
National Institute of Electricity and Electronics

INELEC - BOUMERDES

DEPARTMENT OF RESEARCH

THESIS

Presented in partial fulfilment of the requirements of the

DEGREE OF MAQISTER
In Electronic Systems Engineering

by

Rabah IMACHE

COMPUTER AIDED MEDICAL

TRAINING SYSTEM

Defended on September 19, 1994 before the jury:

President: Mr. A. BOULARAS, Professeur, USTHB.

Members: Mr. B. MEZHOUD, M. A. Master, INELEC

Mr. S. ACHOUR, PhD. C C, U T O.

Mr. H. AZOUNE, T.U. C. C, USTHB.

Registration Number: 01/1994.

AKNOWLEDGEMENTS

Iwish to express my sincere gratitude to my research advisor Mr.

Belkacem MEZHOUD lor his assistance and guidance throughout the

present work, and lor his moral support and encouragements.

I am also gratlul to Professor Mustapha MAAOUI for his

collaboration and patience during the experimental development
of the medical CAL application.

I would like also to thank Dr. Kamel HARICHE lor his

ouragements and for the research facilities necessary to the

success cf this project, he offered; all the research department

members for their moral support, and all the library members for

their kindness.

Finally, I would like to thank all INELEC students and staff who

contributed to the achievement of this work.

e

ABSTRACT

In this thesis, an approach to software projects and products is

suggested and investigated, then a medical Computer Aided

Learning, CAL, application is developed.

The approach under study is named Structured Evolutionary

Development Approach, or simply SEDA. It is a cocktail approach

which consists of two components, the evolutionary prototyping

concept, which involves developing the system in an incremental

fashion, and the structured paradigm, which follows a phased life

cycle. The choice of this approach is based on the evolutionary

process of software engineering through time. That's, software

engineering, which is the remedy to the software crisis, is the

creation of systematic approaches or paradigms and tools such as

the Waterfall approach, the evolutionary approach, the

prototyping approach, and so on. Despite all the created and

applied systematic software development approaches, the users and

developers are still not satisfied. Each developed approach has

its advantages and disadvantages.

The aim of the present work is to suggest a new approach in order

to contribute in the improvement of software products and

projects development. The idea behind this concept is to maximize

i i

the advantages while minimizing the disadvantages of the cocktail

approach. And this can be achieved by the combination of the

evolutionary prototyping paradigm with the structured methodology

which show high complementarity.

In order to check the efficiency of the proposed approach, an

experiment is conducted. This experiment consists of developing

a medical CAL application named, Computer Aided Medical Training

System, or simply CAMTS. It is interactive and microcomputer-

based training system designed to be used in a hospital by-

surgery medical personnel, physicians of all the degrees and

medical students, in order to learn, review, self-evaluate their

knowledge, and prepare examinations. This system will help the

medical staff to be aware of the state of the art of their

profession, and allow them to attain and maintain an acceptable

level of competence which will improve patient care.

i i i

ABLE OE CONTENTS

THE ORGANISATION OF THE PRESENT WORK Wii

CHAPTER 1 INTRODUCTION

CHAPTER 2 SOFTWARE ENGINEERING ..
• u

2.1 History of software engineering 5

2.2 What is Software Engineering ? q

2.3 Software Metrics ... o
O

2.4 Software Qualities g

2.5 The Software Life Cycle Models 11

2.5.1 The Slum Dunk Model 12

2.5.2 The Baroque Model 13

2.5.3 The Waterfall Model 13

2.5.4 The V-diagram Model 15

2.5.5 The Exploratory Programming Model 17

2.5.6 The Prototyping Model 17

2.5.7 The Evolutionary Model 19

2.5.S The Spiral Model 21

2.5.9 The Fourth Generation Techniques

Mode 1 21

i v

2.5.10 The System Assembly from Reusable ..

Components Model 23

2.5.11 Transformation Models 24

CHAPTER 3 STRUCTURED METHODS 26

3.1 Introduction 26

3.2 Definitions 29

3.3 The structured Methods and the Life Cycles 23

3.3.1 Analysis Phase 30

3.3.2 Design Phases 31

3.3.2.1 System Design Phase 33

3.3.2.2 Detailed Design Phase 33

3.3.3 Implementation Phase 34

3.3.4 Testing Phases 35

3.3.4.1 Unit Testing Phase 36

3.3.4.2 Integration Testing Phase ... 36

3.3.4.3 System Testing Phase 36

3.3.5 Maintenance Phase 37

CHAPTER 4 MODELLING TECHNIQUES 4C

4.1 Introduction 40

4.2 Data Flow Diagrams 43

4.3 Data Dictionary 46

4.4 Pseudocode 43

4.5 Structure Chart 50

4. 6 Flowchart s 52

L,nMKitM d Ht UUUMAIL APPROACH : SEDA 56

5.1 Introduction 56

5.2 The Structured Approach 57

5.3 The Evolutionary Approach 60

5.4 The Cocktail Approach 63

5.5 Conclusion 56

CHAPTER 6 THE APPLICATION : COMPUTER AIDED MEDICAL

TRAINING SYSTEM (CAMTS) DEVELOPMENT 68

6.1 Introduction 6

6.2 Computer Assisted Learning 70

6.2.1 Integrating Conventional Teaching and ..

CAL Schemes 70

6.2.2 Factors Influencing Learning and CAL 71

6.2.3 CAL and the Computer Aided Medical

Training System 72

6.3 CAMTS Development Process 75

6.3.1 Problem Definition and Feasibility

Study Phase 78

6.3.1.1 Problem Definition 78

6.3.1.2 Feasibility Study 73

6.3.2 Requirements Analysis Phase

6.3.2.1 Data Flow Diagrams

6.3.2.2 Data Dictionary 35

6.3.3 Design Phases 83

6.3.3.1 System Design Phase 30

6.3.3.2 Detailed Design Phase 30

6.3.3.3 System Pseudocode 32

o

O 1

o . j . j . <+ uaia Dictionary ao

5.3.4 Implementation Phase 39

6.3.5 Testing Phases 100

6.3.5.1 Unit Testing Phase 100

6.3.5.2 Integration Testing Phase ... 101

6.3.5.3 System Testing and Decision

Making Phase 101

6.3.5 System Delivery and Maintenance 101

6.4 Cost-Benefit Analysis 102

6.5 Results 103

CHAPTER 7 CONCLUSION 105

BIBLIOGRAPHY 108

APPENDIX A GUIDELINES FOR THE MODELLING TECHNIQUES ... 122

A.I Data Flow Diagrams 122

A.2 Structure Charts 123

A.3 Data Dictionary 124

APPENDIX B SYSTEM FLOWCHARTS 125

v 1 1

THE ORGANISATION OE THE PRESENT

WORK

The order of presentation in the present work is organised as

follows: first software engineering is introduced from the point

of view history, evolution, and maturing; secondly, the existing

paradigms and modelling techniques are dealt with; thirdly, the

proposed approach, namely Structured Evolutionary Development

Approach, or simply SEDA, is studied theoretically, then computer

assisted learning is introduced; finally, the proposed approach

is applied to a medical CAL application development to make a

comparison between the theoretical previsions and the

experimental results.

The fi.-st chapter deals with the birth of software engineering,

identifies the problem we are dealing with, and introduces the

solution and the application domain, namely Computer Assisted

Learning, or CAL. After considering a number of objectives and

problems of software production, the software crisis is discussed

then, software engineering is presented as a remedy to that

crisis. The remedy is the creation of a number of systematic

approaches that are introduced in chapter two. Chapter three

deals with the structured methods throughout the life cycles. The

VI i i

moaei ling techniques which are used to develop the specification

documents throughout the development phases are discussed in

chapter four. Whereas chapter five deals with the theoretical

study of the suggested cocktail approach whose components are the

structured approach and the evolutionary prototyping approach.

The first sections of chapter six deal with Computer Aided

Learning , CAL, then the approach under study, namely structured

evolutionary development approach or simply SEDA, is studied

experimentally in the remaining sections of chapter six in which

it is tested by applying it to the development of a medical CAL

application, namelly computer aided medical training system

(CAMTS). It is interactive and microcomputer-based training

system designed to teach at the level of a hospital, the surgery

medical personnel, students and physicians. And the

implementation is done using the dBASE IV programming language.

The purpose of this experiment is to evaluate the proposed

approach to software products and projects development, and

results are drawn. That is our objective is to contribute in the

improvement of software projects and products development.

Finally, a general conclusion is given in chapter seven.

i x

CHAPTER ONE

INTRODUCTION

Software engineering is the systematic approach to the

development, operation, maintenance, and retirement of software

[13, [2], [3], [4], [5], [6], [7], [8], [3], [10], [11]. It deals

with software systems for which it uses engineering principles

in the development of these systems, and is made up of both

technical and non-technical aspects [12], [13].

During the sixties, computer scientists, systems analysts,

designers, and programmers, were faced with one major problem

which •. .s their failure to develop reliable software products,

cr systems [5], One reason for the difficulty of producing

reliable software is the nature of software itself; that's,

software is abstract rather than physical in nature. Another

reason is that the computer hardware on which software products

r^r has become cheaper and more sophisticated, giving rise to

g;_eat'y increased expectations about what computer systems can

achieve [14]. That's, as the hardware costs came down due to

technological advances and the economics of mass production, the

costs of software became more and more significant in most system

development projects [9].

1

As a result, the size, capabilities and complexity of software

systems are also increasing, putting further demands on the

software developers ability to produce reliable software. A

further reason lies in the way in which software is developed.

The emphasis is on coding, with insufficient time given to

requirements analysis and design [14]. All these problems in

systems and software development resulted in a critical

situation, the so-called "Software Crisis" [1], [3], [5]. The

question that arises concerns how the software developers are to

overcome these obstacles to the production of reliable and

effective software. Software engineering is the response or

remedy; that's, software engineering is intended to assist the

development of good-quality software within budgets and

timescales. A central aim is to overcome the software crisis [1],

[11]. The process for constructing software systems contributes

a great deal to the reliability and effectiveness of the end

product [14]. There has been a growing emphasis on viewing

software engineering as dealing with more than just "coding".

Instead, the software is viewed as having an entire life cycle,

starting from conception and continuing through design,

development, deployment, and maintenance and evolution. The shift

cf emphasis away from coding has sparked the development of

methodologies and sophisticated tools to support teams involved

m the entire software life cycle [3]. Royce (in 1970) was the

first to com the phrase " The waterfall model " to characterize

the series of software engineering stages [1], [15]. It is

important, therefore, to look at how sofware production is

organized, what activities are undertaken, what priorities are

set ana wnere costs are incured [14J. In other words, a major

objective of software engineering is the search for an adequate

development approach to guide the process of developing software

products ar- projects; this will overcome the problems encountred

by both the users and developers of the products. That is, the

right development process will help produce the right product.

There are many different paradigms described in the literature

and used dun.g the evolutionary process of software engineering

development through time. These paradigms are discussed in the

next chapter.

Cur objective here is to improve software systems development.

Hence, we suggest a cocktail approach that can be named Structured

Evolutionary Development Approach, or simply SEDA, which combines

the advantages of the structured approach and the advantages of

the evolutionary prototyping approach, that are complementary,

""his proposed approach will be tested by applying it to the

development of a medical CAL application, namely computer aided

medical training system, or simply CAMTS. This software system

will be used in a hospital by the surgery medical personnel,

•~a~e",/ students and physicians of all degrees, in order to attend

:cjrses and self evaluate their knowledge in their field. Our

motivation to use a medical CAL as the experimental domain is to

contribute in this research erea. The behavioral control teaching

model [15] suits this application, hence integrated. Through the

question-answer process, a physician may eliminate the doubt by

checking his or her thoughts before taking any action when

studying a patient. This system provides the user flexibility in

fleet ing either to perform a test, or attend a course, and in

,1 •> -.^ . r~. -wing him to progress at his own speed. Moreover, this system

can be used by medical students to prepare their examination:

CHAPTER TWO

SOETWARE ENGINEERING

C . I II

The product oi s oit w a r e engineering is a program z r so

system wn ich se r ve3 a >un ction; the creation o i a so

'" eq_ "res engineering rather t nan manu iac lu r ing .

,13 ^ • • l r i <_i' , 0 j/j.Ji lun O i o o I l W a i e 6,,^ inSfii >: a do ci u i o -

.. : i,-"Dj-. 6T o^ ; en^e , o u u e I \j I i i e nidiui ma a i 1 u --.eve

x ^ ;_ ~ .- ,— — . v.^-, 1 - ~ 4. ^ , . .: 4. ,. rol r 4 -i i
.,,- •. J3, -I'llTll!^ Ci^LlvlL^ I - J , L > > J •

-~ t *~ e early days of computing, the problem of prograr

en side red as how to place a sequence of instructions

• i a . o , . „• A ' • l e a p i w y i a 111 , <. u yet mc -Jiiipl

rr -. . ' , c ^^Oiem A a o Juol u c ^ A c c; , ^ . i a ^ i ^' a : -»i' <i,, a , -4 . . ~. ^ . , .^

. _ _ - - .. „ ^ ,, 4. u a - ^ ^ - . . ~ -- ;^--~T / 0 -t rii r-iil 11 _ r p „ , c ^ „ ,. _ .

. • •^ j - C i , lib w L • I C ' >J C i O U M I O i I I V W I / C U L-^Ji j. ' ' J • I•, *J ' C — v — ' , II I w J •-

:._,.-, j mm e r a T a i •. i,.ai An, ic / o U •- w'u , U i c a, • , ^ . _> a , d, i; y , - , : -

e -:-.'t an,/ scientific ways of writing a correct program. A goc"

••"og •" am »•. as simply a program that worked, 3.r, i the way io rre w

He ^r^'-,,liM, AC-r-,— U Ado L O LCCL < L ilidri/ l HilCD .

,3 computers became cheaper and more common, me-a and mere :e:p'e

S - a ! LfcU tJ o ii;a l :'CII:. •" i •a .' icv'e

this increased the level of abstraction in the

programmer-computer interactions, in other words, HLLs made

easier the communication with the machine. It was at this time

that programming reached the status of profession, that's, you

could ask a programmer to write a program for you instead of

doing it yourself. This introduced a separation between the user

and the machine. Now the user had to specify the task in a form

different than the programming notation, the programmer then

interpreted this specification and translated it into its

corresponding equivalent set of instructions. This, sometimes

resulted in the programmer misinterpreting the user's intentions,

even in the small tasks.

At this time, the early 1960s, only few large software projects

were built by computer pionneers who were experts.

In the middle to late 1960s, large software systems were

attempted commercially, and the best documented of them was the

OS 35C operating system for the IBM 360 computer family. The

tentative to build large software sytems were the source of the

realization of the difference between the building of large

and the building of small sytems. In other words, the

are 3>ste~is developers and users were faced with v a i _• a o

c-obI ems which are: the software fails to do what users want -t

•e do, it is expensive, it cannot be transferred to anethe-

machine easily, maintenance is expensive, it is unreliable, and

it 13 often delivered late. This situation was called the

software crisis, and as a remedy to it "Software Engineering" was

invented around this time. Many solutions were suggested and

tried for improving that situation; there was no lack of ideas,

anatne Tina; concensus was that the problem of building software

systems should be approached in the same way that other complex

systems such as factories, ships, and airplanes, were built. The

point was to view the final software sytem as a complex product

and its building as an engineering job. The engineering approach

required management, organization, tools, theories,

methodologies, and techniques [3]. The solutions are not mutually-

exclusive, but they complement each other. Typically, the

following ideas are considered: all the development phases must

be carried out systematically; use of fourth generation languages

(4GLs), software development environments, and Computer Aided

Software Engineering (CASE); find out "exactly" what the users

really want, demonstrating an early version of a system to its

users using prototyping, using new programming languages, and try

to ensure that the software is free of errors. And thus was

software engineering born [3], [11].

Software engineering is intended to assist the development of

ogd quality software within budgets and timescales [1], [11],d,,-n

[17]. It deals with software systems for which it uses

engineering principles in their development, and it consists of

e technical and non technical aspects.

-: n 1 ', t !~a -nxi -i r. r~.h•. u . ^ a ; l / , l e main objective of software engineering is to

xer an adequate development approach to guide the process of

de.e'eping software systems in order to overcome the shortcuts

resulted f-om the crisis and the developer-user communication

problems [4], [13]. Many models are proposed and described in the

literature. The/ are used during the evolutionary process of

software engineering development through time; and these will be

O ^- I I U ^J L C I

2.2 WHAT IS SOFTWARE ENGINEERING ?

£>•"-•?oo- Lware engineering is the applicat ion of scientific principles

to

1-the orderly transformation of a problem into a working

software solution, and

2-the subsequent maintenance of that software until the end of

its useful life " [1], [15].

Another definition is given by [8]: "Software Engineering is the

establishement and use of sound engineering principles and good

management practice, and the evolution of applicable tods and

methods, and their use as appropriate, in order to obtain, within

known but adequate resources limitations, software that's of high

quality in an explicitly defined sense. (Marco and Buxton 1337)"

2.3 SOFTWARE METRICS

Software means general utility programs such as operating

Systems, compilers, data base management programs and the like

Software is an engineering industry with its scale and degree of

risk -nvolved. There was enough failures in software projects and

products development to motivate the software developers

community to look for new and better approaches offering high

quality software programs. In order to reach this goal we have

8

to use metrics [8], [19]. In other words, we must always measure

what we are doing, and in practical we must measure the critical

factors, not simply the easily availabe ones, such as space and

time consumption which have been the major ones so far.

