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ABSTRACT

In the past two decades, there has been a tremendous progress in the development

and analysis of parallel programs for different applications. Since the time required to

solve a problem by a traditional computer is significantly reduced when using a parallel

computer, we worked on the design and analysis of a parallel algorithm to solve the

wavelet transform because the analysis and synthesis using wavelets has became a very

useful tool for analyzing non-stationary signals in completion of the windowed Fourier

transform which is the most known time-frequency representation.

The wavelet transform is a time-frequency representation describing at the same time

the temporal evolution and the frequency content of the signal. Its theory has been used

in different domains such as signal processing, analysis ofseismo-reflection signals, etc.

In this thesis, we restate the wavelet transform and propose a methodology to

transform an initial specification algorithm by a series of refinements into a specification

that can be implemented directly on a particular architecture as a mesh SIMD systolic

architecture based on'transputers using Occam language. The specified algorithm PWT

was formally defined using the program notation UNITY. The use of the UNITY model

allows a simple description of the parallel algorithm and a well-defined model for

analyzing the performance using the running time as a performance metric. The running
time is expressed as a function of the input size and number of processors used. The

merit ofsuch an approach is the fact that programs are viewed like mathematical objects
derived straightforwardly from their specifications that can be mapped to a variety of
different architectures, in contrast to the "a posteriori" verifications commonly found in
literature.

The signals analyzed are generated analytically. Mainfy, the results txf the wavelet

transform allow one to visualize the different frequencies composing the signal as well as
the instants oftheir apparitions and to determine for frequency modulated signals, the
significant components of the signal contained in every frequency band and the time /

which corresponds to the maximum energy which is impossible to do with a frequency
analysis only. The PWT algorithm improves the time complexity ofthe basic algorithm
by an exponential factor and allows a good use of the wavelet transform as it is

comparable to the direct computation of the transform with a computation reduction

time. It isvery useful for data compression since data values of the wavelets are obtained

through data re-recirculation over the wavelet matrix while the "a trous" algorithm leads
to an excessive data redundancy.
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Chapter 1 Introduction

CHAPTER 1

Introduction

1.1 Motivation :

In the past two decades, there has been a tremendous progress in the development

and analysis of parallel programs for different applications. The analysis and

synthesis using wavelets has became a very useful tool for analyzing non-stationary
signals.

Although the idea of wavelets dated back from 1940's [Gabor 46], the use of the

analysis is relatively new. It was reactualized in the I980's [Morlet 83]. Since then,

the wavelet analysis has been of most interest due to the possible applications of this

theory and its effectiveness in numerous disciplines. The analysis of the signal using
wavelets allows the extraction of the pertinent information which depends on the

physical nature of the signal: temporal signals (musical sounds, speeches, seismic
waves, cardiograms, echograms, etc.) or images. But since the time required to solve

a problem by a traditional computer is significantly reduced when using a parallel
computer, we worked on the design and the implementation of a parallel algorithm
to solve the wavelet transform.

The parallel wavelet transform is an algorithm for computing the continuous
wavelet transform after sampling it, in a way that requires less computations than the
direct way. The use of a straightforward algorithm leads to a prohibitive
computation time, hence the need for a more effective computation procedure. The
parallel algorithm is developed using the UNITY algebraic method [Chandy 88],
which allows one to clearly understand the model of computation underlying the
parallel computer. The first purpose of the proposed algorithm is to compress the
data needed for the calculation ofthe wavelet coefficients. The second purpose is to
design a hardware/software solution to compute the wavelet transform, called the

PWT algorithm, since application specific integrated circuit (ASIC) designed to
implement parallel programs can achieve very high processing rates, and therefore
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are becoming important. The hardware is represented by systolic array processors

and, since systolic arrays have strong connections with formal methods, we derived a

concurrent program from its specification using UNITY (Unbounded

Nondeterministic Iterative Transformation) formalism. The last aspect of the thesis

deals with the analysis of the sequential and the parallel algorithms, namely the

complexity measures of each algorithm and the best architecture suited for it.

1.2 The problem :

In 1983, the physicist Jean Morlet [Morlet 83] was the first one to realize the

needs of creating another technique for the analysis of transient signals that the

Fourier techniques could not handle. He thought of a new method, the wavelet

analysis and synthesis. The wavelet analysis is the representation of the signal as a

function of time and frequency at the same time. It allows the analyzis of signals

that combine phenomena with different scales. The window is no longer fixed but

varies by translation and dilation or contraction depending on the signal. He
proposed his (complex) wavelet:

-a2t2
y/(t) = exp (/ c t) exp ( ) 1_i

where c and a are parameters to be chosen.

He used a basic algorithm to compute the wavelet coefficients S(b,a) using

numerical methods. Daubechies [Daubechies 92] proposed an algorithm presenting

all the advantages of wavelet decomposition, using two positive numbers a and 0.

He used wavelets of frequencies 2"(Qx;) where j=...,-2,-1,0,1,2,... The mother

wavelet vis localized on the interval [-1,1]. The wavelets are localized on intervals

of length 2x(2 (QV)). Meyer [Meyer 87] working to improve an algorithm created

by Morlet and based on the CODES technique (cycle octave data enhancement

system), discovered "the orthonormal basis of wavelets". He decomposed the signal

using the wavelets y/hk in a sum of independent terms. Orthonormal basis means that

the decomposition is unique (basis) and the wavelets are independent (orthonormal).

Lemarie and Battle [Lemarie 90] discovered new orthonormal basis of wavelets.

Barrat and Lepetit [Barrat 90] worked on a new type of analyzing wavelet that
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allowed a noticeable shortening of the computation time and a larger choice for the

analyzing scale. The most known algorithm to compute the continuous wavelet

transform is the algorithm 'a trous' by Dutilleux [Dutilleux 89], Mallat [Mallat 89]

used the wavelet analysis in image processing. He developed a pattern matching

algorithm which processes the image at different resolutions. He studied the concept

of multiresolution decomposition for one and two dimensional signals. He

decomposed the signal using orthonormal basis of wavelets. Another algorithm

called 'the pyramidal algorithm' based on convolution with 'quadrature mirror

filters', and a similar algorithm allowing the reconstruction of the original signal from

the wavelet decomposition was developed by Burt and Adelson [Burt 89] and was

used by many other researchers.

To derive concurrent programs from their specifications, UNITY formalism was

introduced, by Chandy and Misra [Chandy 88]. UNITY program is a formal

mathematical model to deal with the representation of algorithms with high

parallelization. It was used by Knapp [Knapp 92] in the parallel linear search and the

asynchronous fixed point computation algorithms. Thiele [Thiele 92] used UNITY

program in his problem: parallel implementation of cellular systems for numerical

modeling. UNITY formalism was used by many other researchers in their derivation

of parallel programs. Starting from an initial UNITY specification, we proceed in a

series of refinement steps until the specification is restrictive enough to be translated

directly into UNITY code. UNITY program aims to specify functions in a very

formal mathematical way very early in the development phase and to prove that the

implementation is correct. UNITY program is the best model to express the

parallelism , and the best language to translate the parallelism is the Occam language

[Burns 87] because of the concurrence features it represents. Objects from the

problem domain are represented by processes that can run concurrently. Transputer

[INMOS] using a SIMD architecture is the natural machine to implement Occam

instructions, since unidirectional synchronous Occam channels can be mapped

directly onto the transputer hardware links and processes are used to model the

different units.

1Initios isa trademark ofthe INMOS Group ofCompanies.
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1.3 Thesis structure :

The remaining chapters give details about the theory of wavelets, the

decomposition of signals using wavelets, the UNITY model which is the transition

state from the sequential algorithm to the parallel one, the parallel architecture using

systolic arrays and the implementation of programs written in Occam using

transputers [Wexler 89]. We also state the problem and propose a solution for it.

Chapter 2 of this thesis explores the theory of signal processing and the systems

that deal with signals. Fourier and wavelet transforms are studied in details and the

role and the limits of each is also presented.

In chapter 3, UNITY program, the concurrency extraction tool of the parallel

computer, the experimental systems and the different architectures a UNITY

program could be mapped to are introduced. The Occam language and its features

strongly connected to the transputer that represents the hardware on which the

parallel algorithms are going to run, are presented. Finally, to plot the graphs,

Matlab is the best system to use and it is briefly introduced in this chapter.

The design and implementation of an improved sequential program making use of

the parity of the wavelet transform as well as a parallel program for the wavelet

transform application, the PWT, based on UNITY model is the subject of chapter 4.

Some of the existing algorithms are briefly presented here. Algorithm complexity of

all algorithms are also discussed with a comparison table of their time complexities.

In chapter 5, experimental results obtained by the sequential algorithm as well as

the parallel one are presented by means of graphs plotted using Matlab. A

description of the experiments and a table comparing the cost of different algorithms

are given. A brief discussion of the results and their applications shows the

advantages in using the new technique presented in this thesis. A conclusion of what

could be the interpretation of the results is the final part of this section.

Finally, a summarize of the work achieved, a comparison to the results obtained

with other methods, the benefits from using this new technique and suggested future

work are given in chapter 6.

2Matlab is a trademark of Mathworks Inc.
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CHAPTER 2

Signal Processing Theory

2.0 Introduction :

There are no general methods of analysis nor there are general solutions of all
types of signals. We try to design an optimal system to study acertain class of input
signals: non-periodical signals. Since the analysis of agiven system is facilitated by
use of a particular signal representation, we worked out the best formula to
represent a signal : the wavelet transform. For this, it is important to include a brief
study of signals and their properties in astudy of anon-linear system.

Since the wavelet transform is described starting from the Fourier transform
which is the most known time-frequency analysis, an introduction to the Fourier
transform and particularly the windowed Fourier transform is presented. After
defining the wavelet transform, a comparison is made between the two transforms
that points out the differences and analogies between them.

So, before proceeding with the design of the system, The Parallel Wavelet
Transform, we start first by learning how to analyze it. To provide a basis for a
simple design, we develop amathematical model that represents in the best way the
physical model , which concerns the definitions, the notations, the initial conditions,
the parameters, etc.

2.1 Signals and systems :

Signals are processed to facilitate the extraction of pertinent informations under
the form of reduced characteristic numerical values. The development of signal
processing techniques and systems is of great importance. Those techniques usually
take the form ofatransformation of asignal into another signal that is in some sense
more 'desirable'.

2.1.1 Signals and signal processing :

Signals are defined as series of numbers coming from measurements [Meade 91],
that conveys information about the state or behavior of aphysical system. Signals
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are represented mathematically as functions of one or more independent variables.

For example : a speech signal would be represented mathematically as a function of
time, and a picture would be represented as a brightness function of two spatial

variables. The two principal problems in signal processing is the analysis problem

which is the evaluation of the response of a signal processing system to a given input

to extract information from it or about it and the synthesis problem which is the

design or specification of a processing system which will produce a desired output

from a given input. Signals, depending on the characteristics of the time variable t

which may be continuous or discrete, are classified into two broad groups:

The first group consists of analog or continuous-time signals and the second

group consists of discrete-time signals. The second group is referred to as sequence.

2.1.1.1 Analog or continuous-time signals :

Continuous-time signals can be represented mathematically by a function of a

continuous time variable. They are continuous in both space and amplitude. A

continuous time signal is not necessary represented by a mathematically continuous

function. Example : image, seismic, radar and speech signals. A continuous-time

signal with a discontinuous waveform is the pulse function sketched in figure 2.1 and

represented by equation 2.1:

go) -i

lo

if / <-
2

otherwise

g(t)

-T/2 +T/2

Figure 2.1. A continuous-time signal with a

discontinuous waveform.

2.1
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2.1.1.2 Discrete-time signals :

Discrete-time signals are digital signals that are defined only at a particular set of

instants in time which are called sampling instants (i.e. the contents of an arithmetic

unit in a digital computer). The values of a discrete-time signal x(t) are expressed as

a function of the integer variable n. If the sampling interval is Ts, and the discrete

signal is defined for t= n.Ts, then the x[n] can be regarded as an ordered sequence of

numbers with values x[0], x[l], ..., for n = 0,1,... that is obtained by sampling a

continuous-time signal x(t) at equidistant points. The sequence x[n] is defined by:

x[n] = x(nT,), for n = 0, ±1, ±2, ...

The signal graph of a discrete-time signal may be represented by figure 2.2:

x[n] i

2.T....

Figure 2.2 Discrete-time signal

2.1.1.3 Representation of signals :

An important aim of signal analysis is to generate models to represent signals in a

form that is both understandable and applicable. One way to do this is to represent a

signal as a sum of elementary components. So a signal waveform is represented by

means of a series of formalized waveforms to make the process of analysis easier. To

get a good accuracy, we try to use as many terms as possible. Then we will be able

to analyze the signal with some knowledge of its constituent parts. Suppose we have

a signal represented by a function f(t) which we wish to represent on a finite interval

[ti ,t2 ] by a set of n functions <pi (t), (p2 (t),..., cpn(t) that are orthogonal on [ti ,t2 ].

