
People’s Democratic Republic of Algeria
Ministry of Higher Education and Scientific Research

University M’Hamed BOUGARA – Boumerdes

Institute of Electrical and Electronic Engineering
Department of Electronics

Final Year Project Report Presented in Partial Fulfilment of the
Requirements for the Degree of

MASTER
In Electronic

Option: Computer Engineering

Entitled

Edge-ML based Network Intrusion
Detection System for IoT devices

Presented by

- BERKANI Lina
- KHELIFI Cylia

Supervisor

- Dr. TOUZOUTWalid

Registration Number:…..…../2024

To Hind, To Youcef, To Ahmad al-Najjar, To Kamal and his Brother, To
the Soul of the Soul,

To the Children, Youths and Elderly, To the Women and Men,
To the Mountains of Gaza, Who redefined the rules, Who are writing the

history and breaking myths, Who are liberating an Ummah,
To the free souls behind bars,

To Those seeking freedom,
I give you my life.

—LB

To my beloved parents, whose unwavering support and encouragement have
been my guiding light, may Allah fill their lives with happiness and joy,

To my dear brothers, Fares and Marwane, for their boundless
love and belief in me,

To Nora, my lovely niece coming soon to illuminate this world, whom I cannot
wait to hold in my arms,

To my cherished family and wonderful friends, for their endless support,
Thank you for being my pillars of strength.

—CK

Abstract

In recent years, there has been a substantial proliferation in the use of the Internet of Things
in a wide variety of domains, from providing new services and options in smart home ap-
plications to industrial IoT, automating healthcare, power grids and more. However, IoT
networks are prone to security breaches due to the limited computational power and con-
strained resources of these devices, which cannot support traditional security mechanisms.
This security concern is increasingly becoming a relevant research issue, for which a num-
ber of Network Intrusion Detection Systems (NIDSs) have been proposed. In this report,
we develop and implement a practical machine learning based IoT network intrusion detec-
tion system that operates on low-end microcontrollers. The proposed system is deployed
on edge which ensures a fast response to attacks targeting IoT devices, thanks to the decen-
tralized data processing. Privacy of network users is also preserved as data is kept locally at
the edge of the network. Two prototypes were proposed for the realization of this project,
which are based on the Raspberry Pi and the ESP32 Microcontroller. The ESP32 based
prototype is composed of three sub-systems, each utilizing an ESP32 MCU. Four distinct
Machine Learning algorithms were explored to detect malicious from benign traffic, and
recognize the type of attack, reaching up to an accuracy of 99.76% and an F1-score of
94.25% for tree-based models. A detailed evaluation and comparison of the models was
conducted. The most accurate model was selected and then optimized to obtain a light-
weight and faster executable version, for an easier deployment on edge. The models were
additionally tested on real-world data, by predicting the class label of previously unseen
data from new Pcap files.

Keywords: Cybersecurity, NIDS, IoT, Intrusion Detection, Edge Computing, Machine
Learning, System-on-chip, FreeRTOS, Communication Protocols

iii

Acknowledgments

In the Name of Allah, the Most Gracious, the Most Merciful.

All the praises and thanks be to Allah Almighty, the Giver of blessings and gifts. Prayers
and peace of Allah be upon the noble Prophet Muhammad SAW. We are grateful to Allah
SWT for granting us the grace and strength to complete this thesis and attain this stage of
achievement in life.

We are deeply thankful to our parents, for their unwavering love and support through-
out the years. Words cannot express our gratitude for the sacrifices you have made on our
behalf.

We would like to express our sincere gratitude to our supervisor Dr. Touzout Walid
for his guidance and support throughout this project.

We extend our heartfelt appreciation to our siblings and friends, who believed in us and
encouraged us through life’s hardships. Thank you for all the fun times we shared together,
you made our lives happier.

May Allah bless each and every one of you abundantly, and may this project be benefi-
cial and inspiring for future generations.

iv

Contents

Abstract iii

Acknowledgments iv

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Statement . 2
1.3 Objectives . 2
1.4 Methodology . 2
1.5 Overview of the Startup . 3
1.6 Structure of the Report . 3

2 Theoretical Background 4
2.1 Overview of Cybersecurity . 4

2.1.1 Types of Cybersecurity Threats 4
2.1.2 Artificial Intelligence in Cybersecurity 5

2.2 Intrusion Detection Systems . 5
2.2.1 Classification of an IDS based on monitored activity 6
2.2.2 Classification of an IDS based on detection method 6

2.2.2.1 Anomaly-based network IDS 7
2.2.3 Classification of an IDS based on response upon detection 7

2.3 Internet of Things . 7
2.4 Overview of Artificial Intelligence . 8
2.5 Machine Learning . 9

2.5.1 Machine Learning Types . 9
2.5.1.1 Supervised Learning . 9
2.5.1.2 Unsupervised Learning 10
2.5.1.3 Reinforcement Learning 10

v

CONTENTS vi

2.5.2 Machine Learning Algorithms . 11
2.5.2.1 Naive Bayes: . 12
2.5.2.2 Decision Tree . 13
2.5.2.3 Random Forest . 15
2.5.2.4 Neural Networks . 17

2.5.3 Evaluation Metrics . 20
2.6 Implementation Tools and Technologies 21

2.6.1 Raspberry PI . 21
2.6.2 ESP32 Microcontroller and ESP-IDF 21
2.6.3 Communication protocols . 22

2.6.3.1 Ethernet Protocol . 22
2.6.3.2 SPI Communication Protocol 22
2.6.3.3 I2C Communication Protocol 22

2.6.4 ENC28J60 Module . 23
2.6.5 PCAP File Format . 23

3 Hardware System Design 24
3.1 ESP32 based Prototype . 24

3.1.1 System Architecture . 24
3.1.2 PCAP Generator Component . 25
3.1.3 Packet Feature Extractor Component 26
3.1.4 Model Inference Component . 28

