the ©

orre

ed a testing process to ¢

‘e

)

we

erefcre,

1]

e
)

!

[QV]

O]

te

prcgram

developed,

the

-4
L

rearly wh

~ 1
(O

stating

now chne

ard

ana

means of

a

L]
(D]
Lo

~M
1
[)

(6]
®
)
o
(8¢}

enh

@
4o

O]

(1]

1]

)

o~

"

©
(O}

]
Q)

be based on

~
9

P
1

shou

W
A2
40

we

42
Q

4

o

shou'd help

u
(gs]

oe regeatable, that'’s, repeating the same experiment

Sy supplying the same input data to the same program, procduces
the same cutput. If the cutput is different just once, the system
i3 n¢ct correct

3h_..73 te accurate: this will increase the reliability of the

The structured testing process has generally three phases, and
trese are discussed in the following sections.
3.3.4.1 Unit Testing Phase

—a
—t

This phase i3 also called module testing and functiona

(&)

uring this phase, each individual module is tested ir crder s

(@)
O
)
-
.J

it cehaves accordirt to its specification defined during

“nhe detailed design phase and errcrs, if any, are corrected 127,
=)

3.2.4.2 Integration Testing Phase

This phase i3 also referred to as string testing and computer
softwars component (CSC) testing [15]. This chase interconnects
3¢%3 of the previously tested modules to ensure that the sets or
s.23y351ems behave as well as they did as independently testad

"23.'23 and according to their specification defined during the

2ot eEm Zestgn phase. The integrated sets of modules shou'd
]

o €3gcrd to a ccmponent or subsystem in the design tree defined

during =2 preliminary design stage of the design phase [z1, =1,

3.3.4.3 System Testing Phase

This phase checks that the entire or fully integrated socftwars

36

n
[
e

L&
(]

(]
(]

1]
()}
8]

L
£

n
v

m

)
)]
Al
4

O

4

)
)

44

-

N
[tH)
42

]

(]
u)
]

r~

)
n

Q
O
-

[@F

(9]
<

4
€]

4+

‘"
«1
4o
)

Y -
«)

(9]

<
6]

L
3]

1]

L

(D]

tem with real

3y3

[#)]
o
4+
o

44

s}

[14]

1S

4}]
£
4

—y
u
[

[l
cY

[

m
jou

4+
o

.‘_
«
(@3

—

oy

)
ot

L]
(]
4+
0
')
(U]

-

v

fol

O
Fo)

1]

tn

e
o
)

4

3
4
@
12

consideration.

under

R}
)

£Z
Fw]

)
)
(W)
[}

()

«1
{1
v
[{)
3]
W -

..,

W
K
42

(@]
(O]
-
)
A0
£
+-

42

)

o
i)
o
)
(]
3]

Y]
«

M

1‘
«a
-

Q

Y
Y-
O

aintenance Phase

v

[~
~

-
~J

o]
\)

(&2

Y
O

')
O

4o
R

A
€
u)
(]

=
[
o]

(W)

M
4

L2
Fe

--

n
[

4

[
1)

o
L]

121

«3

o

(@]

[

r
u)
-

LoJ

~

eb]

-

[
)

aQ
-—

(@]

[

~

(&N |

s

W
0

IVl
[{4]

i
]

N
3

Q

4
2
4

(]
(]
[QV]

[}

(]

-

41
A

5]

[§]

4
o
D]
)

on

)
Y]
£

)

£
44

4
1]
O
Q

3]

£
b-

O
W
4
)
[$)]
4
(M)
O

)

)

-
<@
<d

[o)

[13}

[
D]

)

i
3

<)
15}

)

4+

em develcpmen

ot

3y

the

)
T

3}

4

There

a
4o
(4%

T3

rly commun

lea

c

)]

44

)

(n
t=
.
»

FW]

o
[§e]
IS
4

)
(@]
-
(o

nance

[

- -

[0}

{4}

(5}
3

O
Iy

[y
[
«3

)

WL
£Z
4

)
44

4
0)
3
[{}]

4
)

-

42

(6]
18]
«f

(]
)

o8]

o8}

(@8

Q.
Y
i®]

e

@)

t

o+

7]

<

48]

2
=

~1

o+

)]

@)

rt

-
i

-

b

.+
L

3 environmental

C
3

changes; 18 % of maintenance

-

)

- -

[{Y]

consumes only 17 % of the maintener’s time.

remaining 5 % of the maintener’s time are al’ccatad

C

AT resat

[N

[}

Cost

Re: lafi ver

e T
8.
O -
1. s
-
5.
ot A
8.1 :

Hequirements Design Code Develapt Accep. Operation

Test Test

Figure 3.4: Relative cost to fix an erpor during
systen development (28] cec 1.3, p 7,

1

Tatntenance: it i3 the pure Correction of scf+war

-
L

(03]

[

CHAPTER FOUR

MODELLING TECHNIQUES

4.1 INTRCDUCTICN

we have 3een that the software development process consists of

crases. tach phase 1s designed to achieve a specific objec*t:v

[¢¥]

>roset of cbjectives. The achievement of these cbject:.es -

W

[0}

M

“zineered by using a set of tasks within each prase. Fach task

5 ta3ed upon the most appropriate technigue. A phase may

-+
5

rerefcre use several techniques to achieve 1ts cbjective and a

t

echnigue nay be used in different phases [24]. During the

naly313 phase, the analyst perfcocrms an investigation; that’'s

thz analyst talks to the user and constructs diagrams to record
"3 understanding of the discussiocons The diagrams will be
G.3merted with other information that the analyst has found
.3 his study. At this point, the fcllowing guestion may be
asrez: Why use diagrams ? The answer 135 that the prcblems of
CIimmunication between the users and the develcopers was the

"radeg.acy of an English narrative specification of a system. The

grams have been shown to provide an excellent and unambiguous

mears of communication between users and developers [29].

Q
(@]
-
«
@
(19}
r+
>
[¢9)
O)
oy
m
-3
o))
O
+

teristics of the diagramming technigues:

1 -Make easier the cocmmunication between the wusers and

2-Prcvide a means of defining the system boundary.

(@]
L
m
o

means of defining partitions, abstractions, and

4-Encourage the analyst to think and document in Terms oF tre

prcblem as opposed to the solution.

wn

~Allow for opposing alternatives but alert the analyst cof

ther presence.

S-Mare it easy for the analyst to mod:fy the kncwledgs
structure {[15]
The diagrams, used initially for communication, fact “irdirg,
Wote taking and discussion, evolve as the work progresses t2
£rovide the base on which the system will ba structured. They ar=

]

Suppcrted by detail in other document

—h

, but the correcteness o

w

- agrams 3 the key to successful systems. A picture trey
3ay, 13 worth a thousand words. The diagrams convey a lot of
information in a simple way [39]. Thus, modelling tools ars used
el

tofocus or important system features while de-emphasizing lass
mEcittant features,

£ 373cuss changes and corrections to the user’s needs with TowW
23t and minimal risk.

S-vaiirdatz the rcle of the analyst, as being the intermed-ate

Cetween the User and the designers and programmers [37

[

Actually there are many different methcds, and each one has 3+

(3}

41

)
3
O
3
<

ews cf the system to be developed; hence, appropriate
Ting techniques are used according to the view that is under
consideration. In fTact, there are three views of the system, the

prccess communication view, the data view, and the *time view

The modelling technique that i3 used in the process communication
view 1s the Data Flow Diagrams (DFDs) [11], [24), [27]1, [29]

41], [42]; the technigues that are used in the

98
J
rt
jo¥]
<
.
o
z
Q]
-5
@®
+
n)
48]

Ent ity Relationship Diagrams (ERDs) [2], [27], [54], [&5], (=8]
ical Data Structure (LDS), Enguiry Access Path LZAR),
Petationa’ Data Analysis (RDA), and Enquiry Process Mcde! (EDOM::

and the technigues that are used in the time view are *the Erntit,

Life H4istories (ELMs), Effect Correpondance Diagrams (ECDs), anz
‘pdate Process Mocdels (UPMs) [24], [29], [41]. Cther mocdellirg
03 suppcrting techniques are Data Dictionary (0D) [27), [427,
structure Charts [2], [27], Flowcharts [45], and Pseudoccde [22].

~3 3'ready ment:onsd abcve, a phase may use 3everal mode’ling
techn-gues to achieve its cbjective and a technigue may be Llsed

' different phases of the scoftware life cycle.

ds are spreadout throughout the world, the most popular

w

Telcd i the USA i3 Yourdon [37], whereas the Europear 3scene |

27, fragmented, MERISE method [£7) in Francs, DAFNE =~ethcod in
T3, SDM and NIAM methcds in Germany, and SSADM method in the
uhoCZ2al, (323, f[417.

The raturs of the application dictates the method and the wiew
Cr views to be used. In the light of the present work, the
Yourdcn method and the prcocess communicaticon viaw, or functionra!’

view, 3f a system i3 being used, hence the technigues that wil’

42

Ce Used are: The data fiow diagrams and data dictionaries in the
analysis phase; Structure charts, flow charts, data dictionary,

and pseudocode 1n the design phases. Hence, only these technigues

are i1ntrcduced in this chapter, and guidelines *c follow when
develcping data flow diagrams, structure charts, ard data

dicticnaries are provided in appendix A.

4.2 DATA FLOW DIAGRAMS (DFDs)

4.2.1 Definition

J>
O
o
+
N

Flow Diagram (DFD) 13 a picture cf the *flows cof

L
ol
)

RN

thrcush a system of any kind showing the external entities wh-c

o3}
3
m
U
(@]
C
3
(@]
0]
w
[@]
-3
[}
0]
0]
—~+
—
3
o]
~+
O
3
n
(e}
-

data, the proceszszes wnicH

ransform data, and the places where the data are stocred [11]

-
(@]
C

t CFD consists of graphs pictures and supporting ta2.tua’
mcdeling tool3, they show the functions that the s3ystem must
perform.

2-2FD3 concentrate ¢on the process communication view and are
.322 "7 a tcp-down fashion with each laevel being decomposed into

e =Ll
2 Js32rs and develicpers find the ncoctation easy to understand,

,
5
om
Y
V9]
Iy
i
.
)
>
~+

5 the usefulness c¢cf the diagramming technigues.

4.2.2 Notation
The Sasic building blocks for CFDs are

43

2-Prccesses

Z-Cata stores

4-Cata fliows.,
The 3ymbols used on DFDs differ from one methcd to ancther.
Figure 4.1 shows the notations used in three methods SSADM,
Yourdon, and Gane & Sarson.
4.2.3 Definitions
a-The terminator
4 terminator shows the external entities with which the s5,3*=a2m
communicates; typically, a terminator is a person, a grcup oF
pecple, or a deparitment.
5-The processes
They reprasent the various individua! functions that the 3,3tsnm
Tarroe2s out The functions transform data inputs intc data
Juiguwls.,
c-Data stores
The,; show collections of data, at rest; typically, they ars “iles
o “iTabases
d Cata Flows
Trz zZzta flows are used to describe the movement of data from
zne gpart o7 the system tc ancther part.
Trhe p2ssible and legal Zonnections betwean the DFD components
using data flows are summarized in figure 4.2.

44

SSADM YOURDON GANE & SARSON
(241, Chap. 18 {371, sec. 9.1 (381, sec. 3.1
1D WHO o o
PROCESS UHAT ;;— FUNCTION
- R.T.S LOCATION
DATH — ;
STURE i
EXTERNAL LT T «
ENTITY d A
CH A ___//
TERMINATOR -
nATA CONTROL FLOW
FLov - RS o - B
Fiqure 4.1° Symbols ueed in DFDs in SSADM, Yourdon, and Gane & Sarscn
. Terminator
Process "or External Data Store
Entity
Process YES YES 1E3
Terminator T
or External YES YES NO
Entity
Data Slture YE3 NO NG

Figure 4-2' Legal connertions between DFD compnpents

T74) chapter

14

P

r» G3

45

Actually, both the one-line and two-line data flow digrams can
be used, however the two-line DFD is more clear than the one-1line

DFD because it expresses the difference in time [24].