Particularly, maintainability and portability are becoming the

major factors because of their high cost compared to the cheap

computer machine resources. An other important factor is

reliability which is related +o the complexity and documentation

of programs [20].

Software development may be viewed as a continuous process in

which the following types of change take place: refinement of the

specifications through several levels and corrections to the

software when bugs are detected. It is recognized that the

absence of metrics leads to lack of control over systems, and

finally to failure [13]. The software metrics are used in order

to control the software development and to yield high quality

software programs [21]. The next section deals with the major

software metrics which are the qualities of a well engineered

software.

2.4 SOFTWARE QUALITIES

Since the software production process deals with analysis,

design, and implementation, rather than manufacturing, it has to

meet some criteria to ensure the production of high quality

software in the cost-effective way. Software quality measurement s

[22] help a lot in the evaluation of products.

There are man. desirable software qualities; some of them apply

^ w ». I t L w LUC |JI 'JUUi t and to the product on process, ihe user want

UlC o •. i- i"" a i c ,-j < -^ o ^ ot to be reliable en i_ , 3nu easy to

fj ^ l au ?\TpR;ih1p r^i r c i r^,i ,-.a .v . ar.o i u i e l^j, l -< j , l^j • j^i:,e q .

• i a ,_, a ,

I a : ^ : C ,

o w ; i tta c

; u a ibutes which are more significant areP!WjC_L, me

i cent if led and a plan how to judge ther

igineered software system f -. i i .,..,_

♦ Functionality: (Modularity) it has three ma-

decomposing a complex system into pieces,

from existing modules (reusability

he v/itPin Tpl ro] rtoi

W L*' , 3 v- L

.- - •— i- ; i , 4- , , _
^"ho^ i ' - y •-<

composing it

-,' i <-* c ,• s l a n ^ i n c

ci r, ^

♦Maintainability: maintainability is divided into two separate

dualities, repairabi111y and eve 1vabi1it> . Software is repairable
- 4" ,4.

t a;lows the correction errors; it is evol • K 1 - ,47

req,

catiens that enable it to satisfy new e;

lents without undue costs [3], [5], [20].

'. of design of the system, personnel,

_ _ r 4 n 1
a o l •• -> J •

". e n t a

* Reliabi1ity: re 1 - ~ u,

lity is the probability that the so'tw

• -~ ~, ^ ~ -. 4- U ~ ,~ ,^ate as expected over a period of

s a measure of how we 11 4 4. „ , ., _| ^ „ 4-U- .-.. ._
I i I . M ' '— v I -4 C o L cia ._> e i v ! _ 6 o

peeted by the use^, particularly, it is • 8 a,i^ 1 y of the

to use the software and get

10

* Efficiency (or Performance): a software system is efficient if

it uses the computing resources (space, time, and people energy)

economically [3], [5], [20].

* User interface: a software system is user friendly if it is

tailored in such a way its users find it easy to use [3], [5].

Actually, the problem encountered by the software developers is

the nor, linear relationships that exist between these quality

attributes, that is they affect each other; for example,

prcvding a better user interface may reduce the efficiency ef

the System, and any improvement of these qualities can be

expensive. Thus, in order to attain the optimum level of the

system under development, for each type of application, the

trade-offs which are required must be made explicit early in the

development process [3], [5]. In the case of medical

appi- oat-ons, it is identified that the user interface and the

reliabi":ity' quality attributes are the most important for the

software Systems to be accepted by the medical personnel [23].

2.5 THE SOFTWARE LIFE CYCLE MODELS

A'te.- considering a number of objectives and problems in software

oeve1epment , there was a debate about the crisis in software

production. The response to these problems is the creation of a

number ef systematic approaches to the software development.

From the inception of an idea for a software system, until it is

implemented and delivered to a user, and even after that, the

system undergoes gradual development and evolution. The software

11

is said to have a life cycle composed of several phases that are:

requirements analysis, design, coding, testing, and maintenance.

Each of these phases results in the development of either a part

of the system or something associated with the system, such as

doc; ments [3], [11], [20]. The life cycle is generally defined

as follows: The life cycle may be regarded as a management and

technical tool for organizing, planning, scheduling, and

controling the activities associated with a software project

development and software maintenance efforts [1], [2], [3], [9],

1-4-71 r o * i r?c] r ? 6 1
L I ' J) L---+J) L'-.-'J; 1--UJ-

r\ it, a j w ject ive o f software engineering is the search for an

adequate development approach to guide the process of developing

software products and projects in order to overcome the problems

encountred by both the users and developers of the products.

There are many different paradigms described in the literature

and used during the evolutionary process of software engineering

since its birth. They vary according to the degree of detail

being considered and the prevailing philosophy used to interpret

the development task [1]. The next sections deal with the

existing models of the life cycles.

2.5.1 The Slum Dunk Life Cycle Model

In tnis model, we begin coding (implementation) as soon as the

project starts. The idea behind this approach is that the

developer supposes the generation of many errors from the code,

that's why he deals with coding from the beginning in order to

minimize those bugs. Therfore, the system code is generated with

12

the System requirements analysis. In this model the different

phases are confused or melted in one phase which is the coding

phase [2]. This model is depicted in figure 2.1.

2.5.2 The Baroque Life Cycle Model

The concept of this approach is a response to the lack of

discipline and structure exhibited by the Slum Dunk approach. The

concept is that each stage of the development process will be

completed before the next begins. Actually, this approach is net

as great as it sounds, beeause we may face the situation in whmch

one phase, say the analysis phase, is undeterminate; that's, the

ex-;t criteria is not reached. The fact may arise from refining

'he system requirements indefinitly, hence, neglecting the

remaining phases. This life cycle model does not work for the

simple reason that software development is not a deterministic

activity [2]. This model is shown in figure 2.2.

2.5.3 The Waterfall Life Cycle Model

model, which is the most widely known, is introduced b>

in '370 and popularized by Boehm [37]. It describes the

io process that many software developers follow, at least

me extent. This model attempts to correct the shortcomings

of the Sareque approach by recognizing an advantage in having

interactions among phases. By interaction is meant phase

overlapping with respect to time; namely, the results of one

phase are fed into the next, beginning with the analysis phase.

L ^' O C

1

Begin Coding,.. Continue Coding , Quit

•t ine

Prevent start

'igure 2.1 : The Slun Dunk life cgcle nodel tine line [51, sec 1.2, p6

,nak i/sz ;gr Inplenentation

•t ine

Fi^'tre 2.2 ' Tine F!cj associated viith the Baroque life cycle node! [?.). c-c 1 3, -7

Hnaiysis

Desi

Inpienentation

•(&•/. of flow tine—>-

•t ine

Project start

Figure 2 3: Tine line associated uith the Waterfall life ^gcle node] (71, ,Pr 14, „ R

14

REQUIREMENTS
ANALVS IS

DESIGN

CODING

TESTING

OPERATION

'itiure 2.4(a): Classical Waterfall life cgcle nodel 1371 sec. 5.2.1, p83

REQUIREMENTS

ANALVSIS

DESIGN

CODING

TESTING

OPERATION

;re 2.4(b)' Standard Waterfa!! life cycle node! 1151, sec 1.1,2, p

15

-> i L:ie w a i. e i iii.i nas

n more refined and enhanced models. Tl e t ime

-^ r~\ O

' i c l u r e .j in iigure

:.-i3 mi • H ^ 1 * /~ l i - ws almost the same steps inv

u e „ * u ,
t r,e e n g i r, e e r i n a disciplines, namely system anaa r. a 1 v.- - - ~

o > o ; ua

.^..ecion ar,u system requirements), then software design :-h;

blueprint) and finally, software implementation (construct- or

the arrows between two adjacent stages ;• ' a u ' c i. . -+ . w

;cfioral, because during any stage we may learn sc

:g us to return to the previous stage, to upd

s. As useful as this approach, it has some short:

.jc- one is that in a long term development effc-o

'ian a year before any working product or roc

U > <J U ^i ^ Inh1- fava:la or the user t w c .* ai i e a n i

r - l r j l

2.5.4 The V Diagram Life Cycle Model

ized that the watei •c ^ t n ;-,rlal -f - . 1 ~
CI i I O I ^ onurt

=• - ' y ;at exists between the earlier and later stages e

-ent Cy^ie, eesp
.' O , L a : : u C

Ie t e r m i n i •a u •- l l i e o

:n . A ,~ ^ i

:ese

a.temating way of presenting the phase; pi '^-' w ~ o o

'ere, c, shows these relations, the V-diagram nif,

gu r e

:g bo.es point to the fact that it is mapprep

t unti1 the test ing stage let ermine how your a: c a w i ,,a

16

^ - vj a L i j j

o i U c o • i ^ /<o L li c uc'v'c i GprTlCH l p h <

phases. Eacn pnase

r e o p e n d i n gi) M'

.5.5 The Exploratory Programming

_ i
i a. l -u \ y pi jy i diiiiu i ny , o U d c> c u Oil l fife . u fc a u I -^ C . d i ^ ^ ; . ' -^ a.

:ai niip i Ci'icfiid. • um l i i a, i. Aii; oc v. e; ^ i ^ _y C Jdi i u ^t o c u

'e^ned and enhanced through

,„ „ , , -. 4- ~ ,>. _„„.,,, X -

o . Ci.io <wi e v c i w K' c u iJ_r -iiio u u i i l c (j l •• .a y u ~

+ -. £ ~ r - . , , + ~ ,- ~ ,,.l„„ra _ - . ^ ^ _ * f _ ^ T 4- 4- _

- ^ ee ; •= -

iteration process

- ~< ~ •-, rt ^,~w~ „~4-^^4--.^ ,-,.-,,. I . 1 . .

^ • a^jja^ l

. r.. G The Prototyping Life Cycle Mo del

' o 3 r ar^rri 1^5 a p p r o a c

-iL ~ 3 y ej . C iTi , l . 16 ^ ; ^ t. ^ l / u : n ^ -* P i

a 1 ' j a :' 'u j_.' , ea •,

.-. r --- "*• c -

1 7

SYSTEM
SYSTEM SVSTEMntWU1ntntnlo

TpoT
iou i

TESTING —• ACCEPTANCE

ft DEPLOYMENTPLANNING

— SYSTEN
INTEGRATION

!NTrQDf,TirifJ *—
DFSJGN

rroT

MAINTENANCE

AND.

PLANNING TESTING

DETAILED

DESIGN
— UNIT TEST

— PLANNING

UNIT
TF^TINf

ENHANCEMENT

4

Oh^n lp<;rpnrp
._

CODING

figure 2.5: U-diagram life cycie nodei LIS J>sec 1.1.2, p

Deuelop
nut Iine

opacification

Build software

iystefl

NO

iyilen

a

1^+tten -

adequate'?

T)o1 i Mpp

Suituars ostein

Exploratory programing approach [51, sec i.2.2, p 12

ia

'" i. l mc v-ioc:o nave an ea y tee! of the final system before

it is built; moreover, prototyping is a powerful means of

defining and refining the system requirements and improves

communication with the end users [2], [5], [14], [15], [27],

[28]. This model is pictured in figure 2.7.

This approach extends the requirements analysis with the

intention of reducing overall life cycle costs. It is based on

the assumption that the prototype is developed from the

requirements, delivered for experiment and modified unti1 the end

user or client is satisfied with its functionality. Then a

specification is delivered from the prototype and the system ^

re-implemented in a final version following the phased life Cycle

model [5], [15].

The prototyping approach is compatible with the traditional life

cycle. A throwaway prototype can be built during any development

phase of the life cycle [15], [23].

2.5.7 The Evolutionary Development Approach

The -sploratory programming approach adopted to system

development provides the user with an incremental incomplete

system, then refining and augmenting that system as the user's

-equ-rements become apparent until the final system is obtained.

The cutput of this approach is an executable system.

The evolutionary development model combines the advantages of

exploratory programming with the control required for

development, it ivolves developing the requirements and

delivering the system incrementally. This model is depicted m

19

Requirements
gathering

Quick

design

Bu i11

Evaluate and

rtl ine

prototype

requirements

ogi neer

product

Figure 2.7: Prototyping [61, sec 1.5,3, p 23

DEFINE

SYSTEM

SPECIFY

SYSTEM

INCREMENT

BUILD

SYSTEM

INCREMENT

DELIVER

SYSTEM

INCREMENT

NO

UALIDATE

INCREMENT

•SYSTEM'-
COMPIETE

YES

COMPLETE

SYSTEM

DELIOERY

Fiqure 2.8: Evolutionary development nodel [51, sec 6.1, p 115

20

• <- j/oiciii i o u t; ; : v e r e a , in c U O C i

e,- per iment 3i,u b ro v ide suggest-ens and

'-" ^-w 11^ i u e i a l i „'n

s approach suits on!',

— ••. c , ; L o

at e r parts of the

o y o <_ 3 i >- if< c v e i
3 Willy iimso pr -jQi

elopment cost [3] , [5] .

2.5.S The Spiral Model

•en a

ooine a I

•ganised project I C t U O L ' rr "J - 4-
u > w w c t;.

^-n coding the'a'ysis, then mere design, t

project, then more , i gn UliU C: \J

•an „e pi^t^reo as a spira; , as snow.n in fi^ - -I

•- -\ •*- u

^q i,-u_„_i • ^ , _
i c a w c o approach 'ial at each chase

ogieal and ther = p -. i~ -•.,

vv o r k s , and then j w ua^i

elved at each phase [2], [22]

"St ie c* th^ mode1 -s that -

- t~ -. -.. ~

' :-.i~ a : i i.:,e ^ e ve ,o pm e n t process end t h; - < 4. ^ ,

ie Fourth Generation Techniques

~ •,.^ c» o o zi , a. , 4: - „ f .
W ci 1

4. „ _ •?

vj'_ . o ..:u •. ,a . e one

ab.es 1f t •y are developer t, • r- - ~ , 4t ,

- I- - - - - 4. „ ._ . , _ .

3 e software at a r d • 1 > = / e
• U _ 4. „ „ 1 _

-n • . 4- _ 4.

generates source

The higher *hs "* eve! t + w h - ~ h - ~ -f •*• •••- - ~ .

•

~—-r~, -J
v-—_

/

c"" ^"V
: .x",

—1

y

i /
y

Analysis Design Coding Testing

Figure 2.9: Spiral life cycle model 1381, sec 18.1.1, p 225

Requirements
gathering

Design
strategy

Implementation
using 4 G L.

Product

Figure 2 10: Fourth Generation Techniques [6], sec 15 4, o 24

22

opec a maenine, tne taster a program can be

;ar ad i gm * _ _. ._ ,_, 4: 4. , .i , - tr . w ~i i > i : j c , : t i Jl

-~£4-..,n,-a 4- ^ ~ ^ _ ^ ^
i-> , . ndi e l w a .11a^,, •!- ^ l icvei LiidL 10 Ciwoc lO Ma.L-w.iai la'.gUci^e.

t/. are development ^1M11 c n l o'jp^ur. iHvj ine 1w u

echniques '4-GT ; concept includes some or a

nonprocedural languages for database queryL '—•'W 1 O

it -. 4: 4. t.

eppo 't generation, data manipulation, screen

e'init-on, and code generation, an

apability. This paradigm is depicted in figure 2.10.

nis approach begins with the requirements gathering ste

y i_.tr i^wooluifc

1 1 l c a ' .••_•,! u

-, n -I 1_. ._(, "I „ . . _, 1 _ ,— .
"•'• 11,-), 1 1c « t 1 3 1 a .

^ ^ i 1 _ a iy be possible to move directly

3: e p te the -mp^ementat1 olcij. .iwwevei , ;_m j"y6 a f

-wco^diy lw ucvciww d design 31 -1. e d y

11 U - . . - * K o *_ 1 1 „,,,,,„ _ J, !.._.,+ ,„_. . ,
1 • , ci v cr Lit: 1 _/ 1 1 w in , ; 1 ^ 'wi t o ci w v cl. 1 l d ^ c o . >j _-•.

4. _ . |_ - 1 „ +• . • -, -. ^ _ ^ ,
- -i • i ,_i w 1 , - y 1 p w o , w o b 1 :ceptance. etc. I —'y • ~ ; h c i ^ ca <

<a ^ fcr ^ tjL , 3'i^au.co l • i S o w . /> d ; c

-D ^ • l o Tt i

u . (a. l o, caji_c:i l c o l ; 1 t y : i;fc c v o L —Mi V-> U U W L

* _ 4. u * . , _ ~ ^ _ « ^ ^ „ ^ ^. , «4. riri r.ci
1-- l : i t ^ o ci < do u p 1 'M u ot m l L ^ J j L-'J

c 10 O v , .-Syst em Assembl y From Reusable Component s

- - *_ „ u •_- . u c o -j • II " o o . cmio ea cr

UnU . . >ti O _y o >- C ; , i-.CVCiM^.i'b..^ M1

„ * _ ^ ^ J. ... ^

•*: - - -j

•y : CiIiCm . 3 U a o O ' l "A ci r d o >' i I 5111 1 o r e 0 Li\

--•c^ . - -~ - - , . ~ JZ £ „
o •_';•, <i zx • c ; c i^ o C o i t c . o a adv a, i v ci y o .

l-'ji t^.j> l -< •- J > l^^j- ii.e ,_• i !_•••-»• •em i s

-- a . aei-. c, systematic reuse. Sc ft'ware prograr

. 11 c p duvj -iijv^i iLi.mo onn,e yi ogr amm i n y /•. a s • n v 5

h p • h ,- -4 i 1n - y jo aii t m s i informal 1 y , lmG i~ 6 L 3 G

••u ^ .-4 ei fo rma nizinqg reuse *_• e c a u s e

-I • - 4. _ . . • . 1 1
JOPLty A ; i i dv p u u p l CL i

. y pay o y i i "eu3e is eendu

y l ^- .