How should we represent f(t) on [ti ,t2 ] in terms ofthe set offunctions^, (0L=i ?
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Let us assume a representation or approximation of f(t) by a linear combination of

the functions <p,'t) / = l,2,—,w. The representation for f(t) on [/j,f2] is ofthe form :

The coefficients c, can be interpreted as the projection of f(t) in the direction of the

function cp,(t). The representation or approximation is then, a decomposition of a

function f(t) in terms ofthe set offunctions $(0Hi •

2.1.1.4 Signal sampling :

The basis of signal sampling is to represent a continuous-time signal f(t) by a

sequence of samples f[n] with values f(n.Ts) [Gabel 73]. fin] is derived from f(t) by

periodic sampling at a frequency f, = —. The signal is sampled in a way that makes
s

it possible to recover the waveform representing the continuous-time signal f by

'joining up the points' on a graph of the samples. The process of recovering the

waveform of the continuous-time signal f(t) from the set of samples is known as

interpolation, and a good interpolation depends on the choice of the sampling

frequency. If the sampling frequency is chosen adequately, the waveform can be

recovered by interpolation, otherwise, if the signal has been sampled at a relatively

low rate, vital information is lost about the rapidly changing parts of the signal, and

two waveforms can be recovered by the same set of samples giving aliasing signals.

To avoid aliased signals, Shannon stated in his sampling theorem that if f(t), the

function being sampled, is band-limited, that is, if it contains no frequency

components above some bound frequency fmax, then it can be completely described

by uniformly spaced samples taken at a rate of at least 2.fmax samples per second. In

other words, it is stated that a signal can be sampled at a rate of fs > 2/max samples

per second, with no loss of information. This minimum rate of 2.fmax is commonly

known as the Nyquist rate. If the sampling rate is less than the Nyquist rate, the

signal is undersampled otherwise it is oversampled.

2.1.2 Systems :

A system maps an input signal to an output signal. A major element in studying

signal processing is the analysis, design and implementation of a system that

transforms an input signal to a more desirable output signal for a given application.
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The representation of a signal is a formal system for making explicit certain types of

information, plus the specification of how the system works. The description is the

result given by the representation. The systems are of two types : discrete-time

systems and continuous-time systems.

2.1.2.1 Discrete-time systems :

A discrete-time system is one in which all or some of the signals in the system are

discrete-time signals. A discrete-time system performs numerical operations on one

or more input sequences {xj to produce one or more output sequences {>'„}.

2.1.2.2 Continuous-time systems :

A continuous-time system is one in which both the input and the output are

continuous-time signals. Operations performed by a continuous-time system are

equations of ordinary algebra and calculus.

2.2 Transforms :

A transform is just a digital filter that simply finds a different way of looking at

some problem. To use this filter, three steps are followed :

1) specification of the characteristics required of the filter : they depend on the

intended application.

2) design of the filter.

3) implementation of the filter.

All three steps are interleaved, and the key to the analysis of the system is the

correct representation of the input signal.

How do they work?

A transformation may just change things so they will appear differently like in

image processing or it may break something down into its fundamental parts like in

cartography or a piece of music or may extract non-obvious information in non-

obvious ways like separating signals from noise. They operate by transforming arrays

of numbers into other arrays of numbers. We start off with some pile of numbers,

apply some mathematical rules to them (add, subtract, translate, scale, rotate, etc.),

and end up with a second pile of numbers. A transform will be chosen depending on
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the application we have at hand. A transform can be defined as a mathematical

operator acting on a signal and verifying the following conditions :

1) conservation of the information.

2) conservation of the energy.

3) inversibility.

2.2.1 Decomposition of functions :

There are an infinite number of decompositions of a function f(t) in terms of
elementary functions. The choice of a particular decomposition depends on two
factors :

1) The properties of the function f(t) and the interval over which f(t) is to be
represented.

2) The properties of the system to be analyzed and the model used to represent
the system. The system chosen to analyze the signal depends on the type of the
signal to be analyzed. If the system is linear and time-invariant and the exciting
function is periodic, the best tool for representing f(t) is the Fourier series. So
stationary signals that are statistically invariant over time decompose canonically into
linear combinations of sines and cosines waves (e.g. white noise). Non-stationary
signals that slowly change with time, decompose into linear combinations of
wavelets.

2.2.2 Fourier transform :

The Fourier analysis was the first technique for the analysis of signals and the
most known. Since the creation of the Fast Fourier Transform (FFT) algorithm, the
Fourier analysis became very important for the analysis of periodic and regular
signals.

Suppose that f(t) is a signal bounded on the interval (-a, a) satisfying the
following sufficient Dirichlet conditions :

1) f(t) is bounded and of period T.

2) f(t) has at most a finite number of maxima and minima in one period and a
finite number of discontinuities.

The above conditions are all we need for engineering applications.
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f(t) then can be represented by :

x „ -i a,

/(') =Z^exp (j• - Tit) where Fn =— J/(/) exp (-j-nt) dt
-x a 2.a „ a

In a Fourier series expansion, a periodic function is decomposed in terms of its

harmonics that make up the spectrum of f(t). If f(t) is not periodic, and we want to

use a representation that is valid on (-a, a), a decomposition of f(t) in terms of a

Fourier series is no longer valid and a Fourier transform was used. It is given by :

F(&) =~j^ J/(0 exp {-jcot) dt

The Fourier integral decomposes the signal on sinusoidal functions that oscillates
indefinitely in time. When added, the effects of those sinusoids cancel in the region
of the time axis where the signal is nil. The Fourier transform presents a major
inconvenience in the analysis of signals, it is either a time or frequency analysis, but
not the two at the same time. However, even with the Fast Fourier transform, the
Fourier analysis presents inconveniences which do not allow acorrect analysis of all
type of signals Thus, in the spectrum F(a), all temporal aspects of the signal
disappear, for example, the beginning and the end of afinite signal or the appearance
of a singularity. F(co) gives a representation of the frequency content of f but
information concerning time localization of high frequency bursts cannot be read
from F(<o). We wish to realize a time-frequency analysis compared to a musical
panition where are indicated at the same time the frequency and the duration of the
notes. Even for the calculation of the spectrum, to compute F(co), we have to know
f(t) for all real values oft which is impossible since in case of a real time analysis,
the signal is processed gradually as the numerical data arrive. It is impossible to
know the approached spectrum of a signal whose future is unknown since
frequencies with different values can appear. To overcome these technical
constraints, the tool was improved. The time localization can be achieved by first
windowing the signal and then taking its Fourier transform.
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2.2.3 The windowed Fourier transform :

A standard technique for time-frequency localization is the short time Fourier

transform. The function f(t) is multiplied with the window function g(t), and the

Fourier coefficients are computed by the product f(t)xg(t) given by :

*0=J/<
In the windowed Fourier transform, The g' s are totally concentrated in frequency

and totally distributed in time, which means that the transition in the Fourier space

gives the maximum information on how the frequencies are distributed but loses all

informations concerning time. The function measured by the windowed Fourier

transform, lFwin(co,t)|2 represents the spectogram which gives a coarse time-

frequency distribution.

Since the windowed Fourier transform uses a window with fixed length, it is

difficult to proceed signals with variable variations; this is the case with speech

signals : attack of the note is a very brief phase that contains high frequencies and

characterizes the instrument and the player while the rest of the note contains

relatively low frequencies. The same holds for phenomena that combine different

scales, macroscopic and microscopic.

To summarize, the windowed Fourier transform has the following shortcomings:

a) The choice of the nature of the window and its dimensions are fixed without

any possibility of changes.

b) The temporal and frequency resolutions vary inversely one of the other.

c) Poor resolution of the frequency structure at wavelength longer than the

window width (i.e. for low frequencies).

d) Poor localization of the high frequencies because the energy is averaged over

the window width.

To allow a correct analysis of all types of signals, the wavelet transform is used.

2.3 Theory of wavelets :

Unlike the classic Fourier transformations or the Wigner-ville pseudo

representation of the non-stationary signals, wavelets can simply and quickly

concentrate on specific portions of a transformation problem, and can do so locally
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or globally. They also described the distribution of the energy in the time-frequency

plane. Both techniques, the windowed Fourier transform and the pseudo time-
frequency representation of the non-stationary signal, present the same

inconvenience : the nature of the analyzing window which is fixed and cannot be

modified during the analysis. The wavelet transform is based on sets of wavelets in

the same way that the FFT is based on sine and cosine functions. The theory of

wavelets is a mixture of mathematics, scientific computation, and signal processing.

The wavelet transform is also a signal processing technique for analyzing signals to

solve some application problems. The wavelet analysis is the representation of the

signal as a function of time and frequency at the same time. Wavelets are of two

types :

1) Time-frequency wavelets.

2) Time-scale or space-scale wavelets.

Time-frequency wavelets are suited for the analysis of quasi stationary signals.

Time-scale wavelets are adapted to signals having fractal structure.

2.3.1 The wavelet transform :

Starting from a basic function i//, called mother wavelet or analyzing wavelet, we

construct a family of elementary functions obtained by shifts and dilations from the

mother wavelet given by equation (2.1).

1 t-b
Yab(.t) = -rV{ ) a>0, beR 2.1

yja a

where a is tied to the frequency and b to the time.

(-7= is taken for the normalization that has been chosen so that y/ab =\\ y/\\ for

all a and b).

The analyzing wavelet characteristics are very different from those of a window.

The latter has taken more or less the shape of a square pulse while y/ will be of

integral nil and oscillating, y/and jts Fourier transform y/ have good localization and

thus converge to 0 when / or co go to infinity.

For time-frequency wavelet, the idea is to divide a wave into segments and keep

only one of the segments. The segment represents a piece of a wave or wavelet,
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which has abeginning and an end. Suppose that s(t) is a temporal signal (signal to be
analyzed) and yA\) the analyzing wavelet (mother wavelet). To decompose into a
wavelet series, the following conditions must be satisfied :

y/(t) must be admissible.

y/(\) must be well localized and oscillating.

y/ (t) must be a real valued integrable function.

y/(t) and s(t) : are of finite energy.

The admissibility condition Tvttyk =o

limy<0->0
The localization condition

t •CO

IThe oscillating condition : Jt*~ KO &=0 fir 0<n<m

The integral of y/ (t) must be zero and the same hold for the first m movements of

V. Once the mother wavelet y/ (t) has be chosen, it generates the other wavelets. A

typical choice for the mother wavelet is the real part of the (complex) Morlet

wavelet since it satisfies the above conditions:

-a2t\
y/(t) = exp(i c t)xexp (—-—) where c=2 n and ct=l.

The other wavelets are defined starting from equation (2.1). Starting with y<t), we

get the other wavelets by varying a and b. Figure 2.1 represents the mother

wavelet (a=J) and high and low frequency wavelets. They keep the same shape but

they are stretched (a>I) or contracted (a<J). For all s(t) such that s(t) has a finite

energy, s(t) is a linear combination of the yab's
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( a) y/a,b with a=l,b =0 (b)y/a,b with a<l , b>0 c) y/a,b with a>l,b<0

0$

N

"°S—50 I'M lit 300 Xt ibb iit 400 450 "°8—50 100 150 500 HO 300 350 400 450 "°8—50 IOC (50 500 250 MO 550 400 450

Fig. 2.1 Typicalshapes of the real part of the wavelets y/aib . ( (a) represent the

mother wavelet, (b) the contracted wavelet and (c) the dilated wavelet) .

2.3.2 Different types of wavelet transforms :

There exists many different types of wavelet transforms all starting from the basic

formulas :

Sab0) =4=\s(t) v'(—)dtandTmn(t) =—\s(t) y/(aQ-mt-nb0) dt
y/a a -

a1

where y/ is the real part of the Morlet wavelet.

They are divided into two classes, where we distinguish :

a) The Continuous wavelet transform.

b) The Discrete wavelet transform.

The discrete wavelet transforms are divided into two subcategories : the redundant

discrete systems or frames and the orthonormal bases of wavelets. In the continuous

wavelet transform, the dilation and translation parameters a, b vary continuously

over R (a *0). The signal s(t) can be reconstructed from its wavelet transform by

means of the 'resolution of identity formula' :

ndadb
—^ (r*s)(a,b)y'a.b where (r*s)(a,b) = (s, ¥aJ>>

a

where (s,y/ab) represents the inner product of s(t) and y/; s(t) is then a

superposition of wavelets. The constant Cv depends onlyy/ and is given by :

2

C>2;J xi^co) \o\ dec
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While in the discrete redundant wavelet transform, the dilation and translation

parameters a and b, both take discrete values where a =aQm and a0>\.
Different values of m correspond to wavelets of different widths. The discretization

of the translation parameter b should depend on m. :

- narrow wavelets ( corresponding to high frequencies ) are translated by small steps

in order to cover the hole time range.

- wider wavelets ( corresponding to low frequencies) are translated by larger steps.

It is difficult here to reconstruct the signal from its wavelet transform.

The orthonormal wavelet basis or multiresolution analysis are obtained for some

special choices of y/, a0 and *0 The y/m,n constitute an orthonormal basis for L (9?)

where L2 represents the set of integrable functions. In the multiresolution approach,

successive coarser and coarser approximations to s are written, and at every step,

the difference between the approximation with resolution 2J" and the next coarser

level with resolution 2j , is written as a linear combination of the y/hk

2.4 Analogies and differences between the windowed Fourier

transform and the wavelet transform :

The windowed Fourier transform and the wavelet transform have analogous

formulas. One similarity between them, that both take the inner products of s with a

family of functions indexed by two labels.

Both the wavelet transform and the windowed Fourier transform can be sampled.

The natural sampling used for the window Fourier transform for co.t is co = n.coo and

t=n.t0 where (Oo t0>0 are fixed and m and neZ. On the other hand, the sampling of

the dilation parameter for thw wavelet transform is chosen such as a - a0m where m

e Z, ao>l and b = n.b(J.a0m where n eZ and b0 > 0, giving the following sampled

window and and the sampled wavelet:

«*„(*) = ^B'°Xg(*-«'o) (2-2)

m x - nbnamo ,„ „.¥mn(x) =a0^¥( ^) (2.3)
a o
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functions g „,, consist of the same envelope function g having the same width
regardless of co translated to the proper time location, and 'filled in' with higher
frequency oscillations. In contrast, the time-widths of the y/,,b's are adapted to their
frequency. High frequency y/a,b's have very narrow time-width while low frequency
y/a,b's are much broader, which makes the wavelet transform better able than the
windowed Fourier transform to 'zoom in' on very short-lived high frequency

phenomena, such as transient signals.

