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Abstract

The rapid advancement of Artificial Intelligence (AI) has led to its integration into various
fields, including embedded systems, which present unique challenges due to constraints in storage,
power consumption, and the need for real-time execution. To optimize AI performance in these
environments, we propose a hardware acceleration system. This system incorporates a floating
point unit and lookup tables for Sigmoid and Leaky-ReLU activation functions, both designed
using HDL and implemented on a Field Programmable Gate Array (FPGA) with the Nios II soft
processor and its custom instructions.

We tested this system on a Deep Neural Network (DNN) written in C and trained it multiple
times with varying numbers of layers. The results were remarkable, with some networks expe-
riencing performance improvements of over 60%. However, as the model’s complexity increased
with additional layers, the acceleration benefit decreased, dropping to around 10% in the most
complex scenarios.

Despite this reduction in acceleration for highly complex models, our system remains reliable
and efficient, demonstrating its potential for critical real-time embedded AI applications.
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Chapter 1

General Introduction

1.1 Overview

The project is fundamentally focused on the design and implementation of a dedicated neural
network accelerator specifically engineered to operate within embedded systems. Embedded sys-
tems, characterized by their constrained power and space resources, pose unique challenges for
deploying complex algorithms such as neural networks efficiently.

To overcome these challenges, the project adopts a unique approach: a custom hardware archi-
tecture carefully designed to enhance the execution of neural network computations within these
limited environments. This architecture is customized to boost performance while using resources
efficiently, ensuring effective operation within the constraints of embedded systems.

A key component of this custom hardware architecture is the utilization of the Nios II proces-
sor, a versatile and customizable embedded processor core. To further enhance its capabilities for
neural network tasks, the processor is augmented with specialized custom instructions. These
instructions are specifically designed to accelerate common neural network operations, enabling
faster and more efficient computation.

The expected outcomes at the end of the project include a functional prototype capable of en-
hancing the neural network execution time while keeping a high accuracy,aiming to advance the
capabilities of embedded AI on edge computing devices.

1.2 Motivation

In recent years, the field of artificial intelligence (AI) has experienced significant growth, lead-
ing to a multitude of practical applications across various domains. Among these applications, the
integration of AI into embedded systems and edge devices has garnered particular attention.

Researchers have dedicated considerable effort to enhance the computational capabilities of
edge devices to accelerate neural network execution. This approach is the primary focus of this
project.

Utilizing FPGAs, specifically including Nios custom instructions, offers a notable advantage
due to the flexibility it provides in designing and customizing hardware blocks. This flexibility en-
ables the development of tailored solutions capable of efficiently addressing the specific challenges
associated with accelerating neural networks within embedded systems.

1



CHAPTER 1. GENERAL INTRODUCTION

1.3 Objectives

The project aims to achieve several key goals through the utilization of FPGA technology to
enhance the speed of AI models. Firstly, it seeks to significantly reduce inference latency, enabling
real-time processing of AI tasks in critical applications.

Secondly, the objective is to enhance the scalability of AI systems by offloading computational
tasks from traditional processors onto specialized FPGA hardware, thus accommodating larger
and more complex models without sacrificing performance.

Furthermore, optimizing resource utilization is a crucial objective, ensuring that computational
resources are efficiently allocatedwithin the FPGAarchitecture tomaximize performance andmin-
imize overhead. Lastly, the project aims to democratize AI by making high-performance inference
accessible to a wider range of devices and applications.

1.4 Report Organization

The report is structured into four chapters, each serving a distinct purpose:
Chapter 1 offers an introductory overview of the project’s scope, goals, and the organizational

structure of the report.
Chapter 2 delves into the background of deep learning, with a particular focus on feedforward

neural networks (FFNN), aswell as EmbeddedAI. Additionally, it provides insights into the FPGA
board utilized and the custom instructions of the Nios II processor.

Chapter 3provides a detailed description of themodel employed in the project, alongwith an in-
depth exploration of the designed acceleration system. This includes a comprehensive breakdown
of its various components and their respective functionalities.

Chapter 4 engages in a comprehensive discussion of the results obtained both before and after
implementing the designed accelerator. It further includes a comparative analysis of these results,
offering valuable insights into the efficacy and performance of the acceleration system.

2



Chapter 2

Theoretical Background

2.1 Introduction

The integration of AI capabilities directly into hardware to enhance efficiency and performance
is known as hardware acceleration in AI embedding. It involves the use of FPGAs, which provide
customizable and reconfigurable circuits that achieve high-speed execution of AI algorithms. This
chapter aims to provide a fundamental understanding of the principles and tools necessary for
implementation phase.

2.2 Artificial Intelligence

AI has been viewed from a variety of perspectives. In 1985, Haugeland defined AI as ”the excit-
ing new effort tomake computers think... machines withminds, in the full and literal sense,” while
Poole in 1998 defined AI as ”Computational Intelligence is the study of the design of intelligent
agents”[1].Regardless to those different approaches, AI now encompasses a significant portion of
our lives.Its remarkable development over the previous decade, and its widespread application
has increased efficiency and created benefits not only in the science and engineering fields, but
also in the economy and society.

2.3 Feed Forward Neural Network

FFNN are the basic deep learning models. They have a unidirectional flow of information on
a layer-by-layer basis with no loops or feedback connections as demonstrated in Figure 2.1. The
network consists of an input layer of source neurons, and an output layer that provides the pre-
dicted feature.Finally, the hidden layers which serve as the neural network’s computational engine;
each hidden layer takes the weighted sum of the outputs, applies an activation function, and then
passes the result on to the following layer [2].