C w. w' -J . _ — P

H -i "-» i . l y u • • _

l^LCU PyOLCIi'J.

The Transformation Model

hp1'---1 r h - ; o n c e p i 4- t- ^ ~(~ • „ "| _ _.„
cli— U C v C I _ >Ji

- £ +), _ 41 4. , . , „ _ _ _ , . _ 4. _ ^. - ,„ _| ,„ .
~ : 1 C P ^ I I »V Ci I C P y P u CT III a . I J .. ^ i

• e J, j _• I I _ (3
_.*.-__ 4-l,_4. _ 1, „11. 4-, , _ X -
plcop •. . i a l -i . a _. o a. • ' y ^ ii o . _

* - .- - - I, -

-4" . - -. .-I

^ _o. rc^ . re33 prese: _ 4. , , £ .
•d L i J. • I P

, • _ <_ p- 4- _ 1-, 1 _ „ . ,„r^„ Tk , -
o.cj c • Cwu l a^ . c pi ^ ji am. ..;,p

i <= j c i i v a l

l~ ; - - i
a. ^ ^ i o a ^ .

c w l i. rar
- 4T 4. U, _

. - U • • 1 - .- , - . .
w'Oclouicl, y, py

_, .. ' i , p i ii n -i u 3 y C

li i o wCuia • P Ci i c

i. ^3 id . .^p, s jc h as l ne speci i i cation an qua d c
r -i

r i ,~ i

24

>^'c^iioa^ioup l-'j

The simplest form of formal specification is axiomatic

specification where a system is represented as a set of functions

and each function is specified using pre- and post-cond11ions.

"^.936 renditions are predicates over the inputs and outputs of

a function. And a predicate is simply a boolean expression which

is true or false and whose variables are the parameters of the

function being specified [5].

The transformation approach has been studied for smaln programs

as a dual method for proving program correctness. Pregram

correctness proofs represent an analytic, mathematica1 1y based

approach. Transformations, instead, are a construct --.e,

mathematically based approach. The transformation process

requires skill and creativity from the programmer [3].

Tl

Forma 1

specification

PI

M

Formal transformations

T2 T3

R2 F3

P2 P3

T4

Executable

prograi*

P4

Proofs of transformation correctness

Figure 2.11. Transformational softuare deueiopnent [51, sec 7.1, p 127

25

CHAPTER THREE

STRUCTURED METHODS

3.1 INTRODUCTION

Astructured method refers to structured analysis [2], [3], [15 1,

[24], [30], [37], [33], [33], [40], [41], structured design [2],

[3]< [1'^' ^24], l3S], [41], [42], [43], [44], [45], a~d

structured ceding [7], [11], [45], [46]. They can be used m

conjunction with all the life cycle models we have discussed m

tre previous chapter [2].

The system begins with the user who has a need for technical

support in order to computerize a part of his organization, if

not the whole ent reprise; but does not know enough about the

c:mputer and its capabilities and limitations. From the ether

side of the organization are the designers and programmers who

knew enough about the computer, but do not have a clear

understanding of the user's needs. In other words, the user knows

the problem but cannot solve it; while the software developers

night be able to solve it, if they understand it. So the problem

oan be seen as being a communication gap between the users and

developers since they speak different languages and each part

with its way of conception [33].

26

Until the development of the structured systems, (analysis and

design) tools, there was no means of showing a clear picture of

the system and how its parts fit together to meet the user's

needs. The problems encountered in the analysis can be summarized

1-The analyst has difficulties in understanding the needs as

seen by the user.

2-The user community does not know enough about data processing

to know what is feasible and what is not.

3-The analyst is overwhelmed with both the detail of the system

and the technical detail of the new system.

4-The document of the details of a new system which forms a

contract between the users and the system developers is generally

not understood by the users because of its technical aspect;.

5 -1 f the specification document is written in a user's

conception point of view, it may not make a sense to the physical

developers who have to build the system [30].

The characteristics of a classical model are:

- Strong tendency toward bottom-up development of the system.

- Insistence on linear, sequential progression from one phase

4-- 4.^-, ^r>^4. r 1 7 1

f 4. _ _ 1 ~
structured methods consist of an evolving set of too an;

which are resulted from the maturing of structured

programming [7], [11], [45] and structured design [2], [15],

[33], [23], [42], [43], [44]. The underlying approach is the

building of a logical (nor, physical) model of a system, using

graphical techniques and tools which enable users, analysts, and

designers to get the " right " picture of the project and how its

parts fit together to meet the requirements or the users' needs.

However, some of the problems are always with the developers

because there 13 no way to know what is in user's mind without

being told [20]. Hence, system development involves both

technical and non-technical aspets [12], [13], [30].

The need for structured methods is evident from the many problems

encountered with the classical methods of developing software

systems; among these problems we find:

-The products do not meet the user's needs.

-High maintenance cost.

-Bottom-up approach which has the following difficulties:

-Nothing is done until it is all done.

-The most trivial bugs are found at the beginning of the

testing period but the most serious bugs are found last.

-Debuging tends to be extremely difficult during the fma1

stages of system testing.

-The requirement for computer test time usually rises

exponentially during the final stages of testing [37].

-The system is telling us just what it is structured like,

which is the contrast of the top-donw approach in which the

developers impose their view of how the system will be structured

- -, i r * -1 n
.- J . L •* ' J

»,-+•• -.11., there are better ways of developing software programs

and Systems; if we understand logically what we want to do,

that's, the problem, we can construct a software program

.solution) to do it. In other words, there is a theory to guide

the activities of the software development process. The idea

behind this theory is to work all the logical possibilities in

detail and build the software program, or system, m, a
nierarehieal logic fashion. This will yield correct software
systems or products [34].

The structured methods -Drove the quality of the final product

and decrease the maintenance cost. The characteristics of the

structured methods are: top-down mode1ing, iteration, modularity,
flexibility, low development cost, less complexity,
"aitamability, and reliability [13], [15], [24], [30], [3S],
r a ~f i

3.2 DEFINITIONS

A methodology is a document set of practices and procedi

define the development life cycle and specifies hew systems -ir,
te be developed [43].

^.en they were introduced first, structured methods wer=

considered as being a system of management and technical

practices and procedures [2].

3.3 THE STRUCTURED METHODS AND THE LIFE CYCLES

- structured method refers to structured analysis, structured

•-ies-2,n. and structured coding. These are used in cor
notion w •

a: 1 the 1ife cycles [2]

oystems development involves a set of activities

analysis, design, implementation, and testing throghout the life

cycle. In this section, we will see the role of the structured

methods in each phase of the software life cycle.

29

e*p p u e h

3.3.1 The Analysis Phase

Analysis is the study of a software problem prior to taking some

action. The idea is that analysis binds only the solution space

and sometimes it is necessary to do some design and

implementation via prototyping to determine the solution boundary

and to help the analyst-user communication. In other words the

analysis phase is the organization of the information gathered

by the analyst from the users, into a meaningful form [24]. This

underlies the building of a logical (non physical) model, using

graphical techniques and modelling tools, which represents a

description of a system that will be built [2], [3], [24], [20],

rin r-.nl r < < i
L u . j , L^^'J> L "* i J •

Analys"s is a logical process and its objective is not to sol.e

the p'-cb'efn, but to determine exactly WHAT must be done to solve

the p^opiem [2], [24], [38], [41]. Actually, the analysis phase

gees t n ^c u gh two major stages:

a -rysical model stage: This involves an examination ef the

current system through an analysis of its physical properties.

,1 model stage: This involves the at •ac(

;f the physical model.

~r.e e-it criteria of this phase is a logical model of a system

,-.:,,-rg anl the functions, data, and relations that will be

imp'emented . The graphical model of this phase is shown in figure

3.1. "•"",! s logical model is subject to review by both the user and

and the developers.

yz 6 Problem

.1 mOuei w i lIiS ahd ; y o i S

3 chase is a "• s o referred to as

or. phase. The result ~ * + *-; =

phase vv h- c h -is the ne-;t in the ^ -

T :e analysis phase is depicted graphical"!;

3.3.2 The Design Phase;

•tr ij ijOi_ ,. ^ -^ J • •*• *- *s a program ^esig

y ^

r o i

L - J

. u .- - -,

. -p * - *. +• ^
: — o C O O a I / L ^ , 1 ar.sr*

' W j c V 6 i C p i; i c;. • l w ^ o •

. ^ ; ai.^e , I s c a i U 1 i it/, noJu i ai i l / , caoc ^j

rcceecs C : d L

, „ .- ~J U-- «- I- ~, ~ ^ -, T , _ _ -. „ ^ ^ ^ _ ~ .„ ^ -. ,
* •- c ^ w_y l) : c a i i a i / o i o ^ • a o c , u >i -^ ^ •

a ^ • i y o o / o v c I

•j o , l i i c ^ o a. : ^ i l , i ; o l,' i i a o c ;o l i , c ~ •.

. ^j b
• ~ a - ~ n i

f *- V- „ ^ _ T

>-- 1 • : a ~ *- - >~ -1-kJ • u c •_< . i \ . *. .

w ./ O
r o l r -, "i

Current systen

problems

Requirements for
neu susten

(I

Current physicai
nodel

Current logical
model

Required logical
node!

Susten specification
(To design phase)

HOU the current

system is inpienented'i

WHAT the current

systen acconpiishes?

WHAT the current

systen is required

to acconplish?

'i^ure 3.1(b): Analysis phase [24], sec 1.8.3, p 12

Inputs to this phase include the output of the analysis phase

(specification documents, such as DFDs) , experience, system

knowledge, and the method(s) to be applied to arrive at a

o 1ution mode 1

To achieve high quality of design, the software designer must

address two important related issues, first, a careful definition

of the modular structure of the software system under development

must be provided, identify the modules and their relationships.

Second, appropriate criteria must be chosen for decomposing a

system into modules [3].

'.Ve reca"!! that we distinguish the work of analysis which is

defining "WHAT" the system will do from the work of desigr

is defining "HOW" it will do it, recognizing that analyst

do design and designers often do analysis.

There are two cm

deta •' "1 ed design phase:

.. i~, .-1~

esign phases, the system design phase an

3.3.2.1 The System Design Phase

This phase, also referred to as logical design, preliminary

design, architectural design, and high level design, creates a

design which will satisfy what was specified in the analysis

chase. It results in the identification of modules and

corresponding control structure [2]. This design, however, does

not include implementation considerations, constraints,

programming language features etc.

3.3.2.2 The Detailed Design Phase

itage, also referred to as physical design, produces

flQI U i uepr it of the system [2], [S] , [24], [38]. This phase

takes the results of the logical stage and applies constraints,

details of language and hardware, etc. The blueprint consists

mainly of algorithms. The information flow through this phase is

oi iOWPi

Problem model ->- Desi gn Solutlon

v ow .ui i^n

-i o . r\Design Phase Information Flow [2], sec 1

"he J U L [J U L th the input of the implement a*

)i'a s e

3.3.3 Implementation Phase

1e goa-1 of this phase is to implement the syster

re blueprint or solution model resulted from the detailed

this phase transforms the algorithms defined

g the detailed design stage into a computer-understandable

[15]. The programming languages contribute in

are quality; a high level language program represents the

•ath to software quality as the software should be

e [46]. In other words the system is ph>sica!l>

:-eated in a top-down fashion [7]. The output of this phase is

the code of the system. The information flow associated with this

pnase is presented in figure 3.3 below.

O L CI -, 3

- .— . —,_ r o l
- duaje l ^ J

tr u - c c - uu

u e o i iji

Implement System --> Executable

Code
lo 1ut ion mode 1)

Fig 3.3: Implementation phase Information Flow [2], sec 1

-3.4 Testing Phases

If humans ar6 perfect, the development process ends at this

pcmt, implementation. Unfortunately this is not the case;

therefore, we need a testing process to correct the bugs.

esting may show that the system does not exhibit the expected

performance and functionality [19], [20], [22]. Once the code o'

a-V product is developed, program testing begins. Testing is to

assure that for the defined input to the system under

--'MO i VJ C ration will produce the expected output. Testing is a

1 activity in software engineering, hence it should be

a systematic way by stating clearly what output one

r. the system and how one expects to obtain t

r - i r^l rioi r .->
i L JJ , 31 frOl r ci ,1 1 r C 1 1 T + 4 ~ a means of anal yr.

ehavi^r of a system, and it enhar :vel

.—.- f - -i
e m systems qualities [3], [47]. Thus, testing:

should be based on structured and systematic techniques s<

that, after testing, we may have a better understanding of th;

system's reliability.

- should help locate errors, not just detect their presence.

should be repeatable, that's, repeating the same experiment

suby supplying the same input data to th e same program, produces

e output. If the output is different just once, the system

is net correct.

sh.^iq be accurate: this will increase the reliability of the

testing process [3] .

The structured testing process has generally three phases, and

these are discussed in the following sections.

3.3.4.1 Unit Testing Phase

""his phase is also called module testing and functional testing.

During this phase, each individual module is tested in crder to

c~.ee k if it behaves accordin to its specification defined during

"^e detailed design phase and errors, if any, are corrected [3],

3.3.4.2 Integration Testing Phase

This phase is also referred to as string testing and computer

software component (CSC) testing [15]. This phase interconnects

se"s of the previously tested modules to ensure that the sets or

:--CS/stems behave as well as they did as independently tested

"oii^es and according to their specification defined during the

;.-stem design phase. The integrated sets of modules shcu'd

•:;•- -espend to a component or subsystem in the design tree defined

during fe preliminary design stage of the design phase [3], [5].

3.3.4.3 System Testing Phase

This phase checks that the entire or fully integrated software

36

O) Ol .lo a '^ i j a 1 ; idi aAdi c cii v i i 'Jiiiiiciil .j c i i a v c o

I '_! 1 C 1 C ^ k_4

L - j 1 L 'Jj • o' ; . •. . i nOA, a

: c ^ i ^ • y

fJ . I ci o c

. c -iCvcio^JCfo. i» c I cw-a i i l i ia l l.ic l col i ny ^ i w l- c o .

^•ci c ^ •< i l i i J d l c u l . i i y (Jl u^i dm c ; . v.. i o d. i i J ^ i ; c w r. ; .j

^ ^,, 04T^^W_ 4. ^, ; 4- ,- „^,£:./_;*,_ri+.;^r, i_
11 o^il I Ul IHO L. W l L O OfJCL, I I I L, U L i Ull , I

^s l >1e aCCcp lanC6 t e s l i n 9 W n 1 C i1

n g the system with real data under the realistic oondit-

e presence ot 111 e jsers; ln i s <- ^ p e Oi testing is ca

IC fj ' 0^3 0 0

_ t _ ^ _ * ^ ^ 4- -; .-> ^
J. ' ^J I . Ci. LCOL I 1 ^j L -> J J L ^ J » LU J • J/ O L Clll L C O I. I I I ^ dci Ci 1 . 7

C : I O i O : the system requirements de'

the case where a s > st em is intended to be

-!.'—. 1— —. .^i— — ^J.l^4- — +- —, ^ 4- -. .^ « " r~ ^. ^" n ^ •—' ~ »^ | ' ~\ ^ (—. ^ +• ~> •*• -^. ~ -*- - .^ ~.
v '»a : c f-j.wU^.^L, ci LCoLiliy ,-m w C c o o ^aliC'^j U c i. ci . — -3 c • -)

formed on the product under consideration. "!"he beta test

cess -Tiv'olves the delivery of the system to

- - tp,-<

H o x

O a

'. e de/elopers w i 1 7 determine whether any changes a - e r,e 0,

u -, £ _ .. ,

3.3.5 Maintenance Phase

-•. 0 •> 1" " " -«--• •»- l-> ™ *^>"-'.'-i -V" *••! —• 4- •— -— 4- 4- • ±< -^ k~ -^ 1 —. ^ « -« —. —-« *-* , . ^ +• ^- —. •£
c ; i ci s • ^ c 10 l u c Cfi 1 ^-jiiid "w 1 oj 1 l Adi c , • ci i jd Unluui. l o ^ .

'^•1, _. A L 13 L IIC d^i. W I cij ; 1 iy a. ^ e . * » c , c l

:u L ui a oaL1s1 ac l ory

• l em passes a) i l i.s l es l s t 1l ueccmeCO w't-TJ.dL'-.' 11

~ +• ^ -
. w l'i.O [JmUOC L —' J 1 L *-* J J L'-^Ji L L^ J) L ^ •— -i • '•-..: Cj p 1 t c* O C

:e cycle; the reasor 1 O . t> o : e ,

w n e 11 e » c i i dent , analyzed, then ci iiiO \j i i l *- a l i ci

•ed :n implemented, aits

be performed [2], [15], [20].