Conclusion :

The inconvenience ofthe Fourier transform, is that, more a signal is short in time,

more it contains sinusoidal components with significant amplitudes. But conversely,

an infinite sinusoidal signal correspond to only one frequency. The disadvantage of
both the windowed Fourier transform and the wavelet transform is that they

introduce a reference function (e.g. the window function or the wavelet ) against

which the signal has to be integrated. The Fourier transform is concerned only with

stationary signals, while the non-stationary signals contain more informations. It only

allows an exclusive analysis: frequential analysis or temporal analysis. It is concerned

by the whole signal and not only with portions of it. In some cases, the results of the

Fourier transform may be confusing since different signals may have the same

spectrum whereas the wavelet transform is adapted to analyze all type of signals and

particularly non-periodical signals.
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(b) y/a,b witha<l,b>0

0 5.
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(d) windowed FourierTransform
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Yig.2.2 In (a),(b),(c) wavelets y/a,b do not have an envelop while in (d), the

windowed Fourier transform gmA has a rigid envelop and the number of oscillations

augment with high frequencies.
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CHAPTER 3

Experimental Systems

3.0 Introduction

This chapter introduces the different experimental systems that allowed the

successful simulation of the PWT. To make the ideas concrete, we introduce the

different parallel architectures and the most suited for our application. To program

and analyze the parallel program, a formal method, UNITY model, an algebraic

language-based model underlying the analysis is introduced. The costs of the

primitive instructions and a set of rules for computing costs across program

expressions are specified in such a model. This formal model allows mapping to

different architectures. It also contributes to making a transition from the serial

programming and the single processor computer to a parallel computer system. The

simulating parallel processor, the transputer and its development system TDS are

presented as well as the programming language designed for it, Occam which is

explicitly covered.

3.1 Parallel architectures:

Parallel operation implies the use of a number of units operating simultaneously.

A fast parallel transformation is produced by the use of a special purpose hardware

design based directly on the algorithm form given by the flow diagram (UNITY

program in our case) of a fast transformation. The different designs lead each to a

family of machines. The essential ones are :

- multiple special purpose functional units.

- associative processors.

- array processors.

- data flow processors.

- functional programming languages.

One of the important criteria to classify parallel architectures is the

communication between processes, and the second, the physical nature of the
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network. Whether we have one stream of instructions or several, and whether we

have one stream of data or several, computers will be classified into four categories

(Fig. 3.1):

1) Single Instruction stream, Single Data stream (SISD).

2) Single Instruction stream , Multiple Data stream (SIMD).

3) Multiple Instruction stream, Single Data stream (MISD).

4) Multiple Instruction stream, Multiple Data stream (MIMD).

The processors can be connected in linear array, mesh, tree, perfect shuffle, cube,

etc.

3.1.1 SISD machine :

A SISD machine consists of a single processing unit receiving a single stream of

instructions and operating on a single stream of data. In one step during the

computation, a datum is obtained from the memory unit on which one instruction

sent by the control unit operates. This is the principle of the Von Neumann machine.

3.1.2 SIMD machine :

A SIMD machine is an array processor composed of multiple processing units

receiving a single stream of instructions and operating on a multiple stream of data.

In one step during the computation, the control unit broadcasts an instruction to be

executed on local data by all the processor elements (PE). Each PE can make local

minor modifications to the broadcast instruction or be programmed to ignore the

instruction.

3.1.3 MISD machine :

A MISD machine has a multiprocessor structure with N streams of instructions

and one stream of data. It is composed of N processors having each its own control

unit and sharing a common memory unit. At each step during the computation, each

processor according to the instruction received from its own control unit, operates

simultaneously with the others upon the same datum received from the shared

memory.
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3.1.4 MIMD machine :

A MIMD machine has also a multiple processor structure with N streams of

instructions and N streams of data. In these systems, each processor is fully

programmable and can execute its own program. Each processor has its own control

unit, its local memory unit and its processing unit. The control unit issues the control

of an instruction stream under which each processor operates on a datum received

from its own memory. The MIMD machines are more flexible than the other classes

but their control is much more complex.

3.2 Systolic architectures :

In many digital signal processing applications, large amounts of data to be

processed and relatively high operating speeds are needed. Hence, one way of

significantly increasing the processing speed is to design application specific

integrated circuit (ASIC) for VLSI implementation, and the most appropriate

architecture for VLSI implementation is the systolic architecture. The concept of

systolic architecture was developed by [Kung 79]. A systolic algorithm [Burns 87] is

one that has a collection of identical processes through which data flows. In a pure

systolic algorithm, each of the parallel processes executes an identical sequence of

instructions. An implementation on a mesh SIMD architecture is well-suited for this

type of algorithms. Such an architecture can be represented by a system of

transputers where each transputer can hold a process and the data can flow down the

links. Systolic comes from the analogy between the circulation of the data flow in

the network and the blood in the human body, where the clock insuring the global

synchrony constitutes the 'heart of the system'.

3.2.1 SIMD mesh architecture :

A SIMD mesh array is a programmable logic array where N processors are

arranged into an raxra array where N = \'m, giving a mesh network (Fig. 3.2). P(j,k)

is the processor in row j and column k, where 0 < j < m and 0 < k < m. It is

connected to its neighboring processors P(j+l,k), P(j-l,k), P(j,k+l) and P(j,k-l) as

shown in (Fig. 3.3).
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FIG. 3.1 Different types ofparallel architectures.
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P(0,0) P(0,1) P(0,2)

P(1,0) P(l,l) P(l,2)

P(2,0) P(2,D P(2,2)

Fig. 3.2 A 3x3 mesh array

PG-W

prjk-n P(j^ P(i,k+i)

PG+iX

Fig. 3.3 Processors connections.

3.2.2 Systolic arrays :

A systolic array has a SIMD type architecture. It is a simple machine made up of a

set of interconnected cells, each capable of performing a simple operation. The cells

in a systolic design are typically interconnected as a matrix or a tree. Information

between cells flows in a pipelined manner. In one step during the computation, each

processor reads data from its input lines (neighbor cells), performs some operations,

and writes new data values into the output lines (neighbor cells). Communication

with the outside world takes place only with the border cells. Synchronism is

achieved by the 'rendez-vous' method : a processor can consume data only when it

is produced on its input channels; otherwise, the processor waits. Basically, the

processing elements in the systolic array are multiply-add cells.
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3.3 Transputers :

The transputer is the first product available which allows the programmer to

conceive a MIMD parallel machine of his own without the need to be a computer

expert. The systolic architecture can be implemented using transputers. The

transputer is a programmable VLSI component designed for the parallel processing,

offering high performance and an extreme adaptability for the needs of users. Its

internal architecture allows the implementation of the concurrency in a system. A

transputer is a microcomputer with its own local memory and can be connected to

other transputers.

3.3.1 Transputer architecture :

A transputer (Fig. 3.4) is designed on a single chip containing a 32 bit processor,

the T414, a 2 Mbytes of memory, and communication links that provide point to

point connection between transputers. Each transputer has four two serial links

which can operate at up to 20 Mbits/s, and can be connected to other transputers.

Processors are used as standard software and hardware building blocks. The process

is the software building block. An interconnected set of processes composes the

system. Each process can be regarded as an independent unit of design that can be

implemented in hardware. A transputer executing an Occam program can be viewed

as a process. It operates as a RISC (reduced instruction set computer) type

processor, where most instructions can be executed in a single machine cycle. The

transputer is designed to make the use of processes easier and more effective. One

process can have at most four channels because only four links can be available for

each transputer. A process can communicate only with the processes which exist on

tranputers directly connected to it. Transputers present very powerful features

which are the communications between system components, the programming

language Occam, and the connection of transputers with formal methods. The

communication between processes is realized by high-speed point to point serial

links. The other major feature is the programming language Occam where Occam

channels can be mapped directly onto the transputer hardware links and processes

are used to model the different units. The last strong feature of the transputer is its

connection with formal methods (UNITY for example).
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Fig. 3.4 The transputer architecture.

3.3.2 Transputer Development System :

The Transputer Development System or TDS (Fig. 3.5) is an integrated

development system used to develop Occam programs for a transputer network.

Most of the TDS runs on the transputer board plagued on an IBM PC such as an

IMS T414 transputer that has 2 Mbytes of RAM and all the appropriate development

software such as the editor and compiler utilities. The server is a program residing

on the IBM PC that provides the TDS with access to the terminal and filling system

of the IBM PC. Occam programs are entirely edited, compiled and run within the

TDS. When a program is run within TDS, it runs in parallel with, and connected to

certain components of the TDS such as channels, their protocols and a number of

supporting communications of these channels. The channels from.isv and to.isv are

used to connect the application process to the server program running on the host

IBM PC. The KS and SS channels are running in parallel. They are channels to and

from the terminals (keyboard and screen) to enable the application process to

communicate data to and from these devices. The monitor procedure contains the

interface with the TDS. It supplies the values of keystrokes on the host keyboard to

the application while in parallel conveying data and results to the host terminal.

Termination of parallel programs are the duty of the programmer. Since there is no

control flow, the program terminates when it reaches a fixed point which is a stable

state : a state that is repeated for ever and in which all machines are passive. The

TDS allows to implement Occam programs since it is the natural machine for them.
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3.4 Occam model

26

Occam is the native language of the transputer. The name Occam comes from

William of Occam's. It is issued from CSP(communicating sequential processes)

[Hoare 85] which is a concurrency representation language. According to this

model, a parallel system is composed of a set of concurrent processes representing

system objects linked together by a means of channels. So an Occam program

represents just an expression of an algorithm of a solution of a problem and Occam

is the natural language of the transputer that provides a simple means of specifying

concurrency, creation and replication of processes. Logical gates are modeled by

processes while connecting wires are modeled by channel instances. So an electronic

circuit will be modeled by processes for gates and channels for connecting wires.
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3.4.1 Notion of processes :

The process is the privileged software tool to manage the processor time. A

process like a classical sub-program, executes a certain number of operations.

Instead of being executed sequentially, processes are simply juxtaposed in an

application program. The transputer implementation of Occam instruction allocates a

variable to represent each channel, this variable being shared by the process which

sends output over the channel, and the process which takes input from the channel.

3.4.2 Information about processes :

To analyze a given source program, the processor assigns unique sequential

numbers for identification to every process and channel. For each process the

following informations are extracted :

1) The process name which is not unique .

2) The total number of channels required by each process. For each channel, the

channel name, the direction (in or out channel), the type (vector or not), the name of

the process connected through this channel and the channel number of partner

process are extracted.

3.4.3 Information about processors :

To identify each transputer in the machine and its links, unique sequential

numbers are given, and link connections to other transputers are also described. All

information concerning processes are extracted from user programs.

3.4.4 Format of an Occam program :

The structure of an Occam program is indicated by successive indentations from

left to right (two spaces by indentation). The rules of indentation should be strictly

respected. Each process in a program must start on a new line and must respect the

indentation rules above :

- in case of a syntactical construct, the keyword should be on the first line of the

construct, followed by the options when needed. The associated processes to the
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construct start on a new line with an indentation of two spaces (one process per

line).

- in case of a process doted with a guard, the guard occupies the first line and the

process indented by two spaces, starts on the second line.

- for a conditional process, the condition is written on the first line and the

associated process starts on the following line with indentation of two spaces.

Communication processes are denoted by a channel name, an optional ! or ? and the

name of what is to be transferred,

in ? var

out ! expr

The first represents input process and the second, output process. Ch.a represents

an internal process.

3.4.5 Process mapping with Occam :

Since Occam is the native language of the transputer, it provides powerful

programming constructs which allow the parallelism of an algorithm to be described

: independent processes represent blocks of code exchanging information via inter

process communication channels. Two processes can either be executed in parallel

on different transputers or concurrently within the same transputer (time-sharing).

When a program has to run on a multitransputer system, allocations of process's

channels to hardware links of transputers must explicitly be described. For programs

running on one transputer, only one process can be allocated to one transputer. But

three processes can be mapped onto one transputer or distributed over three

transputers (Fig. 3.6). Since a transputer does not have routing ability, a process can

only communicate with the processes which exist on transputers directly connected

to it.
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Fig. 3.6 Mapping processes onto one or several transputers

3.5 Unity program :The parallel model

In this section, we present UNITY model for designing the parallel wavelet

transform since UNITY is the object that converts a sequential algorithm to a

parallel one in a straightforward manner starting from the specification of the

problem and ending with a parallel program. An important aspect of UNITY is that

the model is defined directly in terms of language constructs rather than trying to

appeal to any intuition of a machine. The model is a virtual one for which running

times for various physical machines can be given.

UNITY stands for : Unbounded Nondeterministic Iterative Transformation.

UNITY is a computational model added to a proof system. It is made of three parts :

specification, design, verification. UNITY is not a programming language but adopts

the minimum machinery to illustrate ideas about programming. A UNITY program

does not specify (on which processor in a multiprocessor system) WHERE an

assignment is to be executed. It does not specify to WHICH process an assignment

belongs. It does not specify HOW assignments are to be executed or HOW an

implementation may halt a program execution (problem of termination).

