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 ملخص 

نظام  في  للقياس  القابلة  غير  المتغيرات  لتحديد  التقدير  تقنيات  استخدام  الأطروحة  هذه  تستكشف 

على   الأطروحة  وتركز  الصناعية.  العمليات  في  شائع  ديناميكي  نموذج  وهو  المتصلين،  الخزانين 

للقيود التي تواجه القياس المباشر، يلعب تقدير خوارزمية مراقب "لونبرجر" كوسيلة فعالة للتقدير. نظرًا  

الحالة دورًا حيويًا في ضمان التحكم الدقيق في العمليات واكتشاف الأعطال. تتناول الدراسة نظرية أنظمة 

لتقدير  "لونبرجر"  مراقب  واستخدام  الخزانين،  لنظام  الخطي  وغير  الخطي  النظام  نمذجة  التحكم، 

التقدير  بينما  دقة عالية،  يوفر  الكامل  التقدير  أن  إلى  النتائج  تشير  للقياس.  القابلة  القابلة وغير  المتغيرات 

ظل   في  الفعّال  التحكم  على  الحفاظ  في  التقدير  أهمية  يبرز  مما  موثوقة،  تقريبية  تقديرات  يقدم  الجزئي 

 .الاضطرابات

 

المفتاحية: في    الكلمات  التحكم  الديناميكية،  الأنظمة  الخزانين،  نظام  لونبرجر،  مراقب  الحالة،  تقدير 

 .العمليات

 

Summary 

This thesis examines the application of estimation techniques to determine 

non-measurable state variables in a two-tank coupled system, a widely used 

dynamic model in industrial processes. It emphasizes the Luenberger observer 

algorithm as an effective estimation method. Given the inherent limitations in 

direct measurement, state estimation is vital for ensuring accurate process control 

and fault detection. The study encompasses control system theory, the modeling 

and linearization of the two-tank system, and the use of the Luenberger observer 

to estimate both measurable and non-measurable variables. Results indicate that 

while full-state observation delivers precise estimates, partial-state observation 

provides reliable approximations, highlighting the value of estimation in 

maintaining robust control under varying conditions and disturbances. 

 

Keywords: State estimation, Luenberger observer, two-tank system, dynamic 

systems, process control. 

 

Résumé 

Cette thèse explore l'application des techniques d'estimation pour déterminer 

les variables d'état non mesurables dans un système couplé à deux réservoirs, un 

modèle dynamique largement utilisé dans les processus industriels. Elle met 

l'accent sur l'algorithme de l'observateur de Luenberger en tant que méthode 

d'estimation efficace. En raison des limitations inhérentes à la mesure directe, 

l'estimation des états est essentielle pour garantir un contrôle précis des processus 
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et la détection des défauts. L'étude couvre la théorie des systèmes de contrôle, la 

modélisation et la linéarisation du système à deux réservoirs, ainsi que 

l'utilisation de l'observateur de Luenberger pour estimer les variables mesurables 

et non mesurables. Les résultats indiquent que l'observation à état complet fournit 

des estimations précises, tandis que l'observation partielle offre des 

approximations fiables, soulignant ainsi la valeur de l'estimation pour maintenir 

un contrôle robuste face aux perturbations. 

 

Mots-clés : Estimation d'état, Observateur de Luenberger, Système à deux 

réservoirs, Systèmes dynamiques, Contrôle des processus. 
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General Introduction 
 

The relentless pursuit of efficiency and quality in today's industrial landscape 

relies on precise regulation. Industrial processes are complex systems, often 

involving intricate interactions among various components. To ensure these 

processes consistently deliver the desired outcome—whether it be specific 

product quality, production rate, or energy efficiency—maintaining a set of 

operating conditions is crucial. This is where regulation comes into play, acting 

as an invisible conductor, continually adjusting the process inputs based on the 

system outputs. 

Achieving perfect regulation in industrial environments requires successfully 

capturing all system outputs. But this last, faces five fundamental challenges: 

Physical Limitations: In many industrial systems, some variables are 

physically inaccessible due to their location or environment. For instance, in oil 

extraction, it's challenging to measure reservoir pressure and flow rates directly 

at deep underground levels, relying instead on surface measurements. Similarly, 

in offshore drilling, subsea equipment located thousands of meters underwater 

faces difficulties in measuring temperature, pressure, or flow rates accurately due 

to sensor placement challenges and harsh environmental conditions. 

Sensor Costs and Complexity: Installing sensors throughout a system can be 

prohibitively expensive, particularly in the oil and gas industry, where 

monitoring a vast network of pipelines, pumps, and tanks would require 

thousands of costly high-quality sensors. Additionally, managing and ensuring 

the accuracy of data from such a large number of sensors increases system 

complexity and maintenance costs. 

Harsh Operating Environments: The harsh conditions in the oil and gas 

sector for example, make sensor placement and maintenance challenging. In 

processes like catalytic cracking or distillation, extreme temperatures and 

pressures make it difficult to install sensors inside reactors or pipelines. 

Additionally, corrosive environments in processing plants can damage sensors, 

making continuous measurement impractical. 
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Measurement Limitations: The real sensors used to monitor industrial 

processes have limitations. They can introduce noise into the data or experience 

delays in capturing the actual state of the system. These imperfect measurements 

can lead to inaccurate assessments of the process and hinder effective regulation. 

Process Dynamics: Industrial processes are not static. They often exhibit 

delays between the application of an input change and the resulting output 

modification. This inherent time lag makes it difficult for a purely reactive 

control system to maintain optimal conditions. 

This is where estimation plays a crucial role in overcoming these challenges. 

Estimation acts as a sophisticated bridge between imperfect measurements and 

the desired regulation. It uses advanced mathematical techniques and algorithms 

to achieve two main objectives: 

State Estimation: By analyzing the available sensor data, despite their 

limitations, estimation techniques can provide a more accurate picture of the 

system's current internal state. This goes beyond merely reading sensor values; it 

accounts for inherent noise and delays, offering a more reliable understanding of 

the process dynamics. 

Predictive Capability: Estimation not only focuses on the present but also 

leverages the understanding of the system's dynamics to predict its future 

behavior. This allows the regulation system to anticipate how the process will 

react to input adjustments, considering inherent delays and ensuring timely 

interventions. 

By providing a clearer view of the present and insights into the future, 

estimation enables the regulation system to make proactive adjustments, 

effectively mitigating the limitations of imperfect measurements and process 

delays. 

In this thesis, we will work on estimating temperature and liquid level in a 

dynamic system subject to unmeasurable disturbances using a state observer.  

This thesis is organized into four parts summarized as follows: 

Chapter One: General Information on Regulation. 

Chapter Two: Coupled Tank System. 

Chapter Three: Modeling and Linearize of Two-tank Coupled system. 

Chapter Four: Estimating the Liquid Level and Temperature of Two-tank 

Coupled System. 

 



 

 

 

 

 

 

 

 

 

 

 

 

Chapter One: General information 

on the Regulation  
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1. Introduction 

 

The concept of regulation is omnipresent, integrated into our natural world, 

and observable in living systems, as evidenced by the regulation of human body 

temperature. While early examples of control systems date back to antiquity, 

such as water level regulators, the formal study of control loops only emerged in 

the 19th century. 

Regulation is a fundamental discipline within the field of automation, a 

technical science. Automation, including regulation, is generally considered to 

have originated in the 1930s with the advent of the first position 

servomechanisms and the initial definition of stability. Although "automatic" 

systems existed before, such as automata, they were not theoretically understood. 

Following these initial advances, the field of regulation grew rapidly with the 

development of the first methods for synthesizing correctors in the 1940s and 

1950s, and then experienced a significant expansion in the 1960s with the advent 

of computer science [1]. 

Throughout this chapter, we will establish a comprehensive foundation for 

understanding control systems, starting with a thorough examination of their core 

principles of regulation. We will also delve into the critical role of feedback 

loops in maintaining system stability.  Furthermore, we will explore the concept 

of control systems in detail, dissecting the various components that work together 

to achieve desired outcomes. We will then turn our attention to the theory of 

estimation, outlining its purposes and the techniques employed for accurate state 

estimation. Finally, we will discuss observers and their crucial role in achieving 

system observability, a fundamental aspect of effective control design. 
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2. Regulation 

2.1 Definition of Regulation 

Regulation encompasses all techniques used to keep the controlled variable 

constant at a desired value, despite disturbances, by acting on another regulating 

variable. The goal is to achieve the smallest possible deviation as quickly as 

possible (energy efficiency) without destabilizing the response (product quality) 

[2]. 

 

2.2 Purpose of Regulation 

 The goal of regulation is to maintain a stable and desired state within a system 

by automatically adjusting its inputs based on its outputs. It can be likened to a 

thermostat managing the temperature of a room. 

 

 

FIG 1. 1 - Programmable Room Thermostat that manage the temperature of a room [3] 
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2.3 System Control Loop  

 A regulation chain, also known as a control loop, is a closed-loop system that 

continuously monitors and adjusts the output of a system to maintain a desired 

setpoint or reference value. This is a fundamental concept in control theory and 

automation, widely used in various industries, including engineering, 

manufacturing, and more.  

 

 

2.3.1 Operation of a System Control loop  

A. Measurement: The process begins with measuring the system's output 

using a sensor. This sensor can be a physical device like a temperature or 

pressure sensor, or a more complex system like a vision sensor or a network of 

sensors. The sensor converts the measured physical quantity into an electrical 

signal that can be processed by the regulator. 

B. Comparison: The measured output signal is then sent to the controller, 

which acts as the "brain" of the control loop. The main function of the controller 

is to compare the measured output to the desired setpoint or reference value. The 

setpoint is the value we want the system's output to maintain. The controller 

calculates the error, which is the difference between the measured output and the 

setpoint. 

C. Processing: Based on the error, the controller generates a control signal 

using a control algorithm. The control algorithm is a set of mathematical 

instructions that determine how the controller should adjust the system's input to 

minimize the error. There are many types of control algorithms, each with its 

strengths and weaknesses. 

Here are some common control algorithms: 

FIG 1. 2 - System Control Loop [4] 
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- Proportional Control (P): The control signal is proportional to the error. 

This is a simple and effective algorithm, but it can be unstable in some 

systems. 

- Integral Control (I): The control signal is proportional to the integral of 

the error over time. This algorithm helps eliminate steady-state error 

but can slow down the system's response to changes. 

- Derivative Control (D): The control signal is proportional to the rate of 

change of the error. This algorithm improves the system's response to 

changes but can be sensitive to noise. 

- PID Control (Proportional-Integral-Derivative): This algorithm 

combines the advantages of P, I, and D controls to provide a robust and 

versatile control strategy. 

D. Action: The control signal is then sent to the actuator, which is the device 

that adjusts the system's input. The actuator can be a physical device like a valve, 

motor, or heating element, or it can be a more complex system like a robotic arm 

or a network of actuators. The actuator receives the control signal and adjusts the 

system's input accordingly. 

F. Feedback: The new system output is then measured by the sensor, and the 

process repeats. This continuous cycle of measurement, comparison, processing, 

action, and feedback is what makes a control loop so effective in maintaining the 

desired output. 

 

2.4 Level Control Systems 

Level control systems are crucial for industrial processes that involve storing 

or using liquids. They automatically maintain the fluid level within a desired 

range in tanks or reservoirs. This is important for several reasons: 

- Prevents overflow: An overflow can damage equipment, waste product, 

and create safety hazards. 

- Ensures efficient operation: In many processes, consistent fluid level is 

necessary for optimal performance. For example, a boiler needs a 

certain water level to function properly. 

- Protects pumps: Running a pump without sufficient liquid can damage 

the pump. 
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Example of Level control system 

The diagram showed in (FIG 1.3) is a basic schematic of a water level control 

system for a storage tank. Here are the main components and how they work 

together: 

Level transmitter (LT): This sensor measures the water level in the tank. It 

can be a float switch, a pressure sensor, or another type of device. The level 

transmitter sends a signal (often an electrical current) to the level controller. 

Level controller (LC): This device receives the signal from the level 

transmitter and compares it to a setpoint, which is the desired water level in the 

tank. The controller then sends a signal to the level control valve. 

Level control valve (LCV): This valve controls the flow of water into the 

tank. The signal from the level controller tells the valve to open, close, or adjust 

its position to maintain the water level at the setpoint. 

Set point: This is the desired water level in the tank. It is typically a fixed 

value, but it can also be adjustable. 

 

 

Control loop of the system 

The water level control system function based on a feedback loop. Here's how 

it works: 

- The level transmitter continuously measures the water level in the tank. 

- The level transmitter sends a signal corresponding to the water level to 

the level controller. 

FIG 1. 3 - Level Control Diagram 
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- The level controller compares the signal from the transmitter to the 

setpoint. 

- If the water level is below the setpoint, the level controller sends a 

signal to the level control valve to open. This allows more water to flow 

into the tank. 

- As the water level rises, the signal from the level transmitter increases. 

- When the water level reaches the setpoint, the signal from the level 

transmitter matches the setpoint, and the level controller sends a signal 

to the level control valve to maintain its position. 

- If the water level rises above the setpoint, the signal from the level 

transmitter increases further. The level controller then sends a signal to 

the level control valve to close or partially close, restricting the flow of 

water into the tank. 