3



CHAPTER 2. THEORETICAL BACKGROUND

Figure 2.1: Feed Forward Neural Network

2.3.1 Forward Propagation

The forward propagation phase initiates the neural network process by receiving inputs and for-
warding them through the network. At each hidden layer, the inputs’ weighted sum is computed
and passed through an activation function, introducing non-linearity. This process continues until
the output layer, where predictions are made[3].

2.3.2 Backward Propagation

The backpropagation phase follows the forward propagation phase in the FFNN. Here, the pre-
dicted network output is compared to the expected output, and an error is computed using a spec-
ified function such as mean square error. This error is then propagated backward through the
network, one layer at a time. The weights of the network are adjusted based on their contribution
to the error, often using a gradient descent optimization algorithm[3].

2.4 Activation Functions

Activation functions are a fundamental component of neural network architectures, playing an
important role in the introduction of non-linear properties into neuron outputs. This non-linearity
enables the modeling of complex mappings between inputs and outputs.Activation functions are
responsible for determining the activation status of neurons by computingweighted sumwith bias
terms as demonstrated in Equation 2.1.

4



CHAPTER 2. THEORETICAL BACKGROUND

n∑
i=1

(xi ∗ wi) + b (2.1)

The absence of activation functions would limit neural networks to recording only linear rela-
tionships between input and output variables.

2.4.1 Leaky-ReLu

The rectified linear unit ReLu presented by Equation 2.2 is often the standard choice for activa-
tion functions due to its simplicity and effectiveness[2].

f(x) =

{
x, if x ≥ 0

0, if x < 0
(2.2)

However,The ReLU activation function suffers from drawbacks like dead neurons,where inputs
below zero are set to zero, causing neurons to become inactive[4]. To address this issuewe evaluate
the leaky ReLuwhich is much the same as ReLu but includes a constant scale factor alpha as shown
in Equation 2.3.

g(x) =

{
x, if x ≥ 0

αx, if x < 0
(2.3)

This factor ensures that inputs below zero are scaled by alpha,maintaining a small, non-zero
gradient when the neuron is saturated or inactive [4] as demonstrated in Figure 2.2.

Figure 2.2: ReLu Activation Functions

2.4.2 Sigmoid

The sigmoid activation function has a historical significance as it was one of the initial activation
functions used in neural networks. It can be represented by Equation 2.4.

5



CHAPTER 2. THEORETICAL BACKGROUND

σ(x) =
1

1 + e−x
(2.4)

The purpose of the sigmoid activation function is to map a continuous real number to a value
within the range of (0,1) as presented in Figure 2.3. This helps in maintaining a consistent and
bounded input for the next layer, which in turn stabilizes theweights of the neural network[2]. The
symmetrical nature of the sigmoid function around zero is a characteristic that has made it pop-
ular in many applications. Additionally, its ability to produce outputs close to zero or one while
remaining differentiable makes it suitable for the backpropagation learning algorithm, which is
crucial in neural networks. By enabling smooth gradient adjustments of network parameters dur-
ing training, sigmoid function allows for effective learning of complex patterns and relationships
in data.[5]

Figure 2.3: Sigmoid Activation Function

2.5 Embedded systems

An embedded system is a physical setup that combines hardware and software in order to serve
specific applications. These systems are designed to operate reliably and efficiently, oftenwith real-
time constraints.

Embedded systems are found in awide range of domains, including consumer electronics, auto-
motive systems, industrial machinery, andmedical devices.Key components of embedded systems
include micro-controllers or microprocessors, memory, input and output devices, communication
interfaces, power supply, real-time clocks, and software applications tailored to their intended
functions[6].

Figure 2.4 illustrates the general architecture of an embedded system.

6



CHAPTER 2. THEORETICAL BACKGROUND

Figure 2.4: Embedded System General Architecture

2.6 Embedded AI

Embedded AI or Embedded Artificial Intelligence is a powerful technology that allows con-
nected devices, systems, and objects to make decisions and perform complex tasks without rely-
ing on a steady internet connection or human assistance. By integrating AI capabilities such as
machine learning and deep learning directly into the hardware and software, devices can perform
data processing and decision-making without constantly needing to send data to the cloud[7].

2.6.1 Key Components of Embedded AI

Embedded AI relies on a complex network of interconnected components, including special-
ized hardware accelerators, software frameworks, and advanced algorithms. These components
work together to enable devices to learn from data, adjust to different environments, and efficiently
perform complex tasks. Dedicated hardware accelerators like GPUs, TPUs, and FPGAs handle
the computationally intensive tasks, while software frameworks such as TensorFlow and PyTorch
provide the essential tools for developing and deploying AI models. Advanced algorithms, such
as deep learning and reinforcement learning, drive intelligent capabilities like object recognition,
natural language processing, and autonomous navigation. By combining these components, em-
bedded AI empowers devices to deliver sophisticated AI functionalities[8].