3.2 Raspberry Pi based Prototype . 30

4 Software System Design 31
4.1 Firmware Design and Implementation . 31

4.1.1 Creating and Transmitting the PCAP files 31
4.1.1.1 Default Ethernet Initialization 32
4.1.1.2 SNTP Client . 33
4.1.1.3 Custom Ethernet Initialization 34
4.1.1.4 Tasks Synchronization and SD Card Access 34
4.1.1.5 PCAP Creator Task . 34
4.1.1.6 PCAP Reader/Sender Task 36

4.1.2 Extracting Features from PCAP Files 37
4.1.2.1 PCAP Receiver/Writer Task 38
4.1.2.2 Feature Extractor Task 38

4.1.3 Model Inference . 42

CONTENTS vii

4.2 ML Model Development . 43
4.2.1 Dataset Selection and Preprocessing 44

4.2.1.1 NIDS datasets . 44
4.2.1.2 CIC-IoT-2023 Dataset 45

4.2.2 ML Model Building . 48
4.2.2.1 Naive Bayes . 48
4.2.2.2 Decision Tree . 49
4.2.2.3 Random Forest . 49
4.2.2.4 Neural Network . 49

4.3 Raspberry Pi Implementation . 51

5 Results and Analysis 54
5.1 Hypothesis on the Performance of ML Models 54
5.2 ML Models Evaluation . 54

5.2.1 Naive Bayes . 55
5.2.2 Neural Network . 56
5.2.3 Decision Tree . 57
5.2.4 Random Forest . 58

5.3 ML Models Comparison . 59
5.3.0.1 Explaining the Bias of the Models 60

5.4 Testing with External Pcap Files . 61

6 Conclusion and Future Work 63

Bibliography 64

List of Figures

2.1 Artificial Intelligence Subsets [17] . 8
2.2 Machine learning Types and Algorithms [19] 10
2.3 Decision Trees Algorithm [25] . 13
2.4 Random Forest Algorithms [27] . 16
2.5 Graphical Representation of a Neuron [29] 17
2.6 Neural Networks Layers [30] . 18

3.1 System Architecture Design . 25
3.2 PCAP Generator Hardware Architecture 26
3.3 PCAP Generator Hardware Implementation 27
3.4 Feature Extractor Hardware Architecture 28
3.5 Feature Extractor Hardware Implementation 28
3.6 Model Inference Component Hardware Architecture 29
3.7 Model Inference Component Hardware Implementation 29
3.8 System Architecture Design . 30
3.9 System Hardware Implementation . 30

4.1 PCAP Generator Initialization Flowchart 32
4.2 PCAP File Packet Record Fields [36] . 33
4.3 PCAP File Global Header Fields [36] . 35
4.4 Flowchart of the PCAP Creator Task . 36
4.5 Flowchart of the PCAP Reader/Sender Task 37
4.6 Component Initialization Flowchart . 38
4.7 Flowchart of the PCAP Receiver/Writer Task 39
4.8 Flowchart of Feature Extractor Task . 41
4.9 Model Inference Component Flowchart 43
4.10 One-hot Encoding Example of Categorical Features 47
4.11 Distribution of Attack Categories in CIC IoT 2023 Dataset 47

viii

LIST OF FIGURES ix

4.12 Dataset Pre-processing Steps . 48
4.13 Model Layers Structure . 50
4.14 Implementation on Raspberry Pi Flowchart 52
4.15 Generating the Predict() Function Flowchart 53

5.1 Comparison of F1 Scores for Different Models on Various Attacks 61
5.2 Prediction on Real-Time Traffic . 61
5.3 Prediction on ”DoS” Pcap File . 62
5.4 Prediction on ”DDoS” Pcap File . 62
5.5 Prediction on Benign Traffic Pcap File . 62

List of Tables

2.1 Comparison between Regression and Classification 11
2.2 Comparison between Gini index and Information Gain 15
2.3 Comparison between Decision Tree and Random Forest 17
2.4 Confusion Matrix . 20

4.1 List of Features in the CIC IoT 2023 Dataset 45

5.1 Confusion Matrix Results of Naive Bayes 55
5.2 Performance Metrics for Naive Bayes . 55
5.3 Confusion Matrix Results of Neural Network 56
5.4 Performance Metrics of Neural Network 56
5.5 Confusion Matrix Results of Decision Tree 57
5.6 Performance Metrics for Decision Tree . 57
5.7 Confusion Matrix Results of Random Forest 58
5.8 Performance Metrics of Random Forest 58
5.9 Average Accuracy of Each Model . 59
5.10 F1 Scores of ML Models Found by Enchun Shao 60

x

Chapter 1

Introduction

The integration of the Internet of Things (IoT) has revolutionized many industries by en-
abling seamless connectivity and data exchange between devices. However, it has also
introduced serious network security challenges. In the context of IoT networks security,
Network Intrusion Detection Systems (NIDS) offer an ideal solution, by overcoming the
resources constraints of traditional security mechanisms in IoT devices. In this work, an
Edge based NIDS, which leverages Machine Learning algorithms and targets IoT devices,
is developed. The proposed system aims to enhance the security posture of IoT Ethernet
networks by detecting potential threats in real-time.