UNITY separates concerns between : what and when on one hand and where

and how on the other hand. What is specified in a program. When, Where, How

are specified in a mapping. A mapping is the description of how programs are to be

executed on a target machine. In UNITY, mappings are more important and more

complex than in traditional programs. UNITY programs are mapped to programs in

the conventional programming languages running on a given architecture.
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3.5.7 UNITY program structure :

In this section, the grammar for the model is introduced that defines a minimum

set of rules to specify the programming language. The notation is described using

Backus Normal Form (BNF).

program Program program-name

declare declare-section

always always-section

initially initially-section

assign assign-section

End

program-name : any string of text.

declare-section : variables and their types.

always-section : define certain variables as functions of others.

initially-section : define initial values of some of the variables.

assign-section : contains a set of assignment statements.

3.5.2 How do we built a UNITY program :

A program using UNITY notation is presented in a top-down design manner. First

we start with the problem specification which is the starting point. Second, we

transform the initial specification by a series of top-down refinements into one

specification that can be implemented straitghforwardly. At each stage of the top-

down refinement, we prove that the correctness of the solution is preserved. During

these refinements, new program variables may be added to the specification,

invariants may be introduced. The program proper is only obtained in the last step of

the development process. UNITY is in the spirit of 'VERIFYING A PROGRAM

BEFORE IT IS WRITTEN'. Correctness and termination are treated separately by

UNITY.
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3.5.3 Correctness :

The proof of correctness depends crucially on a notion of weak fairness : every

statement in the program is executed infinitely often.

3.5.4 Termination :

The program terminates when it reaches a fixed point which is a stable state: a

state that is repeated forever and in which all machines are passive. UNITY allows

to concentrate on solving the problem at hand and treats the problem of

termination/detection as a separate concern to be addressed by the implementation of

a UNITY program.

3.5.5 Formal link between program design and implementation :

In UNITY, the basic structure consists of a set of statements defining relationships

between the variables of the program. Two basically different notations are used :

the equation scheme and the assignment scheme.

3.5.5.1 The equation scheme :

The program is essentially a set of equations separated by 11 for parallel or by U

for sequential. It only defines dependencies between the variables.

Example I :

<ll i,j:i=l AK=j<=2::x[i,j] = x[0j]>

In the conventional way : we put x[l,l] = x[0,l] and I I x[l,2]=x[0,2].

Example II :

x = abs(y)

x = y if y >= 0 ~

-y if y < 0

In an equation scheme, a variable appears at most once on the left side of an

equation. Any variable appearing on the right-hand side of an equation is defined

earlier in the ordering.
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3.5.5.2 The assignment scheme :

The syntax of the assignment scheme is identical to that of the equation scheme

after replacing = by :=. The interpretation leads directly to a parallel algorithm for

executing the program.

Example I :

<ll i : 0<=j <=n :: a[ i ]:=b[i] >

it means : a[ 0 ]:=b[ 0 ] 11 a[ 1 ]:=b[ 1 ] 11 ,.., 11 a[ n ]:=b[ n ].

Example II :

x= -1 if y < 0

0 if y = 0

1 if y > 0

is translated in assignment scheme as follows :

x := -1 if y<0~

0 if y = 0 -

1 if y > 0

3.6 Matlab :

MATLAB [Shahian 93] stands for matrix laboratory. Matlab is a very powerful

tool that engrosses a set of algebraic mathematics applied to a variety of fields. It is

a high-performance software package for scientific and engineering numeric

computations. Numerical analysis, matrix multiplication, signal processing and

graphics are treated by MATLAB in an easy-to-use environment where problems and

solutions are expressed in a mathematical way. Matlab can be used by itself to solve

a certain number of problems or incorporated with other texts to improve the

understanding of some topics or to interpret some results or to draw some graphs

that other software cannot realize. Matlab allows not simply to get the answers but

rather to understand how to get them through examples by use of its help function.

It also provides the underlying mathematical theory and the computational

algorithms for some important applications.
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3.6.1 Program utilities :

Matlab is both an environment and a programming language. It supplies tools for

creating functions and programs. The programs are stored under the name of M-

files. Matlab language allows the user to build his own reusable tools or use

application toolboxes already build by others and already existing as software ready

to use to facilitate the solution of different application problems. The facilities

offered by Matlab made it an easy to understand and to use tool.

3.6.2 Extending memory:

The amount of memory available for Matlab can be extended by using the

window's virtual memory capabilities. Optimizing the memory is done through the

use of a swap file. Matlab under window offers the ability to windows to "swap"

automatically unused pages of memory out to the disk, so that they are freed up to

be re-used. Smartdrive, a disk caching utility provided with windows can

considerably improves the performance of the hard drive.

Conclusion :

The definitions of the different systems we will be using to design and implement

the different algorithms and programs, allow a perfect ordering of the different steps

we will go through to achieve our goals. The advantage of using a virtual model

based on a set of processes connected through a network is a performance model

that can be mapped onto various real machines. The study of the systolic SIMD

mesh architecture showed that it is the most adapted for the PWT application

because of its implementation on transputers and translation to Occam language.

Matlab offers facilities to draw different graphs for the interpretation of results.
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CHAPTER 4

The Parallel Wavelet Transform Algorithm-Design and

Implementation

4.0 Introduction :

The aim of this chapter is to design and implement an algorithm to achieve the

potential benefit which can be obtained by applying parallelism and pipelining

computations to solve the wavelet transform and decide on the best architecture among

the different architectures on which a UNITY program can be mapped: a highly parallel

architecture based on a mesh SIMD systolic array. Starting from the basic algorithm,

we will go through some algorithms (algorithm 'a trous', recurrent algorithm, etc.),

analyzing their time complexities and comparing them. Using a straightforward

algorithm leads to a prohibitive amount of data to be generated, and hence to an

excessive computation time. More effective computation procedures are needed to

reduce the amount of data and the computation time. A new design is presented based

on UNITY model. In the design of the Parallel Wavelet Transform, algorithm called

PWT, we start by stating the problem specification and from there, by a series of

refinements, end up with a parallel program that can be directly translated in Occam

language and mapped to a systolic array architecture using transputers. The PWT is

presented as a series of simple, independent modules where each module can be simply

verified using a set of input data. A digital simulation on the TDS system was

undertaken, since digital simulations are now frequently used to analyze designs in an

attempt to identify potentially costly design errors before the hardware is built. The

testbed system components and experimental factors of the PWT algorithm are given by

Figure 4.1. Analyzing a given algorithm is the process of determining how good is that

algorithm which could be translated by how fast, how expensive to run and how

efficient is in its use of the available resources. When analyzing an algorithm, we

evaluate it using the standards metrics which are the running time, the number of

processors, the cost, and the speedup it produces [AKL 89].

The most important measure in evaluating a parallel algorithm is its running time

which is the time elapsed from the moment the algorithm starts to the moment it
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terminates. Thus, the running time is the time taken by the algorithm to solve a problem

on a parallel computer. It is also equal to the time elapsed between the moment the first

processor starts computing and the moment the last processor ends computing.

Generally, the time required to solve a computational problem is evaluated by counting

the number of basic operations or steps executed by the algorithm in the worst case. An

expression is derived describing the number of steps as a function of the input size. The

definition of a step depends on the theoretical model of computation we are using. A

step corresponds to a basic operation such as add, compare, swap, that requires a

constant number of time units or cycles to be done on a SISD computer. Whereas, for a

parallel algorithm, it is the running time that is evaluated and which is usually obtained

by counting two kinds of steps: computational steps and routing steps. An arithmetic

or logic operation performed on a datum within a processor is defined as a

computational step while the traveling of a datum from one processor to another via

the shared memory or through the communication network is defined as a routing step.

For a problem of size n, t(n) denotes a function of n that defines the parallel worst case

running time of an algorithm. The other measure in evaluating a parallel algorithm is the

number of processors it requires to solve a problem which is also a function of the input

size and is denoted by p(n). Then, the cost c(n) of a parallel algorithm, a function of n,

is defined as the product of the two metrics p(n), t(n). We summarize the different

definitions in table 4.1

running time = termination time - starting time (experimental metric).

running time = counting ofcomputational steps androuting steps (analytical metric).

Cost = parallel running time x number ofprocessors used.

worst - caserunning time offastestknown sequential algorithmfor problem
worst -case rutming time ofparallel algorithm

table 4.1 Evaluatingcriteriafor a parallel algorithm.
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Nl/
PLOTS of the graphs

Signals studied:

l)signal 1:monochromatic sign

2)signal 2:sum of two sinusoid

3)signals 3,4,5:modulated sign

Figure 4.1 Overall structure of the PWT.
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4.1 The basic algorithm :

Since the time-frequency analysis decomposes the signal in both the time domain and
the frequency domain, we are looking for the frequencies that compose the signal, the
time they were emitted and their lasting time (where each frequency starts and how
long it lasts).

The wavelet transform ofs(t) was given by equation (4.1):

S(b,a) =-j=)os(l)¥,(—)dt (4.1)

where y/ denotes the complex conjugate of y/. a is tied to the frequency and b to the
time.

To compute the coefficients, the real part of the (complex) Morlet wavelet is often

used. It was given by equation (1.1):

When s and y/ are sampled with a sampling period authorized by Shannon's theorem,
the continuous equation (4.1) becomes equation (4.3):

cv -t \ Ts ^ . (n-i) TS('7» =-7=2> (- —)s(nTJ (4.3)
a

where — is the sampling frequency.

Values ofa that increases by power of 2 are often used (a=ao, 2ao, 4ao...) in order to

exploit domains of extended frequencies. For each value of a, corresponding to one

frequency (f=l/a), the coefficients S(b,a) are computed. When changing the value ofa,

the wavelet y/ is dilated or contracted and new coefficients are calculated. The wavelet

coefficients given by equation (4.3) are computed by effectuating the inner product

between s(n.Ts) and y/(k.7,). The computation of the coefficients can be implemented
by a simple Finite Impulse Filter like shown by Figure 4.2.
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Y ^n-l)

F/g. 4.2 Finite Impulse Filter.
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S(n)

Initially, the values of the wavelets are computed separately like shown in chapter 2

and fed as data, as well as the values of the sampled signal, the sampling period, an

initial frequency f corresponding to the maximum frequency and the number of octaves

(each octave corresponds to one searched frequency). s(k) represents the kl sample of

the signal and V'fk.v) tne kth sample of the analyzing wavelet corresponding to the

searched frequency (f/2v).The corresponding flowchart is shown in Figure 4.3.

Algorithm complexity :

This algorithm leads to a very heavy load. Going through the loops in Figure 4.3, to

compute one coefficient S(i,a), N multiplications and (N-l) additions are needed. To

compute all the coefficients, the operation has to be repeated for the number M of

octaves. The algorithm is of order 0(N2xM) where N is the size of the input data.

4.2 The algorithm 'a trous':

It was proposed by [Dutilleux 89]. We start always from the basic formula of the

wavelet transform given by equation (4.1). Rather than using a continuous wavelet,

dilating it and then sampling it, a wavelet sampled at a fixed number of points was used.

The dilation operates then on the sequence of samples. Dilating by a factor of 2, means

inserting a zero between every 2 samples in the sequence. But this is a poor

representation of the analyzing wavelet. A more effective way is to replace the zeros by

values. Performing a linear interpolation between the original samples is a simple and

more effective solution. A linear interpolator F and a preintegrator Fj are defined as

follow and represented by Figure 4.4 and Figure 4.5 respectively:
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c, Ts, F, N'5 •*• -"5 •*- 5

£
v=l:6

f=F/2

a=l/f

£
i=l,N

S(i,a)=0

£
k=l,N

S(i9a)=(Ts/sqrt(a))*(S(i9a)+s(k)*g(k-i))

MS=sqrt(re(S(i,a)A2) +im(S(i,a)A2 ))

end

Fig. 4.3 Flowchart of the basic algorithm.
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F=-/y/(n)- y/(n-l)] and F, = 1~TD2F.

Fig. 4.4 Linear interpolator F

] 12 1 1/2

/ \
\

/ V, \

1/2 0 1 0 1/2

Fig. 4.5 Preintegrator F
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The convolution with the wavelet i/at the scale a=2n is equivalent to the product of

the preintegrating filters with dilated version of the wavelet. The sequence s(n) is

decimated and the final result is interpolated to get the initial dimensions. This

algorithm is implemented by a parallel convolver shown in Figure 4.6. This block-

structured model produces interesting results but the computation load is still very

heavy.

S

•a
Fl

-51 DF1

\J/

•a

•a

•*

Dg

^

_> v2a

^ V4a

TFt TT

3D Fl [^ Dg H> V-n
2 a

Fig. 4.6 Parallel convolver.

Algorithm complexity :

The number of operations (multiply-adds) for a single convolution using the basic

algorithm is Ig2n! =! gi i2" where !g !represents the complexity corresponding to the

convolution product by the wavelet. The algorithm 'a trous' yields

KOng =! g +n(H Fl ), where KOn g is the convolution with the wavelet g and n is the

number of the octave. So the exponential growth in n is reduced to a linear one.
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4.3 The recurrent algorithm :

The recurrent algorithm was proposed by [Barrat 90], It was implemented to

improve the time complexity of the wavelet transform. Starting always with equation

(4.1). and for practical reasons, sampling the signal and the wavelet, yields to equation

(4 3). Instead of using as mother wavelet, the Morlet wavelet, a recursive function was

used. The choice is given by :

h(t) = (\+cltl) e°U leK ' where c =5and o = 1.5.