2.6.2 Hardware Acceleration

Hardware acceleration in embedded AI plays a crucial role in optimizing the performance of AI
algorithms on devices that have limited computational resources. By offloading computationally
demanding tasks from the CPU to specialized hardware accelerators, this approach enhances the

7



CHAPTER 2. THEORETICAL BACKGROUND

efficiency and speed of AI inference processes, enabling real-time decision-making in embedded
systems. Embedded AI systems utilize various types of hardware accelerators, each with its own
advantages and trade-offs. GPUs excel in parallel processing, TPUs are specialized for accelerating
tensor operations in neural networks, FPGAs provide flexibility and reconfigurability for diverse
AI workloads, and ASICs offer high performance and power efficiency for specific AI applications.
The adoption of hardware acceleration brings multiple benefits to embedded AI systems, includ-
ing faster processing speed, efficient execution of AI algorithms, reduced power consumption, and
extended battery life for portable devices. Furthermore, the parallel processing capabilities of ac-
celerators enable scalable solutions for managing large-scale AI workloads, thereby augmenting
the capabilities of embedded AI systems[9].

2.7 Field Programmable Gate Arrays

Field programmable gate arrays (FPGAs) are digital integrated circuits containing configurable
logic blocks and interconnects, offering design engineers the flexibility to program them for diverse
tasks. Initially introduced in the mid-1980s, FPGAs were mainly employed for basic functions like
glue logic which is a simple logic circuit that is used to connect complex logic circuits together,and
moderate state machines. However, with advancements in the early 1990s leading to larger and
more complex FPGAs, They gained popularity in telecommunications and networking industries.
By the late 1990s, their usage expanded significantly into consumer electronics, automotive, and
industrial sectors[10].

In the early 2000s, the availability of high-performance FPGAs with millions of gates marked
a milestone. These advanced FPGAs showcased features such as integrated microprocessor cores
and high-speed input/output interfaces. Today, FPGAs are indispensable for a wide array of ap-
plications, including communication devices, software-defined radios, radar, image processing,
and digital signal processing tasks. They are also integral components in system-on-chip designs,
seamlessly blending hardware and software functionalities[10].

In terms of programming FPGAs, a hardware description language (HDL) is employed to de-
sign and configure the logic blocks and interconnects within an FPGA to perform a specific task.
This programming approach differs from typical high-level programming languages. The two
most commonly used HDLs for FPGA programming are VHDL (VHSIC Hardware Description
Language) and Verilog. These languages provide a set of constructs and syntax specifically de-
signed for describing and simulating digital circuits[11].

2.7.1 Cyclone V

The Cyclone V FPGA, released by Intel (formerly Altera), offers significant advancements over
its predecessors. With improved performance and efficiency. The Cyclone V features a higher logic
density and lower power consumption compared to older Cyclone series FPGAs. Its enhanced
capabilities make it ideal for a wider range of applications, from telecommunications to embedded
systems, providing greater flexibility and scalability for designers. Additionally, Cyclone V FPGAs
incorporate advanced features such as integrated transceivers and hardened floating-point DSP
blocks, further enhancing their suitability for demanding tasks[12, 13].
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2.7.2 The DE10-Standard board

The DE10 Standard Board, developed by Terasic, is a feature-rich development kit centered
around the Intel Cyclone V FPGA. It provides a wide range of features for various circuit imple-
mentations, from basic designs to multimedia projects. With components like SDRAM, user input
interfaces, LEDs, displays, and audio/video capabilities as demonstrated in Figure 2.5, it offers a
versatile platform for development and experimentation[14].

Figure 2.5: DE-10 Standard Board

2.7.3 Quartus Prime

Quartus Prime is an FPGA design software suite by Intel, providing a platform for develop-
ing, compiling, and debugging FPGA designs. It offers a range of features including synthesis,
placement, routing, and simulation, enabling efficient and reliable FPGA development workflows.

Quartus Prime Standard supports various Intel FPGA families, empowering designers to create
innovative and high-performance digital systems[15].

2.7.4 Platform Designer

Platform Designer is a feature integrated into the Intel Quartus Prime software that serves as
a system integration tool. Its main purpose is to simplify the process of defining and integrating
customized IP components (IP cores) into your design. By allowing the packaging and integration
of custom IP components with Intel and third-party IP components, Platform Designer promotes
design reuse. It automates the creation of interconnect logic based on the high-level connectivity
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specifications provided, eliminating the need for writing HDL code for system-level connections,
which is prone to errors and time-consuming. One of the notable features of Platform Designer
is hierarchical isolation, which separates the system interconnect and IP components. This allows
for independent parameter modification of individual IP components without regenerating the
entire system or other IP components within it. Similarly, changes in the system connectivity do
not require the regeneration of any IP components[16].

2.7.5 Nios-II

The Nios II processor is a soft-core RISC processor with a 32-bit instruction set, data path, and
address space. It features 32 general-purpose registers, 32 interrupt sources, and support for exter-
nal interrupt controllers. It hasmultiplication and division capabilities, aswell as optional floating-
point instructions. The processor has a barrel shifter and interfaces for on-chip and off-chip pe-
ripherals and memories. It includes a debug module and offers optional memory management
and protection units. It is supported by the GNU C/C++ tool chain and Nios II software devel-
opment tools. Nios II processor systems are like microcontrollers, with the processor, peripherals,
and memory all integrated on a single chip. They have a consistent instruction set and program-
ming model and can achieve performance up to 250 DMIPS[17]. Figure 2.6 shows a general Block
Diagram of Nios-II.