1.1 Motivation

The rapid expansion of IoT devices, which are often not designed to handle protection
against security attacks, has made them prime targets for cyber attacks. One example of a
notably damaging attack is the Mirai attack, which compromised over 600,000 IoT edge
devices. This attack exploited the weak security of millions of IoT devices to launch a
massive Distributed Denial-of-Service (DDoS) attack against high-profile targets [1]. In
addition, many other cases of compromise of edge IoT devices have been documented. In
response to these threats, significant research has been conducted in this area, and many
IoT compatible NIDSs have been proposed.

Machine Learning (ML), a sub-field of Artificial Intelligence, has become increasingly
prominent in the cybersecurity world. Many recent Intrusion detection Systems (IDSs)
are based on ML algorithms. This integration leverages the ‘learning’ capability of ML
models in detecting anomalies and malicious activities in network traffic, thus enhancing
the effectiveness of IDSs which are traditionally signature-based.

1

CHAPTER 1. INTRODUCTION 2

1.2 Problem Statement

This project aims to provide IoT networks with a security layer that doesn’t introduce any
overhead to the devices or network. Due to the constrained computational and memory
resources of IoT devices, traditional security mechanisms are challenging to implement on
such platforms. Additionally, many IoT devices that are deployed and in-use lack basic se-
curity measures, such as encrypted communications [2]. This security concern highlights
the need to develop solutions that are reliable and accessible to average users. The problem
addressed in this project is the creation of a network monitoring system for attacks on IoT
networks, that leverages Machine Learning algorithms and is deployed on edge. The pro-
cessing must be decentralized and data should remain at the network’s edge. Additionally,
the system should alert network users upon the detection of an intrusion.

1.3 Objectives

The objectives of this work are the following:

• Create an IoT network monitoring system that operates on low-end edge microcon-
trollers.

• Ensure privacy of network users by decentralizing the data processing and keeping
all data locally at the edge of the network.

• Create a Machine Learning model capable of detecting anomalies and malicious ac-
tivities in network traffic.

• Ensure real-time detection of intrusions in IoT networks, and real-time alerting mech-
anism.

1.4 Methodology

The methodology of this project involves several key steps. First, a suitable dataset is se-
lected to align with our project requirements. Then, Naive Bayes, Decision Trees, Random
Forest and Neural Network ML algorithms are used in training network intrusion detection
models. Prototypes, using Raspberry Pi and ESP32, are developed to deploy the trained
models on edge. Next, the performance of these models is evaluated through experiments
to ensure accurate detection of network intrusions. Finally, the results are analyzed to de-
termine the most effective approach for real-time IoT network security.

CHAPTER 1. INTRODUCTION 3

1.5 Overview of the Startup

Qareeb is a startup deep expertised in low-level firmware and advanced AI techniques to
offer cutting-edge Edge Computing and IoT solutions. All their products utilize a uni-
fied, advanced edge computing protocol, ensuring seamless decentralized computing and
comprehensive control over every edge box, regardless of location. Some of their popular
projects are:

• Qvision: Uses state-of-the-art streaming technologies and AI acceleration for real-
time event detection in construction sites, isolated places, commercial centers, and
any location requiring real-time surveillance. Compatible with CPUs, GPUs, and
any type of camera.

• Qfarming: Employs LoRa technology for offline data transmission on top of their
edge protocol, transforming agriculture with advanced sensors and seamless data
management.

• QAccess: Enhances security with state-of-the-art face recognition, license plate recog-
nition, RFID, and biometric devices, all powered by their unified edge computing
protocol.

Their cost-effective, scalable solutions ensure efficiency and reliability. Qareeb’s end-
to-end approach maximizes performance, providing an unparalleled experience in any en-
vironment. For more information, the link to their website is provided: Qareeb Website.
Our Network Intrusion Detection System is integrated as an additional security layer in the
Advanced Healthcare System in Ambulance project.

1.6 Structure of the Report

This report is organized into six chapters. The Introduction provides an overview and mo-
tivation for the project. The Theoretical Background covers essential concepts and used
technologies. The Hardware System Design details the hardware components and archi-
tecture of the proposed system. The Software System Design discusses the development of
the firmware and software components, including machine learning algorithms. The Re-
sults and Analysis presents the results of the experiments with various machine learning
algorithms and their evaluation. Finally, the Conclusion and Future Work summarizes the
findings and suggests directions for further work.

https://qareeb.io

Chapter 2

Theoretical Background

2.1 Overview of Cybersecurity

Cybersecurity is the process of protecting networks, systems, data, and programs from
unauthorized access or criminal exploitation. Threat actors, who represent a security risk,
typically attack sensitive information of individuals and organizations such as credit card
details, personal data, and trade secrets, for financial gain and various other motives. Cy-
bersecurity aims at ensuring the safety of digital and physical assets, and managing cyber
risks that may arise [3]. The field of cybersecurity is built upon three principles which
represent the fundamental objectives for information security. These three concepts form
what is often referred to as the CIA triad [4]:

• Confidentiality: Ensuring that information is accessible only to those authorized to
access it.

• Integrity: Ensuring that the data is not tampered with, correct and reliable.

• Availability: Ensuring timely and reliable access to data for those who are authorized
to access it.

2.1.1 Types of Cybersecurity Threats

Cybersecurity threats are diverse and continuously evolving. Some of the most common
threats include [3]:

• Malware: is software that is designed to harm and cause damage to a network or
computer. Common types of malware are: viruses, ransomware and spyware.

4

CHAPTER 2. THEORETICAL BACKGROUND 5

• Phishing: is the use of digital communication, such as emails and voice communi-
cation, to steal sensitive information by tricking users into believing their sources to
be reputable.

• Social Engineering: is a manipulation technique that adversaries use to trick users
into revealing their sensitive information.