Level control systems are essential for ensuring safe, efficient, and reliable 

operation in various industries. The relatively simple feedback loop illustrated in 

the diagram (FIG 1.3)  plays a vital role in maintaining the desired water level 

within a storage tank. This principle can be applied to various fluids and more 

complex industrial processes. 

 

2.5 Temperature Control Systems 

Throughout countless industrial processes, maintaining precise temperature is 

paramount.  From ensuring consistent product quality to maximizing efficiency 

and safety, temperature control systems play a vital role.   

In many applications, specific temperature ranges are crucial for a product to 

meet its desired characteristics.  For instance, precisely controlled temperatures 

during chemical reactions guarantee the creation of the intended product.  

Furthermore, optimal temperatures can significantly enhance process efficiency.  

In steel production, for example, maintaining the correct temperature within 

furnaces optimizes metal properties while minimizing energy waste.   

Finally, temperature control safeguards against potential hazards.  

Uncontrolled temperatures can lead to overheating, fires, or equipment damage, 

jeopardizing safety and causing costly downtime.  Therefore, industrial 

operations heavily rely on these systems to guarantee consistent quality, efficient 

production, and a safe working environment. 
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Example of Temperature control system  

The diagram showed in (FIG 1.4) depicts a basic temperature control system 

for a heat exchanger. Here are the components and how they interact: 

- Temperature sensor (Outlet Temperature): This sensor measures the 

temperature of the fluid exiting the heat exchanger. It sends a signal 

(likely an electrical current) to the controller. 

- Controller: This device receives the temperature signal and compares it 

to the setpoint, the desired temperature for the outlet fluid. The 

controller then determines the difference (error) between the actual and 

desired temperature. 

- Valve: Based on the error signal, the controller sends a signal to the 

valve. The valve regulates the flow of the hot fluid (likely steam) 

entering the heat exchanger. By adjusting the flow rate, the controller 

can indirectly control the temperature of the outlet fluid. 

- Heat exchanger: This is the equipment where heat transfer occurs 

between the hot and cold fluids. The hot fluid (steam) heats the cold 

fluid flowing through the other side of the exchanger. 

- Setpoint: This is the desired temperature for the outlet fluid. 

 

 

FIG 1. 4 - Diagram of a temperature control system for a heat exchanger [5] 
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Control loop of the system 

The temperature control system function based on a feedback loop. Here's how 

it works: 

- The temperature sensor continuously monitors the outlet fluid 

temperature. 

- The sensor transmits a signal corresponding to the measured 

temperature to the controller. 

- The controller compares the signal from the sensor to the setpoint. 

- If the outlet temperature is lower than the setpoint (negative error), the 

controller sends a signal to open the valve more. This increases the flow 

rate of the hot fluid, raising the outlet temperature. 

- Conversely, if the outlet temperature is higher than the setpoint 

(positive error), the controller signals the valve to close partially, 

reducing the hot fluid flow and lowering the outlet temperature. 

- This continuous feedback loop ensures the outlet fluid temperature 

stays close to the desired setpoint. 

 

The specific type of valve (on/off, throttling, etc.) and control algorithm (PID, 

etc.) used in real-world applications can vary depending on the process 

requirements. 
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3. Estimation 

3.1 Definition of Estimation 

At the heart of regulation lies estimation, an essential technique for designing 

and implementing high-performance control systems. Estimation involves 

determining the value of an unmeasured or hard-to-measure variable based on 

measurements of other variables and mathematical models of the system. By 

addressing the unknown, estimation plays a crucial role in enhancing the 

accuracy, stability, and overall performance of control systems [6]. 

3.2 The Essence of the Estimation 

Estimation resembles a clever detective who, from fragmentary clues, 

reconstructs the complete picture. In the field of regulation, it operates similarly, 

utilizing accessible measurements to reveal the value of hidden or difficult-to-

obtain variables. This ability to uncover the unseen is crucial for systems where 

direct measurement of all variables is impossible or impractical [6]. 

 

3.3 Applications of Estimation in Regulation 

Estimation finds a wide range of applications in regulation, providing 

solutions to various challenges: 

- State Estimation: Determining the values of state variables, such as 

position, velocity, and acceleration, from measurements of input and 

output variables. 

- Pattern Recognition: Identifying and classifying objects or events from 

sensory data, such as in artificial vision or robotics systems. 

- System Behavior Prediction: Anticipating the future behavior of the 

system by considering current conditions and past trends [7]. 

 

3.4 Common Estimation Techniques 

To meet the challenges of estimation, a range of techniques is available to the 

regulator, each with its strengths and weaknesses: 
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- Kalman filters: Used to estimate the state of a dynamic system in real 

time, taking into account noise and measurement uncertainties. 

- Observers: Mathematical models of the system are used to reconstruct 

the state of the system from output and input measurements. 

- Regression estimation: Statistical models are used to establish a 

relationship between the measured variables and the unmeasured 

variable that is to be estimated. 

- Artificial neural networks: Machine learning algorithms can be used to 

estimate complex variables from nonlinear data [7]. 

 

 

3.5 Undeniable Advantages 

The integration of estimation techniques into control systems provides many 

advantages: 

 

- Improved control accuracy: By estimating unmeasured variables, the 

controller can make more accurate and efficient ordering decisions. 

- Increased robustness: Estimation helps compensate for disturbances and 

uncertainties in the system, improving its robustness to environmental 

variations. 

- Better performance optimization: Estimating helps predict system 

behavior and optimize control parameters for optimal performance. 

- Fault detection and diagnosis: Estimation can be used to detect 

anomalies in the system and diagnose potential failures [8]. 
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4. Observation of dynamical systems 

4.1 Observer Definition 

   

A state observer is a mathematical algorithm that is used to estimate 

(reconstruct) the x-state of a dynamical system, based on the knowledge of the 

available measurements (y-outputs) and the u-inputs, based on a representative 

model of the system (FIG 1.5). 

 

4.2 Model of the System to be Observed 

The state representation of a dynamical system is a mathematical model useful 

for the synthesis of observers. Depending on the physics of the system, the 

selection of state variables, and the modeling assumptions, this representation can 

be linear or non-linear. The general form of this representation for a system 

denoted by Σ is expressed as follows.  

 

Σ: {
 𝑥̇ = 𝑓(𝑥, 𝑢)

𝑦 = ℎ(𝑥)
   (1.1) 

 

Where x ∈ ℝn is the state vector, u ∈ ℝm is the input vector (control signals) 

and f(.,.) and h(.) are analytical functions and y ∈ ℝp the output vector (signals 

measured by the sensors). 

The linear system represents a specific case within dynamical systems, where 

the dynamics of the state are defined by a linear combination of state variables 

and inputs, and the output is a linear combination of state variables.  

FIG 1. 5 - State Observer [9] 
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𝑥̇ = 𝐀𝑥 + 𝐁𝑢 (1.2) 

𝑦 = 𝐂𝑥  (1.3) 

 

A, B, and C are matrices of appropriate dimensions representing state, input, 

and output, respectively. 

 

4.3 Observation Principle 

Observation involves model-based estimation with measurement-based 

corrections. The model of the state observer mirrors that of the observed system, 

with an additional correction term that depends on the deviation e between the 

measured output y and the estimated output y. The general form of the stat 

observer of the system state (1.1) is as follows: 

 

𝑥̇ = 𝑓(𝑥, 𝑢) + 𝐊(. )[𝑦 − ℎ(𝑥̂)]                                                                         (1.4) 

 

The matrix of gain K, called observation gain or observer gain, can be 

constant or variant with time. The first term 𝑓(𝑥, 𝑢) is the prediction term 

(estimate), while the second term is the correction term (or innovation). 

An observer is considered to converge asymptotically when the observation 

error 𝑥̃ = 𝑥 − 𝑥 tends to zero at infinity:  

 

lim
𝑡→+∞

||𝑥̃|| = 0  (1.5) 

 

If the observer converges for all initial states 𝑥(0) and 𝑥(0), it is called global; 

otherwise, it is classified as local. If the convergence dynamics are adjustable, the 

observer is called adjustable; If it can be enhanced by a decreasing exponential 

function, the observer is called exponential. 

 

4.4 Observability Problem 

In some cases, it is difficult or impossible to fully determining the internal 

state of a dynamic system from its external outputs. This can pose challenges in 

designing and implementing effective control systems, as the controller may not 

have complete information about the system's behavior [6]. 



 

   16 

 

4.4.1 Understanding Observability 

To understand the observability problem, consider a dynamic system 

represented by a state-space model: 

 

𝑥(𝑡 + 1) =  𝐀 𝑥(𝑡) +  𝐁 𝑢(𝑡)  (1.6) 

y(𝑡)  =  𝐂 𝑥(𝑡)  (1.7) 

 

where: 

x(t): is the system's state vector at time t            u(t): is the input vector at time t 

A: is the system matrix                                       C: is the output matrix 

B: is the input matrix                                          y(t): is the output vector at time t 

 

A system is considered observable if, for any initial state 𝑥(0), the state 𝑥(𝑡) 

can be uniquely determined from the output sequence 𝑦(𝑘) for all 𝑘 >=  0. In 

other words, the controller should be able to reconstruct the entire state of the 

system from its outputs [6]. 

 

4.4.2 Challenges of Unobservability 

Unobservability arises when the output matrix C does not provide enough or 

correct information about the system's state. This can happen for various reasons, 

such as: 

Sensor Noise: Noise refers to unwanted variations in the sensor signal, often 

caused by electrical interference, environmental factors (e.g., temperature 

fluctuations), or mechanical vibrations. Noisy data can distort the actual readings, 

making it harder for controllers or estimation algorithms to accurately assess the 

system’s state.  

In oil refineries, temperature or pressure sensors may pick up noise from 

surrounding machinery, leading to fluctuations in the data that do not reflect the 

true process conditions. 

Measurement Delays: Sensors may have inherent delays in capturing real-

time data due to processing times, communication lags, or response 

characteristics. These delays can create discrepancies between the actual state of 

the system and the measured data. 
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Taking natural gas compression systems as an example, flow sensors may take 

time to register changes in flow rate, leading to a lag in adjusting compressor 

output.  

 

Sensor Drift: Over time, sensors can experience drift, where their 

measurements gradually deviate from the true values due to wear and tear, 

environmental exposure, or calibration errors. Sensor drift can lead to long-term 

inaccuracies in the data, affecting the quality of decisions based on that data. 

For example, in a crude oil processing plant, pressure sensors exposed to harsh 

chemicals may degrade and provide less accurate readings. 

 

Sensor Failures: Sensors can occasionally fail due to extreme conditions, 

corrosion, or electrical faults. A failed sensor might provide no data or incorrect 

data. This can create significant blind spots in the system's monitoring, leading to 

improper control responses and possible system downtime. 

In oil pipelines, a failed flow meter could cause under- or over-estimation of 

flow rates, potentially leading to safety issues like leaks or ruptures. 

 

Actuator limitations: Actuators may not be able to excite all state variables, 

making it difficult to observe their behavior from the outputs. 

 

System dynamics: The system's dynamics may cause certain state variables to 

be unobservable from the outputs. 

 

4.4.3 Consequences of Unobservability 

Unobservability can have several negative consequences for control systems: 

- Reduced control performance: The controller may make suboptimal 

control decisions due to incomplete information about the system's 

state. 

- Increased sensitivity to disturbances: Unobservability can make the 

system more sensitive to disturbances and uncertainties, as the 

controller cannot fully compensate for them. 

- Difficulty in fault detection and isolation: Unobservability can make it 

challenging to detect and isolate faults in the system, as the controller 

may not be able to distinguish between fault-induced changes and 

normal system behavior. 
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There are several approaches to address the observability problem in control 

systems, such as sensor placement, actuator selection, system redesign and the 

approach that can be used to estimate the unobservable state variables from the 

available outputs, and which will using in this thesis (Observer State) [7]. 

 

Example: Consider the following system, modeled by a state space [10]: 

 

𝑥(𝑡 + 1)  =   [1 1]𝑥(𝑡)  + [1;  0] 𝑢(𝑡)  (1.8) 

𝑦(𝑡)  =   [0 1]𝑥(𝑡)  (1.9) 

 

System Description 

This system represents a simple electrical circuit consisting of a capacitor (C) 

and a resistor (R) connected in series. 

 

𝑥(𝑡) is the state vector of the system at a given time t. In this case, it contains 

two elements: 

• 𝑥1(𝑡) : the voltage across the capacitor at time t 

• 𝑥2(𝑡): the current flowing through the circuit at time t 

𝑢(𝑡) is the input voltage applied to the circuit at time t 

𝑦(𝑡)  is the output vector of the system, which in this case contains only one 

element: The voltage measured across the capacitor (𝑥2(𝑡)) 

 

Observability analysis  

Is this system observable? 

Let's analyze the observability matrix (Wo) of the system: 

 

𝑊𝑜 =  [𝐂 ;  𝐂 ∗  𝐀]  =  [0 1 ;  0 1 1]  (1.10) 

 

FIG 1. 6 - Simple RC circuit 
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We calculate the rank of the observability matrix (Wo). The rank of a matrix is 

the maximum number of linearly independent rows. 

 

In this case, the rank (Wo) = 2. 

 

The rank of the observability matrix is equal to the number of states in the 

system (2). This means that all information about the system state (voltage and 

current) can be reconstructed from the measured output (voltage across the 

capacitor). So, the system is observable. 