The functional units specified in the Nios II architecture include[17]:

1. Register file

2. Arithmetic logic unit (ALU)

3. Interface to custom instruction logic

4. Exception controller

5. Internal or external interrupt controller

6. Instruction bus

7. Data bus

8. Memory management unit (MMU)

9. Memory protection unit (MPU)

10. Instruction and data cache memories

11. Tightly-coupled memory interfaces for instructions and data

12. JTAG debug module

10
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Figure 2.6: Nios-II Core Block Diagram

2.7.5.1 Nios-II/f vs Nios-II/e

The Nios II/e economy core is specifically designed to have the smallest possible core size. It
operates by executing a maximum of one instruction per six clock cycles, allows for full 32-bit ad-
dressing, and can access up to 4 GB of external address space. It enables the inclusion of custom
instructions and supports the use of the JTAG debug module. However, it lacks hardware support
for potential unimplemented instructions and does not feature an instruction or data cache. Addi-
tionally, it does not perform branch prediction. In cases where instructions are not supported, the
Nios II/e core emulates them through software[17].

However,the Nios II/f fast core is designed for high execution performance but has a larger
core size. Its key features include separate optional instruction and data caches, support for an
MMU and MPU for memory management, a 6-stage pipeline for efficient execution, dynamic or
static branch prediction, optional hardware multiply/divide/shift operations, support for custom
instructions, and JTAGdebugmodule support. It also offers features like external interrupt control,
shadow register sets for improved latency, tightly-coupledmemory, and optional ECC support[17].
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2.7.6 Nios-II Custom Instructions

Custom instructions in the Nios II processor allow for tailoring the processor to meet specific
application requirements. They enable the acceleration of time-critical software algorithms by con-
verting them to custom hardware logic blocks, thereby providing an easy way to experiment with
hardware-software tradeoffs. The custom instruction logic connects directly to the processor’sALU
as demonstrated in Figure 2.7, and like native instructions, can take values from up to two source
registers and optionallywrite back a result to a destination register. Custom instructions can signif-
icantly improve system performance, often achieving performance gains from 10 to 100 times that
of software-based operations. These instructions can be integrated into the hardware and tested
with software on reprogrammable Intel FPGAs. From a software perspective, custom instructions
appear as machine-generated assembly macros or C functions, eliminating the need to understand
assembly language[18].

Figure 2.7: Custom Instruction Block Diagram

Custom instructions can be categorized into four types: combinational instructions, multi-cycle
instructions, extended instructions, and internal register-file instructions.Figure 2.8 demonstrates
that to transition fromone type of custom instruction to another, only specific hardware parameters
need to be adjusted.
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Figure 2.8: Custom Instruction’s Types

2.8 Conclusion

To sum up, this chapter has introduced the concept of hardware acceleration in AI embedding,
which involves integrating AI capabilities directly into hardware to boost efficiency and perfor-
mance. Focusing on the utilization of FPGAs for their customizable and reconfigurable circuitry,
the chapter aims to equip readers with the foundational knowledge and tools essential for the im-
plementation phase of hardware-accelerated AI. In the subsequent sections, we will delve deeper
into the principles, methodologies, and practical applications of this innovative approach.
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Chapter 3

Design and Implementation

3.1 Introduction

This chapter details the design and implementation of the hardware system utilized for the
neural network application, specifically focusing on the integration of the various customhardware
blocks to enhance the computational efficiency of the neural network.

3.2 Neural Network Architecture

The chosenNetwork is a fully connected Feed forwardNetworkwritten in C language for the
use in Micro-controllers. The Network is generated from a library that contains all the functions
and codes needed for training, testing and predicting.

The neural network architecture consists of multiple layers, each containing a specified number
of neurons, with weights and biases connecting the neurons between adjacent layers. Various ac-
tivation functions introduce non-linearity into the model. During initialization, the network is set
up with zero depth, and layers are dynamically added, allocating memory for neurons, weights,
biases, and activations. Forward propagation calculates the output by applying activation func-
tions to the weighted sums of inputs. During training, backpropagation is used to compute weight
adjustments based on the error between predicted and target values, and these adjustments are
applied to update the weights. Predictions are made by performing forward propagation on input
data .The functions used are shown in Table 3.1. The model can be saved to a file and loaded later,
and versioning ensures compatibility and tracks updates[19].

While the original training code used to store the weights of the network as ASCII file of floating
point values; it wasmodified to store and read the weights of themodel from a floating point array,
since the Nios-II does not have the ability to operate on files during the execution mode.

The model was trained and tested several times on the computer,the structure, the number
of layers and their activation functions where modified and tuned until the desired result was
achieved.The final Network structure includes one input layer without an activation function, one
output layer with Sigmoid activation function and varying numbers of hidden layers as we will
see in the coming sections.
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Table 3.1: Neural Network API Functions

Function Description
InitializeNN() Initialize neural network by allocating memory, setting

Depth to 0, and all the pointers to NULL
ForwardPropagation() Calculate neuron values in each layer using weighted sum

and activation function
TrainNN(inputs, targets, learning rate) Train the neural network using input-output pairs and

learning rate
PredictNN(inputs) Predict output for given inputs using the trained neural net-

work
LoadNNFromFile(path) Load neural network parameters andweights from amodel

file
SaveNNToFile(nn, path) Save neural network parameters andweights to a model file
GetNNVersion() Return the version of the neural network library

3.3 Overall System Design

The hardware system of this project consists of on-chip components. As depicted in the
block diagram in Figure 3.1, the on-chip hardware system contains the SoPC and non-SoPC parts
of the system implemented using Platform Designer (formerly Qsys).The SoPC part includes the
Nios-II/f processor due to its good features, SDRAM controller, phase-locked loop (PLL), JTAG
interface, I/O peripherals, floating-point hardware, and VHDL LUT custom blocks.While,the non-
SoPC part includes a 64Mb SDRAM .