Additionally, cyber threats can be categorized based on their threat consequences [4]. For
instance, Denial of Service (DoS) and Distributed Denial of Service (DDoS) attacks are
threats to availability of systems, whereas Masquerading attacks such as: ARP Spoofing,
Man in the Middle (MitM) are threats to both the confidentiality and integrity of infor-
mation. Reconnaissance attacks, such as Port Scan and Vulnerability Scan attacks, are
primarily threats to confidentiality. Other Web-based attacks, such as SQL Injection and
Cross-Site Scripting (XSS), threaten all mentioned aspects of cybersecurity: confidential-
ity, integrity and availability.

2.1.2 Artificial Intelligence in Cybersecurity

Artificial Intelligence (AI) has become an innovative technology in many industries, in-
cluding cybersecurity. This technology offers both opportunities and challenges in this
field. While AI can be used to enhance network protection and ensure user safety, it can
be exploited by adversaries to cause harm and disruption [5]. For more than twenty years,
the cybersecurity industry has been leveraging Artificial Intelligence (AI) in different ar-
eas like spam filtering, malware detection, and intrusion detection. This integration has
significantly enhanced performance by automating cybersecurity tasks, ensuring efficient
resource utilization, and discovering new threats and attacks [6]. Sections 2.4 and 2.5 below
provide detailed information about AI and explore its sub-fields and techniques.

2.2 Intrusion Detection Systems

As network attacks have increased in number and severity over the past few years, intrusion
detection systems have become an integral part to the security infrastructure of most organi-
zations. Intrusion detection systems (IDSs) are devices or software programs that monitor
network traffic or system events and analyze them for any signs of intrusions. Intrusions
are defined as any attempts to compromise the confidentiality, integrity, availability (CIA)
of a computer or network, or to bypass its security mechanisms [7]. IDSs are essential
for protecting digital assets and facilitating the handling of security breaches. They can be

CHAPTER 2. THEORETICAL BACKGROUND 6

categorized into two main types: Network-based Intrusion Detection Systems (NIDS) and
Host-based Intrusion Detection Systems (HIDS), both designed to identify any malicious
attempt to penetrate a system’s defenses [8].

2.2.1 Classification of an IDS based on monitored activity

Intrusion detection systems can be grouped into two main types: NIDS (Network-based
Intrusion Detection Systems) and HIDS (Host-based Intrusion Detection Systems). This
classification takes into consideration the kind of activity the IDS monitors.

Network-based intrusion detection systems are devices placed within a network to ana-
lyze traffic moving through its hosts. Network-based IDSs exist in the form of software or
hardware-based systems [9]. A computer network interface card (NIC) typically operates
in non-promiscuous mode, meaning it only receives packets whose destination Media Ac-
cess Control (MAC) addresses are either the NIC’s MAC address or a broadcast address.
However, the network interface card of a NIDS operates in promiscuous mode, receiving
all network traffic regardless of the destination MAC addresses [10]. Typical problems
with NIDS are high false positive and false negative rates, and the inability to detect at-
tacks within encrypted traffic and during periods of high traffic in busy networks [11] [7].

Host-based intrusion detection systems are deployed on single computer systems to
monitor local events and protect against internal and external cyberattacks [12]. Host-
based IDS data sources are typically of two types: operating system audit trails and system
logs. The first are generated at the kernel level, which makes them more protected than
system logs but also very long and detailed. System logs on the other hand are smaller,
less cryptic, and considerably simpler to comprehend [7]. These data help the HIDS track
changes made to registry settings, critical system configuration, and log and content files,
alerting to any unauthorised or anomalous activity [13]. The major drawback of a HIDS is
its high consumption of host resources [11].

2.2.2 Classification of an IDS based on detection method

The detection method lies at the heart of the IDS, as it specifies how the system detects in-
trusions. The IDS employs two types of detection methods: signature-based and anomaly-
based detection methods [9]. A signature-based IDS works by comparing monitored ac-
tivities against a database of pre-defined pattern of events known as “attack signatures”.

CHAPTER 2. THEORETICAL BACKGROUND 7

Conversely, an anomaly-based IDS establishes a baseline of normal (legitimate) activities
and identifies deviations from this baseline as potential intrusions [7].

2.2.2.1 Anomaly-based network IDS

Intrusion detection systems usually leverage anomaly detection capabilities to model nor-
mal network traffic behavior and detect deviations as potential signs of attacks. This ap-
proach is especially effective against obvious attacks which generate significant change in
network traffic, such as Port and Service Scanning or Denial-of-Service (DoS) attempts.
Anomaly detection is much less effective at detecting stealthy attacks, which are more sub-
tle and resemble normal communications. Detecting subtle attacks would require tuning
anomaly detection to be more sensitive, which would lead to many false positive alarms. To
address this type of threat, Classification methods, which provide better accuracy, are used.
Binary classification help distinguishing benign from malicious traffic, while multi-class
classification is used to identify different types of attacks and malicious behaviors in a fine-
grained manner. As network traffic is diverse with abundant communication protocols, the
modeling of network environments and behaviors is becoming increasingly difficult. This
is why “AI applications to network security are the most successful in monitoring simple,
stable, and predictable network environments composed of low-end devices with simple
behaviors, such as Internet-of-Things (IoT) networks. . . ” [6].

2.2.3 Classification of an IDS based on response upon detection

After the analysis of collected events or network information for attack indicators, intrusion
detection systems proceed to generate appropriate responses. These responses can range
from reporting the findings to a designated location, to implementing more proactive au-
tomated actions. Commercial IDSs typically offer a broad spectrum of response options,
which are commonly classified as active responses, passive responses, or a combination of
both. An active IDS triggers an automated countermeasure action to prevent further esca-
lation of certain types of attacks. A passive IDS only generates alerts to inform users when
malicious activity is detected [7].