.... b, [20] that maintenance is the dc

ysis basis, the design phase as the

this the subseque flu L C O L

^ I••_! O <3O

i ai i l pnaoc

d o min ant phase on

•or creation basis, and system lcou

mant phases on an ei

; a ^ O O L ^

.intenance depends on the phase w..ere

G 6 L C - - C U
The error is detected soonei

he maintenance v-ool *o omai •= >

[3"] , [53] . F-gure 4 shows the relative ;cst of fixing an e;

^ ^ tin ^. c?
iar iopment, with a vertica, .og

d ">;

l r:c ^naot
,f the system development lite cy< e w •

13 liiiSvitu

ts phase might cost one ter

^^^^^+.1-,^ ~ •. a-p r°ol Therefore, the buildingn tne operation ^ n a o e L ~> u j . .n c i - •- > - »

Thus an error wh' ;w S up

•e o u i r e m e t
the same ei

model which clearly communicates to i e r s w 11 a .

m will and will not do is very important m ,erms
D J O ^ C

* * , .. , ^ -, o r r r^- r~ ^ "! ^ *; i ! i -» i iih c f I l^ i o i

ia n o e O l j u ;

r •-> .-\ 1 •

ater on. Moreover, it was

the fixing of errors, bu

£ „ - 4- , nt enance: it is t he a-- l w

,ar e cajjuiiu i i i a isei

v- - ~ ~ *•

.4- l~ - •

- -1- *- p f •

a.apt it to environmental changes; IS % of maintenance 13
adaptive.

-Corrective maintenance: it 13 the pure correction of software

errors; it consumes only 17 %of tne mamtener's time.

And the rerriaming 5 %of the mamtener's time are allocated to

x

18

8.1

Hequirenents Design Code Deveiopt Accep. Operation
Test Test

Figure 3 4: Relative cost to fiv an error during
systen development [39] sec 1.3, p ?,

39

CHAPTER FOUR

MODELLING TECHNIQUES

4.1 INTRODUCTION

v.'e have seen that the software development process consists of

chases. Each phase is designed to achieve a specific objective

zr set of objectives. The achievement of these objectives -3

engineered by using a set of tasks within each phase. Each task

"3 based upon the most appropriate technique. A phase may

therefore use several techniques to achieve its objective and a

technique *a> be used in different phases [24]. During the

analysis phase, the analyst performs an investigation; that's,

the analyst talks to the user and constructs diagrams to recorq

'•-3 understanding of the discussions. The diagrams will be

•gmented with other information that the analyst has foun;

d^ri-g nis study. At this point, the following question may be

asred: Why use diagrams ? The answer is that the problems of

communication between the users and the developers was the

inadequacy of an English narrative specification of a system. The

diagrams have been shown to provide an excellent and unambiguous

means of communication between users and developers [3D].

40

W . I W * ng are the characteristics of the diagramming techniques:

1-Make easier the communication between the users and

developers.

2-Provide a means of defining the system boundary.

3-provide a means of defining partitions, abstractions, a

project ions.

4-Encourage the analyst to think and document in terms of the

problem as opposed to the solution.

5-Allow for opposm.g alternatives but alert the analyst of

their presence.

5-Make it easy for the analyst to modify the knowledge

structure [15].

"he diagrams, used initially for communication, fact 'ir.dmg,

icte taking and discussion, evolve as the work progresses to

provide the base on which the system will be structured. They a^

supported by detail in other documents, but the correcteness of

the diagrams is the key to successful systems. A picture they

say, is worth a thousand words. The diagrams convey a lot of

information in a simple way [33]. Thus, modelling tools are used

'ecus on important system features while de-emphasizing less

"".port ant 'eat u res.

2-discuss changes and corrections to the user's needs with low

cost and minimal risk.

3-validate the role of the analyst, as being the interme

between the user and the designers and programmers [37].

I I u

M , - 4- -.
U ' Ci L C

T" *~. -j r i_i m r~ £3 n" -i i*-* v • •"»«-* -r -*••-.•*-> a ia .* _^. _ i. i_ _i_ ___j i •

l !Ci S 1 „ SActually there are many different methods, and each one

41

view or views of the system to be developed; hence, appropriate

modelling techniques are used according to the view that is under

consideration. In fact, there are three views of the system, the

process communication view, the data view, and the time view

,r 3 hi ri-ii r <-> 4 i

The modelling technique that is used in the process commum cat ion,

view is the Data Flow Diagrams (DFDs) [11], [24], [37], [39],

[41], [43] ; the techniques that are used m the dita view are the

Entity Relationship Diagrams (ERDs) [2], [37], [54], [55], [56],

Logical Data Structure (LDS), Enquiry Access Path (EAP).

Relational Data Analysis (RDA), and Enquiry Process Model iE?M';;

and the techniques that are used in the time view are the Entity-

Life Mi st ories (ELHs), Effect Correpcndance Diagrams (ECDs), and

Vpdate Process Models (UPMs) [24], [39], [41]. Other modelling

and supporting techniques are Data Dictionary (DD) [37], [43],

Structure Charts [2], [37], Flowcharts [45], and Pseudocode [33].

As already mentioned above, a phase may use several modelling

techniques to achieve its objective and a technique may be used

in different phases of the software life cycle.

The methods are spreadout throughout the world, the most popular

~et -od m the USA is Yourdon [37], whereas the European scene is

France,*-r..—lented, MERISE method [57] in France, DAFN^

1e ";ui

"•d'

SDM and Nil AM methods in Germany, and SSADM method in the

r o o t r 1 i i

:ure of the application dictates the method and the view

:r vews to be used. In the light of the present work, t

'ourdcn method and the process communication : »y , ^ i n c t i o n a

e w , o t a siystem is being used, hence the techniques that w i

42

be used are: The data flow diagrams and data dictionaries in the

analysis phase; Structure charts, flow charts, data dictionary,

and pseudocode in the design phases. Hence, only these techniques

are introduced in this chapter, and guidelines to follow when

developing data flow diagrams, structure charts, and data

dictionaries are provided in appendix A.

4.2 DATA FLOW DIAGRAMS (DFDs)

4.2.1 Definit ion

A Data Flow Diagram (DFD) is a picture of the flows of data

through a system of any kind showing the external entities which

are sou roes or destinations of data, the processes wrier

:ransform data, and the places where the data are stored [11],

r 1 o 1 r 1 n i
LuUj, <_ i- i_i j .

"^e characteristics of a DFD are :

1 DFD consists of graphs .. - pictures and supporting textual

modeling tools, they show the functions that the system must

perform.

2-DFDs concentrate on the process communication view and are

-sed in a top-down fashion with each level being decomposed into

' .:. ••> 'e.e1.

2 _sers and developers find the notation easy to understand,

this nigh lights the usefulness of the diagramming techniques.

4.2.2 Notation

The basic building block'3 for DFDs are:

1-Terrni nat ors cr external entities.

43

The symbols used on DFDs differ from one method to another.

Figure 4.1 shows the notations used in three methods SSADM,

Yourdon, and Cane & Sarson.

4.2.3 Definit ions

a-The terminator

A terminator shows the external entities with which the 3,3^-

communicates; typically, a terminator is a person, a g:

people, or a department.

^ u yj

b-The processes

They represent the various individual functions that the system

carr-es out. The functions transform data inputs into data

c-Data stores

They show collections of data, at rest; typically, they are x•1

d Da*a Flows

are used to describe the movement of data froi

the system to another part.

"he possible and legal connections between the DFD components

using data flows are summarized in figure 4.2.

^ I C j-.- Cl . L u

44

SSADfl

[24], Chap. IB
YOURDON

[37], sec. 9.1

GANE 8 SARSON

[30], sec. 3.1

ID UHO

IM

R.T.S.

ID

FnOCESS UHAT FUNCTION

LOCATION

DhIh

STORE
ID

'

EXTERNAL ., --—

ENTITY ' N
UM -.__ __.-•

TtKniNATOR r
DATA CONTROL FLOU

FLOU

Figure 4.1: Synbols u-ed in DFDs in SSADN, Yourdon, and Gane S Sarson

Process

Terminator

or Externa 1

Entity

Data Store

Process tirp

ifco VES YES

Terninator

or External

En+it'.i

VES VES NO

i/atd iiture Ito NO NO

Figure 4-2: Lpga 1 cnnnertions between DFD component*;
[24] chapter 19, p S3

45

Actually, both the one-line and two-line data flow digrams can

be used, however the two-line DFD is more clear than the one-line

DFD because it expresses the difference in time [24].

4.2.4 How Many Processes To Show On a DFD ?

It should be mentioned that the construction of DFDs is not a

science but an art, and that one cannot give rules to be followed

but guidelines. We recall that DFDs are used for communication

between the users and the developers, thus clarity of

communication should be ensured. In order to have good

communication document, DFD, there must be a systematic relation

between what goes in and what comes out. Hence, we have to take

into consideration that there are limits on our capacity for

processing information; this leads software developers to the use

of the golden or magical number seven, plus or minus two. A

research work, both technical and psychological, about this

question is done by Miller [12]. And the guidelines to follow in

developing the DFDs are given in appendix A.

4.3 DATA DICTIONARY (DD)

4.3.1 Definition

A DD is a data store that describes the nature of each piece of

data used in a system [2], [30], [43].

4.3.2 Notation

A DD is a widely used technique for supplementing or documenting

the graphical models that result from system analysis and system

46

uesiyn. me notation suggested Tor a uu is capable ot

representing the basic kind of relationships which exist between

data items and elements. These relationships are:

1-Concatenati on.

2-It erat ion.

3-Select ion.

Other types of information that enhance communication of

definitions are:

4-Definition or composition.

5-0pti ons.

6-Comment s.

7-Values.

The symbols associated with the data dictionary are presented in

figure 4.3 below.

Name

Composi t ion

Concat enat ion

11 erat ion

S e1ect ion

Opt ion

Comment

Discrete value

Symbol Meani ng

= is composed of, consists of

+ and

[} multiple occurence of

[/] select one of the alternative

choi ces

() may or may not be present

* * additional information

the value of this variable

Figure 4.3: Data Dictionary Notation [2], sec 3.2, p 31

47

4.4 PSEUDOCODE

A supplement tool to describe the process logic is the pseudocode

presented in this section.

Pseudocode is used to describe the logic of a process. Pseudo

means similar to; thus, pseudocode is similar to the programming

code. It serves the two basic purposes: it bridges between

natural and programming language and acts as a means of

expressing thoughts about design and the definition of programs.

Superficially, it looks like a program written in a high level

language [S]. It is an alternative to structured English. When

using structured English, details such as opening and closing

files, initializing counters, and setting flags are often

ignored; with pseudocode, they are coded. The idea is to describe

the algorithm of the executable code in a form understood by the

programmer. Pseudocode incorporates the three structured

programming conventions: sequence, decision, and repetition [7],

[33], [45]. We will use a pseudocode borrowed from the DBASE IV

programming language [49], [58], [59] that is used in the present

wor k .

* Sequence

The logic is executed in a simple sequence, one block after

another. A block may consist of one or more instructions.

* Decision

IF < Condi t ion >

< Commands >

[ELSE

48

< Commands >]

ENDIF

If the < Condition > following IF is true, the subsequent

commands are executed. If < Condition > is false, the commands

in the ELSE clause are carried out. This continues until ENDIF

is encountered.

* Repetition

DO WHILE < Condit ion >

< Commands >

[LOOP]

[EXIT]

ENDDO

The command statements between DO WHILE and ENDDO are repeated

while the specified condition is true. EXIT and LOOP commands

change the flow of control within the DO WHILE command.

* The CASE structure

DO CASE

CASE < Condition >

< Commands >

[CASE < Condi t ion >

< Commands >]

[OTHERWISE

< Commands >]

ENDCASE

49

' " " •=<• •"v-t.ui eu (jr uy rainming commana inai selects only one

course of action from a set of alternatives.

4.5 STRUCTURE CHART

4.5.1 Definit ion

The structure chart is the most widely recognized tool used in

structured design [2]. It is a logical model of a modular

hierarchy, showing invocation, intermodular communication, data

and control, and the location of major loops and decisions [30],

[47]. That's, it shows the binding and the coupling

characteristics of the modules [43], [47].

4.5.2 Notation

The structure chart uses the four primary symbols shown in figure

4.4 below; but other symbols are also used to describe specific

condidtions and system properties .

4.5.2.1 Definit ions

a-Module

A module is a set of program statements that can be invoked by

a name [43]. Examples of modules are: function, procedure,

subrout ine, etc.

b-The call

It is any mechanism that transfers control from one module to

another.

50

Symbol Meaning

Module symbol

or Call symbol

Data couple

or Control couple

X-

Figure 4.4: structure chart symbols [2], sec 9.2, p 155

c-The data couple and the control couple

Two types of information can be communicated between modules,

data and control or flags.

Data couples can be accessed both by the user and the system (a

module or a set of modules), whereas control couples or flags are

inherent to the system and hidden to the user [2].

51

4.6 FLOWCHARTS

4.6.1 Defi nit ion

A flowchart is an effective graphical representation of program

logic applicable to both hardware and software design [33], [45].

4.6.2 Notation

Using a set of geometric standard symbols and usage conventions,

flowlines that show the sequence and direction of information

flow, it is possible to describe specific operations and

procedures in a concise manner [33], [45].

The notation of the symbols and their meaning is illustrated in

4.6.3 Structure

The symbol configurations for three basic programming operations

that are language independent form the basis for all structural

programming; and these are: sequence, decision, and repetition.

A program logic can be expressed as combinations of these basic

patterns [38], [45].

a-The sequence

The sequence pattern implies that the logic is executed in simple

sequence, one block after another, and a block may consist of one

or more instructions [33]. This pattern is depicted in figure

52

Synbo1

y
•v .y

f
/

/

Meaning

Terminal point

Process

1 Decision

Input/output

Subroutine 145]

Explanation

Marks the beginning or
the end of a program or
program segment.

Indicates any arithmetic
or data copy operation.

; Indicates a Yes'Mo decision
| to be made by the program.

Indicates any input or
output operation.

Indicates any sub program.

Figure 4-5: Basic Flowcharting Symbols [38],p 358 and [45]

53

The decision block implies IF-THEN-ELSE logic. This is

illustrated in figure 4.6.2.

A condition (the diamond symbol) is tested. If the condition is

true, the logic associated with the THEN branch is executed, and

the ELSE block is skipped. If the condition is false, the ELSE

logic is executed and the THEN logic is skipped [38].

c-Repet it ion

In the DO WHILE pattern, shown in figure 4.6.3, a test is

performed at the top of the loop. If the condition tested is

true, the logic of the loop is executed, and control is returned

to the top of another test; if the condition is false, the logic

of the loop is skipped, and control is transferred to the block

following the DO WHILE [38].

54

Block 1

Block 2

Figure 4.6.1: Sequence [38]

xx False
^ Condition i>

•-•'

True

THEN

Logic

ELSE

Logic

Figure 4.6.2: Decision or IF-THEM-ELSE logic [381.

Condition
True

THEM

"^ Logic

False

Figure 4.6.3: DO WHILE Logic [381.

55

CHAPTER FIVE

THE COCKTAIL AF>F>ROACH : SEDA

5.1 INTRODUCTION

Software engineering is intended to assist the development of

good quality software within budgets and timescales [1].

A major objective of software engineering is the search for

an adequate development approach to guide the process of

developing software systems in order to overcome the problems

encountered by both the users and developers of the systems. The

main purpose of a methodology should be to ensure that a system

which meets the end user needs is produced.

Until now, many different life cycle models, approaches and

many combinations are used, but still neither of them is ideal,

each one or combination has its advantages and disadvantages. It

has been shown that it is possible to implement different

methodologies for different phases of the life cycle. O'Dell

(1336), for example, considered how a structured methodology can

be combined with prototyping to aid software production [1].

Nowdays, it is almost evident to build throwaway prototypes

during the different development phases of the life cycle, namely

56

during the analysis phase and the design pnase. but stiii ine

adequate approach to software development is not yet obtained.

In the present work, we suggest a cocktail approach which

consists of the structured approach and the evolutionary

prototyping approach. This combination, actually can be named

Structured Evolutionary Development Approach, or simply SEDA. The

proposed approach will be tested by applying it to the

development of a medical Computer Aided Learning, CAL,

application, namely computer aided medical training system, or

simply CAMTS. The application to be developed will be used in a

hospital by medical personnel, students and physicians, in order

to learn and keep track of their knowledge.

This chapter deals with the derivation of the theoretical

cocktail approach from its components; that's, we introduce the

component approaches and show how the cocktail approach is

derived, then we will discuss and apply its phases and advantages

experimentally to a medical Computer Aided Learning, CAL, system

development in the next chapter.

5.2 THE STRUCTURED APPROACH

A structured method refers to structured analysis, structured

design and structured coding. These methods are used in

conjunction with all the life cycles [2]. The five main phases

or steps in the structured system life cycle are: analysis [2],

[3], [15], [24], [30], [37], [38], [39], [40], [42], design [2],

[24], [33], [39], [42], [43], [44], [47] implementation (coding),

testing [3], [5], [7], [11], [21], [45], [47], [50], [60], and

57

maintenance [3], [20], [52], [53].