4.2.4 How Many Processes To Show On a DFD ?

It should be mentioned that the construction of DFDs is not a
science but an art, and that one cannot give rules to be followed
but guidelines. We recall that DFDs are used for communication
between the users and the developers, thus <c¢larity cf
communication should be ensured. In order to have good
communication document, DFD, there must be a systematic relation
between what goes in and what comes out. Hence, we have tc take
into consideration that there are 1limits on our capacity for
srocessing information; this leads software developers to the use
of the golden or magical number seven, plus or minus two. A
research work, both technical and psychological, about this
guestion is done by Miller [12]. And the guidelines to follow 1in

developing the DFDs are given in appendix A.

4.3 DATA DICTIONARY (DD)

4.3.1 Definition
A DD is a data store that describes the nature of each piece of

data used in a system [2], [30], [48].

4.3.2 Notation
A DD is a widely used technique for supplementing or documenting

the graphical models that result from system analysis and system

46

aesit1ygrt. ine
representing the

data

41 -

notation

items and elements.

suggested TOor a LU 1s capable ot

basic kind of relationships which exist between

These relationships are:

i-Concatenation.

2-Iteration.
3-Selection.
of

Cther types

definitions are:

4-Definition or

5-Options.
6-Comments.

7-Values.

information that enhance communication of

composition.

The symbols associated with the data dicticnary are presented in

figure 4.3

below.

Name Symbo] Meaning
Compocsition = is composed of, ccocnsists of
Concatenation + and
Iteration { 1 multiple cccurence of
Selection U/] select one of the alternative

choices

Cption () may or may not be present
Comment ¥ additional information
Discrete value ' " the value of this wvariable
Figure 4.3: Data Dictionary Notation [2], sec 2.2, p 31.

47

4.4 PSEUDOCODE

A supplement tool to describe the process logic is the pseudocode
presented in this section.

Pseudocode is used to describe the logic of a process. Pseudo
means similar to; thus, pseudocode is similar to the programming
code. It serves the two basic purposes: it bridges between
natural and programming language and acts as a means of
expressing thoughts about design and the definition of programs.
Superficially, it looks like a program written in a high level
language [8]. It is an alternative to structured English. When
using structured English, details such as opening and closing
files, 1initializing counters, and setting flags are often
ighored; with pseudocode, they are coded. The idea is to describe
the algorithm of the executable code in a form understood by the
programmer., Pseudocode incorporates the three structured
programming conventions: sequence, decision, and repetition [7],
rze], [45]. We will use a pseudocode borrowed from the DBASE IV
programming language [49], [58], [59] that is used in the present
work.

* Sequence

The logic is executed in a simple seguence, one block after

another. A block may consist of one or more instructions.

* Decision
IF < Condition >
< Commands >

[ELSE

48

< Commands >]

ENDIF

1f the < Condition > following IF i3 true, the subsequent
commands are executed. If < Condition > is false, the commands
in the ELSE clause are carried out. This continues until ENDIF

15 encountered.

* Repetition
DO WHILE < Condition >
< Commands >
[LOOP]
[EXIT]

ENDDO

The command statements between DO WHILE and ENDDO are repeated
while the specified condition is true. EXIT and LOCP commands

change the flow of control within the DO WHILE command.

* The CASE structure
DO CASE
CASE < Condition >

< Commands >

[CASE < Condition >
< Commands >]

[CTHERWISE
< Commands >]

ENDCASE

49

t+ e 4 SLciuvLurEu prugramming commana tnat sejects only one

course of action from a set of alternatives.

4.5 STRUCTURE CHART

4.5.1 Definition

The structure chart is the most widely recognized tool used in
structured design [2]. It is a logical model of a modular
hierarchy, showing invocation, intermodular communication, data
and control, and the location of major loops and decisions (301,
[471]. That's, it shows the binding and the coupling

characteristics of the modules [43], [47].

4.5.2 Notation
The structure chart uses the four primary symbols shown in figure
4.4 below; but other symbols are also used to describe specific

condidtions and system properties

4.5.2.1 Definitions
a—-Module
A module is a set of program statements that can be invoked by

a name [43]. Examples of modules are: function, procedure,

subroutine, etc.

b-The call

It is any mechanism that transfers control from one module to

another,

50

Symbo}l Meaning

f 1
; | Module symbol
{ |
>

or Call symbol
0 > Data couple
[>

or Control couple

X >

Figure 4.4: structure chart symbols [2], sec 9.2, p 155

c-The data couple and the control couple

Two types of information can be communicated between modules,
data and control or flags.

Data couples can be accessed both by the user and the system {(a
module or a set of modules), whereas control couples or flags are

nherent to the system and hidden to the user [2].

51

4.6 FLOWCHARTS

4
D
—

Definition

J>

owchart i3 an effective graphical representation of program

lcgic applicatle to both hardware and socftware design [38], [45].

4.6.2 Notation

Using a set of geometric standard symbols and usage conventicns,
flowlines that show the sequence and direction of information
flow, it 1is possible to describe specific operations and
procedures in a concise manner [38], [45].

The notation of the symbols and their meaning is illustrated 1in

4.6.3 Structure

The symbol configurations for three basic programming operations
that are language independent form the basis for all structural

programming; and these are: seguence, decision, and repetition.
A program logic can be expressed as combinations of these basic

patterns [28]), [45].

a-The sequence

The sequence pattern implies that the logic is executed in sim

O
[¢]

sequence, one block after another, and a block may consist cf cne

@

or more instructions [38]. This pattern is depicted in figur

A o 4
“ e oe |

52

Symbol Meaning i Explanation
f |
1 i
i 1
- i j
/ Y b Terminal point | Marks the beginning or
/ 1 1 the end of a program or
{ i progranm segment.
| |
i l
| 1
‘ !
) ‘
| | | |
! ? Process Indicates any arithmetic
& . | .
| 1 ' or data copy operation.
| |
| |
| i
|
| |
2N | 5
. ™ ! Decision f Indicates a Yes/No decision
e ,/// ; ! to be made by the progran.
~. Ve ! {
o ; }
j :
1 1
t '
| :
| i
i i
/' I Input/output] Indicates any input or
s | | output operation.
| |
! !
D ! :
D | ! , . ? .
o i ? | Subroutine [45] . Indicates any sub program.
L I |

Figure 4-5: Basic Flowcharting Symbols [38],p 358 and [45}.

53

The decision block implies IF-THEN-ELSE logic. This i3

illustrated in figure 4.6.2.

O

A condition (the diamond symbol) i3 tested. If the condition i
true, the 10gic associated with the THEN branch is executed, and
the ELSE block is skipped. If the condition is false, the ELS

logic is executed and the THEN logic is skipped [38

c—Repetition

Iin the DO WHILE pattern, shown 1in figure 4.6.3, a test is
performed at the top of the locp. If the condition tested is
true, the logic of the loop is executed, and control is returned
to the top of another test; if the condition is false, the logic

of the loop is skipped, and control i3 transferred to the block

following the DO WHILE [38].

54

Block 1

[S —

Block 2

S

Figure 4.6.1: Sequence (381

L -\\, —
L~ Falee o+ ELSE
g\\‘Condltxon“/;>—~—————f Logic

- e —_—

s |
" True |
THEN E
Logic ! i
| I
!

i

Figure 4.6.2! Decision or IF-THEN-ELSE logic (381.

4/' R
e .
- - True | THEN
<7 Condition ‘ . —_
- 3 Logic i
. g /
~
' False

Figure 4.6.3: DO WHILE logic [38].

55

CHAPTER FIVE

THE COCKTAIL APPROACH z SEDA

5.1 INTRODUCTION

Software engineering is intended to assist the development of
good quality software within budgets and timescales [1].

A major objective of software engineering is the search for
an adequate development approcach to guide the process of
developing scftware systems in order to overccme the problems
encountered by both the users and developers of the systems. The
main purpose of a methodology should be to ensure that a system
which meets the end user needs is produced.

Until now, many different 1ife cycle models, approaches and
many combinations are used, but still neither of them is ideal,
sach ocne or combination has its advantages and disadvantages. It
has been shown that it 1is possible to implement different
methodologies for different phases of the life cycle. O’'Dell
(1988), for example, considered how a structured methodology can
be combined with prototyping to aid software production [1].
Nowdays, it i3 almost evident to build throwaway prototypes

during the different development phases of the life cycle, namely

56

during the analysis phase and the design pnase. BUt 3T11i 1ne
adequate approach to software development is not yet obtained.
In the present work, we suggest a cocktail approach which
consists of the structured approach and the evolutionary
prototyping approach. This combination, actually can be named
Structured Evolutionary Development Approach, or simply SEDA. The
proposed approach will be tested by applying 1t to the
develcopment of a medical Computer Aided Learning, CAL,
application, namely computer aided medical training system, or
simply CAMTS. The application to be developed will be used in a
hospital by medical personnel, students and physicians, in order
to learn and keep track of their knowledge.
This chapter deals with the derivation of the theoretical
cocktail approach from its components; that’'s, we introduce the
component approaches and show how the cocktail approach 13
derived, then we will discuss and apply its phases and advantages
experimentally to a medical Computer Aided Learning, CAL, system

development in the next chapter.

5.2 THE STRUCTURED APPROACH

structured method refers to structured analysis, structured

1>

design and structured coding. These methods are used 1in
conjunction with all the life cycles [2]. The five main phases
or steps in the structured system life cycle are: analysis {27,
(31, [151, [241, [303, [37], [38], [39], [40], [42], design [2],
(241, (28], [29]1, [42], [43], [44]), [47] implementation (coding),

testing [3], [51, (71, (111, (211, [4s8], [47], [50], [60], and

57

maintenance [3], [20], [52], [53].
This approach is depicted in figure 5.1. The details of 1ts
phases are already discussed in chapter three, and will be seen

in chapter six which deals with the experimentation oOr

o]
p e

plication of the coktail arpproach under study 1in orcer to

[O8
@
<
44
a
)
§
)
L
)
V

or deduced from this experiment.

The structured approach has the following characteristics: top-
down strategy, iteration, modularity, flexibility, Tow
development cost, reduces complexity, maintainability, and

reliability [2], [15]1, [24], [30], [38], [47]. This doe

+
rnot mean

w

+hat the structured approach is ideal, it has its disadvantages

+
o
[«

mainly when dealing with complex systems, and these are 1is
below:

1-Requirements are often poorly understood.

o-Reguirements usually change during the development prccCess.

3-Current reguirements remain only partialily understocod until
the user (s) will have an opportunity to use a system [14].

4-The users are not fully involved during the development

£-Not enough importance i3 given to the psychological aspect.
The third point appears to condemn this approach, but prototyping

compatible with all the development phases of any 1ife cycle

W

model [1], [15].
Following are the experimental advantages and disadvantages of
the structured approach compared to the prototyping apprcach

r271:

58

g1 d ‘Z'1'7 93s '[G}] [apou a[ofia agr[weaberp-n:ycg aambiy

aJug7sa[0sq(Q

LNIWIONOHNE
aNy
JONUNILNIUN

|

——

ON1Q0D

—

1

ONI1Sdl
A LINN u

ININNY'1
1S3l 1INN

1 N9ISId
@a11vida

i

.| ONILSHL

o]

ﬁli NOTLUHIILINI

INIWAOTAq ¥
TONYL4IN0Y
WILSAS

INILSAL

ININNYTd
1S3l

NOILYHO9TINI |

KILSAS

ONINNUTd
1S3l
WILSAS

|

Ll
9153d -
41848 W

W

SISATUNY

SINIWIH [NbIY

_
_
_

59

Advantages:

1-The structured apprcach inforces design documentation, and

hence eases the tasks of future development and maintenance of

ne “ructured approach gives a wider and deeper
Jnaderstancing uT ({ne system.