 

In this simple example, all state variables are accessible indirectly via voltage 

measurement. However, observability becomes a more critical issue in more 

complex systems, where some state variables cannot be measured directly [10]. 

 

4.5  Observer Synthesis 

Designing a state observer for a linear system is relatively straightforward. On 

the other hand, the observation of nonlinear systems is a complex field because 

of their great diversity, hence the frequent use of observers for classes of 

nonlinear systems. 

We will now present the basic structure for observing linear systems (as 

shown in (FIG 1.7)). Two commonly used methods for adjusting the gain matrix 

are pole placement and Kalman filtering, both of which are widely used in the 

industry. For nonlinear systems, we focus on linearization-based approaches, 

giving rise to the concepts of local or extended observers. 

 

4.5.1 Luenberger observers 

Luenberger observers are mathematical models that estimate the internal states 

of a dynamic system based on available measurements. They are particularly 

useful for systems where direct measurement of all state variables is impractical 

or impossible [11]. 

 

Theorem 4.5.1: [12] If an invariant linear system (1.2) is observable, then there 

exists an observer of the form: 

 

𝑥̇  =  𝐀𝑥  +  𝐁𝑢 +  𝐊(𝑦 −  𝐂𝑥̂)  =  (𝐀 −  𝐊𝐂)𝑥  +  𝐁𝑢 +  𝐊𝑦  (1.11) 
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Where 𝐊 is the observer gain matrix, can asymptotically estimate the true state 

𝑥 if and only if the pair (𝐀, 𝐂) is observable. 

 

In this case, the eigenvalues of the matrix (𝐀 −  𝐊𝐂) can be arbitrarily placed 

in the left half of the complex plane by appropriately choosing the matrix 𝐊 with 

dimensions n × p. 

 

The dynamics of the observation error 𝑒 = 𝑥 − 𝑥 is: 

 

𝑒̇  =  (𝐀 −  𝐊𝐂)𝑒  (1.12) 

 

The A - KC matrix appears both in the dynamics of the observed state and in 

the error. Therefore, if the observer is stable, error x tends asymptotically to 0 

( lim
𝑡→+∞

𝑒 = 0).  

In a Luenberger-type observer, the selection of the K matrix is determined by 

the placement of the poles [13]. 

 

4.5.2 Local Observes 

A local observer, such as a Luenberger observer, is applied to a nonlinear 

system by linearizing the system around a point of equilibrium, under certain 

conditions presented below [14]. Consider the nonlinear system (1.1) with its 

observer (1.4). The dynamics of the observation error 𝑒 = 𝑥 − 𝑥 is: 

 

𝑒̇   = 𝑓(𝑥, 𝑢) − 𝑓(𝑥, 𝑢) − 𝐊(. )[ℎ(𝑥) − ℎ(𝑥)]   (1.13) 

FIG 1. 7 - Status Observer for a Linear System [13] 
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The aim is to get the matrix K which stabilizes the linearized system around the 

equilibrium point 𝑥 =  0. The linearization of (1.13) gives the following system: 

 

𝑒̇  = [
𝜕𝑓

𝜕𝑥
(𝑥, 𝑢) − 𝐊

𝜕ℎ

𝜕𝑥
(𝑥)]  𝑒  (1.14) 

 

It is difficult, if not impossible, to find a constant K matrix that stabilizes the 

variable system over time (1.14). However, if we assume that the nonlinear 

system (1.1) has an equilibrium point at 𝑥 =  𝑥𝑠𝑠  for an input 𝑢 =  𝑢𝑠𝑠, which 

gives an output 𝑦 = 0: 

 

0 = 𝑓(𝑥𝑠𝑠, 𝑢𝑠𝑠)                 ;             0 = ℎ(𝑥𝑠𝑠)     (1.15) 

 

and assuming that the vector 𝑥(𝑡), defined for all 𝑡 ≥  0, is in a neighborhood ε 

of 𝑥𝑠𝑠, in its sense. ||𝑥(𝑡) − 𝑥𝑠𝑠|| ≤  ε , and that the following matrices: 

 

𝐀 = 
𝜕𝑓

𝜕𝑥
 (𝑥𝑠𝑠 , 𝑢𝑠𝑠)    ;         𝐂 =  

𝜕ℎ

𝜕𝑥
(𝑥𝑠𝑠, 𝑢𝑠𝑠)  (1.16) 

 

satisfy the observability condition (or, more weakly, the detectability condition), 

then we can find a constant matrix K such that A – KC is a Hurwitz matrix, 

meaning its eigenvalues have negative real parts. 

Lemme 4.5.2 [15] If the initial error, ||𝑒(0)||  =  ||𝑥(0)  −  𝑥𝑠𝑠||, is sufficiently 

small, and if the input 𝑢(𝑡) remains sufficiently close to 𝑢𝑠𝑠 (in its sense 

𝑠𝑢𝑝𝑡≥0‖𝑢(𝑡) − 𝑢𝑠𝑠‖ is sufficiently small), then: 

 

lim
𝑡→+∞

𝑒 = 0  (1.17) 
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5. Conclusion 

Chapter One has meticulously constructed a foundation for understanding 

control systems.  We embarked on a comprehensive exploration, dissecting the 

core principles of regulation.  This journey encompassed the critical role of 

feedback loops in ensuring system stability.  Furthermore, we delved into the 

concept of control systems themselves, including the various components that 

work in concert to achieve desired outcomes.  The section also explored the 

theory of estimation, its purposes, and the techniques employed for accurate state 

estimation.  Finally, we investigated the concept of observers and their role in 

achieving system observability, a cornerstone of control design.  Equipped with 

this robust understanding of these regulatory principles, we are now prepared to 

go to the next chapter of this thesis. 
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1.  Introduction 

The study of interconnected systems, where changes in one component 

inevitably ripple through to others, has deep roots in both engineering and the 

natural world. A quintessential example of this principle is the coupled tank 

systems, a cornerstone of control engineering dating back to its early days.  

While deceptively simple in appearance – often consisting of two or more tanks 

connected by pipes – these systems have proven to be invaluable tools for 

developing and refining theories and control strategies with far-reaching 

implications beyond fluid dynamics alone. 

Coupled tank systems are particularly well-suited for investigating the 

dynamic behavior of various parameters, including liquid level, temperature, 

flow rate, and pressure. The intricate interplay of fluid flow between 

interconnected tanks, and its subsequent impact on factors like temperature 

distribution, offers a unique window into a wide array of industrial processes and 

natural phenomena. From their initial exploration in the 1950s and 60s to their 

continued relevance in modern research and educational settings, coupled tank 

systems remain a captivating and indispensable tool for understanding the 

complex dynamics of interconnected systems. 

Throughout this chapter, we will delve into the construction and components 

of these dynamic systems, highlighting their significance in industries like oil and 

gas. And, we will focus on the two-tank coupled system since it will be the 

system that will be working on in our thesis. 
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FIG 2. 1 - Example of Coupled Tank System [16] 

 

 
2. Coupled tank system 

2.1 System Definition 

A coupled tank system is a dynamic system consisting of two or more tanks 

interconnected by pipes or channels, allowing liquid to flow between them. The 

system typically includes pumps or valves to control the inflow and outflow of 

liquid. The liquid levels in the tanks are influenced by the flow rates and the 

physical characteristics of the tanks and connecting pipes.  The interaction 

between the tanks creates a complex system where changes in one tank's level or 

temperature affect the others, making it a valuable model for studying control 

theory and fluid dynamics [16]. 

 

 

 

 

 

 

 

 

2.2 System Construction and Components 

A coupled tank system is generally constructed using the following 

components [6]: 

Tanks:  The core elements of the system, tanks are usually cylindrical 

containers made of materials like plastic, glass, or metal. Their size and number 

vary depending on the specific application. 

Connecting Pipes or Channels: These conduits facilitate the flow of liquid 

between the tanks. They can be simple tubes, pipes with valves, or channels with 

adjustable gates to control the flow rate. 
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Pumps (Optional):  In some configurations, pumps may be used to introduce 

liquid into the system (typically into the upper tank) or to remove liquid from the 

lower tank. 

Level Sensors:  These devices measure the liquid level in each tank, providing 

feedback to a control system or for monitoring purposes. Various types of level 

sensors can be used, including float switches, pressure sensors, or ultrasonic 

sensors. 

Temperature Sensors:  If temperature control is important, sensors are placed 

within the tanks to monitor the liquid temperature. These sensors may use 

thermocouples, thermistors, or resistance temperature detectors (RTDs). 

Heaters (Optional):  Heaters, such as electric heating elements or steam coils, 

can be used to raise the temperature of the liquid in one or both tanks. 

Control System:  A control system, often implemented using a programmable 

logic controller (PLC) or a computer, uses feedback from the sensors to adjust 

the flow rates, pump operation, or heater power to achieve the desired liquid 

levels and temperatures in the tanks. 

Valves and Orifices:  These devices regulate the flow of liquid between the 

tanks. Valves offer greater control and can be adjusted manually or 

automatically, while orifices provide a fixed restriction to flow. 

Support Structure:  A frame or structure is often used to support the tanks, 

pipes, and other components, ensuring stability and proper alignment. 

 

The specific configuration and complexity of a coupled tank system (example 

in FIG 2.1) will depend on its intended purpose, whether it's for laboratory 

experiments, educational demonstrations, or industrial applications [6]. 

 

2.3 System Significance in Industries 

2.3.1 Global Applications: 

Coupled tank systems are invaluable tools in various applications, owing to 

their versatility and ability to simulate complex processes. In particular, they find 

significant applications in [7]: 

- Water Treatment: Simulating water distribution networks, optimizing 

treatment processes, and ensuring consistent water levels in reservoirs. 

- Chemical Manufacturing: Modeling chemical reactors, mixing processes, 

and separation units to ensure product quality and safety. 
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- Food and Beverage Processing: Simulating fermentation tanks, 

pasteurization processes, and mixing operations to optimize production 

and maintain product consistency. 

- Pharmaceutical Manufacturing: Modeling drug delivery systems, 

bioreactors, and mixing processes to ensure precise control and quality of 

pharmaceutical products. 

2.3.2 Oil and Gas Applications: 

The oil and gas industry, in particular, benefits greatly from coupled tank 

systems. These systems serve as valuable tools for [8]: 

- Process Simulation and Control: Coupled tank systems can model 

complex processes like oil refining, chemical separation, and gas 

processing. By simulating the behavior of interconnected vessels and 

the flow of fluids, engineers can optimize process parameters, design 

efficient control systems, and troubleshoot potential issues before they 

arise in actual plants. 

- Level Control: Maintaining precise liquid levels in tanks is crucial for 

safety, efficiency, and product quality in oil and gas operations. 

Coupled tank systems provide a platform to test and refine level control 

strategies, ensuring that tanks are neither overfilled nor run dry. 

- Flow Control: The flow rate of fluids through pipelines and between 

tanks is critical for managing production, distribution, and processing in 

the oil and gas industry. Coupled tank systems enable engineers to 

study the dynamics of flow control under various conditions, including 

changes in pressure, viscosity, and temperature. 

- Training and Education: Coupled tank systems serve as valuable 

educational tools for training engineers and operators in the principles 

of process control. They provide hands-on experience in designing and 

tuning controllers, analyzing system responses, and troubleshooting 

common problems. 

 

In essence, coupled tank systems (example in FIG 2.1) offer a versatile 

platform for understanding complex processes, mirroring the interconnected 

nature found in many industrial operations. This allows engineers to gain 

valuable insights into how larger, more intricate systems behave. Moreover, the 

ability to manipulate flow rates, levels, and temperatures in a controlled 

environment enables the development and testing of robust control strategies that 

can be directly applied to real-world processes [7].  
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Coupled tank systems also serve as effective training tools, providing hands-

on experience that equips engineers and operators with the skills necessary to 

manage complex industrial processes efficiently and effectively. 

 

 

 

 

3. Two Coupled Tanks System 

3.1 System Description 

Note: The Two Coupled tanks system is our dynamic system that we will work 

on in thesis. 

Two tanks denoted L and R are connected as shown and into the left tank can 

be pumped warm and cold water through control valves with the two input 

signals U1 and U2. The temperatures and the volume flows are Tw, Tc, Qw and Qc. 

The water levels in the two tanks are H1 and H2 respectively and the tanks have 

the same cross sectional area A. The flow between the tanks is Qr and the flow 

out of the outlet valve of tank R is Qb. This last valve has the variable opening 

area Av [17]. 

FIG 2. 2 - Two Coupled Tanks System Diagram [17] 
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The water is stirred rapidly in both tanks and therefore the temperature is 

assumed to be constant over the entire volume of each of the tanks. 

 

3.2 System Instruments 

3.2.1 Control Valves 

Control valves are mechanical devices used to regulate the flow of fluids 

(liquids, gases, or steam) within a system by manipulating the size of a flow 

passage. They are essential components in industrial processes to maintain 

desired operating conditions such as pressure, temperature, and flow rate. 

 

3.2.2 Outlet Valve 

An outlet valve is a specific type of valve designed to control the flow of fluid 

exiting a vessel, tank, or pipe. It regulates the discharge rate, pressure, and 

sometimes the direction of the fluid leaving the system. 