2.3 Internet of Things

The Internet of Things (IoT) refers to the interconnected network of physical devices em-
bedded with sensors, software, and other technologies to collect and exchange data over
the internet. This network includes a vast range of devices, from household appliances to

CHAPTER 2. THEORETICAL BACKGROUND 8

industrial machinery, enabling smarter environments and more efficient operations. How-
ever, the rapid proliferation of IoT devices has also introduced serious security challenges.
IoT networks are particularly vulnerable to cyberattacks due to their limited computing
resources, lack of established security standards, and the sheer number of interconnected
devices, which provide multiple entry points for attackers [14].

2.4 Overview of Artificial Intelligence

The term ‘Artificial Intelligence’ broadly refers to applications of technology able to per-
form tasks that resemble human cognitive function, and the capability of a machine to im-
itate intelligent human behavior. It involves the development of computer systems that are
able to perform tasks which normally require human intelligence, such as visual perception,
speech recognition, and decision-making [15]. While the presented definition provides a
general outline of the meaning of the term, there is not a universally accepted definition
for AI. The concept and parameters of AI are subject to debate and continual evolution, ”A
lot of cutting-edge AI has filtered into general applications, often without being called AI
because once something becomes useful enough and common enough it is not labeled AI
anymore” [16].

Figure 2.1: Artificial Intelligence Subsets [17]

CHAPTER 2. THEORETICAL BACKGROUND 9

As seen in Figure 2.1, Artificial Intelligence is the concept of creating smart intelligent
machines, while Machine Learning is a subset of it which enables the development of AI-
driven systems that automatically learn and improve from experience. Furthermore, Deep
Learning is a subset of Machine Learning that uses vast volumes of data with complex
algorithms, such as Neural Networks, in training AI models.

2.5 Machine Learning

Machine Learning, a subset of Artificial Intelligence, focuses on the creation of algorithms
that allow a computer to learn from data and previous experiences, without the need for
explicit programming. Artificial Intelligence, particularly Machine Learning, has grown
rapidly in recent years in the context of data analysis and computing, enabling applications
to function in an intelligent manner. It was defined in the 1950s by AI pioneer Arthur
Samuel, who popularized the term and is best known for his program that played champi-
onship level checkers, as “the field of study that gives computers the ability to learn without
explicitly being programmed.” [18].

Machine learning contains a set of algorithms that operate on a vast amount of data.
These algorithms are fed with data to be trained on, and through this training process, they
construct models to perform specific tasks. Hence, Machine Learning primarily relies on
two essential elements: a large collection of data, and the algorithm responsible for its
processing.

2.5.1 Machine Learning Types

Machine Learning can be broadly classified into three main types, which are the most
used, based on their methods and learning approaches. These types include: Supervised
Learning, Unsupervised Learning, and Reinforcement Learning, all shown in Figure 2.2.
Each type is best suited for specific problems and datasets, and employs specific algorithms
in building its output model.

2.5.1.1 Supervised Learning

Supervised Learning is a method in machine learning used to understand how inputs and
outputs are connected in a system. It works by using pairs of input-output examples that
are already known. The output is seen as the ‘label’ or the ‘dependent variable’ of the input
data. In supervised learning, the aim is to create a computer system that understands how
inputs relate to outputs. This system learns from examples where both the input and the

CHAPTER 2. THEORETICAL BACKGROUND 10

Figure 2.2: Machine learning Types and Algorithms [19]

correct output are known. Once trained, the system can then predict the output for new
inputs. If the output takes a finite set of discrete values indicating the class labels of the
input, the learned mapping leads to the classification of the input data. If the output takes
continuous values, it leads to a regression of the input [20].

2.5.1.2 Unsupervised Learning

Unsupervised Learning operates differently from supervised learning. In unsupervised
learning, there are no clear labels for the data. Instead, the focus is on allowing the model
to find patterns and make predictions independently. The machine is given data and is
expected to discover hidden features based on the similarities it identifies.

This approach, which uses input vectors without corresponding target values, continues
to evolve. Unsupervised learning has seen remarkable developments in its ability to group
and interpret information based on similarities, patterns, and differences [21]. However,
unsupervised learning is computationally complex and requires a large amount of data.

2.5.1.3 Reinforcement Learning

Reinforcement Learning involves the process of learning optimal behaviors within an en-
vironment to maximize rewards. Unlike supervised or unsupervised learning, where data

CHAPTER 2. THEORETICAL BACKGROUND 11

is provided as input, in reinforcement learning, data is accumulated through trial-and-error
methods. In supervised learning, the training data includes the answer key, which allows
the model to learn from correct answers directly. However, in reinforcement learning, the
agent determines its actions to achieve a given task. In the absence of a training dataset,
it is bound to learn from its experience by receiving feedback from the environment in the
form of rewards or punishments. This method mirrors the way children learn, by perform-
ing actions and observing the outcomes, using feedback to refine their understanding of the
environment [22].

2.5.2 Machine Learning Algorithms

Supervised learning is divided up into two fundamental categories: Regression and Clas-
sification. They are both employed in machine learning to generate predictions based on
labeled data. The key distinction between the two lies in the nature of predictions they
output. Regression algorithms predict continuous values, such as prices, salaries, or ages.
Conversely, classification algorithms predict discrete values, such as gender (male/female),
truth value (true/false), spam detection (spam/not spam), and more.