3-1It is more amenable to effective and "robust” planning. The
stages of development are more visible.

4-1t allows for the selection of the most appropriate software.

Disadvantages:

1-This approach is less robust to major changes.

2-The more vague the user requirements, the more difficult this
approah is.

2-Implementation problems are not visible in advance, which,

if we are not careful, can cause timescale overrun.

5.3 THE EVOLUTIONARY PROTOTYPING APPROACH

The evolutionary approach combines the advantages of exploratory
programming, with the control required for development. It
involves developing the requirements and delivering the system
incrementally [5]. Prototyping offers several attracting
advantages such as flexibility to adapt the software system to

’

changing environmental characteristics or perceptions f user’s

O
(0]

needs [28].
Prototyping is used for exploring ideas, assesing potential

markets, estimating costs, and for establishing feasibility and

60

performance 1imits [5], [6], [14], L[27]}. There are two types ot
prototyping, the trowaway and the evolutionary, and both are
compatible with the development phases of a 1ife cycle. The role
of prototyping i3 very ir sortant in the communication between the
user and the developer; mainly for the regquirements validation
i~d completness. That 's, its role is to

1-determine the feasibility of a regquirement.

2-validate that a particular function is really necessary.

2-uncover missing requirements.

4-determine the viability of a user interface.
In other words, this ensures that the right product is being
specified and built [15].
During any development phase, the throwaway prototype should be
gquick and dirty. The most common way of developing a throwaway
prototype calls for:

1-writing a preliminary system reqguirements specification
(SRS,

2-implementing the prototype based on those reguirements,

3-achieving user experience with the prototype,

4-writing the real SRS, and then

c-developing the real product [15].
As it may be deduced, the user is at a certain extent involved
in the development process, and can be involved completely when
using the evolutionary prototyping approach. The evolutionary
prototype is different from the throwaway prototype;
particularly, it 1is not built in a dirty fashion since 1t
converges toc the final product. Thus, it must exhibit the quality

attributes through its evolution, and the development will not

61

pe particulariy rapid as comparedg with the tnrowaway prototype.
The concept of the evolutionary prototyping approach 1is the
building of an evolvable prototype to learn more about the

problem or its solution and then expanded incrementally to become

Foiiowing are ine caper:mentai: acvaniages and disadvantages of

prototyping with respect to the structured approach [27]:

Advantages:

1-The prototyping approach is shown to be more robust to sudden
and major changes and it is a demonstrable approach.

2-The prototyping approach provides a superior environment for
krnowledge elicitation through the mechanism of allowing the user
to criticise working models of the system.

3-The prototyping approach allows for greater flexibility 1in
project planning.

4-Testing 1in this approach 1is spread out throughout the

project.

Disadvantages:

1-The prototyping approach tends to narrower ana supeficial
knowledge domain.

2-Prototyping reinforces the human drive towards fast soclutions
on the screen and uses less documentation.

3-Protctyping allows for too much flexibility, which makes it

difficult to control.

62

5.4 IHE COCKIALL APPROACH

As already mentioned early, the main purpose of software
engineering which 1is 3ti11 being developed, is to create =-
adeguat- oproach to assist the development phases in order to
get the right product and the product right.

In the present work, our objective is to improve software systems
development; hence we suggest a cocktail approach which can be
ramed Structured Evolutionary Development Approach, or simply
SECA, which combines the advantages of the structured approach
and the advantages of the evolutionary prototyping approach, that
are complementary. It i3 obtained by combining the structured
apprcach with the evolutionary prototyping approach. Because of
the complementarity cf these two approaches, when combined, their
advantages are additive, and this fact annhilates their
disadvantages. The concept of this approach is the building of
an evolutionary prototype, following the structured 1ife cycle,
which will evolve iteratively and gradually to the final system.
Any 1ife cycle model consists of a set of interrelated phases;
these phases at their turn consist of tasks, and the tasks are
built with the help of appropriate modelling technigues befcre
their physical implementation. In the case study we are dealing
with, namely the computer aided medical training system, we use
the modelling techniques already discussed 1in chapter four;
typically, data flow diagrams and data dictionaries 1in the
analysis phase; structure charts, flowcharts, pseudocode, and
data dictionaries in the design phase. These techniques are used

with the heip of scftware tools such as Computer-Aided Software

63

Engineering (CASE) [61]1, [62], [63].
The cocktail approach model i3 depicted in figure 5.2 below:

From this figure, we can notice the concept of this approach,

)

mime A A =T -

that’'s, it is baszed ar *he building of a
prototype which evolves iteratively and incrementally or
gradually to the end-product.
The idea behind this concept 1is illustrated in figure 5.3. In
other words, at each iteration S;, a defined prototype P. ,
which is the next version of the system, is developed then
deployed, after obtaining experience using it with the user (s),
and according to that experience, we go back and redo the
analysis, redesign, recode, retest and redeploy. After gaining
more experience, the entire process is repeated again until the
final version or the end-product is obtained. This ensures the
creation of all the necessary documents and the incremental and
iterative development process of the product involves a large
participation of the user (s); typically, this ensures that we
are solving the right problem and the product under development
is right. In other words, the appropriate software metrics [19]
must be set early and kept 1in mind throughout the development
srccess. Theoretically, the advantages of this cocktail approach
are the combination of the advantages of its compcnents and they
are complement to each other; that’s, they are:

+_Enforcement of formal documentatiocn.

2-Deeper understanding of the system.

3-Ensures effective and robust planning and the stages of
development are more visible.

4-The development tool is chosen early in the project after

64

PROBLEM DEF., | ‘ ‘SYSTEM TEST- | © SYSTEM
b) SYSTEM
g Trac nyr rey __ REQUIREMENTS NC e eSS yDELIVERY QNDV

STuby i ION MexING - COMPLETE!wq NtENaNCE
| — SiSIEM JINTEGRATION — |
| —— DESIGN | . TESTING — |
f ‘ﬂ!—{————‘ [——— SysTEN
= DETAILED | | UNIT ' | CONPLETE
: _— DESIGN | | TESTING ——
\ — J L — i
; e r
| i 5 |
C— coome |
—_ !
Figure 5.2: Cocktail approach (SEDA)
e S 'ST—iRA S STh.iRA S ST—
Wyl | P b— = S —
_ 8D T _SD T _SD, a1
BL.DINENTE i DD Ut L TDpDE Ut
Cud st P
el e e

Figure 3! The software life cycle and Evolutionary prototypes [13]

65

understanding the domain knowledge.

c_Robustness to sudden and major changes and 1t is a
demonstrable approach.

6-Provides a superior environment for knowledge elicitation
through the mechanism of the demonstration of the working
versions of the system.

7-Allows for greater and controlable flexibility 1in project
planning.

8-Testing is spread out throughout the project development
process.

9-Ensures the progress in the development of the product.

10-Reduces the cost/benefit ratio.

11-The user is involved throughout the development process.

5.5 CONCLUSION

The major causes of problems 1in software production is the fact
that the 1initial design specifications are often incomplete
and/or inconsistent. Hence, the iterative evolutionary cocktail
approach we suggested and discussed allows, theoretically, the
control of specifications for consistency and completeness.

fter discussing the component approaches, we have 3een the

J>

cocktail approach and its advantages; at this point the following
question rises: What are the disadvantages of the approach under
study ? The answer is that they cannot be deduced theoretically
from the component approaches; the reason is that because of the
complementarity of the component approaches, the disadvantages

of each component approach are drawn in the advantages of the

66

other component approach. Hence, we hope that the number of
disadvantages is as small as possible, and we let experiments
answer the guestion.

Actually, we have seen the theoretical aspect of the suggested
approach, the next chapter deals with the experimental aspect;
typically, its application to the development of a medical CAL
application, namely, computer aided medical training system, or
simply CAMTS, that will be used in a hospital by surgery medical
personnel, students and physicians, in order to learn, review,

and self- evaluate their knowledge.

67

CHAPTER SIX

THE APPLICATION:
COMPUTER AIDED MEDICAL TRAINING
SYSTEM DEVELOPMENT BASED ON THE

COCKTAIL APPROACH (SEDA)

6.1 INTRODUCTION

The use of computers for teaching is a difficult application. The
aim in teaching is to transmit knowledge to someone who will not
be an expert in the application but will be just the opposite;
that’s, a student. The problem of encapsulating course material
and successful teaching principles and of understanding students
errors and lack of comprehension are redoutable. Some form of
infocrmation retrieval is reqguired [16].

Teaching can be analyzed into a process consisting of motive,
perception, action, and consequence. First people want something,
thern they notice something, do something, and finally get
something [64]. But, can teachers predict or estimate the
responses of their pupils ? The accuracy depends on the teacher’s
effectiveness in teacher-pupil relationships; that'’s, teacher’s

understanding of students is correlated with their success 1in

68

getting aiong with pupi1is. In order to get a better idea of how
teachers should understand what aspects of their pupils, and how
such understanding can be improved, we need to study cognitive
aspe "3 of both teachers and pupils [64], [865].

Through the medium of graphics terminals, the data can be
displayed in ways which are informative and visually attractive.
However, there are psychological factors which influence learning
and CAL, furthermore, it is not easy to integrate the
conventional teaching schemes in a computer [16]. In tutorial
programs which teach the material through guestion-answer
sequences, the student is active in his learning. The instruction
i3 driven by the responses which the 1learner gives at the
terminal, then the computer program can evaluate these responses,
orovide feedback, and makes appropriate decisions, which suit to
his competence.

Computer Assisted Learning (CAL) systems could be viewed as an
adjunct to the conventional teaching methods because they cannot
supplant the teacher [16]. Typically, the modes of communication
from the student to the computer are limited, therefore, the

teaching steps must be relatively small, the approach directed,

Q

and the types of dialogue limited.

we recall that this application is intended to be used in a
hospital by the surgery medical perscnnel in order to attend
courses and perform tests typically, self-learning or -training
and self-testing. The concept 1is the use of task-structure
analysis and design [66] of a rule-based system [67] that is

tailored to optimize a single rule-based program in which rules

are stored as texts in different modules or files accordingly.

69

This chapter deals with the application of the cocktail approach,
SEDA, already introduced previously, to the development of a
computer aided medical training system. Hence, learning and CAL
are first introduced, then the next sections deal with the

application development process.

6.2 COMPUTER ASSISTED LEARNING (CAL)

The lack of individualized instruction is considered to be a
major cause for the decline in the quality of education. In other
words self study offers a rich potential for development and
Computer Aided Instruction or Learning (CAI or CAL) offers some
solutions to many problems of education [23], [68], [69].
However, the classical training consists of reading journals and
books, attendance at formal courses and conferences and
ciscussions with colleagues. This is useful because it keeps the
professions aware of the state of the art, but these means are
not always offered and the self study is neglected [16].

Moreover, students can use Computer Aided Instruction, Learning,
or Training (CAI, CAL, or CAT) to prepare for examinations, since

self-instructional methods allow flexibility [70].

6.2.1 Integrating Conventional Teaching and CAL Schemes

Integrating the conventional teaching scheme in a computer is not
an easy task. Thus, the respective strengths of the teacher and
machine-based programs can be considered complementary. The

teacher has good general knowledge of the topic and easy modes

70

v CUtHWb var tui Wil Lnie sLuugrit, drna tne computrter assi1sted
learning, CAL, can be a useful support when the teacher has
rneither the time nor the resources to give adequate group

teaching [16].

6.2.2 Factors Influencing Learning and CAL

There are factors which influence learning and CAL. A
considerable number of psychological and educational studies
which are of interest, and since they are related to the design
of CAL, emphasize the following points:
1-The need to provide the learner with informational feedback

and the precise conditions under which it is most effective.