 

3.2.3 Level Sensors 

Level sensors are devices designed to detect and measure the level of liquids, 

solids, or other substances within a container or environment. They provide 

FIG 2. 5 - Electric Globe 

Control Valve [18] 
FIG 2. 4 - Pneumatic Control 

Valve [20] 

FIG 2. 3 - Manual 

Control Valve [19] 

FIG 2. 6 - Bottom Outlet 

Valve [21] 

FIG 2. 7 - Glass Lined Flush Valve 

[22] 
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crucial information for process control, safety, and inventory management in 

various industries. 

 

 

 

3.2.4 Temperature Sensors 

Temperature sensors are devices that detect and measure the degree of hotness 

or coldness of a substance or environment. They convert this temperature 

information into an electrical signal that can be read and interpreted by a 

measuring instrument or control system. 

 

3.2.4 Tank Stirrer 

A tank stirrer, also known as a tank agitator or tank mixer, is a mechanical 

device designed to mix, blend, or agitate the contents within a tank or vessel. It is 

used to create a homogenous mixture, promote heat transfer, enhance chemical 

reactions, or maintain suspensions of solids in liquids. 

FIG 2. 8 - Different types of Level Sensors [23] 

FIG 2. 9 - Different types of Temperature Sensors [24] 
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3.2.5 Other System Instruments 

While the pervious instruments that we showed in the pages 35, 36, and 37 are 

the necessary components that we need in our dynamic System (FIG 2.5) for our 

work purposes, the Two Coupled Tanks System (FIG 2.5) can be equipped with 

other instruments depend on the goal that we want to achieve.  

From those other instruments we can find for example Pressure sensors, Flow 

Rate sensors, Pumps, …etc. 

  

3.3 System Operation 

The coupled-tank system shown in (FIG 2.5) operates based on the interaction 

of several key components and processes: 

 

Inlet Flow (Qw and Qc): Two control valves regulate the flow rates (Qw and 

Qc) of incoming liquids depend on the desired value of the two inputs (U1 and 

U2) with temperatures Tw and Tc into the left (L) and right (R) tanks, 

FIG 2. 11 - Tank Stirrer with 

one group of Blades [25] 
FIG 2. 10 - Tank Stirrer with two 

groups of Blades [26] 

FIG 2. 12 - Digital Liquid 

Magnetic Flow Meter [28] 

FIG 2. 13 - Digital Pressure 

Gauge (Manometer) [27] 
FIG 2. 14 - Centrifugal Pump [29] 
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respectively. These valves are the primary means of manipulating the system's 

behavior. 

 

Tanks and Liquid Levels (H1 and H2): The two tanks store the incoming 

liquids, and their levels (H1 in the left tank and H2 in the right tank). The level H2 

of the right tank is monitoring by a level sensor, while the level H1 of the left 

tank is not. 

 

Inter-tank Flow (Qr): A pipe with valve area A connects the bottom of the 

two tanks, allowing liquid to flow from the left tank to the right tank at a rate (Qr) 

determined by the pressure difference and the valve area. 

 

Outlet Flow (Qb): A valve at the bottom of the right tank controls the outlet 

flow (Qb), which discharges the liquid from the system. 

 

Stirrers: Stirrers in both tanks ensure that the liquids are well-mixed, 

maintaining a uniform temperature distribution within each tank. 

 

Tanks Temperature (T1 and T2): A temperature sensor measure the 

temperature of the liquids in the right tank only, while the left tank has no 

temperature sensor. 

 

By manipulating the control valves and potentially the outlet valve, the system 

can be operated in various modes to achieve different objectives, such as 

maintaining specific liquid levels, temperatures, or flow rates. This coupled-tank 

system (FIG 2.5)  is a valuable tool for studying and demonstrating various 

control strategies in a practical and intuitive way. 

 

 

In order to control the system properly and get the desired outputs, all the 

system variables (T1, T2, H1, H2) should be measurable. But in our case the 

system variables (T1, H1) are not measurable, due to the absence of level sensor 

and temperature sensor in the left tank. 

To solve this problem, we will use the Observe State Algorithm shown in (FIG 

1.5) to estimate the non-measurable variables (T1, H1) so we can control the 

system effectively.   
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4. Conclusion 

This chapter provided a comprehensive overview of coupled tank systems, 

emphasizing their significance in various industries as versatile tools for studying 

and demonstrating control strategies. We began by defining the system, 

highlighting its key components, exploring its applications across different 

sectors and getting a little view on some similar dynamic systems. We delved 

into the specific case of a two-tank coupled system, detailing its construction, 

instrumentation, and operational principles. 

The knowledge we gained from exploring and studying the two-tank coupled 

system help us to go further more with our work on this dynamic system.  
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Chapter Three: Modeling and 

Linearize of a Two-tank Coupled 

system 
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1.  Introduction 

The study of interconnected systems, where changes in one component 

inevitably impact others, has deep roots in both engineering and the natural 

world. A quintessential example is coupled tank systems, a cornerstone of control 

engineering from its early days. Though deceptively simple in appearance, often 

consisting of two or more tanks connected by pipes, these systems have proven 

invaluable for developing and refining theories and control strategies with far-

reaching implications beyond fluid dynamics. However, to optimize their 

performance and ensure stability, we need a deeper understanding of their 

behavior. This is where the powerful tools of modeling and linearization come 

into play. 

Modeling provides a framework to represent the complex dynamics of 

dynamic systems in a simplified yet informative way. By constructing a 

mathematical model, we can gain valuable insights into how these systems 

respond to changes in operating conditions. This allows us to predict their 

behavior, analyze their efficiency, and ultimately optimize their design for 

specific industrial needs. 

However, real-world dynamic systems often exhibit non-linear characteristics, 

making them challenging to analyze directly. This is where linearization steps in. 

This technique approximates the non-linear behavior around a specific operating 

point with a linear model. By leveraging the well-understood principles of linear 

systems, we can effectively analyze and design control systems for these non-

linear systems. 

Throughout this chapter, we will mention some general information about 

modeling and linearization of dynamic systems. Furthermore, we will start 

constructing a mathematical model of our dynamic system “Two-tank Coupled 

System”. After that we’ll approximates the non-linear behavior of our system 

around a specific operating point with a linear model. That we allow us to 

analyze and design control system for this non-linear dynamic system. 

  



 

     38 

  

 

 

 

2.  Modeling a Dynamic System 

2.1 Definition of Modelisation 

Modeling is the process of creating a simplified mathematical representation 

of a real-world system or phenomenon to understand its behavior. It involves 

identifying key variables, their relationships, and expressing them in equations to 

make predictions or design interventions to improve the system's performance. 

This can be applied to various domains, including physics, engineering, 

economics, and biology.  

 

2.2 Types of Dynamic System Models 

Linear vs. Nonlinear: Linear models assume linear relationships between 

variables, while nonlinear models capture more complex behavior. 

Continuous-Time vs. Discrete-Time: Continuous-time models represent 

systems that evolve continuously over time, while discrete-time models describe 

systems that change at discrete time steps. 

State-Space vs. Transfer Function: State-space models describe the system's 

internal state variables and their evolution, while transfer function models relate 

the system's input and output without explicitly considering the internal state. 

  

FIG 3. 1 - Dynamic System Multi Variables 
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2.3 Uses of Dynamic System Models 

Simulation and Prediction: Simulate the system's behavior under different 

conditions to predict future states. 

Analysis and Understanding: Gain insights into the system's underlying 

dynamics, stability, and response to disturbances. 

Control Design: Design controllers to achieve desired performance and 

stability. 

Optimization: Optimize system parameters to maximize or minimize specific 

objectives.  

 

2.4 Modeling the Two-tank Coupled System 

2.4.1 Identifying Key Variables 

 

From this diagram we can identify the key variables of our dynamic system. 

And we have three types of variables: 

 

State Variables: 

- H1: Liquid level in Tank L 

- H2: Liquid level in Tank R 

- T1: Temperature in Tank L 

- T2: Temperature in Tank R 

FIG 3. 2 - Two Coupled Tanks System [17] 
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Input Variables: 

- Qw: Flow rate of warm water into Tank L 

- Qc: Flow rate of cold water into Tank L 

 

Output Variables: 

- y1: Liquid level measurement of Tank R (output for level control) 

- y2: Temperature measurement of Tank R (output for temperature control) 

 

2.4.2 Defining Relationships 

Two quantities can be measured on our system: the level and the temperature 

of tank R. For these two measurement systems, it is known that:  

 

𝑦1 = 𝐊ℎ𝐻2 (3.1) 

𝑦2 = 𝐊𝑡𝑇2  (3.2) 

 

where 𝐊ℎ and 𝐊𝑡 are the transducer gains. 

The two control valves have identical flow characteristics, and the following 

two relationships are assumed to be valid: 

 

𝑄𝑤 =  𝐊𝑎𝑢1  (3.3) 

𝑄𝑐 =  𝐊𝑎𝑢2  (3.4) 

 

where 𝐊𝑎 is the flow coefficient. 

The mathematical model of our system involves volume and energy 

conservation laws, as well as suitable equations describing flow through orifices. 

Conservation of fluid volume for the two tanks gives: 

 

𝐒𝐻̇1 = 𝑄𝑤  +  𝑄𝑐  −  𝑄𝑟  (3.5) 

𝐒𝐻̇2 = 𝑄𝑟 − 𝑄𝑏  (3.6) 

 

The energy content in the water volumes can be expressed as: 

 

𝐸𝐿 = 𝐒𝐻1𝛒𝐜(𝑇1 − 𝑇0)  (3.7) 

𝐸𝑅 = 𝐒𝐻2𝛒𝐜(𝑇2 − 𝑇0)  (3.8) 
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where 𝛒 is the mass density and 𝑐 is the specific heat capacity of water. 𝑇0 is the 

reference temperature at which the energy is zero. It is easy to show that one can 

set 𝑇0, reducing the energy equations to: 

 

𝐸𝐿 = 𝐒𝐻1𝛒𝐜𝑇1  (3.9) 

𝐸𝑅 = 𝐒𝐻1𝛒𝐜𝑇2  (3.10) 

 

For the flow through the orifices, it is reasonable to assume that a square root 

relation is valid. This can be expressed by the formula: 

 

𝑄 = 𝐂𝑑𝐀0√
2

𝛒
∆𝑃  (3.11) 

 

where 𝑃 is the differential pressure across the orifice, 𝛒 is the mass density, 𝐀𝟎 is 

the area of the orifice, and 𝐂𝐝 is a constant loss coefficient. The hydrostatic 

pressure in a liquid at a level 𝐻 below the surface is given by 𝑃ℎ =  𝛒𝐠𝐻 + 𝑃𝑎 

(where 𝑃𝑎is the atmospheric pressure, and 𝐠 is the acceleration due to gravity). 

Thus, the flow through the outlet valve can be written as: 

 

𝑄𝑏 = 𝐃𝑣𝐀𝑣√𝐻2   (3.12) 

 

Where 𝐃𝑣 = 𝐂𝑑√2𝐠. 

The orifice between the tanks has a constant flow area, and one can write: 

 

Q𝑟 = 𝐂0√𝐻1 −𝐻2   (3.13) 

Where 𝐂0 = 𝐊0𝐀0√2𝐠 , and it is assumed that 𝐻1 > 𝐻2. 

 

2.4.3 Formulating Equations 

Now, the fact that the net power flux into the tanks equals the accumulated 

energy per time unit can be utilized. Thus, the time derivatives of the energy 

expressions (3.9) and (3.10) provide the left-hand sides of two new equations: 

 

𝑑𝐸𝐿

𝑑𝑡
= 𝐒𝛒𝐜

𝑑(𝐻1𝑇1)

𝑑𝑡
= 𝑄𝑤𝛒𝐜𝑇𝑤 + 𝑄𝑐𝛒𝐜𝑇𝑐 − 𝑄𝑟𝛒𝐜𝑇1  (3.14) 

𝑑𝐸𝑅

𝑑𝑡
= 𝐒𝛒𝐜

𝑑(𝐻2𝑇2)

𝑑𝑡
= 𝑄𝑟𝛒𝐜𝑇1 − 𝑄𝑏𝛒𝐜𝑇2  (3.15) 
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Dividing all terms by 𝛒𝐜 and differentiating the product yields: 

 

𝐒(𝐻̇1𝑇1 + 𝐻1𝑇̇1) = 𝑄𝑤𝑇𝑤 + 𝑄𝑐𝑇𝑐 − 𝑄𝑟𝑇1  (3.16) 

𝐒(𝐻̇2𝑇2 + 𝐻2𝑇̇2) = 𝑄𝑟𝑇1 − 𝑄𝑏𝑇2  (3.17) 

 

Inserting Eqs. (3.5) and (3.6) into Eqs. (3.16) and (3.17) respectively, yields: 

 

𝐒𝐻1𝑇̇1 = 𝑄𝑤𝑇𝑤 + 𝑄𝑐𝑇𝑐 − 𝑄𝑐𝑇1 − 𝑄𝑤𝑇1  (3.18) 

𝐒𝐻2𝑇̇2 = 𝑄𝑟𝑇1 − 𝑄𝑟𝑇2 (3.19) 

 

By inserting Eqs. (3.12) and (3.13) into Eqs. (3.5), (3.6), (3.18) and (3.19), we 

will get the final system equations:  

 

{
  
 