The Z-transform of h(ct) is calculated. This function is then decomposed into two

contributions :

Il(4t) = (\ +cj*t)e-a4le'c*' for t>0
= 0 for t < 0

h_{£t)=0 fort>0

h_{gt) = (1-ct^KV^' for t < 0

H =

a, = {oZT-\)e

i +V +V'"'
We can see that we can have

H_-Hl{z~])-h(0) =

• c (a-ic ) i

a^z + a2z

1+b*z +b*2z2

/>, =-2e'4((J-,c )T

, b2=e-2^°-'c)T
where : 2

a\ ={a\-b\ )

a\ = - b\

Then, the wavelet coefficients are computed by the following method

SAk,4) = s{k)+a]s{k-\)-h1S+(k-\)-b2S^k-2)

SSk,£) =als{k +\)+a2s(k+2)-blS_{k +\)-blS_{k+2)

S(k,4) =^[S_{k,t)+S+(k,£)



42

Chapter 4 The Parallel Wavelet Transform algorithm:Design and Implementation

If the computations of S. and S+ could be done in parallel, a factor of 2 could be gained

in computation time.

Algorithm complexity :

The time complexity of the recursive implementation doesn't depend on the number

of voices n. In general, for the complex calculation of S(k,£), we have :

22 multiplications and 21 additions which gives a complexity of order 22.

Thus, the global complexity of the recurrent algorithm is of order nN hi where N is the

number of samplings, n the number of the octave, hi lthe complexity of the recurrent

algorithm. This method allows to compute all the wavelet coefficients at the same time.

4.4 The Parallel Wavelet Transform Algorithm :

Increasing demands for high speed in many real time applications have stimulated the

development of a number of new parallel algorithms. To optimize the algorithm, we try

to combine both sequential and parallel programming techniques like shown in the

following figure (Fig . 4.7); since it is usually possible for a given problem to adjust the

processing time per communication by the use of a combination of parallel and

sequential algorithm.

Fig.4. 7 Combination of sequential andparallel algorithms.
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4.4.1 The sequential algorithm :

We want to analyze functions of a given signal s(t) in terms of wavelets obtained by

shifts and dilations from a suitable basic wavelet called the mother wavelet Suppose

that s(t) is a temporal signal (signal to be analyzed) and yAf) is the analyzing wavelet

(mother wavelet depending on two parameters a and b where a is tied to the frequency

and b to the time). To decompose into a wavelet series, y/ (t) must be admissible, well

localized, oscillating, and a real valued function (y/ et{R)), y/(t) and s(t) are of finite

energy. Once the mother wavelet y/(x) has been chosen, it generates the other wavelets.

A typical choice for the mother wavelet is the real part of the Morlet wavelet or its

conjugate (eq.4.2). Starting with y/(t), we get the other wavelets y/-,k (t) by varying a

and b like stated in section (4.1).

For all s(t) such that s(t) has a finite energy, s(t) is a linear combination of the y/ab's:

'<0 ="t2^2A/,(0 ¥J) where S,b(t) is given by equation (4.1).
" a b

Suppose that s and y/ are scaled with a period T authorized by Shannon's theorem. Sa.b

is sampled by setting 6 and t as follow : b=iT and t=nT, giving equation (4.3).

Developing, we get the different values of S for i=l,2, ,N and n=l,2,...,N where N is

the number of samples and a the octave.

5lfl=5(/T,fl) =^[^W-)5(17) + V<-(''-l)-K27)+....+V<0-)s(/r)]
Vtf a a a

To get all coefficients, we compute the inner product of the signal s with the translated

versions of the wavelets (varying b). We get the following scheme representing all

coefficients .
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5J a = S(U\a) = -H^0-M17) + Kl-M27> •+^(A- IhW]
y!a a a a

S, fl = .S(27» = — [t<<-l -).s( 17)+ K0-K27> •+K( A - 2)~M A7)]
\a a a a

SVu - S(A7» -—[v<-Ar-W17)+ y/H-V- 1)-K27>+-• +^0-MA7)]
<a a a a
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The signal is swept by all the wavelets. The other coefficients are calculated in the same

way for different values of a The final matrix for the coefficients of the wavelet

transform is as follow :

S
11

s
1 Si

S{kT,a) =

is., Ss u

So the wavelet analysis is the representation of the signal as a function of time and

frequency at the same time. Suppose that the signal is sampled on A' points , and it is

generated for hi different frequencies Using a basic algorithm, for one frequency we

need to generate a matrix y/(N,N), with NxN entries. If N=300 and M=6 then 9000

values are needed to compute one coefficient. To compute all the coefficients, we need

6x 9000 values , which takes a lot of memory' area. We remark that the matrix presents

a lot of symmetn,'. since the function representing the analyzing wavelet in this case is

an even function . all values on the diagonals are identical. Making use of this property,

we elaborate the following algorithm:
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1) Compute the values of the wavelet for half the interval which corresponds to

either calculating the values of the row or the column.

2) Generate the other half of the wavelet by symmetry.

3) The wavelet matrix for one octave is reduced to one column vector. The wavelet

matrices for all octaves are reduced to one matrix yiCSM) where each column vector

represents one frequency wavelet matrix

4) By circulating those values we compute all the transform coefficients

VO./,) l/(l./6)
y/(2./;) . . ¥(2J6)

Vr..„\f) =: 1/(3../,) • V(3?/6)

¥^J\) • • V(4,/6)

^(5./,) V(5,/6)

The improved version of the sequential algorithm makes use of two sums taking the

diagonals as symmetric lines :

7 ' ; vS(kT,a) =~CLs(m)y/{{k -m^\)T,a)~Y<s(™)Y((™- k+\)T,a)] (4.4)

As said before, it takes into account the fact that all the values of the diagonals are

the same So we need only to generate the values of the first row or first column for

each wavelet y/, and by permutating these values of y/ we obtain the values of all the

wavelets. The algorithm making use of this scheme is given in Figure 4.8.
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s,v, c, Ts, F, N

fc
v=l:6

f=F/2

a=l/f

£
k=l,N

S(k,v)=0

x-

m=l,k-l

S(k,v)= S(v,k)+s(m)*g(k-rn+l,v)

m=k,n

S(k,v)= S(v,k)+s(m)*g(m-k+l,v)

MS=(T&/sqrt(a))*sqrt(re(S(i>a)A2) +im(S(i,a)A2 ))

end

F/g. 4.8 Flowchart of the sequential algorithm.



Chapter 4 The Parallel Wavelet Transform algonthm;Design and implementation

Illustration:

L«i N-5 be the number cf sampling poims M=6 the numt>er of frequencies. We wan'

to decompose the signal s'fi that is sampled as follow : s = (s. s- 5. 5, 5 ).

Using a basic algorithm, fey each frequency/ such that a-—, cm wTvck: 1. , i<

generated. Six matrices c-i tin- same lonn as. the following are generated io; t: :

wavelets.

l/:.: u:.: L ..: U > !•'; .-

y'ikT.aj =: <.y;3 L7.^ vy; 1 V7:: W- ^

i ^.< V:.3 ^i.:- ^1.1 <-7;.; i
|_ty;5 y/;i t//;1 1//.. la;j

The wavelet coefficients are computed based on equation (4.3). Developing, we obtain

for k= 1.2 :

; V'l.i ^i.i l-7:.? ¥:,i Vi<

1^1, ^
S(l.T,a) =[s, s2 s} s< 5S ] ! ty;3 ^

V\.i Vu V1.4

2 Vl.l Vl.2 ^i.j

3 Vu ^1.1 Vl,2

4 ^1.3 ^1,2 Vl.lJ

j Vl.2 Vl.3 V\A W\.i Vl.l
I Vl.l Vl.2 Vl.3 Vl.4 ^O

5(2T,fl) =[51 S2 53 J4 55 ] jW\.i Vi.i ^1,2 V1.3 Vi.4
Vl.3 Vl,2 ^1,1 V1.2 Vj.3

Tl.4 ^1.3 ^1.2 Vl.l Vi.2.

And so on for all the other coefficients.

Based on equation 4.4, and making use of the steps described for the sequential
algorithm, we get the following scheme:
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\yKlf) lilf) t<L/,) Lilf) l<U) til.f)

S(] J.a) =

U(l

<<•

n l/(2:/:) t<i./;) t<2,o la'i./:) l.<2:./:

rv- \-\V lV

/";) L<U/} LV A) l<-':/j tV'./J

K-V:) ii\f..) Li\f) ii\C) i<>.(.

' lV../„ I

'(^.7 .,'::

11J. -1i / - i
;J /- )

/ to.//) L':i'. /.. •• i--,:.'

/
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And so on The- hole matrix for the transform coefficients is compute..' a
S(N.Nfi=S(?\,Niv^^',.\//

^=$v<W+^f6)+^fe)+sM2f6)+mW

\\ $2 4 ^4 ^5 ^6
^1 ^ ^3 ^24 ^5 ^

S(kT,a)= ^ Sz S$ S^ ^ S*

\l ^42 ^43 ^44 ^45 ^46

-^1 ^52 ^53 ^M ^55 ^56 J

Makmg use of equation (4.4) and to improve the time complexity of the above
algontlims, we generated a parallel algorithm based on UNITY program and mapped
to Occam model.
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4.4.2 The Parallel algorithm :

There are basically three approaches that can be considered when designing parallel
application programs (N'.r. £~] The firsl approach is the dataflow decomposition
wheic the parallelism is obtained by decomposing the algorithm mm a numbei ot

>:-ir-^c:- ^--X^' co;. ponenm wind: can be executed m parallel The parallelism ur-c-

-"^•;: •'•:- ii-" ••.!;• nt!j.. li • 11. -" -= s;hc;m. component pro; em. • coV.'b. v.-.-u ;

" -;i-m;m;.m. a:... -j.:. pm-cmmi eoolo K executed on i. pipeline of process:-:.- V.

second ap'prcacl. is the data structure decomposition where the parallelism is obminm.

m ^''t.'it m.mg t:,( o:.:.'. K be pmccsscd between a number of process >m m a vo mv

}''t:-tT\m- in-, g< on;-, tvica' strntiuu of the datr Tl:c third anpioae- n im mo; em ".

tarm scheme where a number of processors are Used to process dam tanned ou: Is a
controlling processor.

V\ e propose a parallel algonihm called Parallel Wavelet Transform iPWIi where

the two sums are computed in parallel by A'*M processors, where A' is the number ol

samples and M the number of voices (frequencies.;). The scheme used to obtain the fine

gticl paialielism is the dataflow parallelism; the modules are written to rui: as

concurrent processes, on a pipeline of processors. For the calculations of the wavelet

transform using the parallel algorithm, all rows are processed in parallel as well as

columns. To transform the sequential algorithm into a parallel algorithm, we make use

ol UNITY model which is the model underlying the parallel computer.

4.4.2.1 Specification of the PWT : A first solution

We derive a concurrent program from its specification using UNITY formalism.

Starting from an initial UNITY specification, we proceed in a series of refmement

steps until the specification is restrictive enough to be translated directly into UNITY

code. Let S(b,a) be the wavelet transform. Replace it by its sampled version S(iT,a)
using UNITY notation.

S(jT,a) =(Aj: 0<j<N:: s(j) *K^1^-))
a



^jjlerJJTJKParallel Wavelet Transform alconthm.Design and TniPlemrn^nnr.

4.4.2.2 Refinement specification :

A refinement of tins specification: kt ) represent' the mv of the d.jr clement v:
calcmate. We partition the elements o; the signal s mio 2 sets s; and s- a_mdum t
the 1;"" element of s.

^(jJ^^j:; <j <\.:s:(j)xii/A!-jn-])T.(i))

\;jM)=Aj:0<j<X::^)>;y/jTa)

<+/': i<j <A':: oi(/jx ^(j-j+^Tm))

Programs are derived into equational scheme before transformed into
:u statement;

multiple

4.4.2.3 Derivation of the program from the specification :

Program P; is derived from the defmition ofS into equational scheme.

Program P, { PWT transform }

{i , j , k are quantified :0 <i <N, 0 <j <N, 0 <k <M}

always

<11 i, k :: answer(iT,k) =<+ j ;: s[j] x yfa ,k]»

end {Pj}.

Program Pj is the sequential version and can be executed in OfN2xM) on one
processor or m O(logN) time on 0(N2xM) processors where each S(iT,a) could be
computed using Nprocessors, or m0(N) on OfNxM) processors. If one processor is
assigned to compute one S(iT,a), adeadlock problem may arise: s(i) and y/ (j,k) can be
accessed by an arbitrary number of processors. The constraint appropriated for
pipelining and systolic architectures is that a variable may appear at most once in the
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right side of any statement. In a systolic array, each processor has connections to a

small number of neighbors with which it can communicate data values. The Is*

refinement is the relax of the access requirement to the data by creating a variable S

where the sum of the 1!< j terms is cumulated before passing it to the next processor.

Program P2

{1, j , k are quantified : 0 < i< N, 0 <j < N, 0 < k < M}

always

<lli,k :: S[0,i,k] = 0>

[] < [] j :: < 111 , k :: S[j+1 , i, k] = S[j , i, k] + s[ i, j ] * y/fj , k]»

[] < I! l, k :: answer [i , k] = S[N , i, k] >

end {P2}.

The data access problem is still existing. The 2nd refinement tries to solve the data

access by passing the values of s after being used, horizontally to the P(j,k+1)

processors to be used, and sums of the first j terms are computed and passed vertically

to the P(j+l,k) processors (Fig.4.9). The values of y/are put in matrix GWAVE.