2-The influence of the relational structures within the
teaching material, and its seguencing.

3-The mportance of encouraging active learner control.
However, there is no agreed overall learning scheme, but Nuthal
and Snook (1373) gave a teaching classification scheme in which
they identify the following types of teaching:

1-Behavioral control models: These models stress complete
control over student behaviour over the conditions of learning.
within CAL, the emphasis i3 on programs which are directive in

le.

3

«

(8]

-Discovery learning models: These models emphasise on the
control which the learner has in building his knowledge
structures. The teacher is not the primary source of information,
but acts to simulate and monitor the lear-2r and reveal the

inadequacies of generalisations by producing counter examples.

71

It is maintained that such methods allow the student not oniy 10
arrive at more general conclusions, but to learn about the
process of generalisation itself.

3-Rational models: These models stress the place of reasoning
and dialogue in teaching.
Two approaches have been used to extend initiative and dialogue:

1-Use of simulation modules within author language tutorial
programs.

2-Use of simulation programs which include dialogue facilities
and programming languages through which students can express and
demonstrate their solutions by designing, debugging, and running
their own computer programs [16].
Actually, *too much work on CAL systems, learning schemes,
learning strategies and their integration is done, [64], [68],
(681, {701, [71], (721, [731, (741, [7s]), (761, (771, (78], (791,
rsol, [e1l. [821, and many successful results in improving the

performance of learning using the computer are cbtained.

6.2.3 CAL and the Computer Aided Medical Training System

Medicine i3 a field which requires extensive education to attain
and maintain an acceptable level of functional competence [€8].
And medical education is intended to help physicians learn new
developments and review fundamental concepts in medicine on the
assumption that knowledge gained will automatically improve
patient care. However, the classical training consists of reading
journals and book. attendance at formal courses and conferences

and discussions with colleagues. This is useful because it keeps

72

the professions aware of the state of the art, but these means
are not always offered and the self study is neglected [68],
(76], [80]. The lack of individualized instruction is considered
to be a major cause for the decline in the gquality of education.
Incther words self study offers a rich potential for development
and Computer Aided Instruction or Learning (CAI or CAL) offers
some solutions to many problems of medical education [23], [68],
[76]. The computer increases the availability of data and allows
a flexible data organization in its memory [82]. The application
of computer technology to the teaching of medicine is attempted
with varying success over the years, but newer technology and
development tools suggest that Computer Assisted Learning, CAL,
must be introduced in Medical schools and hospitals [68], [78],
r79], [(80], [81]. Computer technology supplies knowledge and
guidance on specific problems at the time the physician 1is
studying a patient, hence diminishing reliance on memory [76].
And is now an integral part of patient care in many health care
systems. It helps in improving the effectiveness of health and

medical personnel in planning decision making and problem solving

Moreover, medical students can use Computer Aided Instruction,
Learning, or Training (CAI, CAL, or CAT) to prepare for
examinations, since self-instructional methods allow flexibility
(18], [707.

According to the previous sections, we can conclude that the
model of teaching to be incorporated in a CAL system depends on
the application domain which dictates its corresponding cognitive

aspects and nature. The application we are dealing with i3 a

73

computer aided medical training system. Taking into consideration
the non deterministic nature of the medical field and the user
needs, the behavioral model 3uits as the teaching scheme to be
built within the pesent application. In this scheme, the teacher
is the primary source of information, and he is a manager who
seeks to accomplish specific objectives as quickly and as
efficiently as possible. Thus, he controls the selection and the
arrangement of content and task so that the responses are
provoked. He controls also the feedback and other reinforcing
stimuli which are used to maintain and regulate effort, and to
shape more complex learning behaviours by building up response
chains composed of small steps. In other words, the system 13
buil in such a way to expose the students misunderstandings and
nrovide feedback to enable him to correct them. A cheat condition
is avocided, that 1is, presentation by computer ensures that
feedback is not available until the student responds. This shows
the informational role of feedback, and the benefits of control
over learning activity. A third point is that of sequencing
learning material, particularly in subject ereas which can be
arranged in a hierarchical fashion, such as the medical

application we are dealing with. Typically, decision rules are

(@

onstructed which only allow the tearner to proceed to further
sections of the material in the hierarchy. Gagne and Paradise
(1961) and Gagne and al. (1962) reported studies which showed the
importance of such decision rules. All these research work
approve for decision rules based on specific information about
the individual learner’'s knowledge and performance. For this

reason, adaptive CAL programs should in principle be efficient

74

aids to learning [18].

In behavicural control model situations, management of learning
is an important aspect of CAL programs [16]. Thus, in the medical
CAL application development which will be seen 1in the next
sections, the courses and tests are organized in a way to
maximize the benefits of the behavioral teaching model. The user-
machine communication has a high level of abstraction; this is
one of the characteristics of the programming language that’s
used, namely DBASE IV [49], [58], [589]; in other words, the users
will not be bothered by a command language training before using
the system. And 1in the case of medical applications, it 1is
identified that the user interface and the reliability guality
attributes are the most important for the software systems tc be
accepted by the medical personnel [23]. Hence, the development

i3 carried out keeping in mind mainly these metrics.

6.3 THE COMPUTER AIDED MEDICAL TRAINING SYSTEM (CAMTS)

DEVELOPMENT PROCESS

The 1intent of this system 1is for training surgery medical
personnel. Its use will be at the level of a hospital by the
surgery personnel.

The approach used to build this system as already mentioned and
discussed early, is the coktail approach that is formed by the
combination of the evolutionary prototyping approach with the
structured approach. Th-s concept, we named Structured
Evolutionary Development Approach, or simply SEDA, is depicted

by figure 6.1.

75

JONUNTLINI YW
(NY A¥INITAA
WILSAS

{ YqdAs) yoeoudde jre}ydo) :1°9 auanbij

_I. IN1000 J
ON11S3L NO1SAC
Emuuoo T LINO a3TIYL3a | I
WILSAS , -
(| oNmsa ‘ NOISAq
@ NOTLYY93LNI NALSAS
_
ONINUN NOI! Ny AQMLS
LM} _stoa ¥ 9w ey ALITIEISVRL®,
WILSAS| _1oa1 waisas 440 W319044,

76

cocktail approach in order to draw conclusions with respect to
the theoretical study that is done in the previous chapter.

As already mentioned 1in the previous section, for medical
applications, it is identified that the user interface and the
reliability quality attributes are the most important for the
software systems to be accepted by the medical personnel [22].
Hence, the development is carried out keeping in mind mainly the
following metrics: ease of use, reliability, and maintainability.
The nature of the application and the development approach,
namely functional approach using the Yourdon methodology, dictate
the appropriate notations and modelling techniques to be used;
typically, data flow diagrams, data dictionary, pseudocode,
structure charts, and flowcharts, which are already introduced
in chapter four. The application is developed in the DBASE IV
programming language environment. This later is easy to use and
has a high level of abstraction, moreover it suits to the
entreprise or hospital environment.

The development 1is based on the identification of several
prototypes of the system. Each prototype is the enhanced version
of the previous one; this allows a rapid development of the end
product. In other words, the cocktail approach that is used
allows the visibility of the attributes required by the users;
and the rapid development allows the building of a prototype that
will go through a process of successive iterations. Moreover, it
allows knowledge elicitation through the mechanism of allowing
the users to evaluate and criticise each working version of the

system.

77

A1l the phases which form the approach under study are described
by applying them to the application development, refering to

figure 6.1.

6.3.1 Problem Definition and Feasibility Study Phase

During this phase, first the problem is identified and defined,
then, the feasibility study of the software system under study

is carried out.

6.3.1.1 Problem Definition
We begin with a brief overview of the organization, (hocspital)
where the system will be used, from the point of view medical
nersonnel then introduce the problem. The output of this stage
i3 a statement objectives.
In Thenia hospital (Algeria), there is a lack of experts in
medical fields. For example in surgery one professor is nct
enough for explaining to his collegues a subject; and a professor
might not be available for different reasons. Therefore, there
is a need for building a software system that can help those
physicians, at any time, to learn and to se f-evaluate their
knowledge. The computer increases the availability of data and
allows a flexible data organization in its memory [82]. In other
words, the motivations behind this application are:

-Not many experts in the hospital.

-Very hard to get in touch with very few experts that exist 1in
Algeria.

-A large number of medical students.

78

This leads us to the following statement objectives: the
computer-aided medical learning or training system is needed 1in
the surgery service of the hospital and will be used by the
medical personnel, students and physicians, 1in order to attend
courses and self-evaluate their knowledge individually or

collectively under the control of an expert.

6.3.1.2 Feasibility Study
Now that the objectives are clarified, an investigation
concerning the feasibility of this project is conducted. The
purpose is to find the answers to the following guestions which
consist this stage:
1-Can the system be implemented using current technology 7
2-Can the system be implemented in the hospital ?
3-Do benefits outweigh costs ?
As may be noticed, each guestion deals with one aspect, and these
are technical, operational, and economic respectively.
In order to find the answers, we have first to see the extent of
the project. The only way to do this is by refining the probtem
definition, that'’'s, getting more details about the project, and

t+he only source for this purpose i5 the user. let’s see what the

During this stage all possible user’s needs are gathered through
interviews that are psychologically directed; and for the user-
developer communication means, data flow diagrams are used.
Actually, the user’s needs are depicted in figure 6.2.

An important point about this figure is that, it is a logica?

data flow diagram; it is easy to make changes and identify other

79

F

.+ INTERNE SYSTEM AUTOMATION

///;u « -\\-\ BOUND‘?RY
o ﬁr‘ N i
S RESIDENT X - |
e // { JUNIOR u\\-\ R
T ")},’,,—Lx_\
o TN RESIDENT
T SENIOR ey SELE S
SSOAtEND T —/—/

| , 7;; EUALUATING '
;4 COURSES e ———— M .0 (TESTING) | :

} AT RSSISTANT [A a1
R O NN I B A A e 3 i

i N I\ i <SS !

‘ oUWy meame P A |

| Dy Lessistae oS |

- e —— b “

| N —] | |
COURSES FILES ~ \ " PROFESSEUR C TESTS FILES |
N ; /

\\._—___—/;/ ’./.-‘

Figure 6.2! System automation boundary

80

diterrnidiives Qi tlie dUuLoindte 1on eiecd. e Sy tLein dutoilail 1uri
boundary shows all the components of the software system to be
5uilt. To be confident 1in answering any question, after few
discussions with the users, a rapid throwaway prototype was built
«w3ing a computer software tool called Automate-Plus which i3 used
to assist software developers in the analysis and design phases
[(62], [623]. This prototype allowed us to get the main frame of
the whole system; that’s, the preliminary requirements of the
system under study. And helped a 1ot in getting precisions and
mcre reguirements.

The answers to the above questions are all affirmative; that’s
the system can be built using the current technclogy, the system
can be implemented in the hospital, and benefits coutweigh costs.
In fact, this is my first experiment in such software product
development; hence, thanks are addressed to my advisor B. Mezhoud
whom guided me and approved this feasibility study which requires

gxperience.

6.3.2 Requirements Analysis Phase

At this pocint, we know that the problem can be solved, the intent
of this phase is to determine at a logical level WHAT the
croposed system must do. The 1input to this phase 13 the
documentation developed during the feasibility stage, that is the
data flow diagram. The objective of analysis is to answer the
question: WHAT must the system do ? This guestion 15 partially
answered during the feasibility study, but it is not enough.