  
 𝐻̇1 = 

1

𝐒
(𝑄𝑤  + 𝑄𝑐  − 𝐂0√𝐻1 −𝐻2)

𝐻̇2 = 
1

𝐒
(𝐂0√𝐻1 − 𝐻2 − 𝐃𝑣𝐀𝑣√𝐻2)

𝑇̇1 =
1

𝐒𝐻1
(𝑇𝑤 − 𝑇1)𝑄𝑤 + (𝑇𝑐 − 𝑇1)𝑄𝑐

𝑇̇2 =
1

𝐒𝐻2
(𝑇1 − 𝑇2)𝐂0√𝐻1 −𝐻2

    (3.20) 

 

The natural choice of states is the output variables of the four integrators. The 

outlet valve area and the two inlet temperatures are disturbances, and the two 

control valve voltages are the manipulable inputs. Therefore, the state, input, and 

disturbance vectors will be: 

 

𝐱(𝑡) = [

𝑥1
𝑥2
𝑥3
𝑥4

] = [

𝐻1
𝐻2
𝑇1
𝑇2

] , 𝐮(𝑡) =  [
𝑢1
𝑢2
] , 𝐯(𝑡) = [

𝑣1
𝑣2
𝑣3
] = [

𝐴𝑣
𝑇𝑤
𝑇𝑐

]  (3.21) 

 

The system output is considered to be the height 𝐻2 and the temperature 𝑇2 of the 

right tant. So, the output vectors will be: 

 

𝑦(𝑡) = [
𝑦1
𝑦2
] = [

𝐻2
𝑇2
] = 𝐂𝐱(𝑡)  (3.22) 

 

Now by replacing what’s in (3.21) into (3.20), we will get our non-linear model 

representation: 
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{
  
 

  
 𝑥̇1 = 

1

𝐒
[𝐊𝑎(𝑢1  + 𝑢2)  −  𝐂0√𝑥1 − 𝑥2]

𝑥̇2 = 
1

𝐒
[𝐂0√𝑥1 − 𝑥2 −𝐃𝑣𝑣1√𝑥2]

𝑥̇3 =
1

𝐒𝑥1
[(𝑣2 − 𝑥3)𝐊𝑎𝑢1 + (𝑣3 − 𝑥3)𝐊𝑎𝑢2]

𝑥̇4 =
1

𝐒𝑥2
(𝑥3 − 𝑥4)𝐂0√𝑥1 − 𝑥2

  (3.23) 

 

𝐊𝑎𝑢1 represent the flow rate of warm water, while 𝐊𝑎𝑢2 represent the flow rate 

of cold water as is shown in (3.3) and (3.4) respectively. 

  

The output is already linear in the states. And by simplifying (3.22) we will 

obtain: 

𝑦(𝑡) = [
𝑦1
𝑦2
] = [0

0
𝐊ℎ
0
0
0
0
𝐊𝑡
] 𝐱(𝑡)  (3.24) 

 

Note: since we want to consider 𝑦1 and 𝑦2 respectively on meter (m) and degree 

Celsius (°C), 𝐊ℎ and 𝐊𝑡 will equal one. 

 

3.  Linearize a Dynamic System 

3.1 Definition of Linearization 

Linearization is the process of finding the linear approximation of a nonlinear 

system around a specific operating point. In the context of dynamic systems, it 

involves approximating the nonlinear equations that describe the system with 

linear equations that are valid near a particular equilibrium point. 

FIG 3. 3 - Linearize Non-linear Model [30] 
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3.2 Purpose of Linearization 

Simplification: Linear models are generally easier to analyze and design 

controllers for than nonlinear models. 

Local Behavior: Linearization allows us to study the local behavior of a 

nonlinear system around an equilibrium point. This can be useful for 

understanding stability properties and designing controllers that work well near 

the operating point.   

 

3.3 Linearize our Two-tank Coupled System 

3.3.1 Choosing an Operating Point 

In order to choose an operating point, our system need to be in the steady-state 

condition. This refers to a situation where the system's variables remain constant 

over time, and the rates of change of all state variables are zero. In other words, 

the system has reached a state of equilibrium where there is no further change in 

its behavior as long as the external inputs and conditions remain constant. 

 

Mathematically, this means: 

 

{
  
 

  
 0 =  

1

𝐒
[𝐊𝑎(𝑢10  +  𝑢20)  −  𝐂0√𝑥10 − 𝑥20]

0 =  
1

𝐒
[𝐂0√𝑥10 − 𝑥20 −𝐃𝑣𝑣10√𝑥20]

0 =
1

𝐒𝑥10
[(𝑣20 − 𝑥30)𝐊𝑎𝑢10 + (𝑣30 − 𝑥30)𝐊𝑎𝑢20]

0 =
1

𝐒𝑥20
(𝑥30 − 𝑥40)𝐂0√𝑥10 − 𝑥20

  (3.25) 

 

And by simplifying (3.25) we will get: 

 

{
 
 

 
 𝐊𝑎(𝑢10  +  𝑢20) =  𝐂0√𝑥10 − 𝑥20

𝐂0√𝑥10 − 𝑥20 = 𝐃𝑣𝑣10√𝑥20
(𝑣20 − 𝑥30)𝑢10 = −(𝑣30 − 𝑥30)𝑢20
(𝑥30 − 𝑥40)𝐂0√𝑥10 − 𝑥20 = 0

  (3.26) 

 

The four equations in (3.26) contain nine variables. If, for example, values for 

the two inputs and the three disturbance variables are selected, the four stationery 

states (Operating Points at the steady-state condition) can be determined. 
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The system parameter values will be assumed: 

 

𝐒 = 0.785 m2 𝐊𝑎 = 0.004 m
3/volt . sec

𝐃𝑣 = 2.66 m
1 2⁄ /sec 𝐊ℎ = 1 volt/m

𝐂0 = 0.056 m
5 2⁄ /sec 𝐊𝑡 = 1 volt/℃

    

 

assumingly that the input voltages can take on values in the interval 0–10 volts 

and choosing 𝑢10 = 𝑢20 = 5 volts. Also, setting 𝐀𝑣0 = 0.0122 m
2, T𝑤0 = 60℃, 

T𝑐0 = 30℃, the values of the operating points at the steady-state condition will 

be: 

 

𝑥10 = 2.03 m 

𝑥20 = 1.519 m 

𝑥30 = 𝑥40 = 45℃ 

 

3.3.2 Taylor Series Expansion 

The linearization of nonlinear systems is performed using a Taylor series 

expansion around the operating points (𝐗𝟎, 𝐔𝟎, 𝐕𝟎), where higher-order terms are 

negligible. It can be represented as follows: 

 

𝐱̇ ≈ 𝑓(𝐱0, 𝐮0, 𝐯0) +
𝑑𝑓(𝐱0,𝐮0,𝐯0)

𝑑𝐱
∆𝐱 +

𝑑𝑓(𝐱0,𝐮0,𝐯0)

𝑑𝐮
∆𝐮 +

 𝑑𝑓(𝐱0,𝐮0,𝐯0)

𝑑𝐯
∆𝐯   (3.27) 

 

Where 

 

 
𝑑𝑓(𝐱0,𝐮0,𝐯0)

𝑑𝐱
= 𝐀,

𝑑𝑓(𝐱0,𝐮0,𝐯0)

𝑑𝐮
=  𝐁,

𝑑𝑓(𝐱0,𝐮0,𝐯0)

𝑑𝐯
= 𝐁𝑣   (3.28) 

 

(𝐀,𝐁, 𝐁𝑣) are constant matrices. 

The linearization of the output function follows exactly the same lines. So, it 

also can be represented as follows: 

 

𝐲(𝑡) ≈ 𝑓(𝐱0) +
𝑑𝑓(𝐱0)

𝑑𝐱
∆𝐱(𝑡), where 

𝑑𝑓(𝐱0)

𝑑𝐱
= 𝐂  (3.29) 

 

But since the outputs are already linear, we don’t need to calculate the matrix 𝐂. 
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From (3.27), (3.28) and (3.29), the linearized state, and output equations can 

write in form:  

 

{
∆𝐱̇(𝑡) = 𝐀∆x + 𝐁∆u + 𝐁𝑣∆v

∆𝐲(𝑡) = 𝐂∆x
  (3.30) 

 

For small variations around the equilibrium points 𝐱0, 𝐮0, 𝐯0, 𝐲0 we obtain: 

 

{

𝐱 = x0 + ∆x
𝐮 = u0 + ∆u
𝐯 = v0 + ∆v
𝐲 = y0 + ∆y 

  (3.31) 

 

The ∆-variables above denote the (small) deviations from the stationary 

(constant) values and are called the incremental states, inputs, disturbances, and 

outputs. 

 

The calculation of the matrices (𝐀,𝐁, 𝐁𝑣) will be like this: 

   

𝐀 =

[
 
 
 
 
 
 
𝑑𝑥̇1

𝑑𝑥1

𝑑𝑥̇1

𝑑𝑥2

𝑑𝑥̇1

𝑑𝑥3

𝑑𝑥̇1

𝑑𝑥4
𝑑𝑥̇2

𝑑𝑥1

𝑑𝑥̇2

𝑑𝑥2

𝑑𝑥̇2

𝑑𝑥3

𝑑𝑥̇2

𝑑𝑥4
𝑑𝑥̇3

𝑑𝑥1

𝑑𝑥̇3

𝑑𝑥2

𝑑𝑥̇3

𝑑𝑥3

𝑑𝑥̇3

𝑑𝑥4
𝑑𝑥̇4

𝑑𝑥1

𝑑𝑥̇4

𝑑𝑥2

𝑑𝑥̇4

𝑑𝑥3

𝑑𝑥̇4

𝑑𝑥4]
 
 
 
 
 
 

,  𝐁 =

[
 
 
 
 
 
 
𝑑𝑥̇1

𝑑𝑢1

𝑑𝑥̇1

𝑑𝑢2
𝑑𝑥̇2

𝑑𝑢1

𝑑𝑥̇2

𝑑𝑢2
𝑑𝑥̇3

𝑑𝑢1

𝑑𝑥̇3

𝑑𝑢2
𝑑𝑥̇4

𝑑𝑢1

𝑑𝑥̇4

𝑑𝑢2]
 
 
 
 
 
 

,  𝐁𝑣 =

[
 
 
 
 
 
 
𝑑𝑥̇1

𝑑𝑣1

𝑑𝑥̇1

𝑑𝑣2

𝑑𝑥̇1

𝑑𝑣3
𝑑𝑥̇2

𝑑𝑣1

𝑑𝑥̇2

𝑑𝑣2

𝑑𝑥̇2

𝑑𝑣3
𝑑𝑥̇3

𝑑𝑣1

𝑑𝑥̇3

𝑑𝑣2

𝑑𝑥̇3

𝑑𝑣3
𝑑𝑥̇4

𝑑𝑣1

𝑑𝑥̇4

𝑑𝑣2

𝑑𝑥̇4

𝑑𝑣3]
 
 
 
 
 
 

  (3.32) 

 

𝐀 =

[
 
 
 
 
 
 

−C0

2𝐒√𝑥10−𝑥20

𝐂0

2𝐒√𝑥10−𝑥20
0 0

C0

2𝐒√𝑥10−𝑥20

𝐂0

2𝐒√𝑥10−𝑥20
−

𝐃𝑣𝑣10

2𝐒√𝑥20
0 0

0 0 −
𝐊𝑎(𝑢10 + 𝑢20)

𝐒𝑥10
0

0 0
𝐂0√𝑥10−𝑥20

𝐒𝑥20
−
𝐂0√𝑥10−𝑥20

𝐒𝑥20 ]
 
 
 
 
 
 

  (3.33) 

 

𝐁 =

[
 
 
 
 

𝐊𝑎

𝐒

𝐊𝑎

𝐒

0 0
𝐊𝑎(𝑣20 + 𝑥30)

𝐒𝑥10

𝐊𝑎(𝑣30 + 𝑥30)

𝐒𝑥10

0 0 ]
 
 
 
 

,  𝐁𝑣 =

[
 
 
 
 

0 0 0

−
𝐃𝑣√𝑥20

𝐒
0 0

0
𝐊𝑎𝑢10

𝐒𝑥10

𝐊𝑎𝑢20

𝐒𝑥10

0 0 0 ]
 
 
 
 

  (3.34) 
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With the parameter and stationary variable values above, we can find: 

 

𝐀 = [

−0.0499 0.0499 0 0
0.0499 −0.0667 0 0
0 0 −0.0251 0
0 0 0.0335 −0.0335

]   (3.34) 

 

𝐁 = [

0.00510 0.00510
0 0

0.0377 −0.0377
0 0

],  𝐁𝑣 = [

0 0 0
−4.177 0 0
0 0.01255 0.01255
0 0 0

]  (3.35) 

 

𝐂 = [
0 1 0 0
0 0 0 1

]  (3.36) 

 

The system poles in open loop are: 

 

{

𝑃1 = −0.0077
𝑃2 = −0.1089
𝑃3 = −0.0335
𝑃4 = −0.0251

  (3.37) 

  

Since they all have negative real parts, the linear model is stable around this 

operating point. 