S(j,k)

s(i)
±_

P(j,k)
s(j+l) s(j+l)

P(j,k+D
<J+2X

S(j+l,k)=S(j,k)+s(j)*g(j,k)

Fig. 4.9 communication between processors.
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Program P3

Declare

NS : array [0..N , 0..n-l , 0..m-l] of mteger

WTd : array [0..N , O.n-1 , O.m-1] of integer

always

{1 , j , k are quantified : 0 < i< N, 0 <j < N, 0 <k < M}

<[]i,k ::NS[0,k,i] = 0>

n<[]i,J •: WdE[j,0,i] = s[i,j]>

[]<[]iJ*::NS[j+l,k4]=NS[j,^

[] < [] 1, k :: answer[i , k] = NS[N , k , 1] >

end { P3 }.

The third refinement is to combine all equations into equations suitable for
parallel synchronous execution. Time variables t(j,k,i) will be associated to NS(j,k,i)
and WE(j,k,i). The t(j,k,i) is the step number at which NS(j,k,i) and WE(j,k,i) are to be
computed. In program P4 the values of s are put in matrix XVEC.

Program P4

{i, j , k are quantified : 0 £ i < N, 0 <.j < N, 0 ?S k < M}
always

<[]t:0<;t<N + N + M::

<lli,k :t =i +k::NS[0,k,i] =0 >

II < lli,j :t =i+j :: WE[j , 0, i] =XVEC[i, j]
11 <| Iij^:t=i+j+k+l::NS[j+U,i],WE[j^+l,i]=

NS[jIk,i]+WE[j,k,i]*GWAVE[j,k],WE[j,k,i]>

II < lli,k:t =N+i+k+lm ANSWER [1, k] =NS[N, k, 1] »
end {P4}.

Program P4 has N+N+M equations. For each value of t, 0 ^ t <, N+N+M, we have
one equation. A refinement of program P4 gives program P5 where operational
behavior of processors in a synchronous architecture is better captured. P5 is in
assignment scheme. Variables NS(j,k), WE(j,k) local to P(j,k) whose i* values are the
same as NS(j,k), WE(j,k) as program P4.
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Program P5

Declare t : integer

initially t = 0

{1 , j , k are quantified : 0 < 1< N, 0 <j < N, 0 < k < M}

< 11 i , k : t = i + km NS[0 , k] : = 0 >

ll< lli,j:t= i+j : : WE[j,0] :=XVEC[i,j]>

Ii<! Iy,k:t^+j+k+l::NS[j+lJ<],WTfU^ ,k]>
11 < 11 i , k : t = N+i +k+1 :: ANSWER [1 , k] =NS[N , k ] >
Ii t : = t + 1 if t < 2 * N + M

end{P5 }.

A variable indexed (j,k) is read only by processor (j,k) which is the limited data

access constraint. This program is translated in Occam language.

4.4.2.4 Implementation on a systolic array-Synchronous mode :

A systolic algorithm is designed to be executed on a systolic array. The data access

is restricted to one processor per data in each step which is appropriate for pipelining
and systolic networks. In one computation step, each processor reads data from its

input lines, performs some computations and writes new data values into the output

lines. The algorithm is implemented on a grid ofNxM synchronous processes arranged

in a mesh configuration to compute the NxM transform coefficients. Mesh rows are

numbered from 1 to N and mesh columns from 1 to M. The wavelets y/yJt are local to

the processors while the values ofthe signal are fed into the boundary processors in the

leftmost column as shown in Figure 4.10 for N=3 and M=4. Initially the topmost row

receives a stream ofzeros corresponding to the cumulating sums S. To ensure that sv
meets the y/iM in processor P(j,k) at the right time, row i of s falls one time unit behind

row (i-1) for 2^3. At the begmiiing of the 1th step, processor (j>k) computes

S(j,k)+s(j)xy/}j^fj and assigns it to S(j+l,k) and passes s(j) to s(j+l). The wavelet

transform coefficients are available from the (N^)* processors, on the bottommost row

as shown in Figure 4.10. In this program, the data is pipelined in both horizontal and

vertical directions. It flows from processor P(j,k) to its neighboring processors. The

synchronism is achieved by the *rendez-vous' method; a processor can consume data
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only when it is produced on its input channels, otherwise the processor waits. The

UNITY program was translated to Occam language and simulated on transputers
usmg a SIMD architecture. The simulation was made successful because of the

structure of Occam: objects are simulated by processes that can run concurrently and
communications are simulated by channels.

Algorithm complexity :

It takes 2*i+j+N-2 steps for 53l to reach P(iJ). To reach P(N,M) which is the last
processor to termmate, 2*N+M-2 steps are required to compute the product. Program

Ps can be executed in 0(N+N+M) time on OfNxM) parallel synchronous processors. /
starts at 0. At each step number, a number of operations is executed. The sums are

computed in t<N+N+M. The overall program is then executed in t<:N+N+M. The

program has been implemented usmg the Transputer Development System (TDS3). An
example of the timing ofa program where N=3 and M=2 is shown in Figure 4.10.

4.4.2.5 Running programs within TDS :

The parallel wavelet transform runs within TDS which is an integrated development
system used to develop Occam programs for a transputer network. Most of the TDS
runs on the transputer board plagued on an IBM PC such as an IMS T414 transputer
that has 2 Mbytes ofRAM and all the appropriate development software such as the
editor and compiler utilities. The "server" is a program residing on the IBM PC that
provides the TDS with access to the terminal and filling system ofthe IBM PC. Occam
programs are entirely edited, compiled and run within the TDS. When a program is run
within TDS, it runs in parallel with, and connected to certain components of the TDS
such as channels, their protocols and a number of supporting communications ofthese
channels. The channels from.isv and to.isv are used to connect the application process
PWT to the server program runnmg on the host IBM PC. The KS and SS channels are

running in parallel. They are channels to and from the terminals (keyboard and screen)
to enable the PWT process to <^rnmunicate data to and from these devices. The
monitor procedure contains the interface with the TDS. It supplies the values of
keystrokes on the host keyboard to the application while in parallel conveying data and
results to the host terminal. Termination of parallel programs are the duty of the
programmer. Since there is no control flow, the program teixninates when it reaches a

fixed point which is a stable state : a state that is repeated forever and in which all
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machines are passive. Three programs are wntten to read the DOS files corresponding
to the signal values and the wavelet values. The multiplier is the parallel application
program to compute the coefficients. A fourth program is wntten to output the file
obtained by the parallel process as a DOS file to be converted to MATLAB notation to
plot the graphs. The application, the keyboard.handler and the screen.handler run m
parallel. The block diagram giving the PWT and the server is given by Figure 4.9.

from.isv .values of signal and wavelets

to.isv :coefficients from PWT

Fig. 4.9 Blockdiagram ofthe PWT on the TDS
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we00=s20 (t=2)

weOO-r-10 (t=l)

weOO=sO0 (t=0)

welO=s32 (t=3)

wcl0=s22 (t=2)

wel0=s!2 (t=l)

we20=s33 (t=4)

we20=s23 (t=3)

we20=sl3 (t=2)

isOO=0 (t=2)

is0O=O (t=l)

tsOO=0 (t=0)
we01=s20 (t=3)

we01=sl0 (t=2)

we01=s00 (t=l)

V

=s31*gll(t=3)

=s21*gll (t=2)

nsl(>=sll*gll (t=l)

well=s32 (t=A)

well=s22 (t=3)

well=sl2 (t=2)

=nslO+s32*g21 (*="*)

=nsl0+s22*g21 (*=3)

ns20=nslO+sl2*g21 (t=2)

we21=s33 (t=5)

we21=s23 (t=4)

we21=*13 (t=3)

=ns20-hi33*g31 (t=5)

=ns2CHt23*g31 (t=4)

ns30=ns20+sl3*g31 (t=3)

ns01=0 (t=3)

ns01=O (t=2)

ns01=0 («~r>

weO2=s20 (t=4)

w*02=sl0 (t=3)

we02=s00 (t=2)

=s31»g21 (t=4)

=s21*gl2 (t=3)

mll=sll*gl2 (t=2)

wel2=s32 (t=5)

wel2=s22 (t=4)

wel2=sl2 (t=3)

=mll+s32*g22(t=f)

=nsll+s22*g22(t=M)

ns21=iKll+sl2*g22 (t=3)

we22=s33 (t=6)

we22=s23 (t=5)

wt22=s!3 (t=4)

=ns21+^33*g32(t=6)

=ns21+s23*g32 (t=5)

\L»s31==ns21-Hl3*g32 (t=4)

AOO =ns30=sll*gll+3l2*g21^13*g31 (t=4)

A10=ns30=521*gll-t-s22*g21+i23*g31 (t=5)

A20=ns3O=s31«gll+^32*g21+s33*g31 (♦=*)

A01=ns31=sll*gl2+sl2*g22+sl3*g32 (t=5)

All=ns31=s21*gl2+s22*g22-t-s23*g32 (t=6)

A21=ns31=531*gl2+s32*g22+s33«g32 (t=7)

Fig. 4.10 A timing ofa program implemented on a 3x2 mesh architecture.

1

">
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The main program and the subprograms are as follow :

... libraries !the libraries describes the interfaces available to user programs.

... declarations !declaration types of the vanables and initial values.

... procedure read signal ! inputs the DOS file containing the signal values.

... procedure read wave ! inputs the DOS file containing the wavelet values.

... procedure write coefficients ! writes the file obtained by the PWT as a DOS file.

... procedure multiply ! computes coefficients

... procedure sinkV !sink vertical: outputs the values of the signal inputted on the we

channel.

... procedure sinkH ! sink horizontal: outputs results (coefficients) on the n.s channel.

... PWT !the main program using the different processes.

... go to TDS 'return to the development system after execution of the program.

The main program gives the arrangement of the procedures.

SEQ

... set initial values.

read.signal (from.isv, to.isv, keyboard, screen, XVEC) Ireads the signal

values

read.wave (from.isv, to.isv, keyboard, screen, GWAVE) Ireads the wave

values

SEQ

... initialize matrix coeff to zero

... compute matrix

write.coeff(from.isv, to.isv, keyboard, screen, ANSWER)
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The first procedure reads the values of the signal generated by MATLAB.

Proc read.signal (CHAN OF SP from.isv, to.isv, CHAN OF KS keyboard,

CHAN OF SS screen, [ ]REAL32 sig)

... declarations

SEQ

PAR

so.keystream.from.file.(from.isv, to.isv, keyboard,

'c:\matlab\bin\sig.dat'. bres)

ss.scrstream. sink (echo)

... body of procedure

... test for errors

The second procedure reads the values of the wavelets generated by MATLAB.

58

Proc read.wave(CHAN OF SP from.isv, to.isv, CHAN OF KS keyboard, CHAN OF SS

screen, [ ]REAL32 wave, INT n, m)

... declarations

SEQ

PAR

so.keystream from.file.(from.isv, to.isv, keyboard, 'c:\matlab\bin\wave.dat',

bres)

ss. scrstream. sink(echo)

... body of procedure

... test for errors
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The third procedure writes the wavelet transform coefficients to a file mto MATLAB.

Proc write.coeff (CHAN OF SP from.isv, to.isv, CHAN OF KS keyboard, CHAN OF
SS screen, [ JREAL32 coeff, INT n, m)

... declarations

SEQ

PAR

... body of procedure

so.scrstream.to.file (from.isv, to.isv, tofile,

'c:\matlab\bin\coeff.dat', bres)

ks.keystream.sink (keyboard)

... test for errors

The fourth procedure is the main procedure. It computes the coefficients in parallel.

Proc mult (VAL REAL32 aij, CHAN OF REAL32 n,s,w,e)
REAL32 result, bij :

SEQ

PAR

n ? result Ithe cumulative sum is stored in result which enters from the north
channel.

w ? bj Ithe values bj ofthe signal are entering from the east channel,
result := result + (aij * bj) ! the coefficient is calculated here.

PAR

s Iresult I the partial sum is outputted south of the channel.

e Ibj Ithe value of the signal is outputted on the west channel.
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Procedure sink horizontal : to output the values of the signal on m ^rttmost channel.

Proc sinkH (CHAN OF REAL32 e)

REAL32 h:

SEQ

e?h ! the values of the signal are sinked on the east, we' ._mnel

Procedure sink vertical : to output the final results.

Proc sinkV (CHAN OF REAL32 s, REAL 32 R)

REAL32 v :

SEQ

s ? v I the final values of the coefficients are sinked verti„_

R := v I the value of v goes to R to be stored in the matri>: . -
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4.4.2.6 Comparison of the algorithms: basic, recurrent, 'a trous', PWT

The comparison ofthe PWT algorithm and the other algorithms in terms ofrunning
time is depicted in table 4.2. The time complexity is defined as the running time
executed by the algorithm m the worst case (parallel runnmg time: number ofparallel
cycles where each instruction is performed in the earliest possible cycle). The PWT
algonthm is more perforrmng than the basic algorithm and as performing as the
recurrent algorithm for the same kind of applications. We see that the exponential
growth in Nofthe basic algorithm is reduced to a linear one. It is highly efficient and
flexible. With reasonable memory requirements, the algorithm attempts to avoid the
repeated calculations ofthe wavelets and the frequent access to critical regions unlike
the algorithm 'a trous'. The PWT running time is very reduced since many processors
are executing at the same time which reduces the running tune ofthe algorithm.

Compared to the mentioned above algorithms, the PWT presents different aspects
like parallelization that was used for the first time for the contmuous wavelet

transform using Occam language and transputers.