Table 2.1: Comparison between Regression and Classification

Regression Classification
Output variable is continuous Output variable is discrete

It finds the best fit for accurately
predicting the output

It finds the decision boundary that
classifies the datasets into different

groups
It aims to forecast or predict It aims to find the right category

The Regression algorithm can be
further divided into Linear and

Non-linear Regression.

The Classification algorithms can be
divided into Binary Classifiers and

Multi-class Classifiers.

Classification: Classification is used to predict a categorical output, assigning data in-
stances to predefined groups or classes depending on their features. It encompasses three
subcategories: Binary classification, multi-class classification, and multi-label classifica-
tion. Some of the popular algorithms used in classification are described below:

• Logistic Regression: is a method used to generate the probability of a discrete out-
come given an input variable. It is useful when the dependent variable is binary

CHAPTER 2. THEORETICAL BACKGROUND 12

but the independent variables are continuous. The term ”regression” in its name is
derived from its relation to linear regression.

• Decision Tree Classification: as mentioned above, this technique is suitable for both
regression and classification.

• Random Forest Classification: a method that aggregates the predictions of multiple
decision trees to make a final classification. It employs a majority vote, where the
class predicted by the majority of individual trees is considered the final prediction.
This approach improves the accuracy and robustness of the classification.

• Support Vector Classifier: this method aims to find the optimal fit line (or surface in
higher dimensions) that separates data points into different classes with the maximum
margin.The margin represents the distance between the hyperplane and the nearest
data points from each class, known as support vectors.

2.5.2.1 Naive Bayes:

Naive Bayes is a simple and effective probabilistic classifier based on Bayes’ Theorem, that
is well-suited for high-dimensional datasets. Naive Bayes classifiers assume that the fea-
tures in a dataset are independent given the class label. This assumption of independence,
termed ‘naive’, simplifies the computation, although it may not always hold true in practice
as features may be correlated. Despite this simplification, Naive Bayes performs well in
practice [23].

Bayes’ theorem is stated mathematically in the following equation:

P (A|B) =
P (B|A) · P (A)

P (B)
(2.1)

where:

P (A|B) = the probability of event A happening given that B is true. For naive bayes, A
is the class, and B is the set of features.

P (A) = Prior Probability of event A. It is the overall probability of each class.
P (B|A) = Likelihood. It is the probability of each feature given each class.

During training, Naive Bayes calculates the prior probabilities P (A) for each class and
the likelihoods P (B|A) for each feature given the class. These probabilities are estimated
from the training data.

CHAPTER 2. THEORETICAL BACKGROUND 13

Naive Bayes assumes that all features are independent given the class label. This means
that the joint probability P (A|B) can be written as the product of the individual probabili-
ties of each feature:

P (A|x1, x2, . . . , xn) = P (A) · P (x1|A) · P (x2|A) · . . . · P (xn|A) (2.2)

For a new instance, Naive Bayes calculates the posterior probability for each class
using the previously computed priors and likelihoods. The class with the highest posterior
probability is chosen as the prediction (the correct class).

2.5.2.2 Decision Tree

A Decision Tree is a supervised learning method used for both classification and regression
tasks. “A decision tree is a classifier expressed as a recursive partition of the instance
space.” [24]. It has a hierarchical structure resembling a tree which consists of a root node,
branches, internal nodes, and leaf nodes (also known as terminal or decision nodes). The
model is built by making decisions based on features, where each internal node represents a
feature test, the branches indicate decision rules, and the leaf nodes represent the predicted
class or value.

Figure 2.3: Decision Trees Algorithm [25]

Creating a decision tree involves iteratively dividing the data into smaller groups based
on various attributes. At each step, the algorithm selects the most suitable attribute for fur-
ther division, typically using criteria like Information Gain or Gini Impurity. This division
process continues until certain conditions are met, such as reaching a maximum depth or

CHAPTER 2. THEORETICAL BACKGROUND 14

having a minimum number of instances in a group. One the key challenges in decision tree
construction is the identification of the attribute for the root node at each level. This pro-
cess, known as attribute selection, is addressed using impurity-based criteria. These criteria
help in deciding which feature to choose for splitting the data.
The impurity-based criteria that are commonly used are:

Information gain: Information gain tells how effectively a feature can split the data
into different classes or groups. It quantifies the amount of uncertainty or randomness re-
duced by splitting the data based on a particular feature. Higher information gain implies
that splitting the data based on that feature leads to more accurate predictions or classifica-
tions.The mathematical equation for Information Gain is denoted below:

IG(S,A) = Entropy(S)−
∑
v∈A

|Sv|
|S|

· Entropy(Sv) (2.3)

where:

S = a set of instances
A = an attribute
Sv = the subset of S
v = represents an individual value that the attribute A can take

Entropy is the measure of uncertainty in a dataset. It calculates the impurity of a col-
lection of examples. A lower entropy indicates less disorder and higher predictability. It
represents how much the data is random. It is given by the following equation:

H(S) = −
n∑

i=1

pi log2(pi) (2.4)

where:

pi = the proportion of examples in class i to the total number of examples in dataset S
with n classes

Gini Index: Gini index represents the likelihood of misclassification for a randomly
chosen element within the dataset. Lower Gini index values indicate a lower impurity and
better separation of classes in the dataset. Its formula is given by:

Gini(S) = 1−
n∑

i=1

p2i (2.5)

where:

CHAPTER 2. THEORETICAL BACKGROUND 15

pi = the proportion of examples in class i to the total number of examples in dataset S
with n classes

Table 2.2: Comparison between Gini index and Information Gain

Information Gain Gini Index
Multiplies probability of each class

by log base 2 of that class probability
Subtracts the sum of square of

probabilities of each class from 1
It works well with smaller partitions

in the dataset
It works well with large partitions in

the dataset
Used in calculating the further split of

the tree by ID2, C4.5 algorithm
Used in calculating the further split of

the tree by the CART algorithm

Building a decision tree in machine learning requires the following steps:

• Selecting the best split by evaluating potential splits using criteria like Gini Impurity
or Information Gain for each feature.