 

The linearized model describes the behavior of deviations from the stationary 

values. If the incremental system vectors are defined as in equation (3.31), then: 

 

∆𝐱(𝑡) = [

∆𝑥1
∆𝑥2
∆𝑥3
∆𝑥4

] = [

∆𝐻1
∆𝐻2
∆𝑇1
∆𝑇2

],  ∆𝐮(𝑡) = [
∆𝑢1
∆𝑢2

],  ∆𝐯(𝑡) = [
∆𝑣1
∆𝑣2
∆𝑣3

]  (3.38) 

Where 

 

{
 

 
𝐻1(𝑡) = 𝐻10 + ∆𝐻1
𝐻2(𝑡) = 𝐻20 + ∆𝐻2
𝑇1(𝑡) = 𝑇10 + ∆𝑇1
𝑇2(𝑡) = 𝑇20 + ∆𝑇2

  (3.39) 
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4. Simulate a Dynamic System 

4.1 Simulation definition 

Simulation of a dynamic model is using a computer program to mimic the 

behavior of a changing system over time, based on mathematical equations 

representing the system's dynamics. It involves numerical methods to solve these 

equations and track the evolution of system variables. This virtual 

experimentation allows for prediction, optimization, and deeper understanding of 

complex interactions without real-world consequences. It has wide applications 

in fields like engineering, physics, biology, economics, and social sciences. 

 

4.2 Simulation Software 

Simulation software refers to computer programs designed to create virtual 

representations of real-world systems or processes, enabling users to observe, 

analyze, and experiment with their behavior under various conditions. These 

software tools leverage mathematical models and algorithms to mimic the 

dynamics of these systems, facilitating predictions, optimizations, and deeper 

understanding of complex interactions without the need for costly or risky real-

world experimentation [31]. 

 

4.2.1 Key Features and Applications [31] 

Modeling: Simulation software enables the creation of detailed models of 

systems, incorporating components, relationships, and behaviors. These models 

can be represented visually or through code, depending on the specific software. 

Experimentation: Once a model is built, simulation software allows users to 

run virtual experiments by changing inputs, parameters, or scenarios and 

observing the resulting outputs. This facilitates what-if analysis and scenario 

planning. 

Analysis: Simulation software provides tools for analyzing results, including 

statistical analysis, visualization, and optimization. This helps identify trends, 

bottlenecks, and opportunities for improvement. 

Applications: Simulation software finds extensive use across various fields, 

including: 



 

     49 

- Engineering: Design, testing, and optimization of complex systems like 

manufacturing processes, supply chains, and transportation networks. 

- Healthcare: Modeling patient flows, resource allocation, and disease 

outbreaks to improve efficiency and decision-making. 

- Business: Analyzing market trends, customer behavior, and financial risk 

to support strategic planning and decision-making. 

- Education: Providing interactive and engaging learning experiences 

through simulations of scientific phenomena and real-world scenarios. 

 

4.2.2 Popular Simulation Software 

AnyLogic: A versatile simulation platform supporting various modeling 

approaches like discrete-event, agent-based, and system dynamics. 

MATLAB Simulink: A graphical environment for modeling, simulating, and 

analyzing multi-domain dynamic systems. 

Arena: A specialized simulation software for discrete-event systems, widely 

used in manufacturing and service industries. 

Simul8: A user-friendly simulation tool for process modeling and 

optimization, particularly useful for visualizing and improving workflows. 

FlexSim: A 3D simulation software for modeling and optimizing complex 

systems, particularly those involving material handling and logistics. 

 

Simulation software has become an indispensable tool for modern problem-

solving and decision-making, providing a powerful means to explore complex 

systems, test ideas, and optimize solutions in a virtual environment before 

implementing them in the real world [32]. 

 

4.2.3 MATLAB Simulink 

Matlab Simulink is a powerful graphical programming environment that 

enables engineers and scientists to model, simulate, and analyze multi-domain 

dynamic systems using a visual block diagramming approach. It supports model-

based design, automatic code generation, and analysis tools, making it valuable 

for diverse applications in industries like automotive, aerospace, robotics, 

industrial automation, renewable energy, and biomedical engineering [33]. 
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4.3 Dynamic System Models on Matlab Simulink 

4.3.1 Non-Linear Model 

 it is a mathematical representation that captures the full complexity of the 

two-tank coupled system's dynamics, including the nonlinear relationships 

between the liquid levels, flow rates, and temperatures. It is described by a set of 

nonlinear differential equations derived from mass and energy balance principles. 

 

 

 

 

FIG 3. 4 - MATLAB Simulink Interface [33] 
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4.3.2 Linearized Model 

It is a simplified approximation of the nonlinear model obtained by linearizing 

the nonlinear equations around a specific operating point (steady-state condition). 

It uses linear differential equations to represent the system's behavior in a small 

region around the operating point. 

 

FIG 3. 5 - Non-Linear Model of Two-tank Coupled System 

FIG 3. 6 - Linearized Model of Two-tank Coupled System 
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4.3 Simulation Purpose 

The purpose of our simulation is to compare the responses of the nonlinear 

(FIG 3.5) and linearized (FIG 3.6) models of the two-tank system under different 

inputs and disturbances conditions. 

Inputs Changes: We'll apply step changes to the warm and cold water flow 

rates (𝑄𝑤 and 𝑄𝑐) to observe how the liquid levels and temperatures in the tanks 

respond. 

Disturbances: We'll introduce disturbances in the form of changes to the 

valve area (𝐀𝑣), warm water temperature (𝑇𝑤), and cold water temperature (𝑇𝑐) to 

see how the system reacts to these external variations. 

 

By comparing the responses of the nonlinear and linearized models, we can 

assess the accuracy and limitations of the linearized model as an approximation 

of the nonlinear system's behavior. 

We're particularly interested in the liquid level (𝐻2) and temperature (𝑇2) in 

the right tank, as these are the measurable outputs of the system. 

 

The simulation aims to provide insights into: 

 

- How well the linearized model captures the dynamics of the nonlinear 

system, especially under different input and disturbance conditions. 

- The range of operating conditions where the linearized model provides 

a good approximation. 

- The potential limitations of using a linearized model for control design 

or analysis of this system. 

 

4.4 Simulation Results 

4.4.1 Input Change Response (No Disturbances, Changed 

Inputs) 

In the first case, we’ll evaluate how well the linearized model captures the 

system's response to changes in the input flow rates. 

 

Conditions: 

- Simulation time interval: 𝑡 ∈ [0 ; 3000𝑠] 

- Sample time (Pas) equal 0.1s 
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- No disturbances are applied (𝐀𝑣, 𝑇𝑤, and 𝑇𝑐 remain at their operating 

point values). 

- Step changes are introduced in the input flow rates 𝑄𝑤 and 𝑄𝑐. 

 

The linearized model should provide a reasonable approximation of the 

nonlinear model's response, especially for small input changes. Results of this 

comparison are represented in (FIG 3.7) and (FIG 3.8).  

  

FIG 3. 8 - Comparison between Non-linear and Linearized Models for liquid level H2 of Two-tank 

Coupled System in the case of Input Change Response 

FIG 3. 7 - Comparison between Non-linear and Linearized Models for Temperature T2 

of Two-tank Coupled System in the case of Input Change Response 
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From the results we can say that our expectation was right. The linearized 

model provided a reasonable approximation of the nonlinear model's response 

after due the changing in the inputs, especially for the liquid level H2.  

The difference between these two models at steady state is caused by the large 

distance from the operating points to the desired outputs (𝐻2  =  1.75 m and 

𝑇2  =  51.8 ℃) 

 

The value of the static error between the nonlinear model and linearized model is 

shown in the table below.  

 

 

From the table, we can see that the static error does not exceed 5% for 𝐻2  and 

does not exceed 8% for 𝑇2, despite the significant variation on the inputs. So, we 

can now say that our linearized model is valid. 

 

4.4.2 Disturbances Change Response (With Disturbances, 

Same Inputs) 

In the second case we will assess the ability of the linearized model to predict 

the system's behavior in the presence of disturbances while the inputs remain 

constant. 

 

Conditions: 

- Simulation time interval: 𝑡 ∈ [0 ; 3000𝑠] 

- Sample time (Pas) equal 0.1s 

- Step changes are introduced in the disturbances (𝐀𝑣 by +3%, 𝑇𝑤 by  

–3% and 𝑇𝑐 by +2%) in the time interval  𝑡 ∈ [800𝑠 ; 3000𝑠]. 

- The input flow rates are kept constant at their operating point values. 

 

TAB 3. 1 - The Static error between Non-linear and Linearized Model’s response in the case 

of Input Change Response 

System Outputs Nonlinear Model Linearized Model Static Error 

H2 0.23 m 0.22  m – 4.34 % 

T2 6.8 °C 7.3 °C + 7.35 % 
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The disturbances might cause a considerable change in the system's states, and 

we might see a small deviation of the linearized model from the nonlinear model. 

Results of this comparison are represented in (FIG 3.9) and (FIG 3.10). 

 

 

 

  

FIG 3. 9 - Comparison between Non-linear and Linearized Models for liquid level H2 

of Two-tank Coupled System in the case of Disturbances Change Response 

FIG 3. 10 - Comparison between Non-linear and Linearized Models for Temperature 

T2 of Two-tank Coupled System in the case of Disturbances Change Response 
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From the results we see a considerable change in the system's states as we 

expected, so that we can see a significant decrease in the liquid level 𝐻2 (due to 

the effect of the disturbance 𝐀𝑣) and liquid temperature 𝑇2 (due to the effect of 

the disturbances 𝑇𝑤 and 𝑇𝑐) of the two-tank coupled system, for both nonlinear 

and linearized models. 

We can notice that there is no deviation of the linearized model from the 

nonlinear model for the temperature 𝑇2. And that is because of the small 

difference between the output in the operating point and the actual one that 

caused by the disturbances (𝑇𝑤 and 𝑇𝑐).  

In the other hand, there is a very small deviation of the linearized model from 

the nonlinear model for the liquid level 𝐻2. And the reason of that is the 

considerable difference between the output in the operating point and the actual 

one that caused by the disturbance 𝐀𝑣).  

  

The effect of the disturbances on the nonlinear and linearized models and the 

static error between them is shown in the table below. 

 

System 

Outputs 

Applied 

Disturbance 

Before After 

Nonlinear  

Model 

Linearized  

Model 

Nonlinear  

Model 

Linearized  

Model 

Static 

Error 

H2 Av 1.52 m 1.52 m – 0.088 m – 0.092 m – 4.54 % 

T2 

Tw 
45 °C  45 °C – 0.6 °C – 0.6 °C 0 % 

Tc 

 

TAB 3. 2 - The Effect of the Disturbances on the Non-linear and Linearized Models and the Static Error 

between their responses in the case of Disturbances Change Response 

 

From the table, we can see that in this case the linearized model reacts to the 

applied disturbances closely same as the nonlinear model reacts. Also, if we take 

a look to the static error, we can see that is does not exceed 5 % for 𝐻2  and is 

null for 𝑇2. So, we can now say again that our linearized model is valid. 
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4.4.3 Combined Scenario (With Disturbances, Changed 

Inputs) 

In the third case we’ll evaluate the overall performance of the linearized model 

under a more realistic scenario where both input changes and disturbances are 

present. 

Conditions: 

- Simulation time interval: 𝑡 ∈ [0 ; 3000𝑠] 

- Sample time (Pas) equal 0.1s 

- Step changes are introduced in the disturbances (𝐀𝑣 by +3%, 𝑇𝑤 by  

–3% and 𝑇𝑐 by +2%) in the time interval  𝑡 ∈ [1300𝑠 ; 3000𝑠]. 

- Step changes are introduced in the input flow rates. 

 

This scenario will likely reveal the most significant differences between the 

nonlinear and linearized models, highlighting the limitations of the linear 

approximation under combined input and disturbance variations. Results of this 

comparison are represented in (FIG 3.11) and (FIG 3.12).  

  

FIG 3. 11 - Comparison between Non-linear and Linearized Models for liquid level H2 

of Two-tank Coupled System in the case of Combined Scenario 
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Based on the results of the comparison between the nonlinear model and the 

linearized model in the combined scenario, we can confirm that the linearized 

model provides a good approximation of the nonlinear model. 

We can notice that there is a small deviation of the linearized model from the 

nonlinear model for the temperature 𝑇2. And that is because of the considerable  

difference between the desired output and the actual one that caused by the 

disturbances (𝑇𝑤 and 𝑇𝑐).  

In the other hand, there is almost no deviation of the linearized model from the 

nonlinear model for the liquid level 𝐻2. And the reason of that is the small 

difference between the desired output and the actual one that caused by the 

disturbance 𝐀𝑣).  

 

 

 

 

 

 

 

 

 

 

FIG 3. 12 - Comparison between Non-linear and Linearized Models for Temperature T2 

of Two-tank Coupled System in the case of Combined Scenario 
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The effect of the disturbances on the nonlinear and linearized models is shown 

in the table below. 

 

System 

Outputs 

Applied 

Disturbance 

Before After 

Nonlinear  

Model 

Linearized  

Model 

Nonlinear  

Model 

Linearized  

Model 

H2 Av 1.75 m 1.74 m – 0.101 m – 0.09 m 

T2 

Tw 
51.8 °C 52.3 °C – 1.141 °C – 0.59 °C 

Tc 

 

TAB 3. 3 - The Effect of the Disturbances on the Non-linear and Linearized Models and the Static Error 

between their responses in the case of Combined Scenario 

 

From the table, we can see that in this case the linearized model reacts to the 

applied disturbances closely same as the nonlinear model reacts for liquid level 

𝐻2. In the other hand, the linearized system didn’t react closely much to the 

applied disturbances like the reaction of nonlinear model. And we can say that 

the reason of that is the significant difference between the output in the operating 

point and the desired output. 