Figure 3.1: Overall System Design
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3.4 SoPC System Implementation

The system has been implemented on a Cyclone V 5CSXFC6D6F31C6 FPGA, which is available
on the DE10-Standard board. The SoPC system has been designed using the Platform Designer
tool of the Quartus Prime Standard IDE. Different components have been selected and correctly
interconnected to create the desired system configuration as following :

• Clock Source

Figure 3.2: Clock Source

• Nios-II/f Processor

Figure 3.3: Nios-II/f
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• SDRAMController: manages the interface and data transfer between the FPGA and SDRAM,
ensuring efficient memory access and timing compliance.

Figure 3.4: SDRAM Controller

• PLL : generates and stabilizes the necessary clock signals for synchronous operation and
timing alignment between components.

Figure 3.5: PLL
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• JTAG UART that facilitates communication between the Nios processor and a host computer
for debugging and data exchange

Figure 3.6: JTAG UART

• Parllel I/O : mostly LEDs an Switches that have been used to test the functionality of the
system at the beginning of the project.

Figure 3.7 shows the overall SoPC system.

Figure 3.7: Overall System Design

3.4.1 System Block Diagram

The HDL file of the system was generated then and it was possible to instantiate it as a block
diagram as shown in Figure 3.8
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Figure 3.8: SoPC Block Diagram File

3.5 PLL System Block

The Phase-Locked Loop (PLL) is crucial for managing timing and synchronization between
the system clock and the SDRAM clock. It can generate multiple clock frequencies from a single
reference clock and adjust the phase of specific clock signals to either lead or lag the system clock by
a set amount, typically a few nanoseconds, to compensate for clock misalignment. In our designs,
ensuring the SDRAM clock signal leads the Nios II system clock by approximately 3 nanoseconds
is essential for proper operation.

3.6 Altera NIOS II JTAG Debug Module

TheNios II architecture supports a JTAGdebugmodule that enables on-chip emulation capa-
bilities, allowing for remote processor control from a host PC. Software debugging tools operating
on the PC interface with the JTAG debug module to offer functionalities such as:

• Program download to memory.

• Execution control, including start and stop commands.

• Breakpoint and watchpoint configuration.

• Inspection of registers and memory.

• Real-time execution trace data collection.
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3.7 Floating point Unit

To improve the efficiency of floating-point operations, weutilizedAltera’s specializedfloating-
point hardware , specifically FPH1.This dedicated hardware module is a considered as a custom
instruction designed to handle single-precision floating-point operations like addition, subtraction,
and multiplication while following the IEEE Std 754-1985 standards.Thus the software emulation
for the floating point operations was outperformed.

By integrating this hardware solution, we achieved a notable acceleration in floating-point com-
putations within the neural network. This optimization greatly enhances the overall efficiency and
performance of the neural network’s computations.

Figure 3.9: Floating Point Hardware

3.8 Activation function Custom instructions

The activation functions within the neural network posed a significant time-consuming chal-
lenge due to their reliance onfloating-point computations, particularlywhenutilizing software em-
ulation, which proved excessively slow. To address this issue, we proposed replacing the software-
based computations with hardware-based solutions.Thus, Lookup tables were then implemented
to replace the software activation functions.

In this context, a lookup table (LUT) is a data structure used to expedite the computation of
activation functions within the neural network. It stores precomputed values for these functions,
allowing for rapid retrieval of output values based on input indices. By implementing lookup
tables, the neural network can efficiently replace software-based activation functions, significantly
enhancing computational speed and performance.

3.8.1 Leaky-ReLu Custom Instruction

The Leaky ReLU Look-Up Table (LUT) is implemented as a variable multi-cycle custom instruc-
tion, designed to be both flexible and efficient. It operates within the range of -3 to 3 based on the
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weights values we obtained from the training and uses 16 carefully calculated sample float values.
These values are obtained through Python code and are assigned specific outputs based on the
input range. For inputs within the range of -3 to 0, a specific output is determined, while for inputs
within the range of 0 to 3, the output is simply the input itself. This specialized instruction employs
an IF-THEN-ELSE chain IF-THEN-ELSE chain as shown in the pseudo-code below.