This approach is depicted in figure 5.1. The details of its

phases are already discussed in chapter three, and will be seen

in chapter six which deals with the experimentation or

application of the coktail approach under study in order to

or deduced from this experiment.

The structured approach has the following characteristics: top-

down strategy, iteration, modularity, flexibility, low

development cost, reduces complexity, maintainability, and

reliability [2], [15], [24], [30], [38], [47]. This does not mean

that the structured approach is ideal, it has its disadvantages

mainly when dealing with complex systems, and these are list- - t e H

1-Requirements are often poorly understood.

2-Requirements usually change during the development process.

3-Current requirements remain only partially understood until

the user (s) will have an opportunity to use a system [14].

4-The users are not fully involved during the development

process.

5-Not enough importance is given to the psychological aspect.

The third point appears to condemn this approach, but prototyping

is compatible with all the development phases of any life cycle

model [1], [15].

Following are the experimental advantages and disadvantages of

the structured approach compared to the prototyping approach

[27]:

58

e
n

1
D
l

S
Y
S
T
E
M

S
Y
S
T
E
M

*

S
Y
S
T
E
M

A
C
C
E
P
T
A
N
C
E

8
D
E
P
L
O
Y
M
E
N
T

H
L
w
u
m
r
.
n
i
.
n
i
o

T
E
S
T

P
L
A
N
N
I
N
G

—
f

T
E
S
T
I
N
G

1
'

1
A

A
N
A
L
Y
S
I
S

,

|L
S
Y
S
T
E
M

D
E
S
I
G
N

I
N
T
E
G
R
A
T
I
O
N

T
E
S
T

P
L
A
N
N
I
N
G

1
I
N
T
E
G
R
A
T
I
O
N

T
E
S
T
I
N
G

—
i

"

<

—
>

M
A
I
N
T
E
N
A
N
C
E

A
N
D

F
N
H
A
N
f
F
H
I
-
N
T

\l
i

D
E
T
A
I
L
E
D

D
E
S
I
G
N

U
N
I
T

T
E
S
T

P
L
A
N
N
I
N
G

U
N
I
T

T
E
S
T
I
N
G

(-
-•
'

1
C
O
D
I
N
G

1
T

O
b
s
o
l
e
s
c
e
n
c
e

Fi
gu

re
5.

1:
U

-d
ia

gr
am

lif
e

cy
cl

e
m

od
el

[1
5]

,
se

c
1.

1.
2,

p
10

Advantages:

1-The structured approach inforces design documentation, and

hence eases the tasks of future development and maintenance of

the system.

2-The tructured approach gives a wider and deeper

unaerstanaing ot cne system.

3- It is more amenable to effective and "robust" planning. The

stages of development are more visible.

4-It allows for the selection of the most appropriate software.

Di sadvantages:

1-This approach is less robust to major changes.

2-The more vague the user requirements, the more difficult this

approah is.

3-Implementat ion problems are not visible in advance, which,

if we are not careful, can cause timescale overrun.

5.3 THE EVOLUTIONARY PROTOTYPING APPROACH

The evolutionary approach combines the advantages of exploratory

programming, with the control required for development. It

involves developing the requirements and delivering the system

incrementally [5]. Prototyping offers several attracting

advantages such as flexibility to adapt the software system to

changing environmental characteristics or perceptions of user's

needs [23].

Prototyping is used for exploring ideas, assesing potential

markets, estimating costs, and for establishing feasibility and

60

performance limits [5], [6], L14], L27J. There are two types ot

prototyping, the trowaway and the evolutionary, and both are

compatible with the development phases of a life cycle. The role

of prototyping is very ir portant in the communication between the

user and the developer; mainly for the requirements validation

a'd completness. That 's, its role is to

1-determine the feasibility of a requirement.

2-validate that a particular function is really necessary.

3-uncover missing requirements.

4-determine the viability of a user interface.

In other words, this ensures that the right product is being

specified and built [15].

During any development phase, the throwaway prototype should be

quick and dirty. The most common way of developing a throwaway

prototype calls for:

1-writing a preliminary system requirements specification

(SRS),

2-implementing the prototype based on those requirements,

3-achieving user experience with the prototype,

4-writing the real SRS, and then

5-developing the real product [15].

As it may be deduced, the user is at a certain extent involved

in the development process, and can be involved completely when

using the evolutionary prototyping approach. The evolutionary

prototype is different from the throwaway prototype;

particularly, it is not built in a dirty fashion since it

converges to the final product. Thus, it must exhibit the quality

attributes through its evolution, and the development will not

61

pe particularly rapid as compared witn The Tnrowaway proTOType.

The concept of the evolutionary prototyping approach is the

building of an evolvable prototype to learn more about the

problem or its solution and then expanded incrementally to become

the fina system.

Following are ine eAperimentai advantages and disadvantages of

prototyping with respect to the structured approach [27]:

Advantages:

1-The prototyping approach is shown to be more robust to sudden

and major changes and it is a demonstrable approach.

2-The prototyping approach provides a superior environment for

knowledge elicitation through the mechanism of allowing the user

to criticise working models of the system.

3-The prototyping approach allows for greater flexibility in

pro]ect pianni ng.

4-Testing in this approach is spread out throughout the

proj ect .

Di sadvantages:

1-The prototyping approach tends to narrower and supeficial

knowledge domain.

2-Prototyping reinforces the human drive towards fast solutions

on the screen and uses less documentation.

3-Prototyping allows for too much flexibility, which makes it

difficult to control.

62

b.4 IHb COCK IAIL APPHOACH

As already mentioned early, the main purpose of software

engineering which is still being developed, is to crs=*° ~-

adequat- loproach to assist the development phases in order to

get the right product and the product right.

In the present work, our objective is to improve software systems

development; hence we suggest a cocktail approach which can be

named Structured Evolutionary Development Approach, or simply

SEDA, which combines the advantages of the structured approach

and the advantages of the evolutionary prototyping approach, that

are complementary. It is obtained by combining the structured

approach with the evolutionary prototyping approach. Because of

the complementarity of these two approaches, when combined, their

advantages are additive, and this fact annhilates their

disadvantages. The concept of this approach is the building of

an evolutionary prototype, following the structured life cycle,

which will evolve iteratively and gradually to the final system.

Any life cycle model consists of a set of interrelated phases;

these phases at their turn consist of tasks, and the tasks are

built with the help of appropriate modelling techniques before

their physical implementation. In the case study we are dealing

with, namely the computer aided medical training system, we use

the modelling techniques already discussed in chapter four;

typically, data flow diagrams and data dictionaries in the

analysis phase; structure charts, flowcharts, pseudocode, and

data dictionaries in the design phase. These techniques are used

with the heip of software tools such as Computer-Aided Software

63

Engineering (CASE) [61], [62], [63].

The cocktail approach model is depicted in figure 5.2 below:

From this figure, we can notice the concept of this approach,

that's, it is based on *^e budding of a c*-•.•-*-..--^d =

prototype which evolves iteratively and incrementally or

gradually to the end-product.

The idea behind this concept is illustrated in figure 5.3. In

other words, at each iteration S,, a defined prototype P. ,

which is the next version of the system, is developed then

deployed, after obtaining experience using it with the user (s),

and according to that experience, we go back and redo the

analysis, redesign, recede, retest and redeploy. After gaining

more experience, the entire process is repeated again until the

final version or the end-product is obtained. This ensures the

creation of all the necessary documents and the incremental and

iterative development process of the product involves a large

participation of the user (s); typically, this ensures that we

are solving the right problem and the product under development

is right. In other words, the appropriate software metrics [19]

must be set early and kept in mind throughout the development

process. Theoretically, the advantages of this cocktail approach

are the combination of the advantages of its components and they

are complement to each other; that's, they are:

1-Enforcement of formal documentation.

2-Deeper understanding of the system.

3-Ensures effective and robust planning and the stages of

development are more visible.

4-The development tool is chosen early in the project after

64

PROBLEM DEF.
,rr5p-n tt.j_ REQUIREMENTS

SYSTEM TEST- iSWST£M ; SYSTEM
"*"" ' ~EC1S~ "^.'̂ ''DELIUERY AND
jonhamng t0f1PL£TE Maintenance

RA
'8

"sd! riTt

"Tddi ITt^

-| oiSTEM
-i DESIGN

i i

I Ui DETAILED
•• ' DESIGN

CODING

INTEGRATION

; TESTING

UNIT L

TESTING i-

Figure 5.2: Cocktail approach (SEDA)

iST!—p—4RAi

SD| |il

"iDDi JUT

STr iRA

Pl ^
•J

SYSTEM

NOT

'COMPLETE

S. ST-

!_~TdD! ^JT~~_

Figure 3: The software life cycle and Evolutionary prototypes [13]

65

p.

understanding the domain knowledge.

5-Robustness to sudden and major changes and it is a

demonstrable approach.

6-Provides a superior environment for knowledge elicitation

through the mechanism of the demonstration of the working

versions of the system.

7-Allows for greater and controlable flexibility in project

pianni ng .

8-Testing is spread out throughout the project development

process.

9-Ensures the progress in the development of the product.

10-Reduces the cost/benefit ratio.

11-The user is involved throughout the development process.

5.5 CONCLUSION

The major causes of problems in software production is the fact

that the initial design specifications are often incomplete

and/or inconsistent. Hence, the iterative evolutionary cocktail

approach we suggested and discussed allows, theoretically, the

control of specifications for consistency and completeness.

After discussing the component approaches, we have seen the

cocktail approach and its advantages; at this point the following

question rises: What are the disadvantages of the approach under

study ? The answer is that they cannot be deduced theoretically

from the component approaches; the reason is that because of the

complementarity of the component approaches, the disadvantages

of each component approach are drawn in the advantages of the

66

other component approach. Hence, we hope that the number of

disadvantages is as small as possible, and we let experiments

answer the question.

Actually, we have seen the theoretical aspect of the suggested

approach, the next chapter deals with the experimental aspect;

typically, its application to the development of a medical CAL

application, namely, computer aided medical training system, or

simply CAMTS, that will be used in a hospital by surgery medical

personnel, students and physicians, in order to learn, review,

and self- evaluate their knowledge.

67

CHAPTER SIX

THE APPLICATION=

COMPUTER AIDED MEDICAL TRAINING

SYSTEM DEVELOPMENT BASED ON THE

COCKTAIL APPROACH CSEDA)

6.1 INTRODUCTION

The use of computers for teaching is a difficult application. The

aim in teaching is to transmit knowledge to someone who will not

be an expert in the application but will be just the opposite;

that's, a student. The problem of encapsulating course material

and successful teaching principles and of understanding students

errors and lack of comprehension are redoutable. Some form of

information retrieval is required [16].

Teaching can be analyzed into a process consisting of motive,

perception, action, and consequence. First people want something,

then they notice something, do something, and finally get

something [64]. But, can teachers predict or estimate the

responses of their pupils ? The accuracy depends on the teacher's

effectiveness in teacher-pupil relationships; that's, teacher's

understanding of students is correlated with their success in

68

getting along with pupils. In order to get a better idea of how

teachers should understand what aspects of their pupils, and how

such understanding can be improved, we need to study cognitive

aspe "s of both teachers and pupils [64], [65].

Through the medium of graphics terminals, the data can be

displayed in ways which are informative and visually attractive.

However, there are psychological factors which influence learning

and CAL, furthermore, it is not easy to integrate the

conventional teaching schemes in a computer [16]. In tutorial

programs which teach the material through question-answer

sequences, the student is active in his learning. The instruction

is driven by the responses which the learner gives at the

terminal, then the computer program can evaluate these responses,

orovide feedback, and makes appropriate decisions, which suit to

his competence.

Computer Assisted Learning (CAL) systems could be viewed as an

adjunct to the conventional teaching methods because they cannot

supplant the teacher [16]. Typically, the modes of communication

from the student to the computer are limited, therefore, the

teaching steps must be relatively small, the approach directed,

and the types of dialogue limited.

We recall that this application is intended to be used in a

hospital by the surgery medical personnel in order to attend

courses and perform tests typically, sel f-1earning or -training

and self-testing. The concept is the use of task-structure

analysis and design [66] of a rule-based system [67] that is

tailored to optimize a single rule-based program in which rules

are stored as texts in different modules or files accordingly.

69

This chapter deals with the application of the cocktail approach,

SEDA, already introduced previously, to the development of a

computer aided medical training system. Hence, learning and CAL

are first introduced, then the next sections deal with the

application development process.

6.2 COMPUTER ASSISTED LEARNING (CAL)

The lack of individualized instruction is considered to be a

major cause for the decline in the quality of education. In other

words self study offers a rich potential for development and

Computer Aided Instruction or Learning (CAI or CAL) offers some

solutions to many problems of education [23], [68], [69].

However, the classical training consists of reading journals and

books, attendance at formal courses and conferences and

discussions with colleagues. This is useful because it keeps the

professions aware of the state of the art, but these means are

not always offered and the self study is neglected [16].

Moreover, students can use Computer Aided Instruction, Learning,

or Training (CAI, CAL, or CAT) to prepare for examinations, since

self-instructional methods allow flexibility [70].

6.2.1 Integrating Conventional Teaching and CAL Schemes

Integrating the conventional teaching scheme in a computer is not

an easy task. Thus, the respective strengths of the teacher and

machine-based programs can be considered complementary. The

teacher has good general knowledge of the topic and easy modes

70

w, ^uiiiiiiunn/aiiuii mini ine bLuueru ; anu trie compuT er assistea

learning, CAL, can be a useful support when the teacher has

neither the time nor the resources to give adequate group

teach ing [16].

6.2.2 Factors Influencing Learning and CAL

There are factors which influence learning and CAL. A

considerable number of psychological and educational studies

which are of interest, and since they are related to the design

of CAL, emphasize the following points:

1-The need to provide the learner with informational feedback

and the precise conditions under which it is most effective.

2-The influence of the relational structures within the

teaching material, and its sequencing.

3-The importance of encouraging active learner control.

However, there is no agreed overall learning scheme, but Nutha!

and Snook (1973) gave a teaching classification scheme in which

they identify the following types of teaching:

1-Behavioral control models: These models stress complete

control over student behaviour over the conditions of learning.

Within CAL, the emphasis is on programs which are directive in

style.

2-Discovery learning models: These models emphasise on the

control which the learner has in building his knowledge

structures. The teacher is not the primary source of information,

but acts to simulate and monitor the lear-er and reveal the

inadequacies of generalisations by producing counter examples.

71

It is maintained that such methods allow the student not only to

arrive at more general conclusions, but to learn about the

process of generalisation itself.

3-Rational models: These models stress the place of reasoning

and dialogue in teaching.

Two approaches have been used to extend initiative and dialogue:

1-Use of simulation modules within author language tutorial

prog rams.

2-Use of simulation programs which include dialogue facilities

and programming languages through which students can express and

demonstrate their solutions by designing, debugging, and running

their own computer programs [16].

Actually, too much work on CAL systems, learning schemes,

learning strategies and their integration is done, [64], [65],

[68], [70], [71], [72], [73], [74], [75], [76], [77], [78], [79],

[30], [81]. [32], and many successful results in improving the

performance of learning using the computer are obtained.

6.2.3 CAL and the Computer Aided Medical Training System

Medicine is a field which requires extensive education to attain

and maintain an acceptable level of functional competence [68].

And medical education is intended to help physicians learn new

developments and review fundamental concepts in medicine on the

assumption that knowledge gained will automatically improve

patient care. However, the classical training consists of reading

journals and book. attendance at formal courses and conferences

and discussions with colleagues. This is useful because it keeps

72

the professions aware of the state of the art, but these means

are not always offered and the self study is neglected [68],

[76], [80]. The lack of individualized instruction is considered

to be a major cause for the decline in the quality of education.

In other words self study offers a rich potential for development

and Computer Aided Instruction or Learning (CAI or CAL) offers

some solutions to many problems of medical education [23], [68],

[76]. The computer increases the availability of data and allows

a flexible data organization in its memory [82]. The application

of computer technology to the teaching of medicine is attempted

with varying success over the years, but newer technology and

development tools suggest that Computer Assisted Learning, CAL,

must be introduced in Medical schools and hospitals [68], [78],

[79], [80], [81]. Computer technology supplies knowledge and

guidance on specific problems at the time the physician is

studying a patient, hence diminishing reliance on memory [76].

And is now an integral part of patient care in many health care

systems. It helps in improving the effectiveness of health and

medical personnel in planning decision making and problem solving

[77].

Moreover, medical students can use Computer Aided Instruction,

Learning, or Training (CAI, CAL, or CAT) to prepare for

examinations, since sel f-instructional methods allow flexibility

[16], [70].