Hence, during this phase we develop a complete functional

81

understanding of the proposed system. The intent is not to
determine how the system will work, this is the job of the design
phase, but what it must doc. In other words, during this phase,
the necessary detailed specification documents namely, data flow
diagrams, and data dictionaries are developed. The DFDs are used
tc communicate with the users and then refined after gathering
more information. Additional penetration or insight is gained by
exploding the DFD to lower levels; step by step, the logical
detailed system is more fully defined. In other words, the
logical levels of the system are identified then their
corresponding specification documents are delivered incrementally
and iteratively to the next phases of the development process.
A specification increment may be one logical level of the system,
hence, it will correspond to one prototype or one version of the

system. And since the structured approach involves top down

+
-3

strategy, the development will start from the high level, namely
the context diagram, and iteratively refined and enhanced as the
system being developed. The idea behind this strategy is to build
first the system squeleton then fill it with the flesh.

we begin with the DFD document of the feasibility study, this

document identifies a number of functions or processes that must

erformed by the computer assisted learning system. A new and

s
®
o

well structured logical system is being developed. Since the
<tail approach, formed by the structured approach and the
evolutionary prototyping approach is used, its advantages are
under consideration. Typically, the structured apprcach dictates
the top-down development [47] and iteration, while the

prototyping approach allows us to develop a prototype.

82

The exit criteria of this phase include a complete DFD and DD
documents.
Following are the data flow diagrams of the system under

development.

6.3.2.1 Data Flow Diagrams
The proposed automated system is pictured in the logical DFDs o
the following figures. The processes show the activities that

will be processed or executed by the system.

6.3.2.1.1 Context Diagram
Called also level O, represents the very high level view of the
system. It consists of only one process. The context diagram of

this system 5 shown in figure 6.3.

This diagram shows the overall 1logical system as the circle
labeled CAMTS. The terminator USER is not a part of the system
but the system user. Transactions consist of information fed into
the system or extracted from it; its details are given in the

data dictionary.

6.3.2.1.2 Level one DFD

This level is obtained from the explosion of the contex diagram.
The cata flow diagram shown in figure 6.4 represents the leve]
one fcr the logical system. It depicts two main processes labeled
GET DATA and OPEN MODULE.

The individual processes refer to the system functions, that's,

the activities it will perform. Actually, the activities depicted

83

! t ‘r/ g 8 ') \'\ f_“ﬂ.
j / ided '
'Transactions/ Computer Aide * Transactions !

USER —————— Medical Training ——————4 USER
; \ System (CANTS) / | ‘
| \, Ve 1 |
~ ya
S) e

Figure 6.3: Level 8., Context diagram

//-"—‘\A‘\ - ,.ﬁ_\
INFO /1.8 \ DAt / 28 N\ INFO | ;
; USER | { GET i OPEN i USER |
i1 INFO \ DnTﬁ///‘ C . MODULE /" INFO !
. . //
=

)
i
i

Data reference file

Figure 6.4: Level 1 DFD for the logical system
Explosion of the context diagranm.

84

by the individual processes are not basic ohes, but consist of
a set of other activities that will be shown in the next section
which deals with the explosion of the level one DFD processes to

obtain level two DFD processes.

6.3.2.1.3 Level Two DFD

The two processes shown in the level 1 DFD of figure 6.4 do not
refer to basic or elementary tasks as said; so the elementary
processes, level two in this application, are obtained by
exploding each individual process of the level 1 DFD. The goal
15 to get another level of detail of the system to understand its
overall operation. The level 2 DFD of the logical system is
depicted in figure 6.5.1 and figure 6.5.2.

Having obtained these pictures, we can consider them as oeing a
representation of the details of the system. Namely, each process
refers to an elementary system function.

The description of these different activities are dealt with in

next section which is the data dictionary.

6.3.2.2 Data Dictionary
A1l tne labels involved in the logical DFDs are defined in the

following dictionary:

CAMTS = * Abreviation of the system’s name : *
* Computer Aided Medical Training System *

User = [Intérne/Résident Junior/Résident Senior/Assistant/Docent/
Professeur]

Transactions = [Input Info/Output Info]

85

///‘/// /'/ // S N
Er 7~ s/ "
i / N
//// Er v AN
e / /et Ern
e AN v O
TR ,/"’h““: e
ST ey A2 e /L3N
/ GET ———— GET N\ TTd 0 GET e
| MODULE —g—— CHAPTER b pupr |
"\ _NAME nru:// \. N
T} T e G
LN s "o S
; ™~ - C - N
; . Chapters file 7 lLevels file %\
- -\“-____“ﬂ, o —_— \" \
Modules file T \
- |
||
DATA | |
P
.
[
/ {‘
;o
S
/'f-d_-\z. /«
—————— [Input INFO / 2.8 s)
| USER / OPEN v
_——

Output INFO o TCPULE

\-—f"/(

Figure 6.5.1: Level 2 DFD, Explosion of Get Data Process

86

———

— Input INFO 7y

.\\

USER

| -

—_
! Output INFO\ DATA ! -~
\ S :

e DATA REF FILE
- [—
C: DATA
i |
i _A\
(/'//2-. 1 \"\\
L SIeRT
7% SESION
c 7 N, L C
s [N ‘\
£ et matat.
S Ny
’(.' 2 , 2 ., // 2) 3 \\.\
! ATIEND ’ PERFORM
\ COURSE , TEST
_\“) .\\ /!/
s and e adl
. \ ' r'//" /)’ \)
o MESG ; .
, ¥ \ RESP// //)
COURSES FILES | /{ TESTS FILES
\ / /ANSW
USER

Figure 6.5.2! Level 2 DFD, Explosion of Open Module Process

87

Info = ¥ Abreviation for information *

Input Info = Module Name + Chapter Title + Level t+ Responses

Output Info = [Courses/Tests] + Messages + Answers

Get Data = ¥ Input Cata Process *

Data = Module Name + Chapter Title + Level

Module Name = [Courses Module/Tests Module]

Chapter Title = [Chirugie Générale/Chirugie Digéstive/Urolicgie/

Orthopédie]
tevel = [Facile/Moyen/Difficile]
facile = Interne + Résident Junior
Moyen = Résident Senior + Assistant
cifficile = Docent + Professeur
Data Reference File = ¥ Reference Data Lists *
set Module Name = ¥ Process which handles the Tist of the
modules *
Modules File = * The file containing the reference 133t of

modules ¥

MN = * Abreviation for Module Name ¥
Er = ¥ Abreviation for Error Message *
Chapter File = ¥ The file containing the reference 1ist of

chapters ¥

T = * Abreviation for Chapter Title *

" evels File = * The file which contains the reference 1ist ok
levels *

t = * Abreviation for Level ¥

Open Module = * Dispatcher mcdule which routes the transaction

to the appropriate or selected destinaticn

according to the input data *

88

start Session = * The process which opens the selected
destination, that’s, to attend a course or
perform a test

Attend Course = ¥ The selected course is displayed on the screen
of the computer *

CDATA = * Courses DATA =

MESG = * Abreviation for Message(s) *

RESP = * Abreviation for Responses *

ANSW = ¥ Abreviation for Answer *

Perform Test = * The chosen test s displayed on the screer of
the computer ¥

Courses Files = ¥ Data store containing the courses *

Course = Summary + Bibliographical references

Tests Files = ¥ Bank containing the tests *

Test = Q.C.M. test format + Comments

6.3.3 Design Phases

(@]
3
+

ontinuing the development, this phase describes the system
design. The objective of this phase is *to determine HOW the
systemwill be implemented. Using the data flow diagrams obtained

during the analysis phase as input, the main objective of system
design is tc develop a blueprint for the physical system.

The output of the analysis phase is a functional logical mcdel
for the proposed system. The design phase consists of translating

this functicnal model into a hierarchy of modules that will

89

MweMr o e L wWYTI @Al o vpcial tull wioLite sysieil. AU LNese moguies
will be followed by their corresponding algorithms. This <3 done

through two phases:

6.3.3.1 System Design Phase

This phase is also referred to as high level design, preliminary
design, and logical design. The objective is to plan a lcgical
model within the context of a complete system. The data flow
diagram document is transformed into a structure charts document.
Using the transform-centered hierarchy structure {[20], the
structure chart 1s derived directly from the data flow diagram
of the system. That’s, the transform-centered structure char*
system is derived from the data flow diagrams in which ali the
transactions follow the same path though all the identified
levels, and the corresponding hierarchy of modules is obtained.
Figure 6.5.1 and figure 6.6.2 below, show the modules that are
1dentified and their relationships.

A3 may be 3een, this stage answers the guestion : HOW the system
will be built ?

The details of the modules will be seen in the next section which

13 the detailed design phase.

6.3.3.2 Detailed Design Phase

-

his phase, also referred to as physical design, produces a

o

Tueprint of the system; that’s, it determines HOW, specifi

P ically,
the system should be implemented. This phase uses as input the

resuits of the previous phase, for which it applies constrasnts,

details of language and hardware, then produces the blueprint,

90

t

. DRIVE |
| MODULE |

‘—"v—_l
DATA //, //- \\ Q\ADﬁ TA
:‘/ . / ~ \\ .\d
L - _,/'A/ ~__ ™~
~ ¢ ¢

' GET DATA ! © DISPATCHER '
. ! 1

1 , ;

Figure 6.6.1: System design structure chart

- -~
-;f/‘ “ C C s \"\._
: £ \ %
;GET DatA | 'DISPATCHER

:/\ | ,
A0 v k

W~ T o <7 NP 10ata
=ty ot 2o
PR A T O
o M X v Sy
e 4 J [_ﬁ _j
(GET MODULE| (GET CHAP. | GET | | ﬁggﬁfﬁs | | ﬁgﬁﬁfz !
_NAME (| TITLE | | LEVEL ! ! : !
. T\ g cC .~ C - >\. ’ C
! l -« \, o \\)
. “ f . (/ . . \u | -{/ \J
: ‘ 'ATTEND . | ATTEND | "PERFORM: 'PERFORM.
o GOPIER LBVEL coumst 1 lcoRSE 12 |1EST 1 ' EST 12
|)
. RESPONSES
) o
ANSUERS

Figure 6.6.2! Detailed design structure chart

9

or solution model. That’s, the output is a set of algorithms
developed using the flowcharting technique. The pseudocode of the
application program is given in the next section and the

flowcharts are depicted in appendix b.

6.3.3.3 System Pseudocode

Pseudocode is a tool that is used to describe the logic of a
process. It is an alternative to structured English which, when
used, ignores details such as opening and closing files,
initializing counters, and setting flags. In other words,
pseudoccde attempts to correct the shortcomings of the structured
Englis

For the present application, we use a pseudocode borrowed from
the DBASE IV programming language that is used to implement the

software under development.