Before integrating the Custom Instructions block into the System Design, its functionality was
verified by simulating it using the Model-sim Altera simulator. The simulation was conducted
using a test bench, Figure 3.10 and Listing 3.1 demonstrate the test bench and the results of the
simulation .
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1 library ieee;
2 use ieee.std_logic_1164.all;
3

4 entity lut_tb is
5 end entity lut_tb;
6

7 architecture test of lut_tb is
8 begin
9 clk <= not clk after 1 ns;

10 reset <= ’1’, ’0’ after 5 ns;
11

12 dut: entity work.lut
13 port map (
14 clk => clk,
15 start => start,
16 done => done,
17 clk_en => clk_en,
18 reset => reset,
19 x => x,
20 y => y
21 );
22

23 stimulus: process
24 begin
25 wait until (reset = ’0’);
26 x <= x"7FFFA6FB";
27

28 clk_en <= ’1’;
29 start <= ’1’;
30 wait until (done = ’1’);
31 wait for 20 ns;
32 start <= ’0’;
33

34 x <= x"BF4CCCE";
35 start <= ’1’;
36 clk_en <= ’1’;
37 wait until (done = ’1’);
38

39 report("end simulation");
40 end process stimulus;
41

42 end architecture;

Listing 3.1: VHDL Testbench Code for Leaky-ReLU
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Figure 3.10: Leaky-ReLu Simulation

3.8.2 Sigmoid Custom Instruction

Similar to the Leaky-ReLU mentioned earlier, the Sigmoid LUT is implemented as a variable
multi-cycle custom instruction. This instruction operateswithin the range of -3 to 3 and uses 16 pre-
cisely calculated sample float values. These values are derived using Python code and are mapped
to specific outputs based on the input range. This custom instruction utilizes an IF-THEN-ELSE
chain, as demonstrated in the pseudocode below.

23



CHAPTER 3. DESIGN AND IMPLEMENTATION

Before integrating the Custom Instructions block into the System Design, its functionality was
verified by simulating it using the Model-sim Altera simulator. The simulation was conducted
using a test bench, Figure 3.11 and Listing 3.2 demonstrate the test bench and the results of the
simulation .

1 library ieee;
2 use ieee.std_logic_1164.all;
3 entity lut_tb is
4 end entity lut_tb;
5

6 architecture test of lut_tb is
7 begin
8 clk <= not clk after 1 ns;
9 reset <= ’1’, ’0’ after 5 ns;

10

11 dut: entity work.lut_sig
12 port map (
13 clk => clk,
14 start => start,
15 done => done,
16 clk_en => clk_en,
17 reset => reset,
18 x => x,
19 y => y
20 );
21

22 stimulus: process
23 begin
24 wait until (reset = ’0’);
25 x <= x"3F19999A";
26

27 clk_en <= ’1’;
28 start <= ’1’;
29 wait until (done = ’1’);
30 wait for 20 ns;
31 start <= ’0’;
32

33 x <= x"40266600";
34 start <= ’1’;
35 clk_en <= ’1’;
36 wait until (done = ’1’);
37

38 report("end simulation");
39 end process stimulus;
40

41 end architecture;

Listing 3.2: VHDL Testbench Code for Sigmoid
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Figure 3.11: Sigmoid Simulation

3.9 Final System Integration

After Carefully designing and explaining each individual component, we now present the fully
integrated system.Figure 3.12 provides a representation of the overall architecture, showcasing
the interconnections and interactions between the various modules.The Floating Point Hardware
custom instructionwas introducedwith opcodes 252 to 255, each representing a specific operation:
255 for division, 254 for subtraction, 253 for addition, and 252 for multiplication. Furthermore,
two additional lookup tables were implemented as custom instructions, with opcode 0 assigned
to the leaky-ReLU custom instruction and opcode 1 assigned to the Sigmoid custom instruction.It
is important to note that the Nios II processor is capable of supporting up to 256 unique custom
instructions via custom opcodes.

Figure 3.12: Final System Interconnections
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3.9.1 Top Level File Compilation

The compilation of the whole system was successful and the summary of the compilation is
shown in figure 4.. The entire system uses 11% of the total logic elements, 6745 registers, 11% of
the total pins , 1% of the total memory bits and one PLL.

The top-level file containing the SoPC system is illustrated in Figure 3.13

Figure 3.13: Compilation Report

3.10 Custom Instructions Software Implementation

After integrating the custom instruction blocks and generating the HDL files, and subse-
quently compiling the project, the built-in functions and assembly MACROS for leaky-ReLU and
sigmoid LUTs can be accessed from the header file ”system.h” within the BSP (Board Support
Package) file of the project as shown in Figures 3.14 and 3.15

Figure 3.14: Leaky-ReLu built-in Function and Assembly Macro
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Figure 3.15: Sigmoid built-in Function and Assembly Macro

3.11 Hexadecimal and Floating-Point Conversion Functions

After incorporating the built-in functions into the neural network code, we observed that our
LUTs were encoded with hexadecimal values. However, the built-in functions required floating-
point inputs. To address thismismatch, we added two conversion functions: one to convert floating-
point values to hexadecimal before executing the built-in function, and another to convert the re-
sulting hexadecimal values back to floating-point. This ensured seamless integration and accurate
execution of the neural network operations.The functions are shown in Listings 3.3 and 3.4 .