• Creating nodes by splitting the data, based on the attribute above, into subsets and
create nodes in the tree.

• Recursively repeating the process for each subset until a stopping criterion is met
(e.g. maximum depth, minimum samples per leaf, or no further improvement).

2.5.2.3 Random Forest

Random Forest is a ML algorithm comprising of a large number of individual decision
trees operating as an ensemble. Each tree in the forest generates a class prediction, and the
class with the highest number of votes becomes the model’s prediction [26]. The underlying
principle is that a group of weak learners (individual trees) can collaboratively form a strong
learner, improving prediction accuracy and controlling overfitting compared to a single
decision tree.

Random Forests are used for both classification and regression tasks. They operate by
constructing multiple decision trees during training and outputting the mode of the classes
(for classification) or the mean prediction (for regression) from the individual trees [26].

CHAPTER 2. THEORETICAL BACKGROUND 16

Figure 2.4: Random Forest Algorithms [27]

The following describes the process by which a random forest is trained:

• Randomly selecting multiple subsets from the original dataset, along with features to
build several decision trees.

• For each bootstrap sample, or subset, a decision tree is trained. These trees are also
labeled as weak learners or base learners.

• When training each decision tree, a subset of features is randomly selected at each
split or node. This will help introduce variability among the trees, which reduces
overfitting.

• Once all trees are trained, they are combined to form the random forest. Predictions
of this random forest will depend on a majority voting of the output of each decision
tree for classification tasks, and on an averaging for regression tasks. This approach
helps improve accuracy and reduce overfitting and variance.

CHAPTER 2. THEORETICAL BACKGROUND 17

Table 2.3: Comparison between Decision Tree and Random Forest

Aspect Decision Tree Random Forest
Structure Single tree with a

hierarchical structure
Ensemble of multiple

decision trees
Performance Prone to overfitting, with

complex data
Less prone to overfitting

due to ensemble approach
Interpretability Easy to interpret and

visualize
Difficult to interpret due to

the numerous trees
Training and predicting

time
Faster training time Slower training time due to

multiple trees
Accuracy Can be accurate with

simpler datasets
Generally more accurate,

with complex data

2.5.2.4 Neural Networks

Traditional ML algorithms rely on predefined assumptions about the data and often require
feature engineering to perform well. However, as data becomes more complex, these al-
gorithms may struggle to capture hidden patterns, leading to reduced prediction accuracy.
This is where Neural Networks can address these limitations. Inspired by the structure and
function of the human brain, Neural Networks are capable of modeling complex relation-
ships and learning complicated representations and patterns.

Neural networks, a subset of ML algorithms, consist of layers of interconnected nodes,
or neurons, where each connection is assigned a weight. An artificial neuron takes multiple
inputs, computes a weighted sum, and then applied an activation function to produce an
output [28].

Figure 2.5: Graphical Representation of a Neuron [29]

CHAPTER 2. THEORETICAL BACKGROUND 18

The mathematical expression for a perceptron is:

y = ϕ

(
n∑

i=1

wixi + b

)
(2.6)

where:

y = the output
ϕ = the activation function
wi = the weights
xi = the input features
b = the bias term
n = the number of input features

Weights: In a perceptron, or artificial neuron, weights are the parameters that deter-
mine the importance of each input feature, as each input is multiplied by its corresponding
weight. The aim of the weights is to scale the inputs appropriately based on their relevance
to the output.

Bias: The bias allows the model to fit the data better by shifting the activation function.
It can be considered as the y-intercept in a linear equation. It ensures that the perceptron
can model relationships that do not pass through the origin. This allows to generate an
output even when all input features are zero. Like weights, the bias is also adjusted during
the training process to improve the perceptron’s performance.

A neural network is composed of layers: an input layer, one or more hidden layers, and
an output layer as shown in figure 2.6.

Figure 2.6: Neural Networks Layers [30]

CHAPTER 2. THEORETICAL BACKGROUND 19

• Input Layer: The input layer is the first layer in a neural network. It receives the raw
data and passes it on to the next layers. Each neuron in the input layer represents a
feature of the data. For example, in image recognition, each pixel of an image might
be an input neuron [28].

• Hidden Layers: Hidden layers are intermediate layers between the input and output
layers. They perform computations on the received data from the previous layer. The
neurons in hidden layers apply weights to the inputs, sum them up, and pass the result
through an activation function to introduce non-linearity to learn complex patterns.
There can be multiple hidden layers in a neural network. Networks with more than
one hidden layer are known as Deep Neural Networks [31].

For a given neuron j in the first hidden layer, the output is calculated as:

zj =
n∑

i=1

wijxi + bj (2.7)

Where wij is the weight connecting input xi to neuron j, and bj is the bias term.

The result zj is then passed through an activation function ϕ to introduce non-linearity:

aj = ϕ(zj) (2.8)

This process is called forward propagation.

• Output Layer: The output layer is the final layer of the neural network. It produces
the network’s predictions. The number of neurons in the output layer depends on the
type of problem being solved. For binary classification, there is one output neuron,
while for multi-class classification, there are multiple output neurons, each represent-
ing a different class [28].