Begin drive_module (Data;Course,Test)
Do get_data_module (C;Data)
Do dispatcher_module (Data;C)

End drive module

Begin get_data module (C;Data)
Do get_module_name (MN;C)
Do get_chapter_title (CT;C)
Do get level (L;C)

End get data

92

Begin get_module name (MN:;C)
Input MN
If MN correct
Continue (exit)
Else
Loop
Endif

End get module name

Begin get chapter_title (CT;C)
Input CT
If CT correct
Continue (exit)
Else
Loop
Endif
End get chapter_title
Begin get level L;C
Input L
If L correct
Continue (exit)
Else
Loop
Endif

End get level

Begin dispatcher_module (Data;Cdata,Tdata,C)
I1f Data=Cdata
Do courses module
Else (Data=Tdata)
Dc tests module
Endif

End dispatcher_module

Begin courses_module (Cdata;C)
Do case |

case Cdata=CHGNLEFC_code
Attend course CHGNLEFC

case Cdata=CHGNLEMC_code
Attend course CHGNLEMC

case Cdata=CHGNLEDC_code
Attend course CHGNLEDC

case Cdata=CHDIGFC_code
Attend course CHDIGFC

case Cdata=CHDIGMC_code
Attend course CHDIGMC

case Cdata=CHDIGDC_code
Attend course CHDIGDC

case Cdata=UROLOGFC_code
Attend course UROLOGFC

case Cdata=UROLOGMC_code
Attend course URCLOGMC

case Cdata=UROLOGDC_code

Attend course UROLOGDC

94

Ccdse vaata=unitnurre_codae
Attend course ORTHOPFC
case Cdata=0ORTHOPMC code
Attend course ORTHOPMC
case Cdata=0ORTHOPDC code
Attend course ORTHOPDC
Endcase

End courses _module

Begin tests module (Tdata;C)
Do case

case Tdata=CHGNLEFT_ code
Perform test CHGNLEFT

case Tdata=CHGNLEMT_code
Perform test CHGNLEMT

case Tdata=CHGNLEDT code
Perform test CHGNLEDT

case Tdata=CHDIGFT code
Perform test CHDIGFT

case Tdata=CHDIGMT_code
Perform test CHDIGMT

case Tdata=CHDIGDT code
Perform test CHDIGDT

case Tdata=UROLOGFT_code
Perform test URCLOGFT

case Tdata=UROLOGMT code
Perform test UROLOGMT

case Tdata=UROLOGDT code

95

Perform test UROLOGDT
case Tdata=ORTHOPFT code

Perform test ORTHOPFT
case Tdata=ORTHOPMT code

Perform test ORTHOPMT
case Tdata=ORTHOPDT code

Perform test ORTHOPD
Endcase

End

c+

ests module

The next secticn is a Data Dictionary of the new labels that are

introduced throughout the design phases.

6.3.3.4 Data Dictionary
The names of the modules and their meanings and the data couples

are given in this section.

Drive Module = * The module which contains the main program *
Get Data Module = * Input Data Module : MN + CT + L *

Get Module Name Module = * Input MN *

~+

et Chapter Title Module = * Input CT =

W

et Level Module = ¥ Input L *

[%9)

@)

ispatcher Module = ¥ On the basis of the input DATA, it routes
the transaction to the preselected
destination

Courses Module = * This module opens the selected course file *

Attend Course Module = * Elementary module which contains the

contents of the course *

96

* The present system contains 12 courses *
Tests Module = * This module opens the selected test file *
Perform Test Module = ¥ Emementary test module which contains the
content of the test *

* The present system contains 12 tests *

CHGNLEFC = * Abbreviation for ’ Cours de Chirugie Générale,
Niveau Facile 7 *

CHGNLEMC = * Abbreviation for ' Cours de Chirugie Générale,
Niveau Moyen ' *

CHGNLEDC = * Abbreviation for ' Cours de Chirugie Générale,
Niveau Difficile ' *

CHDIGFC = * Abbreviation for ' Cours de Chirugie Digéstive,
Niveau Facile ’ *

AHDIGMC = * Abbreviation for ' Cours de Chirugie Digéstive,
Niveau Moyen ’ ¥

CHDIGDC = * Abbreviation for ' Cours de Chirugie Digéstive,
Niveau Difficile 7 *

UROLOGFC = * Abbreviation for ’ Cours d’Urologie, Niveau

Facile ' *

UROCLOGMC = * Abbreviation for ’ Cours d’'Urologie, Niveau

v

Moyen ’ ¥

URCLOGDC = * Abbreviation for ' Cours d’Urologie, Niveau
Difficile > *

ORTHOPFC = * Abbreviation for ’ Cours d’Orthopédie, Niveau
Facile 7 *

ORTHOPMC = ¥ Abbreviation for ’ Cours d’Orthopédie, Niveau
Moyen ' ¢

ORTHOPDC = * Abbreviation for ' Cours d’Orthopédie, Niveau

97

Difficile ' *

CHGNLEFT = * Abbreviation for ' Test de Chirugie Générale, Niveau
Facile ' *

CHGNLEMT = * Abb--viation for ' Test de Chirugie Générale, Niveau
Moyen '*

CHGNLEDT = * Abbrevaition for ’ Test de Chirugie Générale, Niveau

Difficile ’ ¥
CHDIGFT = * Abbreviation for ’ Test de Chirugie Digéstive, Niveau
Facile ’
CHDIGMT = * Abbreviation for ’ Test de Chirugie Digéstive, Niveau
Moyen ' ¥
CHDIGDT = * Abbreviation for ’ Test de Chirugie Digéstive, Nveau

Difficile * *

JROLOGFT = * Abbreviation for ' Test d’Urologie, Niveau
Facile ’ ¢
URCLOGMT = * Abbreviation for ' Test d’Urologie, Niveau

Moyen ' *
UROLGDT = * Abbreviation for ’ Test d’Urologie, Niveau

Difficile ' ¥

ORTHOPFT = * Abbreviation for ’ Test d’Orthopédie, Niveau
Facile ' *

ORTHCOPMT = * Abbreviation for ' Test d’Orthopédie, Niveau
Moyen ' *

ORTHOPDT = * Abbreviation for ’ Test d’Orthopédie, Niveau

Difficile ' *

98

6.3.4 Implementation Phase

This 1s the last phase of the development process of the
structured approach. This phase translates, in top-down fashion
[62], the algorithms developed in the design phase into a
programming language. In other words, implementation means cocding
or creation of the physical system.
T order to <create a physical system we need a software
environment or a software tool. It has been shown by [44] that
high level languages contribute to the quality and
understandability of the software under development. For the
application and the approach we are dealing with, the fourth
generation language, namely DBASE IV [49], [58], [59], which
offers a high level of abstraction, suits both the approach by
allowing a rapid development, and the application domain, that’s
it accepts a lot of data.
CBASE IV i3 a compiler language that is developed by the ASHTON-
TATE company. It is developed with the C language from which it
inherits the following characteristics: C code is small, fast,
portable, and flexible [59]. The characteristics of the DBASE IV
tanguage are:
~High speed with which software can be developed.
-High abstraction language:
-Relatively close to English.
-Easy to learn.
-Easy to use.
-Ideal to rapid prototyping [6].

-Easy creation of user interface and dialogs [6].

99

~Interactive environment [5].

-Industry standard.
The fourth generation language is perceived as relevant to the
development and producticn of application systems. A high level
language contributes in the quality of software [46].
The physical development reflects the physical iterative and
incremental implementation of each system wversion until the
completion of the system development.
If we, as humans, are perfect, the development process ends at
this point, implementation; unfortunately, this i5 not the case.
Therefore, we need a testing process to correct the bugs.
In fact in the approach we are using, testing 1is spread out
throughout the project development process, this i3 already sesn
theoretically and actually it is proved experimentally. Hence the
ollowing phases deal with tesing, they are alsoc referred toc as

validation phases.

6.3.5 Testing Phases

The scftware testing process is a critical activity of software
quaiity assurance and represents the review of specification,
design and coding when an error is detected. For the present
application, the bottom-up strategy [47] is applied and the

~1 £ F
| [

erent phases of the testing process that are performed are

6.3.5.1 Unit Testing Phase

This phase is also called module testing, black-box testing, and

100

functional testing.
During this phase each individual module is tested against its
specification derived during system design, then errors if any

are corrected.

6.3.5.2 Integration Testing Phase

During this phase, the modules belonging to the same branch of
the structure chart are interconnected to form subsystems and
tested against their corresponding branch specification, then

bugs if any are corrected.

6.3.5.3 System Testing and Decision Making Phase

Finally, the version of the system 1is interconnected or
integrated then tested against the user needs. During this phase
the software product version is deployed and validated by the
user. This means that the alpha testing process is performed for
each version o¢f the system. And i1if the system is not vyet
complete, we redo the development process for the next socftware
requirements increment that might be a level as suggested. 1In
each demonstration, the user interface and reliability of the
system version 1is evaluated by the wusers. This iterative
evclutionary process is carried out until the valid right product
i3 obtained. When the system is "complete”, we proceed with the

next phase which is described in the next section.

6.3.6 System Delivery and Maintainance Phase

This i3s3 the last phase of the cocktail approach that we named

101

structured evolutionary development approach, or simply SEDA.
Once the system is, for the present "complete” and valid, 1t is
delivered to the user. Knowing that there is no perfect system,
maintenance 1is required and begins when the system enters
productive use. Maintenance 1is mainly reguired to adapt the
system to the changes of the environment with time. The problem
is that the maintainer is rarely the author of the code; hence,
he lacks an understanding of the program [52

Maintenance is expensive, a solution to recuce this cost is to
design the system with ease of maintenance in mind. Cne key i3
functional modularization [38], [47], [52]. This i3 <cne
characteristic of the structured approach, hence of the cocktal!l
approcach, we used to develop the present product.

‘tany studies about software inspection techniques [5C]), measuring

oftware guality [51], and software complexity and maintenanc

w

costs f47), [53] are carried out by the software community 1in

-
o

Q
-
.
t

er to reduce the costs of maintenance and increase the gua
5f the software products and many succesful results are cbtaineag.
Actually, we hope that the present approach will contribute a 1ot
in daveloping high quality software projects and products, in

act, it is our purpose from the beginning.

§.4 COST/BENEFIT ANALYSIS

Tdentifying and resolving software problems early in the
development process, often in the phase in which they first
occur, has been shown to contribute significantly to the

reduction of risks and cost in software development. In other

102

words, the cost of the software maintenance depends on the phase
where the error is detected. The error is detected sooner in the
development process, the maintenance cost is smaller [30], [37],
rs3]. That’s, an error which shows up in the requirements phase
might cost one tenth of the same error when detected in the
delivery phase [30]. Therefore, the building of a logical mode!
which clearly communicates to users what the systemwill and will
not do is very important in terms of the cost of fixing errors
later on.

For the present experiment, in order to 1increase the guality
assurance, hence decreasing the costs, a continuous communication
between the developer and the users is established. Morecver,
with all the 4iterative testing and validation process and
specification documents that are offered by the approach under
experiment, we can conclude that the cost-benefit ratic is

reduced.

6.5 RESULTS

what is said for the theoretical proposed model [83], namely the
cocktail approach, i3 applied to the computer aided medical
+-aining system development. All the necessary specification
documents are developed. Actually, the results are promising;
that’s, the experiment showed that the cocktail approach or SEDA,
combines the advantages of both the structured approach and the
evolutionary prototyping approach, that 13 the two combined
approaches are complementary and when combined, then applied tc

develop a software product or project they yield a product with

103

high performance, robustness, functionalily and ease OT use, ang
ease of learning. That's, the characteristics of the approach
under study are:

t-Enforcement of formal documentation.

2-Deeper understanding of the system.

3-Ensures effective and robust ptanning and the stages of
development are more visible.

4-The development tool is chosen early in the project after

understanding the domain knowledge; typically during the
feasibility study.

5-Robusteness to sudden and major changes and it

(0]
88}

demonstrable approach.

6-Provides a superior environment for knowledge elicitation
through the mechanism of the demonstration of the working
versions of the system.

7-Allows for greater and controlable flexibility in project
clanning.

8-Testing i3 spread out throughout the project development
process.

9-Ensures the progress in the development of the product.

10-The user is involved throughout the development proccess.

11-Reduces the cost/benefit ratio.

The last point is not really experienced since the work 1s done
for the sake of research, but deductions can be drawn from the
present study and from the charcteristics of the component
approaches which consist the cocktail approach that 1is under

development.

104

CHAPTER SEVEN

CONCLUSION

Software systems development i3 not a mechanical process but a
human activity; and requires clear thinking, work, and rewcrrk to
be successful. Despite all the research work that is done during
the last three decades, the battle is not yet ceased and 1t i3
not for tomorrow. The scftware community and the software users
are still not satisfied, they are always looking for a better

+col. In order to get a better software product, we need toc use

o

etter approach for its development; but the problems change

a

r+

with *ime and time is not waiting for us, that’s, we are always

‘ate with respect to time.