Algorithm

Basic Algorithm

Algorithm 'a trous'

Recurrent Algorithm

PWT Algorithm

running time (analytic definition)

N : number of samples
M : number of octaves

OfN2xM)

>M-12 " .N.|g]|, |g, |=100, gi : complexity of

the convolution product.

M.N. |hi|, |hi|=50, hi : complexity of

the recurrent algorithm.

0(N+N+M)

Table 4.2. Comparison table of the running time of the algorithms used.
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Conclusion:

The problem was to describe an algorithm which allows a given signal to be

decomposed in an optimal way as a linear combination of judiciously chosen time-

frequency atoms. To optimize the design, we used an architecture that is systolic and

exploits pipelining and parallelism in order to obtain high speed and throughput. We

made the analysis simple: the steps of the algorithm are easy to follow. The analytic

approach provides a simple framework for the evaluation and explanation of the

design. The PWT algorithm is presented as a series of simple, mdependent modules,

which are highly portable. For each module, simple verification tests can be used. The

PWT uses a lot of parallelism. All coefficients are computed at the same time m a

pipelined manner. This processing method permits a processing element column to

perform parallel computation on the data, and then recirculating it to compute new

values for the coefficients. So, the approach consists of the reordering/permutation of

the data instead of recalculating it whenever needed. Data is compressed by a factor of

1/N compared to the basic algorithm. The new design offers a fully pipelined high

performance circuit that is very suitable to VLSI implementation.
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CHAPTER 5

Experimental Results

5.0 Introduction :

In this chapter, some signals to be tested on the PWT algorithm are presented.

The signals used are signals generated analytically. A presentation and a discussion

of the results obtamed shows the usefulness of the wavelet transform and the

effectiveness of the PWT algorithm. Finally, a table to compare the performance of

the PWT algorithm with some other algorithms treating the same subject is
included.

5.1 Description of the signals :

Different signals were simulated to validate the PWT algorithm. They were either

generated in the experimental contexts described above or obtained using numerical

methods. The first signal studied is a monochromatic signal, sum of 3 sinusoids

with different frequencies starting and ending at different times. The second signal

is also a monochromatic signal composed of the sum of two sinusoids whose

frequencies are very close. The third, fourth and fifth signals are frequency
modulated signals following different modulation laws. The first among the last

three signals follows an increasing hyperbolic law, while the modulation law of the

second is decreasing hyperbolic and the modulation of the third is linear. In all

cases, the modulation law is given by V! (t).

5.2 Results obtained:

We present examples of decomposition of different signals. The signals are based

on the use of synthetic data not corrupted by noise. The wavelet used is the Morlet

wavelet. The analyzed signal is drawn next to the representation using wavelets: in

abscissa, the position parameter b related to time and in ordinate the voices related

to frequencies. The calculations were realized on an IBM PS/l using TDS3 for the

parallel computations and MATLAB to plot graphs. The signals as well as different

graphs representing them are given below. For all signals, the localization

parameter b varies from 0 to NT, a, the scaling parameter corresponds to the inverse
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of the frequency. For the first signa/ the initial frequency is 16 KHz. To Each voice
v, corresponds f,= 16000/2vHz where 0 <v <7. The second signa/ corresponds to a
signal composed of the sum of two sinusoids. The frequencies /; and f2 are very
close. The third and fourth signals represent frequency modulated signals. They
follow a hyperbolic law (increasing for the former and decreasing for the latter).
The 5th signal represents another frequency modulated signal. The signal here
follows a linear law. The sixth signal is a superposition of different signals. To
obtain a positive, easy to present results, we compute the modulus of the wavelet
transform called scalogram ofthe analyzed signal s(t). The wavelet coefficients are
represented by their scalograms. The different graphs drawn represent:

1) The signal to be analyzed.

2) Its Fourier spectrum.

3) Its wavelet bidimentional representation or its modulation law (for FM
signals).

4) A3-D plot of the wavelet decomposition or its wavelet decomposition
(for FM signals) .

Table 5.1 shows the simulation parameters used in the decomposition of the
different signals.

Parameter Meaning

N number of samples

T, sampling period

maximum frequency

frequency corresponding to the octave v

vo average frequency

M number of octaves

the octave

parameter related to frequency

position parameter

Table 5.1: Simulationparameters.
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First signal:

The signal analyzed here is a monochromatic signal, sum of three smusoids given

by:

s(t)=Y(t-S3T) cos (2 z f0 t)+Y(t-170 T) cos (4 x f0t)+Y(t-250 T) cos (8 t. f0 t)

1
Y: step function, N=400,r = 3

/> =-^-,v g[1,6], F=\6O00Hz, fo =1000 Hz

The graphs representing this decomposition are shown by Figure 5.1.

Second signal:

The signal analyzed is composed of the sum of two sinusoids. It is given by:

s(t) = cos (2 nfi t) + cos (2 xf2t)

where f, =1000 Hz and f2 =2000 Hz.

Thegraphs representing this decomposition are shown by Figure 5.2.

Third and fourth signals :

The following are modulated signals. For a frequency modulated signal, the energy

is distributed according to the modulation rule: increasing or decreasing modulation

rule. Let s(t) be the following frequency modulated signal given by:

s(t) = cos( x lod 1+ a. t )
a ^

where the frequency law is given by:

u0

1 + flr./
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where ^ represents an average frequency and a is given by equational) and equation^

-F

a ~Tf+ YT ^^e *aw ofmodulation is increasing . (5.7)

-F

a ~ , -jt\t if the law of modulation is decreasing. (5.8)

N=400, F=80 Hz, t=2 s and v0 = 40 Hz.

The decomposition of s(t) is shown in Figure 5.3, and in Figure 5.4 for increasing

and decreasing modulation laws respectively.

Fifth signal:

Another frequency modulated signal is a one whose modulation law is linear and

Ft1
represented by : s(t) = cos(2n(v0t + ))

aad M(0=H + Ft

Y

N=400, F=80 Hz, T=2 s, and

Figure 5.5 represents the different graphs for s(t).

is
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5.3 Discussion :

Figure 5.1 represents the wavelet analysis ofa monochromatic signal composed
of three sinusoids. This decomposition gives the energy distribution of the signal in

the time-frequency plane and the distribution ofthe frequencies along the time-axis,

(i.e. when each frequency starts and how long it lasts). The wavelet coefficients
represents the three fundamental frequencies of the signal (1 MHz, 2 MHz, 4MHz).
The temporal starting of each sinusoidal function is indicated by a cone and the
peaks correspond to the different frequencies. These different forms with different
dimensions informs on the energy contribution of each sinusoidal component. We

also see the transition phenomena represented by the convergence of the cones that

points out to this phenomena.

Figure 5.2 corresponds to a signal composed of the sum of 2 smusoids. We get
then a shuffling phenomena : at certain time the two waves are superposed and at

others, they annihilate mutually. This phenomena is used in acoustic field by-
musicians to tune their instruments. In fact when the two ropes vibrate at very close

frequencies, we can clearly hear the variations ofthe sound intensity. When they are
tuned and vibrate at the same frequency, this phenomena disappear. Thus, the

wavelet transform reacts very similarly to the ear. The wavelet transform is very

small at the time the two waves cancel out and becomes more important when they

are superposed. If the frequencies of the two sinusoids get away, they will appear at

different highs in the time-frequency plane. The decomposition for monochromatic
signals gives the energy distribution ofthe frequencies along the time axis. In this
representation, for each fundamental frequency, the shuffling phenomena

corresponds to the amplitude of the sinusoid.

Figures (5.3), (5.4), (5.5) give the distribution of the energy in the time-
frequency domain. We remark that the energy distribution ofa signal obeys to the
law that describes the evolution of the signal in the time-frequency plane. Parseval's

theorem verifies the conservation of the energy even after the transformation. In the

time-frequency representation, we have two degrees of freedom to estimate

qualitatively the energy distribution. According to the frequency axis :

- for a fixed t, we have the evolution of the energy.

According to the time axis :
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- for a given frequency, we get the energy distribution as a function of time.

This type of analysis is used mthe field of petroleum, cardiograms, echograms, etc.
The time-frequency analysis allows one to observe the nature of the signal whose
parameters are not known (rate of amplitude, frequency modulation, etc.).

As a conclusion, we can say that one of the major advantages of the time-
frequency analysis is to allow aglobal and alocal analysis of the signal at the same
time, i.e., a panoramic analysis and a detailed analysis. We remark that the
scalogram, by its positive character can assume the energy density role, which is not
the case for a number of time-frequency representations (i.e. Wigner-ville
representation which is apseudo-representation of the energy density since it can be
negative). More, the scalogram is a real number, which can be translated by a
visualization of the energy distribution.

The wavelet transform is an easy to understand time-frequency representation
compared to others that are more complex.

The implementation presented improves the time complexity of the basic
algorithm by an exponential factor, as well as the algorithm 'a trous' and the
recurrent algorithm like shown by the following (table 5.1). The results are exact
and do not admit any approximations due to the truncation of the wavelet since the
wavelet is taken on the same number of samplings as the signal unlike the
algorithm 'a trous'.

One important part of studying algorithms is the analyzing performance that is
used to predict how the running time of an algorithm [Blelloch 96] grows as a
function of the input size. To analyze the performance, UNITY model was needed to
estimate the costs. UNITY model is a virtual model that can be mapped to several
architectures. The performance is calculated in terms of the number of instruction
cycles acomputation takes which correspond to the running time of the algorithm
and is expressed as a function of the input size and the number of processors used.
Speed-up and efficiency can also be defined in terms of running time and number of
processors in order to evaluate an algorithm. One of the most important criteria in
systolic array design is the number of processors of the array. The number of
processors must be carefully chosen in order to achieve the maximum speed-up with
the least number of processors. The number of processors is minimized because
processors occupy precious resources such as silicon area on the chip of the array.
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In general, the time required to solve a problem is obtained by counting the

number of basic operations or steps executed by the algorithm in the worst case.

While the running time for a sequential algorithm is m terms of computational
steps, the running time for a parallel algorithm is obtamed by counting

computational and routing steps. The running times of the different algorithms is

summarized in the following table. Referring to table 4.1 and replacing the

parameters by values, we obtam table 5.1 to show the costs of the different

algonthms for different values ofthe octave v. The analytic formulas giving the time
complexity of the different algorithms were defmed in section 4.2 for the algorithm

'a trous', in section 4.3 for the recurrent algorithm and in section 4.4 for the PWT.

Different Basic Algorithm a Recurrent PWT

Algorithms used Algorithm 'trous' Algorithm Algorithm

and then- 0(N2xM) 2M-1N|g,|, MN |hi|, 0(N+N+M)

complexities for

the Mlth octave,
|gi 1=100 M=50

N=500

M=l 25 10' 5 10" 25 10' 1001

M=2 510' 10* 5 10' 1002

M=10 25 10' 28 10' 2510" 1010

Table 5.2 Comparison table of the running time ofthe different algorithms used.

5.4 Concluding Remarks :

Since the purpose of the wavelet analysis is to determine the components of the

signal and their chronology as well as the distribution ofenergy for the modulated
signals, the PWT algorithm meets its requirements. One of the interpretation of the

results is the representation of the different frequencies composing the signal and

the time oftheir apparition by different graphs and the distribution of the energies
of finite energy' signals in the time-frequency domains. The wavelet representation
is adapted in terms of energy concentration to frequency modulated signals. It
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respects the marginal distribution m time and frequency. But there exist different

ways to represent the data produced by the wavelet analysis and different

interpretations of the results depending on what we look for. The scalogram cm be

used efficiently to estimate the repartition of the energy of the signal m the tune-

frequency plan. It is thus possible to determine at each frequency the tune t which

corresponds to the maximum energy.

What we can conclude is that the obtamed results for the PWT computation are

very similar to those obtained with other algorithms. The only difference comes

from the different complexities. The 'time complexity' of the PWT shows that this

algorithm presents a more reduced time. The simulation was successful since results

with good accuracy better than those of the algonthm 'a trous' and as well as the

recurrent algorithm were found. We have tested the validation ofthe PWT algorithm

and its programming on different signals. We can say that the PWT algorithm has a

satisfactory resolution since all frequency maxima are returned for the different

signals tested. The PWT allows a good use of the wavelet transform since it is

comparable to the direct calculation of the transform with a computation time very-

reduced. Our design presents an essential gain m speed since the systolic pipeline
architecture has an advantage for real-time applications where the high speed is the
main criterion.

The proposed design offers many advantages among which we can mention the
following :

• A parallel implementation of the wavelet transform leads to improvement in the

processing of real time signals. The architecture used is systolic and exploits
pipelining and parallelism in order to obtain high speed and throughput.

• The advantage inusing transputers, is that the process context switching overhead

the process communication cost is very reduced, because the chip has been specially
designed for parallelism.

• The simulation was made successful because of the structure of Occam where

objects are simulated by processes that can run concurrently and communications
are simulated by channels.
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CHAPTER 6

Conclusion

6.0 Introduction :

Since the wavelet transforms applications require large amounts of data to be

processed and high computing speeds, new designs were suggested to compress

data and to speed up the operations.

An improved sequential algonthm using only (MxN) values of the wavelets was

used compared to the (MxNxN) values needed by the basic algorithm was designed.

Since the computations of the wavelets require a large amount of times for

tngonometric function calculations, so it is a time saving method. Then a parallel

form of the wavelet transform to give a concrete gain in performance over some

other codes was presented.

Mainly, the results of the wavelet transform allows one to visualize in a very

meaningful way the different frequencies composing the signal as well as the

instants of their apparitions. For frequency modulated signals, they are used to

determine the significant components of the signal and the time ; which corresponds

to the maximum energy.