 

 From all the results we saw before, we can be confirmed that our linearized 

model is valid. 
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4. Conclusion 

In this chapter, we provided a general overview of the modeling and 

linearization of dynamic systems. We then developed the mathematical model for 

our nonlinear two-tank coupled system. Due to the inherent complexity of 

nonlinear systems, it is challenging to study, analyze, optimize them and …etc. 

Therefore, we needed to linearize our nonlinear model to facilitate a more 

straightforward application. 

To ensure that our linearized model accurately represents the original 

nonlinear system, we compared the behavior of both models. This comparison 

was conducted by simulating the two systems using MATLAB Simulink—one 

model for the nonlinear system and another for the linearized version. 

The results of this comparison demonstrated that the linearized model 

approximates the nonlinear system, making it suitable for further applications, 

analysis, optimization of the two-tank coupled system. 
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Chapter Four: Estimating the 

Liquid Level and Temperature of 

Two-tank Coupled System  
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1. Introduction 

Accurate estimation of non-measurable variables and disturbances in a 

dynamic system (e.g., a two-tank coupled system) is crucial for effective process 

control and fault detection. However, direct measurement of these quantities is 

often impractical or impossible due to limitations in available sensors or the 

complexity of the system dynamics. In this chapter we will apply the Luenberger 

observer algorithm to address these challenges and provide reliable estimates of 

the unobservable system states and disturbances of our two-tank coupled system. 

 

Luenberger observer are mathematical model that estimate the internal states 

of a dynamic system based on available measurements. By leveraging the 

system's dynamics and input-output relationships, they can reconstruct 

unmeasured states with reasonable accuracy.  

 

In the context of our work on the two-tank coupled system, we will use the 

Luenberger observer to estimate both the full system state (including measurable 

and non-measurable variables) and the partial system state (consisting of only the 

non-measurable variables) of our linearized dynamic system. 

 

The goal of using the both full state observation and partial state observation is 

to compare those two and see if the partial state observation can give us the same 

results as the full state observation, or at least an approximate estimation result.      

That will determine if we can rely on the partial state observation as an 

accurate estimation of dynamic systems’ state method in the future applications.  
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2. Observability of Dynamic System 

Observability is a fundamental property of a dynamical system that determines 

whether it is possible to estimate the internal state of the system based solely on 

its input and output measurements. In other words, a system is observable if it is 

possible to uniquely reconstruct the initial state of the system from its input and 

output history over a finite time interval [34]. 

This is crucial for many control system applications, such as state feedback 

control, model predictive control, and fault detection. 

 

2.1 Observability of Linearized System 

To analyze the observability of a linearized system, we can use the concept of 

observability matrix. 

 

2.1.1 Observability Matrix [34] 

The observability matrix for a linear system is defined as: 

 

𝐎 =  [𝐂;  𝐂𝐀;  𝐂𝐀𝟐;  . . . ;  𝐂𝐀(𝑛−1)]  (4.1) 

 

where:  

- 𝐂 is the output matrix. 

- 𝐀 is the system matrix. 

- 𝑛 is the dimension of the state vector. 

 

The system is observable if and only if the observability matrix has full rank, 

meaning its rank is equal to the dimension of the state vector. 
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2.1.2 Observability of Linearized Two-tank Coupled System 

To determine the observability of a linearized system, we can use Matlab 

command to calculate the rank of the observability matrix (4.1) . 

 

From (3.34) and (3.36) we can get matrix 𝐀 and 𝐂 of our system respectively, and 

by using the code "rank(obsv(A,C)) " we find our rank. 

 

(4.2) 

 

 

We can see that the rank of the observability matrix equal 4, so it’s equal to 

the dimension of the state vector. That means that our linearized system is 

observable. 

 

 

 

 

3. Luenberger Observer 

3.1 Reminder about the Luenberger Observer [9] 

By leveraging the system's dynamics and input-output relationships, 

Luenberger observers can reconstruct the unmeasured states with reasonable 

accuracy. 

 

Luenberger proposes the following observer for the system (3.37): 

 

{
𝑥̇  =  𝐀𝑥  +  𝐁𝑢 + 𝐁𝑣𝑣 +  𝐊(𝑦 −  𝐂𝑥) 

𝑦̂ =  𝐂𝑥
  (4.3) 

Where, 

{
𝑥̇  =  (𝐀 −  𝐊𝐂)𝑥̂  +  𝐁𝑢 + 𝐁𝑣𝑣 +  𝐊𝑦

𝑦̂ =  𝐂𝑥
  (4.4) 

 

The dynamics of the observation error 𝑒 = 𝑥 − 𝑥 is: 

 

𝑒̇  =  (𝐀 −  𝐊𝐂)𝑒  (4.5) 
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3.2 Calculating the Luenberger Observer Gain 

Matrix 

Using a pole placement technique, it is sufficient to calculate the observer gain 

matrix 𝐊 such that the eigenvalues of the matrix (𝐀 −  𝐊𝐂) are positioned in the 

left half of the complex plane. 

The ‘place’ function is used for pole placement. Since 𝐊 is used in the 

equation 𝐀 −  𝐊𝐂, and MATLAB places poles using the system 𝐀′ and 𝐂′, we 

transpose the matrices and then transpose the result to get the correct 𝐊 . 

 

The ‘place’ function is written on matlab in this form: 

 

𝐊 =  𝑝𝑙𝑎𝑐𝑒(𝐀′, 𝐂′, 𝑑𝑒𝑠𝑖𝑟𝑒𝑑_𝑝𝑜𝑙𝑒𝑠)′;  (4.6) 

 

Desired poles are a vector containing the eigenvalues where you want the 

observer's poles to be located. The number of poles should match the number of 

states in your system. 

 

The desired poles we choose are 3.5 times faster than the system poles (3.38). 

 

𝑑𝑒𝑠𝑖𝑟𝑒𝑑𝑝𝑜𝑙𝑒𝑠 = [−0.0269;  −0.3812; −0.1173; −0.0878]  (4.7) 

 

And after using the ‘place’ function, the gain matrix 𝐊 will be : 

 

𝐊 = [

0.3016 −0.0129
0.3519 −0.0150
−0.0166 0.0058
−0.0119 0.0861

]  (4.8) 

 

The Luenberger observer gain matrix 𝐊 plays a crucial role in determining the 

performance of the observer. A well-chosen 𝐊 can ensure that the observer's 

error dynamics are asymptotically stable, leading to accurate state estimation.   
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4. Simulating the System’s State 

Estimation 

4.1 Linearized Model associated with Luenberger 

Observer 

The figure below represents the Linearized model (FIG 3.6) of the two-tank 

Coupled system associated with Luenberger observer model in Matlab Simulink. 

The goal of connecting the observer is to estimate the state variables of our 

system. 

4.2 Full State Observation 

Full-state observation involves estimating all the state variables of a system, 

both measurable and unmeasurable. This gives a complete picture of the system's 

dynamics and allows more accurate control and monitoring. 

Luenberger observers are a best tool for achieving this goal. 

 

FIG 4. 1 - The Linearized Model of Two-tank Coupled System associated with Luenberger 

Observer Model 
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4.2.1 Estimating System State variables (Without 

Disturbances) 

In this case, we’ll evaluate the accuracy and effectivity of the luenberger 

observer in estimating the four state variables of the system in the absence of the 

disturbances. 

 

Conditions: 

- Simulation time interval: 𝑡 ∈ [0 ; 850𝑠] 

- Sample time (Pas) equal 0.1s 

- No disturbances are applied (𝐀𝑣, 𝑇𝑤, and 𝑇𝑐 remain at their operating 

point values). 

- Step changes are introduced in the input flow rates. 

- The initial conditions of the observer are 𝑥0 = [0.1, 0.1, 0.2, 0.2], while 

the initial conditions of the linearized model are kept zero. 

 

The Luenberger observer should provide a good estimation for the four state 

variables, and the estimated values should match the linearized model’s values in 

the steady state condition. The results of the estimation are represented in the 

(FIG 4.2), (FIG 4.3), (FIG 4.4) and (FIG 4.5). 

 

FIG 4. 2 - The Estimated Liquid level H2 compared to the measurable value of H2 

of the Linearized Model (Without Disturbances) 
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FIG 4. 3 - The Estimated Liquide Temperature T2 compared to the measurable value of T2 

of the Linearized Model (Without Disturbances) 

FIG 4. 4 - The Estimated Liquide level H1 compared to the non-measurable value of H1 of the Linearized 

Model (Without Disturbances) 
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From comparing the estimated measurable state variables (𝐻2 𝑎𝑛𝑑 𝑇2) by the 

luenberger observer with the state variables of our linearized model, and by 

noting the estimated non-measurable state variables, we can say that the observer 

is working effectively, since the estimated state variables match the state 

variables of the system in the steady state condition. 

Also, we can notice that the estimation error tends to zero quickly after the 

simulation started. which implies the accuracy and the rapidity of the associated 

observer to the system.  

 

4.2.2 Estimating System State variables (With Disturbances) 

In this case, we’ll evaluate the accuracy and effectivity of the luenberger 

observer in estimating the four state variables of the system in the presence of the 

disturbances. 

 

Conditions: 

- Simulation time interval: 𝑡 ∈ [0 ; 1500𝑠] 

- Sample time (Pas) equal 0.1s 

- Step changes are introduced in the disturbances (𝐀𝑣 by +3%, 𝑇𝑤 by  

–3% and 𝑇𝑐 by +2%) in the time interval  𝑡 ∈ [800𝑠 ; 1500𝑠]. 

- Step changes are introduced in the input flow rates. 

- The initial conditions of the observer are 𝑥0 = [0.1, 0.1, 0.2,0. 2], while 

the initial conditions of the linearized model are kept zero. 

FIG 4. 5 - The Estimated Liquide Temperature T1 compared to the non-measurable value of T1 

of Linearized Model (Without Disturbances) 
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The Luenberger observer should estimate the four state variables and the effect 

of the disturbances applied to the system normally, given to the effectivity and 

accuracy of the observer. The results of the estimation are represented in the (FIG 

4.6), (FIG 4.7), (FIG 4.8) and (FIG 4.9).  

 

FIG 4. 6 - The Estimated Liquid level H2 compared to the measurable value of H2 

of the Linearized Model (With Disturbances) 

FIG 4. 7 - The Estimated Liquide Temperature T2 compared to the measurable value of T2 

of the Linearized Model (With Disturbances) 
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From the results we can see that the luenberger observer estimate the four state 

variables of the system (measurable and non-measurable) with the effect of the 

disturbances applied effectively as we expected.  

This can let us be more confirmed with the accuracy and the efficacity of the 

observer. 

  

FIG 4. 8 - The Estimated Non-measurable Liquide level H1 of the Linearized 

Model (With Disturbances) 

FIG 4. 9 - The Estimated Non-measurable Liquide Temperature T1 of Linearized Model 

(With Disturbances) 
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4.3 Partial State Observation 

Partial state estimation refers to the process of estimating only a subset of the 

state variables in a dynamic system, typically when not all the states are directly 

measurable. This approach focuses on reconstructing the non-measurable states 

𝑥𝑢𝑛𝑚𝑒𝑎𝑠𝑢𝑟𝑎𝑏𝑙𝑒 based on the available system outputs (𝑥𝑚𝑒𝑎𝑠𝑢𝑟𝑎𝑏𝑙𝑒) and a 

mathematical model of the system. 

 

4.3.1 Reduced Order Observer [11] 

The reduced-order observer is used to estimate only the unmeasurable states of a 

system when some states are already measurable. This approach simplifies the 

estimation process by focusing on reconstructing only the unknown 

(unmeasurable) states. 

 

To apply the reduced-order observer, we partition the system states 𝑥 of our 

system (3.30) into measurable states and unmeasurable states. 

 

𝑥 = [
𝑥1
𝑥2
]  (4.9) 

 

Where, 𝑥1 are the measurable states (directly observed as 𝑦 = 𝐂𝑥), and 𝑥2 are 

the unmeasurable states (which need to be estimated). 

 

Now partition the system matrices 𝐀, 𝐁, 𝐁𝒗, and 𝐂: 

 

𝐀 = [
𝐀11 𝐀12
𝐀21 𝐀22

] ,  𝐁 = [
𝐁1
𝐁2
] , 𝐁𝒗 = [

𝐁𝒗1
𝐁𝑣2

], 𝐂 = [𝐼2 0]  (4.10) 

 

Where, 

- 𝐀11 describes the dynamics of the measurable states. 

- 𝐀22 describes the dynamics of the unmeasurable states. 

- 𝐀12 and 𝐀21 describe the interaction between the measurable  

and unmeasurable states. 

- 𝐁1 and 𝐁2 are the input matrices corresponding to the measurable and 

unmeasurable states. 

- 𝐁𝒗1 and 𝐁𝒗2 are the disturbances matrices corresponding to the 

measurable and unmeasurable states. 