According to the previous sections, we can conclude that the

model of teaching to be incorporated in a CAL system depends on

the application domain which dictates its corresponding cognitive

aspects and nature. The application we are dealing with is a

73

computer aided medical training system. Taking into consideration

the non deterministic nature of the medical field and the user

needs, the behavioral model suits as the teaching scheme to be

built within the pesent application. In this scheme, the teacher

is the primary source of information, and he is a manager who

seeks to accomplish specific objectives as quickly and as

efficiently as possible. Thus, he controls the selection and the

arrangement of content and task so that the responses are

provoked. He controls also the feedback and other reinforcing

stimuli which are used to maintain and regulate effort, and to

shape more complex learning behaviours by building up response

chains composed of small steps. In other words, the system is

built in such a way to expose the students misunderstandings and

provide feedback to enable him to correct them. A cheat condition

is avoided, that is, presentation by computer ensures that

feedback is not available until the student responds. This shows

the informational role of feedback, and the benefits of control

over learning activity. A third point is that of sequencing

learning material, particularly in subject ereas which can be

arranged in a hierarchical fashion, such as the medical

application we are dealing with. Typically, decision rules are

constructed which only allow the learner to proceed to further

sections of the material in the hierarchy. Gagne and Paradise

(1961) and Gagne and al . (1962) reported studieswhich showed the

importance of such decision rules. All these research work

approve for decision rules based on specific information about

the individual learner's knowledge and performance. For this

reason, adaptive CAL programs should in principle be efficient

74

aids to 1earni ng [16].

In behavioural control model situations, management of learning

is an important aspect of CAL programs [16]. Thus, in the medical

CAL application development which will be seen in the next

sections, the courses and tests are organized in a way to

maximize the benefits of the behavioral teaching model. The user-

machine communication has a high level of abstraction; this is

one of the characteristics of the programming language that's

used, namely DBASE IV [49], [58], [59]; in other words, the users

will not be bothered by a command language training before using

the system. And in the case of medical applications, it is

identified that the user interface and the reliability quality

attributes are the most important for the software systems to be

accepted by the medical personnel [23]. Hence, the development

is carried out keeping in mind mainly these metrics.

6.3 THE COMPUTER AIDED MEDICAL TRAINING SYSTEM (CAMTS)

DEVELOPMENT PROCESS

The intent of this system is for training surgery medical

personnel. Its use will be at the level of a hospital by the

surgery personnel.

The approach used to build this system as already mentioned and

discussed early, is the coktail approach that is formed by the

combination of the evolutionary prototyping approach with the

structured approach. Th-s concept, we named Structured

Evolutionary Development Approach, or simply SEDA, is depicted

by figure 6.1.

75

e
n

P
R
O
B
L
E
M

D
E
F
.

|«
FE
AS
IB
IL
IT
Y[

S
T
U
D
Y

R
E
Q
U
I
R
E
M
E
N
T
S

A
N
A
L
Y
S
I
S

S
Y
S
T
E
M

T
E
S
T

I
N
G
«

D
E
C
I
S

I
O
N

M
A
K
I
N
G

S
Y
S
T
E
M

C
O
M
P
L
E
T
E

S
Y
S
T
E
M

N
O
T

C
O
M
P
L
E
T
E

Fi
gu
re

fa
.l
:

Co
ck
ta
il

ap
pr
oa
ch

(
SE
DA

)

S
Y
S
T
E
M

D
E
L
I
U
E
R
Y

A
N
D

M
A
I
N
T
E
N
A
N
C
E

cocktail approach in order to draw conclusions with respect to

the theoretical study that is done in the previous chapter.

As already mentioned in the previous section, for medical

applications, it is identified that the user interface and the

reliability quality attributes are the most important for the

software systems to be accepted by the medical personnel [23].

Hence, the development is carried out keeping in mind mainly the

following metrics: ease of use, reliability, and maintainability.

The nature of the application and the development approach,

namely functional approach using the Yourdon methodology, dictate

the appropriate notations and modelling techniques to be used;

typically, data flow diagrams, data dictionary, pseudocode,

structure charts, and flowcharts, which are already introduced

in chapter four. The application is developed in the DBASE IV

programming language environment. This later is easy to use and

has a high level of abstraction, moreover it suits to the

entreprise or hospital environment.

The development is based on the identification of several

prototypes of the system. Each prototype is the enhanced version

of the previous one; this allows a rapid development of the end

product. In other words, the cocktail approach that is used

allows the visibility of the attributes required by the users;

and the rapid development allows the building of a prototype that

will go through a process of successive iterations. Moreover, it

allows knowledge elicitation through the mechanism of allowing

the users to evaluate and criticise each working version of the

syst em.

77

All the phases which form the approach under study are described

by applying them to the application development, refering to

figure 6.1.

6.3.1 Problem Definition and Feasibility Study Phase

During this phase, first the problem is identified and defined,

then, the feasibility study of the software system under study

i s carri ed out.

6.3.1.1 Problem Definition

We begin with a brief overview of the organization, (hospital)

where the system will be used, from the point of view medical

personnel then introduce the problem. The output of this stage

is a statement objectives.

In Thenia hospital (Algeria), there is a lack of experts in

medical fields. For example in surgery one professor is not

enough for explaining to his collegues a subject; and a professor

might not be available for different reasons. Therefore, there

is a need for building a software system that can help those

physicians, at any time, to learn and to se f-evaluate their

knowledge. The computer increases the availability of data and

allows a flexible data organization in its memory [82]. In other

words, the motivations behind this application are:

-Not many experts in the hospital.

-Very hard to get in touch with very few experts that exist in

Algeria.

-A large number of medical students.

78

This leads us to the following statement objectives: the

computer-aided medical learning or training system is needed in

the surgery service of the hospital and will be used by the

medical personnel, students and physicians, in order to attend

courses and self-evaluate their knowledge individually or

collectively under the control of an expert.

6.3.1.2 Feasibility Study

Now that the objectives are clarified, an investigation

concerning the feasibility of this project is conducted. The

purpose is to find the answers to the following questions which

consist this stage:

1-Can the system be implemented using current technology ?

2-Can the system be implemented in the hospital ?

3-Do benefits outweigh costs ?

As may be noticed, each question deals with one aspect, and these

are technical, operational, and economic respectively.

In order to find the answers, we have first to see the extent of

the project. The only way to do this is by refining the problem

definition, that's, getting more details about the project, and

the only source for this purpose is the user, let's see what the

user wants !

During this stage all possible user's needs are gathered through

interviews that are psychologically directed; and for the user-

developer communication means, data flow diagrams are used.

Actually, the user's needs are depicted in figure 6.2.

An important point about this figure is that, it is a logical

data flow diagram; it is easy to make changes and identify other

79

,.-'" *_y

ATTEMD

COURSES

\ \.

COURSES FILES

^ RESIDENT

S---1 SENIOR

Ltj ASSISTANT ^i -"">•
I I i /' y

,.K.
\ >Oi MAITRE VXy //
v\ i ^1 ASSISTANT k* 7 /

IxjPROFESSEUR K
\ i i

nD

Figure 6.2: System automation boundary

80

SYSTEM AUTOMATION

BOUNDARY

SELF \

, EVALUATING \
5>-"U (TESTING) /

y

//'

TESTS FILES

aiiernaiiveb ui uie auiumcii iuii er sd. ine syaiem auiuniai iuii

boundary shows all the components of the software system to be

built. To be confident in answering any question, after few

discussions with the users, a rapid throwaway prototype was built

using a computer software tool called Automate-Plus which is used

to assist software developers in the analysis and design phases

[62], [63]. This prototype allowed us to get the main frame of

the whole system; that's, the preliminary requirements of the

system under study. And helped a lot in getting precisions and

more requirements.

The answers to the above questions are all affirmative; that's,

the system can be built using the current technology, the system

can be implemented in the hospital, and benefits outweigh costs.

In fact, this is my first experiment in such software product

development; hence, thanks are addressed to my advisor B. Mezhoud

whom guided me and approved this feasibility study which requires

exper ience.

6.3.2 Requirements Analysis Phase

At this point, we know that the problem can be solved, the intent

of this phase is to determine at a logical level WHAT the

proposed system must do. The input to this phase is the

documentation developed during the feasibility stage, that is the

data flow diagram. The objective of analysis is to answer the

question: WHAT must the system do ? This question is partially

answered during the feasibility study, but it is not enough.

Hence, during this phase we develop a complete functional

81

understanding of the proposed system. The intent is not to

determine how the system will work, this is the job of the design

phase, but what it must do. In other words, during this phase,

the necessary detailed specification documents namely, data flow

diagrams, and data dictionaries are developed. The DFDs are used

to communicate with the users and then refined after gathering

more information. Additional penetration or insight is gained by

exploding the DFD to lower levels; step by step, the logical

detailed system is more fully defined. In other words, the

logical levels of the system are identified then their

corresponding specification documents are delivered increment ally

and iteratively to the next phases of the development process.

A specification increment may be one logical level of the iystem,

hence, it will correspond to one prototype or one version of the

system. And since the structured approach involves top down

strategy, the development will start from the high level, namely

the context diagram, and iteratively refined and enhanced as the

system being developed. The idea behind this strategy is to build

first the system squeleton then fill it with the flesh.

We begin with the DFD document of the feasibility study, this

document identifies a number of functions or processes that must

be performed by the computer assisted learning system. A new and

well structured logical system is being developed. Since the

cocktail approach, formed by the structured approach and the

evolutionary prototyping approach is used, its advantages are

under consideration. Typically, the structured approach dictates

the top-down development [47] and iteration, while the

prototyping approach allows us to develop a prototype.

82

The exit criteria of this phase include a complete DFD and DD

document s.

Following are the data flow diagrams of the system under

deve1opment.

6.3.2.1 Data Flow Diagrams

The proposed automated system is pictured in the logical DFDs of

the following figures. The processes show the activities that

will be processed or executed by the system.

6.3.2.1.1 Context Diagram

Called also level 0, represents the very high level view of the

system. It consists of only one process. The context diagram of

this system is shown in figure 6.3.

This diagram shows the overall logical system as the circle

labeled CAMTS. The terminator USER is not a part of the system

but the system user. Transactions consist of information fed into

the system or extracted from it; its details are given in the

dat a dict ionary.

5.3.2.1.2 Level one DFD

This level is obtained from the explosion of the contex diagram.

The data flow diagram shown in figure 6.4 represents the level

one for the logical system. It depicts two main processes labeled

GET DATA and OPEN MODULE.

The individual processes refer to the system functions, that's,

the activities it will perform. Actually, the activities depicted

83

USER

USER

8.

Transactions/ Computer Aided Transactions!
* Medical Training l ^
\ System (CANTS) / I
\ / :

Figure 6.3: Level 8., Context diagram

1 INFO
J 1.8 DATA 2.8 \ IMFO

OPEN l_L J GET
INFO \ DATA \ MODULE / INFO

Data reference file

Figure 6.4: Level 1 DFD for the logical system
Explosion of the context diagram.

84

USER

USER

by the individual processes are not basic ones, but consist of

a set of other activities that will be shown in the next section

which deals with the explosion of the level one DFD processes to

obtain level two DFD processes.

6.3.2.1.3 Level Two DFD

The two processes shown in the level 1 DFD of figure 6.4 do not

refer to basic or elementary tasks as said; so the elementary

processes, level two in this application, are obtained by

exploding each individual process of the level 1 DFD. The goal

is to get another level of detail of the system to understand its

overall operation. The level 2 DFD of the logical system is

depicted in figure 6.5.1 and figure 6.5.2.

Having obtained these pictures, we can consider them as being a

representation of the details of the system. Namely, each process

refers to an elementary system function.

The description of these different activities are dealt with in

next section which is the data dictionary.

6.3.2.2 Data Dictionary

All tne labels involved in the logical DFDs are defined in the

following dictionary:

CAMTS = * Abreviation of the system's name : *

* Computer Aided Medical Training System *

User= [Interne/Resident Junior/Resident Senior/Assistant/Docent/

Professeur]

Transactions = [Input Info/Output Info]

85

Er

•->^ MN

1.1 \
GET V

MODULE

^NAMEy
/

MN

USER

Er//
/ /CI Er\

1.2

-J GET7 \ MN,CT / ,P, V
-i CHAPTER J<-

\ TITLE/

-4 GET

\
LEVEL X

\

V.v Chapters file S Levels fill

Modules file

USER

Input INFO

Output INFO

* \

DATA

"n*
/ 2.8
/ OPEN
i MODULE

Figure 6.5.1: Level 2 DFD, Explosion of Get Data Process

86

USER

Input INFO

4 GET
Output INFOl DATA

\

DATA REF FILE

DATA

C /

2.1

START

SESION

.-'''CDATA TDATA

•-• 2.2 \

ATTEND \
. COURSE /

MESG

/ 2.3 \
'' PERFORM \
. TEST

COURSES FILES

RESP '/

TESTS FILES

ANSU

USER

'igure 6.5.2: Level 2 DFD, Explosion of Open Module Process

87

Info = * Abreviation for information *

Input Info = Module Name + Chapter Title + Level + Responses

Output Info = [Courses/Tests] + Messages + Answers

Get Data = * Input Data Process *

Data = Module Name + Chapter Title + Level

Module Name = [Courses Module/Tests Module]

Chapter Title = [Chirugie Generale/Chirugie Digestive/Urologie/

Orthopedie]

Level = [Facile/Moyen/Difficile]

Facile = Interne + Resident Junior

Meyer, = Resident Senior + Assistant

Difficile = Docent + Professeur

Data Reference File = * Reference Data Lists *

list of the

modules *

he file containing the reference list of

modules +

MN = * Abreviation for Module Name *

Er = * Abreviation for Error Message *

Chapter File = + The file containing the reference list of

chapters +

CT = * Abreviation for Chapter Title *

Levels File = * The file which contains the reference list of

levels ♦

L - * Abreviation for Level *

Open Module = * Dispatcher module which routes the transaction

to the appropriate or selected destination

according to the input data +

Get Module Name = ♦ Process which handles the

88

Start Session = * The process which opens the selected

destination, that's, to attend a course or

perform a test *

Attend Course = * The selected course is displayed on the screen

of the computer *

CDATA = ♦ Courses DATA *

TDATA = + Tests DATA +

MESG = * Abreviation for Message(s) *

RESP = * Abreviation for Responses *

ANSW = + Abreviation for Answer ♦

Perform Test = * The chosen test is displayed on the screen of

the computer +

Courses Files = + Data store containing the courses *

Course = Summary + Bibliographical references

Tests Files = * Bank containing the tests +

Test - Q.C.M. test format + Comments

6.3.3 Design Phases

Continuing the development, this phase describes the system

design. The objective of this phase is to determine HOW the

system wi 11 be imp!emented. Using the data flow di agrams obtained

during the analysis phase as input, the main objective of system

design is to develop a blueprint for the physical system.

The output of the analysis phase is a functional logical model

for the proposed system. The design phase consists of translating

this functional model into a hierarchy of modules that will

89

-~ * ~ w •• "^ wv-iuii i_ipc i a i iur i ui ine sysiem. mdu inese moau les

will be followed by their corresponding algorithms. This is done

through two phases:

6.3.3.1 System Design Phase

This phase is also referred to as high level design, preliminary

design, and logical design. The objective is to plan a logical

model within the context of a complete system. The data flow

diagram document is transformed into a structure charts document.

Using the transform-centered hierarchy structure [30], the

structure chart is derived directly from the data flow diagram

of the system. That's, the transform-centered structure chart

system is derived from the data flow diagrams in which all the

transactions follow the same path though all the identified

levels, and the corresponding hierarchy of modules is obtained.

Figure 6.5.1 and figure 6.6.2 below, show the modules that are

identified and their relationships.

As may be seen, this stage answers the question : HOW the system

wi11 be buiIt ?

The details of the modules will be seen in the next section which

is the detailed design phase.

6.3.3.2 Detailed Design Phase

This phase, also referred to as physical design, produces a

blueprint of the system; that's, it determines HOW, specifically,

the system should be implemented. This phase uses as input the

results of the previous phase, for which it applies constraints,

details of language and hardware, then produces the blueprint,

90

DATA y

; DRIVE
i MODULE

y

C """"* \

GET DATA DISPATCHER

Figure 6.6.1: System design structure chart

1

data yy
-/ y y

DRIUE

MODULE

y

c

i

c "^ "\.

:GET DATA i
<

DISPATCHER]

y y y _ v. *. ^
vvc c -v -x

y/\
™y y / \
~y'vw' \ \,

^y y r y/ V\ \L
V / C *\o

GET MODULE! iGET CHAP. ,• | GEI I
NAME !| TITLE ! 1LEUEL !

*• •' ' f ' ' 7f. '
i 1

' I

j COURSES !
j MODULE !

c^-v^wc

; TESTS :

! MODULE !

c—0—'c

MODULE CHAPTER LEUEL
NAME TITLE

iATTEND 1 ! ATTEND
!COURSE 1;'" COURSE 12

'PERFORM^ PERFORM'
j!TEST 1 i ;TEST 12;

* *—r^

! 1 ; i
i RESPONSES

ANSWERS

Figure 6.6.2: Detailed design structure chart

91

or solution model. That's, the output is a set of algorithms

developed using the flowcharting technique. The pseudocode of the

application program is given in the next section and the

flowcharts are depicted in appendix b.

6.3.3.3 System Pseudocode

Pseudocode is a tool that is used to describe the logic of a

process. It is an alternative to structured English which, when

used, ignores details such as opening and closing files,

initializing counters, and setting flags. In other words,

pseudocode attempts to correct the shortcomings of the structured

Engli sh.

For the present application, we use a pseudocode borrowed from

the DBASE IV programming language that is used to implement the

software under development.