*
e

b

n *he present work, it is our turn to suggest an approach. After
-cnsidering a number of objectives and problems of software
production, the software crisis and the existing paradigms. We

re su

o

gesting a cocktail approach whose components are the

«

tructured approach and the evolutionary prototyping approach.

v

This approach, namely structured evolutionary development
approach, or simply SEDA, 1is actually discussed thecretically

t+nen applied to the development of a medical CAL application,

105

namel iy computer aided medical training system, or simply CAMTS.
It 1s interactive and microcomputer-based training system
designed to teach surgery medical personnel 1in a hospital,
students and physicians. Its menu-driven structure allows the
user to learn easily and has a high level of abstraction, these
characteristics are inherited from the DBASE IV environment which
offers a very high level language and accepts a lot of data. As
may be noticed, the section 6.5 deals only with the advantages
of the approach under study. Does this mean that this approach
has no disadvantages 7 Or shall we deduce them from tne component
approaches ? The answer for the second guestion is nho, because
the disadvantages of each component approach are drawn in the
advantages of the other component approach when combined. And for
the first question, on the basis of one experience, we cannot
give a clear and complete answer. However, we can say that the
disadvantages of the proposed approach will be deduced by
applying it to the development of software products and projects
in different application domains and let the users conclude after
using the systems. The purpose of this experiment is to evaluate

the promising approach, named SEDA, to software products and

O

rcjects development. That 1is our objective 1is mainly to

ntribute in the improvement of software projects and products

O
@]

development; then tc contribute also in CAL systems develcpment
which 1s under research. We hope that such learning or CAL
systems will be developed and used in hospitals, schools, and
entreprises in order for everyone to update his knowledge and
to be aware of the state of his profession.

The product is put under acceptance testing, namely alpha testing

106

process before its final delivery, and this is done for several
times, that’s, for each version of the system. Both parts, the
developers and the users are satisfied. This does not mean that
this approach is ideal and that the developed application is free
of errors, well that’s what we want, particularly we will be
hapy. Cnly experience can tell. But still a famcus guestion 13
not yet answered: Is this approach apply for all types of
software applications ? The answer can only be obtained by
statistics, hence, we invite the software community to use this
approach in different application domains to develop software
procjects and products, then conclusions will be drawn, that’s,

gxperience in time will tell.

107

A
-
—

Lanien }
(]

w
()

[

Simons,

"Introducing software engineering”, 1987, NCCL publications.

Peters, L.
"Advanced structured analysis and design’, 1989, Prentice-

Hall International.

Ghezzi, C.; Jazayeri, M.; and Mandrioli, D.

"Fundamentals of scftware engineering”, 1931, Prentice-Hall

International.

Andricle, 8. J. and Freeman, P. A.

w
o]
—h
+
=

ware systems engineering: the case for a new

Q
[0
O
e
—
3
()
w

oft. Eng. Journal, May 1993, vol. 8, No 3,

O
—
o
%)

I
—
~J
[Go]

Sommerviltle, 1I.

"Software engineering”, 1989, Third edition, Addiscn Wesley.

108

—
~

Launn |
Y

-~
—

)

r-
(]

Pressman, R. S.
"Software engineering: a practitionner’s approach”; 1987,

second edition, McGraw-Hill International.

Alagic, S. and Arbib, M. A.
"The Design of Well-Structured and Correct Programs”, 1978,

Spring-Verglas International.

Macro, A.
"Software engineering: concepts and management’™, 1990,

Prentice-Hall International, Ltd.

Dwain, S. W.
“New techniques in software project management”, 1987, John

Willey and Son International.

Jensen, R. W. and Charles, 7. C.

"Software Engineering”, 1979, Prentice-Hall International.

Bell, D.; Morrey, I.; and Pugh, J.
"Software Engineering: A programming apprcach”,1992, Second

edition, Prentice-Hall International (UK) Ltd.

Miller, G. A.
“The magical number seven, plus or minus two: 3ome 1imits
on our capacity for processing information”, Psychol. Rev.,

1956, vol. 63, no 2, p 81-96.

109

c14]

-
—a
wm

fa—

6]

[ala]
—
~J

[

[}

(6]

(o)
Y
[So]

d

Schwartz, J. T.

“"The practical and the not-yet-practical in software

engineering” in Computing tools for scientific problem

W

solving, 1990, Academic press limited, p 23-238.
Alexander, H. and Jones, V.
"Software design and prototyping using mee too", 1990,

Prentice-Hall International.

Cavis, A. M.
"Software requirements: analysis and specificaticn”, 1992,

Prentice-Hall International

Smith, H. T. and Green, T. R. G.

"Human interaction with computers”, 19380, Acccademic Press.

Bruce, P. and Pederson, S. M.
"The scftware development project planning and management ",

1982, John Wiley and sons, International.

Wolff, J. G.

“Towards a new concept of software”, Software Engineering
Journal, January 1994, vol. 9, no 1, p 27-38.

Gilb, T.

"Socftware Metrics”, 1977, Windrop Publishers, Internaticnal.

oA
ro
[\

[

e
[AS]
w

[

~—
I
[S—

r
w
[

Glass, R. L. and Noiseux, R. A.

"Software maintenance guidebook™, 1981, Prentice-Hall,

Internaticnal.

Tarek, K. A. H.; Sengupta, K.; and Ronan, D.
"Software Project Control: An Experimental Investigation of
Judgment with Fallible Information”, IEEE Transactizns on

Software Engineering, June 1833, vol. 19, no 6, p 502-612.

Grady, R. B.
"Practical results from measuring software quality"”,

Communications of the ACM, November 1993, vol. 26, nc 2,

Shortliffe, E. H.
"Consultation systems for physicians: the role of Al
techniques”, in readings in AI, Webber, 8, L. and Nilsson,

N. J. (Editors), 1981, Tioga Publishing Co., p 223-222.

Cutts, G.

"Structured systems analysis and design methodology”, 193

co

Q
C

Paradigm publishing Ltd.

Claybrook, B. G.
“File management techniques”, 1983, John Willey and Sons,

Iinternaticna?l.

[min]

—
ry

r

(ol

~—

[a]
co

(8]

(@)

[®]

AN

-

(-

.

BUuckKie, J. K.

"Software configuration management”™, 1982, Macmillan

Education Ltd.

Hilal, ©D. K. and Soltan, H.

"To prototype or not to prototype ? That’s a guestion”
Scft. Eng. Journal, November 1392, p 388-3%82

Boehm, B. W.; Gray, T. E.; and Seewaldt, T.

"Prototyping versus Specifying: A multiproject
Experiment"”, IEEE Transactions on software engineering, May

1984, vol. SE-10, no 3, p 290-302.

Anderson, W. L. and Grocca, W. T.
"Engineering practice and codevelopment of product

prototype”, Communications of the acm, june 13993, vol.

(€]
(@)

no 4, p 49-€6.

Gane, C. and Sarson, T.
"Structured systems analysis: tcols and techniques”, 1979,

Prentice-Hall International.

w

m
]

"Application of reusable software components at the

Sof+ware reuse issues, Dec. 1983, p 135-145,

whittle, B. and Ratcliffe, M.

"Software component interface description for reuse”, Soft.

~—

~

=

~

(&)

[aia]

(@]

(@8]

(@]

[®)

[6V]

wm
()

~
(W]

(W]

[

[

Eng. Journal, Nov. 1993, wvol. 8, no 6, p 207-318.

Prieto-Diaz, R.
"Status Report: Software Reusability”, IEEE Software, May

1933, p 61-66.

Azni, M
"A model based formal specification of a medical expert
system”, 1994, Magister thesis, Advisor: Mezhoud, B.,

INELEC, Algeria.

Spivey, J. M,

“"An introduction to Z and formal specification”, Scftwar

[(}]

Engineering Journal, 139389, p 40-50.

Spivey, J. M.
"The Z notation: a reference manual”, 12083, C. A. R. Hcar

Series Editor.

Yourdon, E.
"Mcdern structured analysis’, 1989, Prentice-Hall

Internaticnal.

Longworth, G.
A user’s guide to SSADM: getting the system you want’,

1389, NCC publications.

(41]

-

(

47

)]
-

[44]

~

[}

.

N

w
—

(@)
[

DeMarco, T.
“Structured analysis and system specification”, 1978

b

Yourdon Press.

oowns, ED; Clare, P.; and Core, I.
"SSADM: Application and Context"”, 1992, Second edition,

Prentice-Hall International (UK) Ltd.

Millington, D.
“Systems analysis and design for computer applications”,

1981, Elis Horwood Ltd.

Stevens, W. P.
"Using structured design”, 1988, John Wiley and sons

International.

Wayne, S.
"Software design: concepts and methods”, 1391, Prentice-Hall

International.

Byces, B. B.
"Flowcharting: Programming, software designing, and
comoputer problem solving”, 1975, John Willey and sons,

International.

Wichmann, B. A.
"Contribution of standard programming languages to software

gquality”, Software engineering Journal, January 19394, vol.93,

r

~
~d

—J

(49]

{501

[aum}

-
w
(g8

(e

[u—

Diaz-Herrera, J. L.
“The importance of static structures in software

construction”, IEEE software, May 1993, p 75-87.

Kowal, J. A.

"Analyzing Systems”, 1988, prentice-Hall International.

Delannoy, C.

"Maitriser DBASE IV", 1983, Berti editions (Paris).

Knight, J. C. and Ann Myers, E.
"An improved inspection technique”, Communications of the

ACM, November 1993, Vol. 36, no 11, p 51-61.

Grady, R. B.
“Practical results from measuring software guality”,

Communications of the ACM, November 1993, Vol. 26, no 11,

Harrold, M. J. and Malloy, B.
"A Unified Interprocedural Program Representation for a
Maintenance Environment”, IEEE Transactions on Scoftware

Engineering, June 1933, vol. 19, no 6, p 584-593C.

Banker, R. D.; Datar, S. M.; Kemerer, ¢. F.; and Zweig, D.

"goftware complexity and maitenance costs”, Communications

115

-
.
@]

()

~d
[

(601

Polack, F.

"Integrating formal notations and system analysis: using
entity relaticnship diagrams”, Soft. Eng. Journal, Sept.
1992, vol. 7, no 5, p 363-371.

Pin-Shan Chen, Peter

“The Entity-Relationship Model: Toward a unified view of
data", ACM Transactions on database systems, March 137¢,

vol. 1, no 1, 1976,

Davis, C. G.; Jajodia, S

"Entity-Relationship approach to

p 9-3€6.

NG, P. A,

and Yeh, R. T.

software engineering’,

1983, lsevier science publisher B. V.

Bancs, D. and Malbose, G.

"MERISE PRATIQUE: Les points-clé de la méthcde”, 199G,
Troisiéme Edition, Editions Eyrolles (Paris).

DBASE IV, 1988, Ashton-Tate corporatiocn.

Lilen, H.

"DBASE IV: Le guide complet de 1’'utilisateu-", 1989,

Editions Radio (Paris).

Hordeski, M. F

“"Control system interfaces:

design and implementation using

116

[62]

[t
[®]
co

[

o
w
(@]

(W)

[66]

personnal computers”, 1992, Prentice-Hall International.

Gane, C.
"CASE: the methodologies, the products, and the future”,

1990, Prentice-Hall International.

LBMS
“"Automate-Plus release notes version 3.02, vol. 1-3°"

1387, Copyright (c) LBMS, International.

The start guide, 1987, sec. edit., vol. 2; NCC publicaticns.

Gage, N. L.

"Exploraticns in teachers’ perceptions of pupils”, in

reading in Social perception, Hans, Toch and Henry Clay,

Smith, 1968, D. Van Nostrand Company Internaticnal, p 219-
22€

Davis, W S

"Systems analysis and design: a structured approach’”, 1287,
Addison Wesley.