1 // Function to convert float to hexadecimal representation
2 uint32_t float_to_hex(float value) {
3

4 uint32_t hex_value;
5 memcpy(&hex_value, &value, sizeof(float));
6

7 return hex_value;
8 }
9

10 // Function to convert hexadecimal representation to float
11 float hex_to_float(uint32_t hex_value) {
12

13 float result;
14 memcpy(&result, &hex_value, sizeof(float));
15

16 return result;
17 }

Listing 3.3: FP to Hexadecimal Conversion

1 // Function to convert hexadecimal representation to float
2 float hex_to_float(uint32_t hex_value) {
3 float result;
4

5 memcpy(&result, &hex_value, sizeof(float));
6 return result;
7 }

Listing 3.4: Hexadecimal to FP Conversion

Listing 3.5 illustrates an example of how these two conversion functions are used.
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1 printf("Hello from Nios II!\n");
2 int main() {
3

4 float a = -1.43;
5

6 float rl;
7

8 // Convert float to hexadecimal
9 uint32 tc float to hex(a);

10 printf("Hexadecimal representation of a: %08x\n", c);
11

12 // Call the custom instruction function with hexadecimal input
13 uint32 t result = ALT_CI_LUT_LEAKYR_0 (c);
14

15 // Convert hexadecimal result back to float
16 rl hex to float (resultl);
17

18 // Print the result
19 printf("Result of custom instruction for a: %08x\n", result1);
20

21 printf("r1 %f\n", r1);
22

23 } return 0;

Listing 3.5: Example of Using Conversion Functions

3.12 Conclusion

In summary, this chapter has outlined the development and setup of the hardware system
for our neural network application. It focuses on how we’ve integrated custom hardware blocks
to make the neural network more efficient. Moving forward, we’ll explore the details of these
integrations and discuss their impact on enhancing the performance of our system.
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Chapter 4

Results and Discussion

4.1 Introduction

In this chapter, we focus on the results obtained from hardware acceleration. This involves
analyzing the impact of utilizing hardware resources to improve the model’s performance, effi-
ciency, and overall functionality. Our results reveal the significant benefits of hardware acceleration
in optimizing the model’s performance and contributing to a more efficient system.

4.2 NN Execution Using different Hardware Blocks

In this phase, we trained two neural networks with different configurations - one having 4
layers and the other having 11 layers. These networks were executed on the Nios-II processor.
Afterwards, the Nios-II was enhanced with the FPH1 hardware block, and the execution of the
networks was repeated. Finally, the networks were run with the FPH1 and activation functions
LUTs.

Every prediction in this chapter used an input array of size 256, representing a handwritten ’0’
digit as shown in Figure 4.1. To prioritize execution time over prediction result accuracy, the focus
was primarily on the model’s processing speed.

Figure 4.1: Prediction Input Data

Performance results and predictions, of the 4-layer neural network on the Nios-II processor
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without any additional hardware blocks, are illustrated in Figure 4.2.

Figure 4.2: 4 Layers NN execution with Nios-II

When the same neural network was executed after incorporating the FPH1 custom instruction,
the results and prediction times were shown in Figure 4.3.

Figure 4.3: 4 Layers NN execution with FPH1 Block

As expected; adding the FPH block reduces the operations’ execution time by 65.02%.
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Figure 4.4: 4 Layers NN execution with FPH1 and LUTs Custom Instructions

The final test for this neural network employed both FPH1 and LUTs custom instructions, with
the results depicted in Figure 4.4. The LUTs enhanced the model’s acceleration by 69.79%, since
the CPU did not perform any calculations for the activation functions,and all operations were per-
formed on hardware.

Repeating the same tests to the other NN resulted the following:

Figure 4.5: 11 Layers NN execution with Nios-II
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Figure 4.6: 11 Layers NN execution with FPH1 Block

As shown in Figures 4.5 and 4.6, the implementation of the FPH1 block resulted in a significant
performance improvement. The execution time was reduced from 0.985 seconds to 0.394 seconds,
marking a 60% increase in speed. This optimization highlights the efficiency of using specialized
hardware accelerators in neural network computations. By offloading intensive tasks to the FPH1,
the overall processing time was greatly decreased, showcasing the potential for considerable en-
hancements in execution efficiency.

Figure 4.7: 11 Layers NN execution with FPH1 and LUTs Custom Instructions

The LUTs had a minimal impact on execution time, reducing it by only 0.008 seconds compared
to using the FPH1 alone, as shown in Figure 4.7.

In comparison to the first execution with 4 layers, the performance improvement in the 11-layer
configuration was 4.77%. This indicates that while the LUTs provided a noticeable boost in the
simpler, 4-layer network, their impact was less significant in the more complex, 11-layer network.
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Both accelerations achieved for the 4-layer and 11-layer configurationswere satisfactory, demon-
strating the overall effectiveness of using hardware accelerators.However, the difference in results
between the 4-layer and 11-layer executions raises the question of whether the number of layers
affects the hardware acceleration of the neural network.

4.3 Acceleration versus the Number of Layers

In this section, we attempted to answer the previous question by generating graphs that de-
pict execution times with and without the acceleration hardware blocks for various numbers of
layers.

The process began with training 18 neural networks spanning from 3 to 20 layers, and the out-
comes are showcased in Figure 4.8.

Figure 4.8: NNs of 3 to 20 layers acceleration

The graphs in Figure 4.8 indicate that the acceleration stays relatively consistent as the number
of layers changes.

The average acceleration is 63.55%, with the best results around 69% achieved by networks with
3 and 4 layers. The lowest result was 58.3% in a 17-layer network, which is still an impressive
outcome.

In order to have better comparison,We tried to train theNNwith larger number of layers.However,
we faced the issue of vanishing gradients, where the gradients needed for updating the network
became extremely small or disappear as they are backpropagated from the output layers to the
initial layers.

As a solution, we employed For-Loops in the previously trained NNs to increase the number of
layers. The primary aimwas to raise the number of floating-point operations and observe its effect
on acceleration.
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Figure 4.9 and 4.10 presents the acceleration results.