Begin drive_module (Data;Course,Test)

Do get^data_module (C;Data)

Do di spat ch-er_modul e (Data;C)

End drive_module

Begin get_data_modu1e (C;Data)

Do get_module_name (MN;C)

Do get_chapter_tit1e (CT;C)

Do get_level (L;C)

End get_data

92

Begin get_modu1e_name (MN;C)

Input MN

If MN correct

Cont inue (exit)

Else

Loop

Endi f

End get_modu1e_name

Begin get_chapter_tit1e (CT;C)

Input CT

If CT correct

Cont inue (exit)

Else

Loop

Endi f

End get_chapter_tit1e

Begin get_level (L;C)

Input L

If L correct

Cont inue (exit)

Else

Loop

Endi f

End get_level

93

Begin dispatcher_module (Data;Cdata,Tdata,C)

If Data=Cdata

Do courses_module

Else (Data=Tdata)

Do tests_module

Endi f

End dispatcher_module

Begin courses_modu1e (Cdata;C)

Do case

case Cdata=CHGNLEFC_code

Attend course CHGNLEFC

case Cdata=CHGNLEMC_code

Attend course CHGNLEMC

case Cdata=CHGNLEDC_code

Attend course CHGNLEDC

case Cdata=CHDIGFC_code

Attend course CHDIGFC

case Cdata=CHDIGMC_code

Attend course CHDIGMC

case Cdata=CHDIGDC_code

Attend course CHDIGDC

case Cdata=UROLOGFC__code

Attend course UROLOGFC

case Cdata=UROLOGMC_code

Attend course UROLOGMC

case Cdata=UROLOGDC_code

Attend course UROLOGDC

94

case uaaia=unmuKru_coae

Attend course ORTHOPFC

case Cdata=ORTHOPMC_code

Attend course ORTHOPMC

case Cdata=ORTHOPDC_code

Attend course CRTHOPDC

Endcase

End courses_modu1e

Begin tests_module (Tdata;C)

Do case

case Tdata=CHGNLEFT_code

Perform test CHGNLEFT

case Tdata=CHGNLEMT_code

Perform test CHGNLEMT

case Tdata=CHGNLEDT_code

Perform test CHGNLEDT

case Tdata=CHDIGFT_code

Perform test CHDIGFT

case Tdata=CHDIGMT_code

Perform test CHDIGMT

case Tdata=CHDIGDT_code

Perform test CHDIGDT

case Tdata=UROLOGFT_code

Perform test UROLOGFT

case Tdata=UROLOGMT_code

Perform test UROLOGMT

case Tdata=UROLOGDT_code

95

Perform test UROLOGDT

case Tdata=ORTHOPFT_code

Perform test ORTHOPFT

case Tdata=ORTHOPMT_code

Perform test ORTHOPMT

case Tdata=ORTHOPDT_code

Perform test ORTHOPD

Endcase

End tests_module

The next section is a Data Dictionary of the new labels that are

introduced throughout the design phases.

6.3.3.4 Data Dictionary

The names of the modules and their meanings and the data couples

are given in this section.

Drive Module = * The module which contains the main program *

Get Data Module = * Input Data Module : MN + CT + L *

Get Module Name Module = * Input MN *

Get Chapter Title Module = * Input CT *

Get Level Module = * Input L +

Dispatcher Module = * On the basis of the input DATA, it routes

the transaction to the preselected

dest inat ion *

Courses Module = * This module opens the selected course file *

Attend Course Module = * Elementary module which contains the

contents of the course *

96

* The present system contains 12 courses *

Tests Module = ♦ This module opens the selected test file ♦

Perform Test Module = + Emementary test module which contains the

content of the test *

* The present system contains 12 tests *

CHGNLEFC = * Abbreviation for ' Cours de Chirugie Generale,

Ni veau Faci1e ' ♦

CHGNLEMC = * Abbreviation for ' Cours de Chirugie Generale,

Niveau Moyen ' *

CHGNLEDC = * Abbreviation for ' Cours de Chirugie Generale,

Niveau Difficile ' *

CHDIGFC = * Abbreviation for ' Cours de Chirugie Digestive,

Ni veau Faci1e ' *

CHDIGMC = * Abbreviation for ' Cours de Chirugie Digestive,

Niveau Moyen ' +

CHDIGDC = ♦ Abbreviation for ' Cours de Chirugie Digestive,

Ni veau Difficile ' *

UROLOGFC = ♦ Abbreviation for ' Cours d'Urologie, Niveau

Facile ' *

UROLOGMC = + Abbreviation for ' Cours d'Urologie, Niveau

Moyen ' +

UROLOGDC = * Abbreviation for ' Cours d'Urologie, Niveau

Di fficile ' *

ORTHOPFC = * Abbreviation for ' Cours d'Orthopedie, Niveau

Facile ' ♦

ORTHOPMC = * Abbreviation for ' Cours d'Orthopedie, Niveau

Moyen ' ♦

ORTHOPDC = + Abbreviation for ' Cours d'Orthopedie, Niveau

97

Di fficile ' *

CHGNLEFT = ♦ Abbreviation for ' Test de Chirugie Generale, Niveau

Facile ' *

CHGNLEMT = * Abbreviation for ' Test de Chirugie Generale, Niveau

Moyen '*

CHGNLEDT = * Abbrevaition for ' Test de Chirugie Gen6rale, Niveau

Di ffi cile ' *

CHDIGFT = * Abbreviation for ' Test de Chirugie Digestive, Niveau

Facile ' ♦

CHDIGMT = * Abbreviation for ' Test de Chirugie Digestive, Niveau

Moyen ' *

CHDIGDT = ♦ Abbreviation for ' Test de Chirugie Digestive, Nveau

Difficile ' *

UROLOGFT = * Abbreviation for ' Test d'Urologie, Niveau

Facile ' *

UROLOGMT = * Abbreviation for ' Test d'Urologie, Niveau

Moyen ' *

UROLGDT = * Abbreviation for ' Test d'Urologie, Niveau

Difficile ' *

ORTHOPFT = + Abbreviation for ' Test d'Orthopedie, Niveau

Facile ' *

ORTHOPMT = + Abbreviation for ' Test d'Orthopedie, Niveau

Moyen ' *

ORTHOPDT = ♦ Abbreviation for ' Test d' Orthopedie, Niveau

Difficile ' *

98

6.3.4 implementation Phase

This is the last phase of the development process of the

structured approach. This phase translates, in top-down fashion

[62], the algorithms developed in the design phase into a

programming language. In other words, implementation means coding

or creation of the physical system.

I order to create a physical system we need a software

environment or a software tool. It has been shown by [44] that

high level languages contribute to the quality and

understandabi1ity of the software under development. For the

application and the approach we are dealing with, the fourth

generation language, namely DBASE IV [49], [58], [53], which

offers a high level of abstraction, suits both the approach by

allowing a rapid development, and the application domain, that's

it accepts a lot of data.

DBASE IV is a compiler language that is developed by the ASHTON

TATE company. It is developed with the C language from which it

inherits the following characteristics: C code is small, fast,

portable, and flexible [59]. The characteristics of the DBASE IV

language are:

-High speed with which software can be developed.

-High abstraction language:

-Relatively close to English.

-Easy to learn.

-Easy to use.

-Ideal to rapid prototyping [6].

-Easy creation of user interface and dialogs [6].

99

-Interactive environment [6].

-Industry standard.

The fourth generation language is perceived as relevant to the

development and production of application systems. A high level

language contributes in the quality of software [46].

The physical development reflects the physical iterative and

incremental implementation of each system version until the

completion of the system development.

If we, as humans, are perfect, the development process ends at

this point, implementation; unfortunately, this is not the case.

Therefore, we need a testing process to correct the bugs.

In fact in the approach we are using, testing is spread out

throughout the project development process, this is already seen

theoretically and actually it is proved experimentally. Hence the

following phases deal with tesing, they are also referred to as

validation phases.

6.3.5 Testing Phases

The software testing process is a critical activity of software

speci f icat ion,quality assurance and represents the review of s

design and coding when an error is detected. For the present

application, the bottom-up strategy [47] is applied and the

different phases of the testing process that are performed are

discussed below.

6.3.5.1 Unit Testing Phase

This phase is also called module testing, black-box testing, and

100

functional testing.

During this phase each individual module is tested against its

specification derived during system design, then errors if any

are corrected.

6.3.5.2 Integration Testing Phase

During this phase, the modules belonging to the same branch of

the structure chart are interconnected to form subsystems and

tested against their corresponding branch specification, then

bugs if any are corrected.

6.3.5.3 System Testing and Decision Making Phase

Finally, the version of the system is interconnected or

integrated then tested against the user needs. During this phase

the software product version is deployed and validated by the

user. This means that the alpha testing process is performed for

each version of the system. And if the system is not yet

complete, we redo the development process for the next software

requirements increment that might be a level as suggested. In

each demonstration, the user interface and reliability of the

system version is evaluated by the users. This iterative

evolutionary process is carried out until the valid right product

is obtained. When the system is "complete", we proceed with the

next phase which is described in the next section.

6.3.6 System Delivery and Maintainance Phase

This is the last phase of the cocktail approach that we named

101

structured evolutionary development approach, or simply SEDA.

Once the system is, for the present "complete" and valid, it is

delivered to the user. Knowing that there is no perfect system,

maintenance is required and begins when the system enters

productive use. Maintenance is mainly required to adapt the

system to the changes of the environment with time. The problem

is that the maintainer is rarely the author of the code; hence,

he lacks an understanding of the program [52].

Maintenance is expensive, a solution to reduce this cost is to

design the system with ease of maintenance in mind. One key is

functional modularization [38], [47], [52]. This is one

characteristic of the structured approach, hence of the cocktail

approach, we used to develop the present product.

Many studies about software inspection techniques [50], measuring

software quality [51], and software complexity and maintenance

costs [47], [53] are carried out by the software community in

order to reduce the costs of maintenance and increase the quality

of the software products and many succesful results are obtained.

Actually, we hope that the present approach will contribute a lot

in developing high quality software projects and products, in

fact, it is our purpose from the beginning.

5.4 COST/BENEFIT ANALYSIS

Identifying and resolving software problems early in the

development process, often in the phase in which they first

occur, has been shown to contribute significantly to the

reduction of risks and cost in software development. In other

102

words, the cost of the software maintenance depends on the phase

where the error is detected. The error is detected sooner in the

development process, the maintenance cost is smaller [30], [37],

[53]. That's, an error which shows up in the requirements phase

might cost one tenth of the same error when detected in the

delivery phase [30]. Therefore, the building of a logical model

which clearly communicatesto users what the system will and will

not do is very important in terms of the cost of fixing errors

1 at er on.

For the present experiment, in order to increase the quality

assurance, hence decreasing the costs, a continuous communication

between the developer and the users is established. Moreover,

with all the iterative testing and validation process and

specification documents that are offered by the approach under

experiment, we can conclude that the cost-benefit ratio is

reduced .

6.5 RESULTS

What is said for the theoretical proposed model [33], namely the

cocktail approach, is applied to the computer aided medical

training system development. All the necessary specification

documents are developed. Actually, the results are promising;

that's, the experiment showed that the cocktail approach or SEDA,

combines the advantages of both the structured approach and the

evolutionary prototyping approach, that is the two combined

approaches are complementary and when combined, then applied to

develop a software product or project they yield a product with

103

high performance, robustness, functionality and ease ot use, ana

ease of learning. That's, the characteristics of the approach

under study are:

1-Enforcement of formal documentation.

2-Deeper understanding of the system.

3-Ensures effective and robust planning and the stages of

development are more visible.

4-The development tool is chosen early in the project after

understanding the domain knowledge; typically during the

teas ibi1i t y st udy.

5-Robusteness to sudden and major changes and it is a

demonstrable approach.

6-Provides a superior environment for knowledge elicitation

through the mechanism of the demonstration of the working

versions of the system.

7-Allows for greater and controlable flexibility in project

pianning.

8-Testing is spread out throughout the project development

process.

3-Ensures the progress in the development of the product.

10-The user is involved throughout the development process.

11-Reduces the cost/benefit ratio.

The last point is not really experienced since the work is done

for the sake of research, but deductions can be drawn from the

present study and from the charcteristics of the component

approaches which consist the cocktail approach that is under

development.

104

CHAPTER SEVEN

CONCLUSION

Software systems development is not a mechanical process but a

human activity; and requires clear thinking, work, and rework to

be successful. Despite all the research work that is done during

the last three decades, the battle is not yet ceased and it is

not for tomorrow. The software community and the software users

are still not satisfied, they are always looking for a better

tool. In order to get a better software product, we need to use

a better approach for its development; but the problems change

with time and time is not waiting for us, that's, we are always

late with respect to time.

In the present work, it is our turn to suggest an approach. After

considering a number of objectives and problems of software

production, the software crisis and the existing paradigms. We

are suggesting a cocktail approach whose components are the

structured approach and the evolutionary prototyping approach.

This approach, namely structured evolutionary development

approach, or simply SEDA, is actually discussed theoretically

then applied to the development of a medical CAL application,

105

nameily computer aided medical training system, or simply CAMTS.

It is interactive and microcomputer-based training system

designed to teach surgery medical personnel in a hospital,

students and physicians. Its menu-driven structure allows the

user to learn easily and has a high level of abstraction, these

characteristics are inherited from the DBASE IV environment which

offers a very high level language and accepts a lot of data. As

may be noticed, the section 6.5 deals only with the advantages

of the approach under study. Does this mean that this approach

has no disadvantages ? Or shall we deduce them from the component

approaches ? The answer for the second question is no, because

the disadvantages of each component approach are drawn in the

advantages of the other component approach when combined. And for

the first question, on the basis of one experience, we cannot

give a clear and complete answer. However, we can say that the

disadvantages of the proposed approach will be deduced by

applying it to the development of software products and projects

in different application domains and let the users conclude after

using the systems. The purpose of this experiment is to evaluate

the promising approach, named SEDA, to software products and

projects development. That is our objective is mainly to

contribute in the improvement of software projects and products

development; then to contribute also in CAL systems development

which is under research. We hope that such learning or CAL

systems will be developed and used in hospitals, schools, and

entreprises in order for everyone to update his knowledge and

to be aware of the state of his profession.

The product is put under acceptance testing, namely alpha testing

106

process before its final delivery, and this is done for several

times, that's, for each version of the system. Both parts, the

developers and the users are satisfied. This does not mean that

this approach is ideal and that the developed application is free

of errors, well that's what we want, particularly we will be

hapy. Only experience can tell. But still a famous question is

not yet answered: Is this approach apply for all types of

software applications ? The answer can only be obtained by

statistics, hence, we invite the software community to use this

approach in different application domains to develop software

projects and products, then conclusions will be drawn, that's,

experience in time will tell.

107

o R H

"Introducing software engineering", 1987, NCCL pub!i cat ior

[2] Peters, L.

r o 1
L -> J

r a i
l ** J

"Advanced structured analysis and design", 1983, Prent

Hall Int ernati onal.

Ghezzi, C; Jazayeri, M.; and Mandrioli, D.

"Fundamentals of software engineering", 1991, Prentice-Hall

Int ernat ional.

Andriole, S. J. and Freeman, P. A.

"Software systems engineering: the case for a new

discipline"; Soft. Eng. Journal, May 1933, vol. 8, No 3,

[5] Sommervilie, I.

"Software engineering", 1989, Third edition, Addison Wes1ey

108

[6] Pressman, R. S.

"Software engineering: a practitionner's approach"; 1987,

second edition, McGraw-Hill International.

[7] Alagic, S. and Arbib, M. A.

"The Design of We 11-Structured and Correct Programs", 1973,

Spring-Verglas International.

[S] Macro, A.

"Software engineering: concepts and management", 1990,

Prentice-Hall International, Ltd.

[3] Dwain, S. W.

"New techniques in software project management", 1987, John

Willey and Son International.

[10] Jensen, R. W. and Charles, T. C.

"Software Engineering", 1979, Prentice-Hall International.

[11] Bell, D.; Morrey, I.; and Pugh, J.

"Software Engineering: A programming approach",1992 , Second

edition, Prentice-Hall International (UK) Ltd.

[12] Miller, G. A.

"The magical number seven, plus or minus two: some limits

on our capacity for processing information", Psychol. Rev.,

1956, vol. 63, no 2, p 31-36.

109

[13] Schwartz, J. T.

"The practical and the not-yet-practical in software

engineering" in Computing tools for scientific problem

solving, 1990, Academic press limited, p 23-33.

[14] Alexander, H. and Jones, V.

"Software design and prototyping using mee too", 1990,

Prentice-Hall International.

[15] Davis, A. M.

"Software requirements: analysis and specification", 1330,

Prentice-Hall International

[16] Smith, H. T. and Green, T. R. G.

"Human interaction with computers", 1980, Acccademic Press.

L I ' J Bruce, P. and Pederson, S. M.

"The software development project planning and management",

1982, John Wiley and sons, International.

[13] Wo 1f f, J. G.

"Towards a new concept of software", Software Engineering

Journal, January 1994, vol. 9, no 1, p 27-38.

[1 9] Gilb, T.

"Software Metrics", 1977, Windrop Publishers, International

1 10

[20] Glass, R. L. and Noiseux, R. A.

"Software maintenance guidebook", 1981, Prentice-Hall,

Int ernat ional.

[21] Tarek, K. A. H.; Sengupta, K.; and Ronan, D.