Pask, G

Styles and strategies of learning”, Br. J. educ. Psychcl.,

Chandrasckaran, B.; Jochnson, 7. R.; and Smith, J. W.

x

"
-
ras

-Structure Analysis for Knowledge Mcdelling’,

-

A I ARV R B I VN - N N - LIe MLV Yo LTHIVEI vy YU I . oy i 7y

p 124-136.

Czejdo, B.; Eick, C. F.; andg Taylor, M.
"Integrating Sets, Rules, and Data in Object-Criented

Envircnment”, IEEE Expert, February 1993, p 59-66.

Bahr, J. P.
"Computer—-Aided Instruction in Perinatal Education',
American journal of perinatology, April 193¢, vol. 3, no 2

p 147-150.

Irani, K. B.; Cheng, J.; Fayyad, U. M.; and Qian, 2.
"Applying Machine Learning to Semiconductor Manufacturing’,

IEEE Expert, February 1393, p 41-46.

Matheny, J. L.
"Comparison of different Approaches to pharmacological
Instruction of Medical Students”, Health Comm. Informatics,

1379, vol. 5, p 9-13.

Haton, M. C.

"L’Crdinateur pedagogique”, La recherche 246, sept. 1992,
vol., 23, p 1014-1022.
Lincoln, M., J.; Turner, C. W.; Haug, P. J.; Warner, H. R.;
Williamson, J. W.; Bouhadaddou, O.; Jessen, S. G.;

Sorenson, D.; Cundick, R. C.; and Grant, M.

"Iliad training enhances medical students: diagnostic
skills”; Journal of medical systems, 1991, vol. 15, no 1

I

p 93-110.

[73] Paly, D. W.; Dunn, W.; and Hunter, J.
"The CAL project in mathematics at the university of
Glasgow”, Int. J. Math, Educ. Sci. Technolc., 1377, vol. &

’

no 2, p 145-15¢.

[74] Pask, G; and Scott, B. C. E.
“Learning strategies and individual competence”, Int. J.
Man-machine studies, 1972, vol. 4, p 217-253.

t75] Shortliffe, E. H.; Davis, R.; Axline, S. G.; Buchanan, B.G

Green, C. C.; and Cohen, S. N.
“Computer-based consultations in clinical therapeutics:
explanation and rule acquisistion capabilities of the

MYCIN", Computers and biomedical research, 1375, vol. 8,

p 303-320.

761 Manning, P. R. and Hoagland, P. I.

]

"Continuing Medical Education: the next step”, AAMS

Congress 83 proceedings, p 339-344.

[77] Karmakar, N. L.
"Use of Information Technology in Health and Medical
Education at Australian Universities”, Interactive Learning

International, 1991, Vol. 7, p 265-266.

[78] Mansour, A. A. H.; McGregor, J.; Franklin, M.; & Poyser, J.

ra

[|

(]

-

[ama}

~4

o

co
P

[S——

—

“Intelligent Medical Multimedia-Based Tutoring Systems:
Design issues’, IEE Colloquium on ’Intelligent Decisicn

Systems and Medicine’', 1992, Digest no 143, p 101-103.

Mansour, A. A. H; Poyser, J.; McGregor, J. J.; & Franklin,
M. E.

"An intelligent tutoring system for the instruction of
medical students in technigues of general practice’”,

Computers Education, 1990, vol. 15, no 1-3, p 83-90.

Ellis, L. B. M. and Fuller, S.

"Computers in Medical Education: A cooperative approach tc
planning and implementation”, Proceedings of the 12“ arnua’
symposium of computer applications in medical care, 13988,

IEEE cat. no 88 CH6161, p 323-327.

Kunstaetter, R.

“Intelligent Physiologic modelling: An application of
knowledge based systems technology to medical education’,
Proceedings of the 10?‘h annual symposium on computer
applications in medical care, 1936, cat. no 86 CH2341-6,

p 381-393.

Martin, J. M.; dJabot, F.; and Marrel, P.
"How to organize the medical data of chronically I
patients in the computer”, Methods of Information in

Medicine, 1935, vol. 24, no 1, p 5-12.

120

co
(&)
—

Imache, R.; Mezhoud, B8.; and Maaoui, M.
"Computer aided medical training system”, To be published
in Modelling, Measurement and Contrcl, C, Vol. 48, No 4,

1335, p 51-63.

CRR, K. T.
"Structured systems development”, 1977, Yourdocn Press

International.

APPENDIX A

LINES

MODEL LING TECHNIQUES GUIDE

O
[}

’

-

cweve!

[

presented.

are

(o]

(ot}
uy

and outputs

invclved.

inputs

entities

external
scheduled

the

A.1 Guidelines For Drawing Data Flow Diagrams

4
O

(1

em and

N
Yot

Start on drawing

of paper.

information
3ystem.
sheet

which
from the
Taxe a large

S-Specify

4

-

@

with the external entity

ide

then the data flows,

inputs,

O

]
0
[

(]
"N

-

[®F

draft freehand.

4+
(]
.

-

sZ
4

[
(@]

9]

high

the

~€
A\t

least three drafts

need at

you will

that

44

O
Q
<C

«

122

ieve!l Qgata TIcw.
7-Check back the first draft

inputs and outputs.

8-Produce a clear second draft with minimum number of Crossi

data flows.

1f it has included all

-Duplicate external entities if necessary
-Duplicate data stores if necessary
-Allow data flows to cross if there is
[22], sec 2.4, p 34.
O-Agree the boundary of the system.
'0-Craw a context diagram or level 0O DFD.
11-Oraw a level 1 DFD by exploding the context diagr
12-Deccmpose down to levels 2,3, etc.
'3-Stop the deccmposition prccess at suitable points
14-Support each bottom level process with pseudocode.

A.2 Structure Charts

am.
(80]

ion, verbd
which i3

"-The symbol for a module is a rectangle.

2-Cach module must have a ltabel.

32-Module labels are composed of a transitive, or act
and an object noun.

4-Mcdules may communicate information only via CALLs,

Z-A module may not call or invoke another module
higher “n the hierarchy than it is.

€-No two modules, data couples, or control

same name,

a7

’-No data couple may have t

he same name as a control

123

COx

s

upo e

"~

the listed

llg

no alternative

couples may have the

STiNe uperaticn WNicn Takes place inh a moauie MUsT De descriped
with pseudocode.

9-A11 data couples, control couples, pseudocode, e

rt
)
3
[
w
rt
o
o

defined in the data dictionary [5], sec 9.5 p 169.

A.32 Data Dictionary

A set of conceptual standards that form a basic dictionary
consistent with the methods presented are listed in the following
guidelines:

1-A11 data and other information that comprise the analysis,
design, and ccde must be defined in the data dictionary.

2-A71 data and information that are contained 1in th

(8]

dicticnary must be used in some part of the system.

2-The information in the data dictionary should be interrnatltly
consistent, complete, nonredundant, and correct.

4-The data dictionary is intended to be the primary prciect

mation resource.

3
-t
(@]
3

5-The DD may comments regarding data the software develcper
deems necessary to understanding and using the infcrmation

ined in 1t.

@]
O
—J
r+
3
i

-The names used for data items within the DD and the names

(@]

used on the data flows must be identical.

7-The names wused for data items within pseudocode must b

[

identical to those used on the DFDs and the DD, [5] sec 3.4, p4

)
O

124

APPENDIX B

SYSTEM FLOWCHARTS

This appendix i3 a complement to the design phase of the medical
AL application, namely Computer Aided Medical Training System,
cr simply CAMTS, that is developed in chapter six. However, the

application flowchrts are given in the focllowing pages.

—
[aS)
wm

L N
 ENTER :
/ PASSWORD OR ~
S ’Q" 10 QUIT S

—_—

| UALIDATE . :
. PASSWORD ‘

1

i "NO
X

PN o

//’ " o~ ~.
7 LEGAL N0 -~ INPUT -

S ACCESS ST N
~.. e

. Ve . //
Y 7
'YES YES
READ B SR
SYSTEM - . END
INFO.

h

:
T EXECUTE |

¢ GET DATA |

i MODULE |
; __L__
5 EXECUTE DISP-

. ATCHER MODULE |
: MITH DATA

‘ ; j
UG
| CHOICE -
JONMEMS
./’K
-~ CHO

NO
~ s ‘

CE ™ ~CHOICE ™~ ~CHOICE ™ .
~_NoO .~ f ~. N0 - k

Pl S
. CONTINUE_.~ “~_ RESTART .~ QT -
~. - ~. P . =
~ 7 e
ES YES YES
i ‘
| END

Figure B.1: Main program (Driver) module flowchart

—
,/ GET CHOICE

. ON MEMU
, el

P //K'\\
" CHOICE™. ng
“._ MODULES .~
* JIODULE -~

~
i YES

,_—.7—1
. EXECUTE |

4 MODULES
__ MODULE

\—a{/
.

t
t
|
b
I
i

NO

. //\‘\
" CHOICE ™
S)
. o
\f/
|YES

™

-

/___‘Y_*\

f

\

RET!

1

’

!

"_—;I
. EXECUTE

4 CHAPTERS
' MODULE

r'~—;/_1
T EXECUTE |
| LEVELS |
. MODULE |

RETURN

Figure B.Z: Data module flowchart

-~ GET CHOICE
ON MENU ’

: 'NO
X - <
- .

L RS PO S .
.~ CHOICE \\‘\\NO\ -~ CHOICE ™ ng \ f//'CH?ICE ~

< = > = — = >
S COURSES TN MSTS 7w iy -
~.M0D.~ ~MoD,.~ A
Ny "Y v
YES YES YES
STORE COURSE | | STORE TEST | —_—
. MODULE CODE J| | MODULE CODE | f RETURN i
: ! | T

Figure B.3: Modules modue flowuchart

-—
[h]
co

" GET CHOICE
ON MENU |

i !

é o

X &
.,

TN N
7 CHOICE™. g .~ CHOICE ™.
,) P)

<. CHAPTER "~ . MODULE -
'\"&”\Q‘/"E/ - \\@’E//,
YES VES
‘! !
.—\;'\ :
' STORE CHAPTER: N

NAME CODE | | pErup

Figure B.4: Chapters module flowchart

SIPRT |

. 1‘
N }

. GET CHOICE . ?
JONMENU |
A — i

N
A il

CHAPTERS .~

_k LEUEL // \\\\ HODULE//
S 7

YES 'YES
|

. STORELEVEL : | RETURN |

' CODE g —_—
3

.~ RETURN |

Figure B.5: Levels module flowchart

W
(@]

START ?

coata - AT S mate
~o
\\\//
, 1
T READ) " READ
COURSES . TESTS
INFO. __INFO.
—_— - v
EXECUTE ~ EXECUTE
. COURSES | IESTS
. MODULE i i MODULE
|
|
RETURN |

Figure B.6: Dispatcher nodule flouchart

. START i

[—

i
t
|
)
!
!
i
!
1
i

‘,_j_.t_—?
/7 AMEND ¢
COURSE '

_______r__—-“

i t
: |
: : i

7 GET CHOICE
" ON MENU

Figure B.7. Courses module

“NO
X
,,/"- \“\\
" CHOICE ™~ _

p]

\"\-\QU I T L~ //--

v

YES

RETURN

f lowchart

START)

|

e
// PERFORM
© TEST g

!t I
] .
_—
|

|

7 GET CHOICE
/. ONMEN |

| NO
¥ v,
. // \\\ /// \-\
S _TCHOICE ™S M0 - cuolca S
~ - ~ -
ST~ Ui R
o g
YES
—_—
. RETURN

Figure B.8: Test module flowchart

Ingineerie.des.Sy=2tenss. . Electraonigue.:

SIDEMT oo AL RDULERAS, (Fr, ULS.T.H.A)

CroMe ROLCOMBE L (P, UL.OheTtfield (Uor .

FMOMERES S Me.S.ACHGUR, (Fhd, C.C - U.T.0