Figure 4.9: NNs of 20 to 120 layers acceleration

Figure 4.10: NNs of 120 to 890 layers acceleration
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Referring to Figure 4.9 it is evident that the accelerated and original execution graphs are closer
together compared to Figure 4.8. The average acceleration was 40.72%, which is 22% lower than
the first set of tests. However, this set included the highest acceleration observed in our experiment,
with 74.61% acceleration at 30 layers.

For Figure 4.10 , the difference between the execution times of NIOS-II and NIOS-II with cus-
tom instructions is minimal. The largest gap was observed in the neural network with 340 layers,
achieving a 24.34% acceleration, while the neural network with 560 layers showed only a 10.75%
improvement.

Comparing the average speedup, which is 17% for these networks, it was relatively low, likely
due to the increased number of software functions used inside the loop, reducing the impact of
our system.

Figure 4.11: Overall Acceleration graph

Figure 4.11 combines all the previous results into a single graph.

Despite the decline in acceleration performance with the addition of more layers to the neural
network, the system remains practical for several reasons:

• For embedded AI applications, the models typically employed are not overly large or com-
plex. This is partly due to considerations such as energy consumption, available storage ca-
pacity, and the straightforward nature of their applications.

• Even when utilizing a larger model, the system’s acceleration capabilities remain effective.
This is evident in the significant reduction in execution time, as demonstrated by the 890-layer
model, where execution time was decreased by 20 seconds.

35



CHAPTER 4. RESULTS AND DISCUSSION

4.4 Conclusion

At the conclusion of this chapter, having gathered all the results from our tests, we affirm that
the accelerators we designed are beneficial for executing neural networks on embedded systems.
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General Conclusion

In conclusion, our exploration into hardware acceleration for neural network execution on em-
bedded systems has yielded promising results and valuable insights. Through the design and im-
plementation of custom hardware accelerators, specifically engineered to operate within the con-
straints of embedded environments, We’ve effectively handled the unique challenges of deploying
complex AI algorithms in resource constrained settings.

The primary objective of our project was to enhance the speed and efficiency of AI models on
embedded systems, and our findings demonstrate significant progress towards this goal. By in-
cluding FPGA technology and custom instructions for the Nios II processor, we have achieved no-
table reductions in inference latency and execution time, Opening the door for real-time processing
of AI tasks in critical applications.

Our study highlights the effectiveness of hardware acceleration in optimizing neural network
performancewhileminimizing resource usage. Through careful design and customization of hard-
ware blocks,we achieved significant improvements in execution efficiency despite the constraints
of embedded systems. This underscores the importance of tailored solutions for AI applications,
where customized hardware architecture can lead to significant performance enhancements com-
pared to traditional software-based approaches.

Furthermore, our investigation into the impact of network complexity on hardware acceleration
has provided valuable insights into the scalability of our approach. As the network becomes more
complex, the performance improvements decrease, our accelerators remain practical and effective
for a wide range of embedded AI applications.

Our findings suggest exciting possibilities for future research in hardware acceleration for em-
beddedAI.We could explore additional optimization techniques likemodel quantization or hardware-
aware training algorithms to improve efficiency and scalability further.

Aswe look back on our research, it’s crucial to recognize certain constraints. Although our study
has given us valuable insights and shown encouraging outcomes, there are areas where we could
delve deeper. One limitation is the focus on a specific type of neural network and a single FPGA
board, which may not capture the full range of possibilities or constraints in different contexts.
Additionally, our investigation into the impact of network complexity on hardware acceleration
only scratched the surface, and deeper analysis could reveal more detailed relationships.

In conclusion, our study reaffirms the potential of hardware acceleration as a practical solution
for deploying AI algorithms on embedded systems. By utilizing the power of custom hardware
accelerators, we have demonstrated significant improvements in execution speed, efficiency, and
scalability, laying the foundation for the next generation of intelligent embedded devices.
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Future Work

In this chapter, we explore potential avenues for further research and development based on
the findings presented in the preceding chapters. Although our designed System has reduced
execution time for NN ,several improvements can be done. As we look ahead, we consider the
following areas for future exploration:

• Optimization andCompression: One critical area for future exploration involves optimizing
and compressing the neural network model. While this work primarily focuses on hardware
development, it does not delve into techniques for reducing resource usage. Investigating
methods such as weight quantization, pruning, and sparsity can lead to more efficient mod-
els. By compressing the model weights, we can achieve better performance in terms of mem-
ory footprint and computational efficiency.

• Generalization to Other Models: The current testing and results comparison are limited to
a specific model—the handwritten digits classification deep neural network (DNN). How-
ever, to validate the broader applicability of our approach, we need to extend our evaluation
to other neural network architectures. Different models may exhibit varying behaviors, espe-
cially when faced with diverse input datasets. Therefore, exploring additional model types
and assessing their performance is essential for robustness and generalization.

• Implementation on Alternative FPGA Platforms: While our work focuses on the develop-
ment of neural network accelerators for a specific FPGA board, it is essential to explore the
feasibility of porting these accelerators to other FPGA platforms. Different FPGA families
have varying architectures, resource availability, and performance characteristics. By adapt-
ing our designs to alternative boards, we can assess their scalability and versatility.

By incorporating the proposed future work, we will anticipate broader coverage of use cases,
and move closer to realizing efficient and versatile neural network accelerators for embedded sys-
tems.
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