"Software Project Control: An Experimental Investigation of

Judgment with Fallible Information", IEEE Transactions on

Software Engineering, June 1993, vol. 13, no 6, p 603-612.

[22] Grady, R. B.

"Practical results from measuring software quality",

Communications of the ACM, November 1993, vol. 36, no 3,

p 62-58.

[23] Shortliffe, E. H.

"Consultation systems for physicians: the role of AI

techniques", in readings in AI, Webber, B, L

N. J. (Editors), 1981, Tioga Publishing Co

i"o<l ^,,+ i_ |-^
L^i-J o U i. L a , o.

"Structured systems analysis and design methodology", 1388,

Paradigm publishing Ltd.

[25] Claybrook, B. G.

" c ; i e management techniques", 1983, John Willey and Sons,

Int ernat ional.

1 1 1

L2t> j buck ie , j . rv.

"Software configuration management", 1982, Macmillan

Education Ltd.

[27] Hilal, D. K. and Soltan, H.

"To prototype or not to prototype ? That's a question",

Soft. Eng. Journal, November 1992, p 388-392.

[23] Boehm, B. W.; Gray, T. E.; and Seewaldt, T.

"Prototyping versus Specifying: A multiproject

Experiment", IEEE Transactions on software engineering, May

1934, vol. SE-10, no 3, p 290-302.

[23] Anderson, W. L. and Grocca, W. T.

"Engineering practice and codevelopment of product

prototype", Communications of the acm, june 1993, vol. 35,

no 4, p 49-66.

[30] Gane, C. and Sarson, T.

"Structured systems analysis: tools and techniques", 1979,

Prentice-Hall International.

[31] Hauli baugh , R.

"Application of reusable software components at the SEI",

Software reuse issues, Dec. 1933, p 135-145.

[32] Whittle, B. and Ratcliffe, M.

"Software component interface description for reuse", Soft

1 12

Eng. Journal, Nov. 1993, vol. 8, no 6, p 307-318.

[33] Prieto-Diaz, R.

"Status Report: Software Reusability", IEEE Software, May

1333, p 61-66.

[34] Azni, M.

"A model based formal specification of a medical expert

system", 1994, Magister thesis, Advisor: Mezhoud, B.,

INELEC, Algeria.

[35] Spivey, J. M.

"An introduction to 2 and formal specification", Software

Engineering Journal, 1989, p 40-50.

[36] Spivey, J. M.

"The Z notation: a reference manual", 1339, C. A. R. Hoar

Series Editor.

[37] Yourdon, E.

"Modern structured analysis", 1989, Prentice-Hall

I nt ernat ional .

[33] Longworth, G.

"A user's guide to SSADM: getting the system you want",

1383, NCC publications.

1 1

[40] DeMarco, T.

"Structured analysis and system specification", 1978,

Yourdon Press.

[41] Downs, ED; Clare, P.; and Core, I.

"SSADM: Application and Context", 1992, Second edition,

Prentice-Hall International (UK) Ltd.

[42] Millington, D.

"Systems analysis and design for computer applications",

1981 , El is Horwood Ltd.

[43] Stevens, W. P.

"Using structured design", 1988, John Wiley and sons

Int ernat ional.

[44] Wayne, S.

"Software design: concepts and methods", 1991, Prentice-Hall

Int ernat ional.

L'tj J Byces, B. B.

"Flowcharting: Programming, software designing, and

comoputer problem solving", 1975, John Willey and sons,

Int ernat ional .

[46] Wichmann, B. A.

"Contribution of standard programming languages to software

quality", Software engineering Journal, January 1994, vol.3,

1 14

no 1, p 3-12.

[47] Diaz-Herrera, J. L.

"The importance of static structures in software

construction", IEEE software, May 1993, p 75-37.

[48] Kowal, J. A.

"Analyzing Systems", 1988, prentice-Hall International.

[49] Delannoy, C.

"Maitriser DBASE IV", 1983, Berti editions (Paris).

[50] Knight, J. C. and Ann Myers, E.

"An improved inspection technique", Communications of the

ACM, November 1993, Vol. 36, no 11, p 51-61.

[51] Grady, R. B.

"Practical results from measuring software quality",

Communications of the ACM, November 1993, Vol. 36, no 11,

p 62-68.

[52] Harrold, M. J. and Malloy, B.

"A Unified Interprocedural Program Representation for a

Maintenance Environment", IEEE Transactions on Software

Engineering, June 1993, vol. 19, no 6, p 534-593.

[53] Banker, R. D.; Datar, S. M.; Kemerer, C. F.; and Zweig, D.

"Software complexity and maitenance costs", Communications

1 15

[54] Polack, F.

"Integrating formal notations and system analysis: using

entity relationship diagrams", Soft. Eng. Journal, Sept.

1992, vol. 7, no 5, p 363-371.

[55] Pin-Shan Chen, Peter

"The Entity-Relationship Model: Toward a unified view of

data", ACM Transactions on database systems, March 1376,

vol. 1, no 1, 1976, p 9-36.

[55] Davis, C. G.; Jajodia, S.; NG, P. A.; and Yeh, R. T.

"Entity-Relationship approach to software engineering",

1933, Elsevier science publisher B. V.

[57] Bancs, D. and Malbose, G.

"MERISE PRATIQUE: Les pcints-cie de la methode", 1990,

Troisieme Edition, Editions Eyrolles (Paris).

[53] DBASE IV, 1938, Ashton-Tate corporation.

[53] Li Ten, H.

"DBASE IV: Le guide complet de 1'uti1isateu -", 1989,

Editions Radio (Paris).

[60] Hordeski, M. F

"Control system interfaces: design and implementation using

1 16

personnal computers", 1992, Prentice-Hall International.

[61] Gane, C.

"CASE: the methodologies, the products, and the future",

1990, Prentice-Hall International.

[62] LBMS

"Automate-Plus release notes version 3.02, vol. 1-3",

1937, Copyright (c) LBMS, International.

[63] The start guide, 1987, sec. edit., vol. 2; NCC publications

[64] Gage, N. L.

"Explorations ir, teachers' perceptions of pupils", in

reading in Social perception, Hans, Toch and Henry Clay,

Smith, 1968, D. Van Nostrand Company International, p 219

"Systems analysis and design: a structured approach", 1337,

Add ison Wesley.

L ~* ~< j rdoK, \i .

"Styles and strategies of learning", Br. J. educ. Psychol.,

1375, 46, p 123-148.

[66] Chandrasckaran, B.; Johnson, T. R.; and Smith, J. W.

"Task-Structure Analysis for Knowledge Modelling",

1 17

UUIIUMUII I ^OL I UNO W I LUC y-iOIVI , JC^LCIIIUCI \ -J -J £-) V W I . O U j IIU J,

P il4~ ij6.

[G7] Czejdo, B.; Eick, C. F.; and Taylor, M.

"Integrating Sets, Rules, and Data in Object-Oriented

Environment", IEEE Expert, February 1993, p 59-66.

[63] Bahr, J. P.

"Computer-Aided Instruction in Perinatal Education",

American journal of perinatology, April 1986, vol. 3, no 2,

p 147-150.

[63] Irani, K. B.; Cheng, J.; Fayyad, U. M.; and Qian, Z.

"Applying Machine Learning to Semiconductor Manufacturing",

IEEE Expert, February 1993, p 41-46.

[""3] Matheny, J. L.

"Comparison of different Approaches to pharmacological

Instruction of Medical Students", Health Comm. Informatics,

iji 3 , vol. w> , p j~1 j .

[7 1] Hat on, M. C.

"L'Crdinateur pedagogique", La recherche 246, sept. 1992,

vol. 23, p 1014-1022.

[72] Lincoln, M. J.; Turner, C. W.; Haug, P. J.; Warner, H. R.;

Williamson, J. W.; Bouhadaddou, 0.; Jessen, S. G.;

Sorenson, D.; Cundick, R. C; and Grant, M.

1 18

"Iliad training enhances medical students: diagnostic

skills"; Journal of medical systems, 1991, vol. 15, no 1,

p 93-110.

[73] Daly, D. W.; Dunn, W.; and Hunter, J.

"The CAL project in mathematics at the university of

Glasgow", Int. J. Math, Educ. Sci. Technolo., 1977, vol. 3,

no 2, p 145-156.

[74] Pask, G; and Scott, B. C. E.

"Learning strategies and individual competence", Int. J.

Man-machine studies, 1972, vol. 4, p 217-253.

[75] Shortliffe, E. H.; Davis, R.; Axline, S. G.; Buchanan, B.G.;

Green, C. C; and Cohen, S. N.

"Computer-based consultations in clinical therapeutics:

explanation and rule acquisistion capabilities of the

MYCIN", Computers and biomedical research, 1975, vol. 3,

p 303-320.

[76] Manning, P. R. and Hoagland, P. I.

"Continuing Medical Education: the next step", AAMSI

Congress 83 proceedings, p 339-344.

[77] Karmakar, N. L.

"Use of Information Technology in Health and Medical

Education at Australian Universities", Interactive Learning

International, 1991, Vol. 7, p 265-266.

1 19

[73] Mansour, A. A. H.; McGregor, J.; Franklin, M.; & Poyser, J.

"Intelligent Medical Multimedia-Based Tutoring Systems:

Design issues", IEE Colloquium on 'Intelligent Decision

Systems and Medicine', 1992, Digest no 143, p 101-103.

[79] Mansour, A. A. H; Poyser, J.; McGregor, J. J.; & Franklin,

M. E .

"An intelligent tutoring system for the instruction of

medical students in techniques of general practice",

Computers Education, 1990, vol. 15, no 1-3, p 83-90.

[30] Ellis, L. B. M. and Fuller, S.

"Computers in Medical Education: A cooperative approach to

planning and implementation", Proceedings of the 12"' annual

symposium of computer applications in medical care, 1338,

IEEE cat. no 88 CH6161, p 323-327.

[31] Kunstaetter, R.

"Intelligent Physiologic modelling: An application of

knowledge based systems technology to medical education",

Proceedings of the 10*'' annual symposium on computer

applications in medical care, 1986, cat. no 86 CH2341-6,

--, o o -i _ o n o
fj o u I J J J i

[82] Martin, J. M.; Jabot, F.; and Mar re1, P.

"How to organize the medical data of chronically 111

patients in the computer", Methods of Information in

Medicine, 1335, vol. 24, no 1, p 5-12.

120

[33] Imache, R.; Mezhoud, B.; and Maaoui, M.

"Computer aided medical training system", To be published

in Modelling, Measurement and Control, C, Vol. 43, No 4,

1995, p 51-63.

[34] ORR, K. T.

"Structured systems development", 1977, Yourdon Pre:

Int ernat ional.

APPENDIX A

MODELLING TECHNIQUES GUIDE

L I NES

The present appendix is a complement to the techniques presented

m chapter four. However, the guidelines provided in order to

develop or draw data flow diagrams [29], [SO], structure charts

[5], and data dictionaries [5] are presented.

A.I Guidelines For Drawing Data Flow Diagrams

1-Identify the external entities involved.

2-Identify the scheduled inputs and outputs that you can

C •'. ^ 6 ^ i. .

3-Specify which information is given to the system and the one

"equ-red from the system.

4-Take a large sheet of paper. Start on drawing the DFD from

the left hand side with the external entity that seem to be the

prime source of inputs, then the data flows, processes, and the

data stores that you think will be required.

5-Draw the first draft freehand.

6-Accept that you will need at least three drafts of the high

122

ieve i aat a tiow.

7-Check back the first draft if it has included all the listed

inputs and outputs.

8-Produce a clear second draft with minimum number of crossing

u 3. t 3. T !OVV3.

-Duplicate external entities if necessary.

-Duplicate data stores if necessary.

-Allow data flows to cross if there is no alternative

[23], sec 3.4, p 34.

9-Agree the boundary of the system.

10-Draw a context diagram or level 0 DFD.

11-Draw a level 1 DFD by exploding the context diagram.

12-Deccmpose down to levels 2,3, etc.

13-Stop the decomposition process at suitable points [30]

14-Support each bottom level process with pseudocode.

A.2 Structure Charts

1-The symbol for a module is a rectangle.

2-Each module must have a label.

3-Module labels are composed of a transitive, or action, verb

and an object noun.

4-Modules may communicate information only via CALLs.

5-A module may not call or invoke another module which is

higher in the hierarchy than it is.

S-Nc two modules, data couples, or control couples may have the

same name.

7-No data couple may have the same name as a control couple.

123

cj-irie operation wmcn Taxes piace in a moauie musi De aescriDea

with pseudocode.

9-A11 data couples, control couples, pseudocode, etc., must be

defined in the data dictionary [5], sec 9.5 p 169.

A.3 Data Dictionary

A set of conceptual standards that form a basic dictionary

consistent with the methods presented are listed in the following

gu ide1i nes:

1-A11 data and other information that comprise the analysis,

design, and code must be defined in the data dictionary.

2-A11 data and information that are contained in the data

dictionary must be used in some part of the system.

3-The information in the data dictionary should be internally

consistent, complete, nonredundant, and correct.

4-The data dictionary is intended to be the primary project

information resource.

5-The DD may comments regarding data the software developer

deems necessary to understanding and using the information

contained in it.

5-The names used for data items within the DD and the names

used on the data flows must be identical.

7-The names used for data items within pseudocode must be

identical to those used on the DFDs and the DD, [5] sec 3.4, p40.

124

APPENDIX B

SYSTEM FLOWCHARTS

This appendix is a complement to the design phase of the medical

CAL application, namely Computer Aided Medical Training System,

or simply CAMTS, that is developed in chapter six. However, the

application flowchrts are given in the following pages.

START

ENTER

PASSWORD OR
'Q' TO QUIT /

<-"

VALIDATE

PASSWORD

LEGALX
ACCESS

X. y'

|yes
*

READ

SYSTEM

INFO.

EXECUTE

GET DATA

MODULE

±.
EXECUTE DISP

ATCHER MODULE

iWITH DATA

' GET

CHOICE
ON MENU

NO

NO

y'~y.
/INPUT

VES

x

END

CHOICE\ N0 /CHOICE \x N0 ,/ CHOICEr.\

vvCONTINUE^
x y'

;VES

, RESTART y
\ y

:VES

>

NO

QUIT

VES

END

Figure B.l: Main progran (Driver) wodule flouchart

126

i 1

:'2V

START

.GET CHOICE /

ON MENU

A
/'CHOICE\ m

\ MODULES >—
X MODULE/-"

y

^y
VES

EXECUTE

-7t MODULES

I MODULE

EXECUTE

CHAPTERS

MODULE

Jc-

EXECUTE

LEVELS

MODULE

RETURN

Figure B.2: Data nodule flowchart

127

,N0

/'CHOIcA
N

\x QUIT y'
\ y

\ VES

RETURN

START

GET CHOICE

ON MENU

i
y \

,,"' CHOICE \

\ COURSES y
\noDv/

N^'

VES

Jl.

STORE COURSE

MODULE CODE

i- +-

RETURN

MO /CHOICEX m
\ te'sts y

\MODv
•>y

:ves

"x

,±-

STORE TEST

MODULE CODE

Figure B.3: Modules nodue flowchart

NO

CHOICE \

\ QUIT
y

VES

RETURN

START

v i_

GET CHOICE

ON MENU

<T

CHOICE^

CHAPTER

\NANE/-
y-'

VES

STORE CHAPTER;

NAME CODE !

RETURN

NO

:no

'choice-

MODULE
"^

\NAME
X y

V

y

VES

RETURN

1)

Figure B.4: Chapters nodule flowchart

129

START

GET CHOICE

ON MENU ,

y

."'CHOICE"

\ LEVEL y
\y'

;VES

STORE LEVEL

CODE

RETURM

NO

NO

•/CH0_ICEs
CHAPTERS

RETURN

; 2 ^

\

"\M0DULE>/

A"
;VES

Figure B.5: Levels nodule flowchart

READ

COURSES

INFO.

EXECUTE

COURSES

MODULE

CDATA

START

DATA

y

TDATA

y

/ READ
TESTS

INFO.

X

RETURN

EXECUTE

TESTS
MODULE

Figure B.6: Dispatcher nodule flouchart

131

START

i i !

! / ATTEND
COURSE

i

i i

i

NO y

-y

j
/ GET CHOICE /

ON MENU /'

1

VES

:k
y x

y

/CHOICE \
-y - n

NO

.i.
y' \

'CHOICE

•"x^LAST yy xQUIT ..
X y

•••y

VES

RETURN

Figure B.7: Courses nodule flowchart

3TART

• i

/ PERFORM
TEST

y

/ GET CHOICE /

ON MENU /

y \
VES /CHOICE \ NO

{ - "> <
V LAST y

v /•
x/

;NO
*

/ x
/CHOICE \

A QUIT A

VES

RETURN

Figure B.8: Test nodule flowchart

Ingineerie. jt-s.S', rte.iies.tilectror.iqi

i,rinCr.L-: . . R ,-1 b - h

•Y.FBl DtTNT / : !'ir- A-POULARAS, (Pr, LI. S . T . H . P <

'•APPORT-:i 'PS/ : !v!r~ POLCOilPE . (P - . U.Sheffield i U .

-iLhPPCS /: Mr.S.ACHGUR, (Phd, C.C - U.T.O)

:>!r .H.AZZOUNE, (T.U, C.C - U . S . T . H . B