- 𝐂 is the identity matrix of the measurable outputs. 
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The partition of the system matrices 𝐀, 𝐁, 𝐁𝒗, and 𝐂 is a transformation that 

help us to separate the measurable states from the non-measurables state inside 

those matrices. And in order to do that, will use the Coordinate Transformation 

T. 

 

𝐓 = [𝐂T |𝐍]  (4.11) 

 

Where, 

- 𝐂T is the Moore-Penrose pseudoinverse of 𝐂. 

- 𝐍 is a basis of ker (𝐂). 

 

By using the Matlab Codes below we can calculate 𝐓, 𝐀11, 𝐀22, 𝐀12 and 𝐀21, 

𝐁1and 𝐁2, 𝐁𝒗1 and 𝐁𝒗2. 

 

Calculate the coordinate transformation T 

𝐍 =  𝑛𝑢𝑙𝑙(𝐂); 

𝐓 =  [𝑝𝑖𝑛𝑣(𝐂), 𝐍];  𝑖𝑛𝑣𝐓 =  𝑖𝑛𝑣(𝐓); 

 

Transform the system matrices 𝐀, 𝐁, 𝐁𝒗. 

𝐀𝑏𝑎𝑟 =  𝑖𝑛𝑣𝐓 ∗  𝐀 ∗  𝐓; 

𝐁𝑏𝑎𝑟 =  𝑖𝑛𝑣𝐓 ∗  𝐁; 

𝐁𝒗𝑏𝑎𝑟 =  𝑖𝑛𝑣𝐓 ∗  𝐁𝒗; 

 

Extract the submatrices for the reduced-order observer 

𝐀11 =  𝐀𝑏𝑎𝑟(1: 𝑛𝑦, 1: 𝑛𝑦);  

𝐀12 =  𝐀𝑏𝑎𝑟(1: 𝑛𝑦, 𝑛𝑥 −  𝑛𝑦 +  1: 𝑛𝑥);  

𝐀21 =  𝐀𝑏𝑎𝑟(𝑛𝑥 −  𝑛𝑦 +  1: 𝑛𝑥, 1: 𝑛𝑦);  

𝐀22 =  𝐀𝑏𝑎𝑟(𝑛𝑥 −  𝑛𝑦 + 1: 𝑛𝑥, 𝑛𝑥 −  𝑛𝑦 +  1: 𝑛𝑥);  

 

Partition 𝐁 into 𝐁1 and 𝐁2 based on which states are measurable/non-measurable 

𝐁1  =  𝐁𝑏𝑎𝑟(1: 𝑛𝑦, 1: 𝑛𝑢);      

𝐁2  =  𝐁𝑏𝑎𝑟(𝑛𝑥 −  𝑛𝑦 +  1: 𝑛𝑥, 1: 𝑛𝑢);  

 

Partition 𝐁𝒗 into 𝐁𝒗1 and 𝐁𝒗2 based on which states are measurable/non-

measurable 

𝐁𝒗1 =  𝐁𝒗𝑏𝑎𝑟(1: 𝑛𝑦, 1: 𝑛𝑣);      

𝐁𝒗2  =  𝐁𝒗𝑏𝑎𝑟(𝑛𝑥 −  𝑛𝑦 +  1: 𝑛𝑥, 1: 𝑛𝑣);  
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Where, 

- 𝑛𝑥 is the number of state variables. 

- 𝑛𝑦 is the number of system’s outputs. 

- 𝑛𝑢 is the number of system’s inputs. 

- 𝑛𝑣 is the number of system’s disturbances. 

 

Now the description of our system depending on (4.9) and (4.10) will be : 

 

{
𝑥1
+ = 𝐀11𝑥1 + 𝐀12𝑥2 + 𝐁1𝑢 + 𝐁𝒗1𝑣 

𝑥2
+ = 𝐀21𝑥1 + 𝐀22𝑥2 + 𝐁2𝑢 + 𝐁𝒗2𝑣

𝑦 =  𝑥1 

   (4.11) 

 

Where 𝑥1
+ is the state vector correspond to the measurable states variables, and 

𝑥2
+ is the state vector correspond to the non-measurable states variables. 

 

The reduced order observer can be described as follow: 

 

{
𝑧+ = (𝐀22 − 𝐑𝐀12)𝑧 + (𝐀22𝐑− 𝐑𝐀12𝐑+ 𝐀21 −  𝐑𝐀11)𝑦 + (𝐁2 −  𝐑𝐁1)𝑢

𝑦 =  𝑥1 
  (4.12) 

 

Where 𝐑 is the gain matrix that will be calculated later. 

To estimate the non-measurable state variables, 𝑥2 has to be written as follow: 

 

𝑥2 = 𝑧 + 𝐑𝑥1   (4.13) 

 

4.3.2 Calculating the Reduced Order Observer Gain Matrix 

By replacing the original matrices of our system with their submatrices, the 

‘place’ function used to calculate 𝐊 will be updated to: 

 

𝐑 =  𝑝𝑙𝑎𝑐𝑒(𝐀22
′, 𝐂′, 𝑑𝑒𝑠𝑖𝑟𝑒𝑑_𝑝𝑜𝑙𝑒𝑠)′;  (4.14) 

 

The new desired poles will remain 3.5 times faster than the system poles. But in 

this case, the system poles will be updated too, since we are using the 

submatrices instead of the original ones. 
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The updated system poles in open loop will be : 

 

{
𝐏1 = −0.4990
𝐏2 =  −0.0251

  (4.15) 

 

Now the desired poles will be : 

 

𝑑𝑒𝑠𝑖𝑟𝑒𝑑𝑝𝑜𝑙𝑒𝑠 = [−0.1746; −0.0878]  (4.16) 

 

Using the ‘place’, we find the value of the gain matrix of the updated luenberger 

observer: 

 

𝐑 = [
0.1495 0
0 0.0379

]  (4.17) 

 

4.3.3 Linearized Model associated with the Updated 

Luenberger Observer 

The figure below represents the Linearized model (FIG 3.6) of the two-tank 

Coupled system associated with updated Luenberger observer model in Matlab 

Simulink. The goal of connecting the observer is to estimate the non-measurable 

state variables of our system only. 
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FIG 4. 10 - The Linearized Model of Two-tank Coupled System associated with updated 

Luenberger Observer Model 
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4.3.4 Estimating Non-measurable System State variables 

(Without Disturbances) 

In this case, we’ll evaluate the accuracy and effectivity of the updated 

luenberger observer in estimating only the non-measurable state variables of the 

system in the absence of the disturbances. 

 

Conditions: 

- Simulation time interval: 𝑡 ∈ [0 ; 1000𝑠] 

- Sample time (Pas) equal 0.1s 

- No disturbances are applied (𝐀𝑣, 𝑇𝑤, and 𝑇𝑐 remain at their operating 

point values). 

- Step changes are introduced in the input flow. 

- The initial conditions of the observer are 𝑥0 = [0.1, 1], while the initial 

conditions of the linearized model are kept zero. 

 

The updated Luenberger observer should provide the exact estimation for the 

non-measurable state variables as we saw in the full state observation. The results 

of the estimation are represented in the (FIG 4.11), (FIG 4.12). 

 

FIG 4. 11 - The Estimated Non-measurable Liquide Level H1 of Linearized Model 

(Without Disturbances) 
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Form the results we can see that the estimated value of the liquid level 𝐻1 

match the value of the liquid level 𝐻1 of the linearized model in the steady state 

condition. Also, the estimated value of the liquid temperature 𝑇 match exactly its 

counterpart 𝑇 of the linearized model.  

These results show us that the updated luenberger observer is accurate and 

effective to estimate the non-measurable state variables of the system based on 

the measured state variables. 

 

4.3.5 Estimating Non-measurable System State variables 

(With Disturbances) 

In this case, we’ll evaluate the accuracy and effectivity of the updated 

luenberger observer in estimating only the non-measurable state variables of the 

system in the presence of the disturbances. 

 

Conditions: 

- Simulation time interval: 𝑡 ∈ [0 ; 1500𝑠] 

- Sample time (Pas) equal 0.1s 

- Step changes are introduced in the disturbances (𝐀𝑣 by +3%, 𝑇𝑤 by  

–3% and 𝑇𝑐 by +2%) in the time interval  𝑡 ∈ [800𝑠 ; 1500𝑠]. 

- Step changes are introduced in the input flow rates. 

- The initial conditions of the observer are 𝑥0 = [0.1, 1], while the initial 

conditions of the linearized model are kept zero. 

FIG 4. 12 - The Estimated Non-measurable Liquide Temperature T1 of Linearized Model 

(Without Disturbances) 
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Depending on the results in (FIG 4.11) and (FIG 4.12) that showed us the 

accuracy of the observer in estimating the non-measurable state variable , we 

expect that the observer will estimate the non-measurable states variables in 

during the presence of the disturbances effectively. 

 The results of the estimation are represented in the (FIG 4.13), (FIG 4.14). 

 

 

 

FIG 4. 6 - The Estimated Non-measurable Liquide Level H1 of Linearized Model 

(With Disturbances) 

FIG 4. 14 - The Estimated Non-measurable Liquide Temperature T1 of Linearized Model 

(With Disturbances) 
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In the (FIG 4.13) and (FIG 4.14) we can see that the updated luenberger 

observer estimates the non-measurable state variable of our system in the 

presence of disturbances effectively, also the observer gives the exact estimation 

of the effect of these disturbances on our linearized model like we saw in the 

model itself. 

The results made us more confirmed about the reliability of the partial state 

observation as an estimation method for our two-coupled tank system. 

 

4.4 Comparison between the Full State and Partial 

State Observation  

We gonna compare the results of the estimation of the non-measurable states 

variables of the linearized model of the both methods, full state observation and 

partial state observation. 

The goal of this comparison is to show the diffrence between the full state and 

the partial state observation. The results of the comparison are represented in the 

(FIG 4.15), (FIG 4.16), (FIG 4.17), and (FIG 4.18).  

FIG 4. 15 - Comparison between the Full State Observation and Partial State Observation 

for the estimation of Liquide Level H1 of Linearized Model (Without Disturbances) 



 

     81 

 

  

FIG 4. 7 - Comparison between the Full State Observation and Partial State Observation 

for the estimation of Liquide Temperature T1 of Linearized Model (Without 

Disturbances) 

FIG 4. 17 - Comparison between the Full State Observation and Partial State Observation 

for the estimation of Liquide Level H1 of Linearized Model (With Disturbances) 
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From the results in the (FIG 4.15), (FIG 4.16) , (FIG 4.17), and (FIG 4.18) we 

can see that the partial state observation has the same accuracy and effectivity as 

the full state observation in estimating the non-measurables state variables of our 

two-coupled tank system. 

 

 

 

 

 

 

 

 

 

 

 

FIG 4. 18 - Comparison between the Full State Observation and Partial State Observation 

for the estimation of Liquide Temperature T1 of Linearized Model (With Disturbances) 
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5. Conclusion  

In this chapter, we explored the application of the Luenberger observer 

algorithm to our linearized two-tank coupled system. We began by estimating 

both measurable and non-measurable state variables using full state and partial 

state observation methods. The observer's performance was evaluated by 

comparing the estimated state variables with those of our linearized model. 

 

The results showed that the Luenberger observer effectively estimates the 

system's state variables, including the impact of disturbances in the full state 

observation and the partial state observation. Confirming to us that the partial 

state observation  is reliable as an estimation method for our dynamic systems, 

same as is the full state observation method.  

 

Overall, this chapter demonstrates that the Luenberger observer is a valuable 

tool for estimating unobservable system states, offering a viable method for 

enhancing process control and fault detection in dynamic systems like our two-

tank coupled system. 
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General Conclusion 
 

In this thesis, we have systematically addressed the challenge of accurate state 

estimation in dynamic systems, with a specific focus on the two-tank coupled 

system. Through a detailed exploration of control systems, coupled tank 

dynamics, and state estimation methodologies, we have developed an approach 

that confirms the reliability of existing techniques in the monitoring and control 

of complex industrial processes. 

 

The journey began with a thorough investigation into the fundamental 

principles of control systems, establishing a strong foundation for understanding 

the intricate dynamics involved. Building on this, we explored the specific case 

of the two-tank coupled system, which served as a practical model for 

demonstrating the significance of advanced estimation techniques in industrial 

applications. 

 

Our work progressed into the modeling and linearization of this dynamic 

system, ensuring that our linearized model closely approximated the nonlinear 

system, thereby making it suitable for further analysis and application. This step 

was crucial as it allowed for the effective application of the Luenberger observer, 

a mathematical tool designed to estimate unmeasurable states within the system. 

 

The final phase of our research involved applying the Luenberger observer 

algorithm to the linearized model. The results confirmed that the observer 

effectively estimates both measurable and non-measurable state variables, even 

in the presence of disturbances. The comparison between full and partial state 

observations showed that while the full state observation provided precise results, 

the partial state observation provided the same accurate results. Confirming to us 

that the partial state observation is reliable as an estimation method for our 

dynamic systems, same as the full state observation method. 
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Overall, this thesis reinforces the applicability and effectiveness of  estimation 

as a solution for knowing the value of non-measurable state variables within 

dynamic systems. The insights gained from this study confirm the robustness of 

established methodologies for enhancing process control and fault detection in 

various industrial settings. As industrial processes continue to evolve in 

complexity, this work affirms the continued relevance and applicability of 

existing techniques in dynamic system estimation and control.  
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