6.1 Summary of work done:

In this work, we proposed a methodology to transform an initial specification

algorithm by a series of refinements into a specification that can be implemented

directly on a particular architecture such as a SIMD mesh architecture in our case.

The specified algorithm PWT was formally defined using the program notation

UNITY. The use of the UNITY model allowed a simple description of the parallel

algorithm and a well-defined model for analyzing the performance. In order to

program and simulate the systolic arrays onto the transputer, the formal program

was translated to Occam language that expresses parallel computations and which

was designed to be the programming language for the INMOS transputer. We have
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tested the validation of the PWT algorithm on different signals. We can say that the

PWT has a satisfactory resolution since all frequency maxima are returned for the

different signals tested.

6.2 Comparison with related work:

The implementation of the PWT algorithm has some advantages compared to

others used up to here. It improves the time complexity of the basic algorithm by an

exponential factor. While the algorithm 'a trous' leads to an extensive data

redundancy, the PWT algorithm is very useful for data compression since data

values of the wavelets are obtained by data recirculation over the wavelet matrix.

Compared also to the algorithm "a trous " and the recurrent algonthm, the PWT

results are good since they do not admit any approximations due to the truncation of

the wavelets since the wavelets are taken on the same number of samplings as the

signal. The PWT allows a good use of the wavelet transform since it is comparable

to the direct computation of the transform with a computation time reduction.

Compared to other processing techniques, the wavelet processing of the signal as

time-frequency analysis allows one to take into account the significant structures of

the signal contained in every frequency band which is impossible to do with a

frequency analysis only.

6.3 Original contribution and potential application of the results:

The merit of such an approach (UNITY model) is the fact that programs are

viewed like mathematical objects derived straightforwardly from their specifications

that can be mapped to a variety of different architectures, in contrast to the "a

posteriori' verifications commonly found in literature. Such an architecture shows

the impact of a parallel implementation on the speed in the processing of real time

signals since the execution time is reduced which makes the response very rapid.

This computational advantage of low time complexity is also due to the use of

transputers since overheads involved with switching the processor between

processes and in process communication is very much reduced, because the chip has

been specially designed for parallelism.

The wavelet analysis yields to two time-frequency representations: square

modulus and phase modulus. In this representation, the elementary frequency



76

Chapter 6 Conclusion

components are separated. For illustration, we represented only the first one which

is called the scalogram. The scalogram is the squared modulus of the wavelet

coefficients. It characterizes the distribution of energy of the signal in the time-

frequency plane, a research field that has been the major occupation of many

scientists like Ville [Ville 48] and continued by many others. The energy

distribution can be used to efficiently estimate the group velocity of a dispersing

wave. It is thus possible to determine at each frequency band, the time t which

corresponds to the maximum energy. Another application of the time-frequency

analysis is the acoustic field. The application of the FFT does not give a correct

analysis of all type of signals like illustrated by the following example taken from

music. Suppose than two notes are emitted successively and are analyzed from an

initial time t, to a final time tf : a high note, followed by a note with lower

frequency. Using a Fourier analysis, the signal spectrum is very diffused and the

times where each frequency starts and finishes does not appear. While the wavelet

decomposition shows the starting and the finishing time of each note emitted. In

echogram, the wavelet analysis is useful for localizing diseases in some organs. A

signal is emitted than received, and the analysis of the perturbed area of the

received signal allows to localize exactly the area of the disease, since having the

velocity of the beam and the time the perturbation appears, the distance is just

velocity times time. But the wavelet technique finds its best uses in seismic-

reflection which is an oil searching method and for which the wavelet transform

was created.

6.4 Suggestion for further Improvements:

The process which is described in this thesis must be seen as one possible

method for the analysis of data recorded, but it still has to be applied to many

recordings of field data before its effectiveness can be really proved. Almost all

examples given here are based on the use of synthetic data, which are not corrupted

by noise and where obtained with a numerical method. But even if the signals tested

give satisfactory results, they are still 'academic'. It will be interesting to test the

method on concrete signals and to develop some real applications for it.

The background noise may affect the good precisions of the results obtained. The

principal difficulty of the PWT resides in the presence of noise. When the signal is

not filtered, the method does not eliminate the noise but rather amplifies it which
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can alter the values of the coefficients in some cases (e.g.when the noise is very

important). The synthesis of the signal from these values may give aliasing signals.

To detect only significant structures, the method has to be improved to reduce the

incidence of the noise on the values of the wavelet coefficients.

The second improvement resides in the implementation of the PWT. Since the

PWT algorithm was only simulated on the TDS system, the operation could be

speed up by its implementation on a network of transputers. And since the system

PWT uses simple processing elements, basically of multiply-add types, it is possible

in the future to built an application specific integrated circuit (ASIC) based on the

design of the PWT.
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{{{ librairies

#USE strmhdr

#USE userhdr

#USE krnlhdr

#USE sphdr

#USE userio

#SE uservals

#USE streamio

ffUSE splib

£USE solib

*USE skhb

#USE ssinterf

#USE spinterf

}}}

{{{ declarations

INTn2,m2,n3,m3:

INTilJl:

INTiJ:

[300] REAL32 XVEC:

[300][6] REAL32 GWAVE:

VALINTnIS5:

VAL INT m IS 299:

VALINTnl IS 6:

VAL TNT ml IS 300:

[ml][nl] REAL32 answer:

[ml+l][nl] CHAN OF REAL32 n.s:

[nl+l][ml] CHAN OF REAL32 w.e:

}}}
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{{{ procedure read signal

PROC READ.signal ( CHAN OF SP from.isv,to.isv,CHAN OF KS keyboard,

CHAN OF SS screem[]REAL32 sig)

SEQ

TNTi:

BYTE bres:

INT kchar:

REAL32 elmt:

SEQ

so.write.nl(from.isv,to.isv)

CHAN OF KS filekeys:

CHAN OF KS keyboard IS filekeys:

CHAN OF SS echo:

PAR

so.keystream.from.file ( from.isv,to.isv,keyboard,"c:\matlab\bin\sr.dat",bres)

ss.scrstream.sink(echo)

SEQ

i:=0

kchar:=0

elmt:=1.0(REAL32)

WHILE ( kchar <> ft.terminated )

SEQ

ks.read.echo.char ( keyboard,screenjcchar )

EF

kchar< 0

SKIP

kchar = (TNT '#' )

INT hexx RETYPES elmt :

ks.read.echo.hex.int (keyboard,echo,hexx,kchar)

TRUE

ks.read.echo.real32 ( keyboard,echo,elmtJcchar )

IF

kchar = ft. terminated



u}

SKIP

TRUE

SEQ

IF

kchar = ft.number.error

ss.write.char (screen,'*#07')

TRUE

SEQ

sig[i]:=elmt

i:=i+l

ss.write, nl(echo)

{{{ consume rest of file

IF

(kchar >= 0) OR (kchar = ft.number.error)

ks.keystream.sink(keyboard)
TRUE

SKIP

ss.write.endstream(echo)

}}}

{{{ tabulate signal

SEQ

so.write.string.nl(from.isv5to.isv,"this is the signal")
so.write.nl(from.isv,to.isv)

SEQj=0FORi

SEQ

so.write.real32(from.isv,to.isv,sig[j],2,4)

"so.write.nl(from.isv,to.isv)

}}}

}}}
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{{{ procedure read wave

{{{ procedure body

PROC READ.wave ( CHAN OF SP from.isv,to.isv,CHAN OF KS keyboard,

CHAN OF SS screen,[][]REAL32 WAVE,INT mm)

SEQ

BYTE bres:

n\Tkchar,i3J3:

REAL32 elmt:

SEQ

so. write.nl(from.isv,to.isv)

CHAN OF KS filekeys:

CHAN OF KS keyboard IS filekeys:

CHAN OF SS echo:

PAR

so.keystream.from.file(from.isv,to.isv,keyboard,

"c:\matlab\bin\g 1.dat" ,bres)

ss.scrstream.sink(echo)

SEQ

i3:=0

j3:=0

kchar:=0

elmt:=1.0(REAL32)

WHILE (kchar<>ft.terminated)

SEQ

ks.read.echo.char(keyboard,echo,kchar)

IF

kchar<0

SKIP

kchar = (INT*1)

INT hexx RETYPES elmt:

ks .read.echo.hex.int(keyboard,echoJiexx,kchar)

TRUE

ks.read.echo.real32(keyboard,echo,elmt,kchar)



IF

kchar=ft. terminated

SKIP

TRUE

SEQ

IF

kchar=ft. number, error

ss.WTite.char(screen,'*#07')

TRUE

SEQ

WAVE[i3][j3]:=elmt

j3:=j3 + l

IF

j3<=n

SKIP

(j3>n) AND (i3>m)

STOP

(j3>n) AND(i3<=m)

SEQ

i3:=i3+l

j3:=0

ss.write.nl(echo)

}}}

{{{ consume rest of file

IF

(kchar >= 0) OR (kchar = ft.number.error)

ks.keystream.sink(keyboard)

TRUE

SKIP

ss.write.endstream(echo)

}}}
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{{{ tabulate wave

SEQ

so.write.string.nl(from.isv,to.isv,"these are the wavelets")

so.write.nl(from.isv,to.isv)

SEQ k=0 FOR 300

SEQ

so.write.nl(from.isv,to.isv)

SEQ 1=0 FOR 6

so.write.real32(from.isv:to.isv,WAVE[k][l],2,6)

so.wnte.nl (from. isv,to.isv)

}}}

}}}
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{{{ procedure writecoefficients

PROC write.coeff(CHAN OF SP from.isv,to.isv,CHAN OF KS keyboard,

CHAN OF SS screen, [][]REAL32 coeffTNT mm)

SEQ

BOOL going:

SEQ

CHAN OF ANY fromprog,tofile:

INT foldnum:

SEQ

PAR

SEQ

going:=TRUE

i:=0

j:=0

WHILE going

SEQ

8s.write.real32(fromprog,coeff[i][j],4,4)

j:=j+l

IF



}}}

j<=n

SKIP

j>n

SEQ

i:=i+l

j:=0

IF

i<=m

SKIP

i>m

going:=FALSE

ss.write. endstream(fromprog)

SEQ

ss. scrstream. fan.out(fromprog,tofile,screen)

ss.write.endstream(tofile)

BYTE bres:

SEQ

so. scrstream. to. file(from.isv,to.isv,tofile,

"c:\matlab\bin\coeff.dat",bres)

IF

((INT bres)=0)

SKIP

TRUE

STOP

{ { { procedure multiply

PROC mult(VAL REAL32 aij, CHAN OF REAL32 n,s,w,e)

REAL32 result,bj:

SEQ

PAR

n ? result
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w?bj

result := result + (aij * bj)

PAR

s ! result

e!bj

}}}

{ { { procedure sink vertical

PROC sinkV ( CHAN OF REAL32 s,REAL32 R)

REAL32 v:

SEQ

s? v

R:=v

}}}

{{{ procedure sink horizontal

PROC sinkH ( CHAN OF REAL32 e )

REAL32 h :

SEQ

}}}

{{{ main program

SEQ

n2:=6

m2:=300

n3:=5

m3:=299

SEQ

READ.signal(from.isv,to.isv,keyboard,screen,XVEC)
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so.write.nl(from.isv,to.isv)

READ.wave (from.isv,to.isv4ceyboard,screen,GWAVE^i3,m3)
SEQ

{{{ initialize matrix

SEQ

PAR i=0 FOR ml

PARj=0FORnl

answer[i](j]:=O.0(REAL32)

}}}

{{{ coumpute matrix coefficients

[ml+l][nl] CHAN OF REAL32 n.s:

[nl+l][ml] CHAN OF REAL32 w.e:

SEQ

SEQ k=0 FOR ml

PAR

PARj=0FORnl

n.s[0][j] ! 0.0(REAL32)

PARj=0FORml

w.e[0][j] ! XVEC[j]

PAR 1=0 FOR ml

PAR v=0 FOR nl

IF

k>l

mult(GWAVE[k-l][v],n.s[l][v],n.s[l+l][v]J
w.e[v][l],w.e[v+l][l])

IF

k<=l

mult(GWAVE[l-k][v],n.s[l][v],n.s[l+l][v],
w.e[v][l],w.e[v+l][l])

SEQj=0FORn2

SEQ

sinkV(n.s[m2][j],answer[k][j])
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ss.write.nl(screen)

SEQj=0FORm2

sinkH(w.e[n2][j])

write.coeff(from. isv,to.isv,keyboard,screemanswer,n4,n4)

}}}

{ { { tabulate answer

SEQ

so.write.string.nl(from.isv,to.isv,"these are the wavelets")

so.write.nl(from. isv,to. isv)

SEQ k=0 FOR m2

SEQ

so.write.nl(from.isv,to.isv)

so.write. nl(from.isv,to.isv)

SEQ 1=0 FOR n2

so.write.real32(from.isv,to.isv,answer[k][l],4,4)

so.write.nl(from.isv,to.isv)

}}}

so.write.nl(from.isv,to.isv)

write. coeff(from.isv,to.isv,keyboard,screen,answer,n3,m3)

so.write.nl(from.isv,to.isv)

}}}

{{{ go to tds

so.write.nl(from.isv,to.isv)

so.write.nl(from.isv,to. isv)

so.write.string(from.isv,to.isv,"TYPE ANY TO GO TO TDS")

BYTE any,bres:

so.getkey(from.isv,to.isv,any,bres)

so.write.nl(from.isv,to.isv)

}}}

}}}
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