The weights and biases must be updated regularly in order to achieve the correct output.
The obtained output is compared to the desired result and the parameters are adjusted ac-
cordingly. This procedure is called Back Propagation, which involves these steps:

• The first step is to calculate the loss between the predicted output and the actual
target. A common loss function is the Mean Squared Error (MSE):

J(w, b) =
1

2m

m∑
i=1

(
hw(x

(i))− y(i)
)2

(2.9)

CHAPTER 2. THEORETICAL BACKGROUND 20

where:

m = the number of training examples
x(i) = the training example input
y(i) = the actual output
hw(x

(i)) = the predicted output, given the weights w and biases b.

• The weights and biases are then updated to minimize the loss:

wnew = wold − α
∂J

∂w
(2.10)

bnew = bold − α
∂J

∂b
(2.11)

α: the learning rate or the step size at which the weights are updated during the
training process.

2.5.3 Evaluation Metrics

Evaluation metrics are tools used to measure the performance of a ML model in various
aspects. A fundamental component in evaluating the model is Confusion Matrix. It cal-
culates the performance of a ML model on the test data samples. It is used to display the
number of accurate and inaccurate instances based on the model’s predictions. Confusion
matrix analyses true positive, true negative, false positive, and false negative predictions.
When there is an uneven class distribution in a dataset, this matrix is useful in evaluating a
model’s performance beyond the usual basic accuracy metrics.

Table 2.4: Confusion Matrix

Term Definition
True Positives (TP) Correctly predicted positive cases
True Negatives (TN) Correctly predicted negative cases
False Positives (FP) Incorrectly predicted positive cases
False Negatives (FN) Incorrectly predicted negative cases

• Accuracy: it measures the correct predictions out of the complete test dataset.

Accuracy =
TP + TN

TP + TN + FP + FN
(2.12)

CHAPTER 2. THEORETICAL BACKGROUND 21

• Precision: the ratio of correctly predicted positives to the total predicted positives.

Precision =
TP

TP + FP
(2.13)

• Recall (Sensitivity): the ratio of correctly predicted positives to all the observations
in the actual class.

Recall =
TP

TP + FN
(2.14)

• F1-Score: it is the harmonic mean of Precison and Recall.

F1 Score = 2× Precision × Recall
Precision + Recall

(2.15)

2.6 Implementation Tools and Technologies

2.6.1 Raspberry PI

The Raspberry Pi is a single-board computer (SBC) that is interoperable with any input and
output hardware device like a monitor, a mouse, or a keyboard. It was developed by the
Raspberry Pi Foundation with the goal of making computing accessible to more people.
Raspberry Pi has evolved through several models, each offering improvements in process-
ing power, memory, and connectivity. The latest models, such as Raspberry Pi 4, come
equipped with a quad-core ARM Cortex-A72 processor, up to 8GB of RAM, USB 3.0
ports, and dual 4K HDMI outputs [32].

2.6.2 ESP32 Microcontroller and ESP-IDF

The ESP32 [33] is a low-power system on a chip (SoC) with integrated Wi-Fi and Blue-
tooth capabilities, developed by Espressif Systems. The ESP32 features a dual-core (or
single-core) Xtensa 32-bit LX6 microprocessor, a range of peripheral interfaces including
multiple GPIO pins, ADCs, DACs, UART, SPI, I2C, and PWM interfaces, and a powerful
wireless transceiver, making it an ideal choice for Internet of Things (IoT) projects.
Espressif IoT Development Framework (ESP-IDF) [34], is the official development frame-
work for the ESP32 chip. It provides an open-source platform for building applications for
the ESP32 family of devices. ESP-IDF includes all the necessary tools, libraries, and APIs
to develop, debug, and deploy applications, making it a powerful resource for developers
working on Internet of Things (IoT) projects which use the ESP32 SoC microcontroller.

CHAPTER 2. THEORETICAL BACKGROUND 22

2.6.3 Communication protocols

2.6.3.1 Ethernet Protocol

Ethernet is a communication protocol that links computers and ethernet-capable devices in
a network via a wired connection. It is used in both local area network (LAN) and wide
area network (WAN) systems. Normal IEEE 802.3 compliant Ethernet frames are between
64 and 1518 bytes in length. They are made up of five or six different fields: a destina-
tion MAC address (DA), a source MAC address (SA), a type/length field, data payload, an
optional padding field and a Cyclic Redundancy Check (CRC). Additionally, when trans-
mitted on the Ethernet medium, a 7-byte preamble field and Start-of-Frame (SOF) delimiter
byte are appended to the beginning of the Ethernet packet [34].

2.6.3.2 SPI Communication Protocol

Serial Peripheral Interface (SPI) is a synchronous serial communication protocol that is
generally used for short distances. This protocol allows a full duplex communication be-
tween the master and the slaves, as well as the use of more than one slave device with only
one master. A slave is addressed using an input pin on its interface: CS (Chip Select). The
addressing is taken care of exclusively by the hardware. A simple SPI interface uses 4 lines
for communication [34], which are:

• CLK (Clock): Oscillating signal generated by a Host that keeps the transmission of
data bits in.

• MOSI: Master Output Slave Input.

• MISO: Master Output Slave Input.

• CS (Chip Select): Allows a Host to select individual Device(s) connected to the bus
in order to send or receive data.

2.6.3.3 I2C Communication Protocol

The Inter-Integrated Circuit (I2C) is a synchronous, half-duplex, serial communication pro-
tocol that allows co-existence of multiple masters on the same bus, as well as multiple
slaves [34]. Only two lines are needed for communication, which are:

• SCL (Serial clock): Provides the clock signal for synchronous communication.

• SDA (Serial Data): data lines for all the devices.

CHAPTER 2. THEORETICAL BACKGROUND 23

2.6.4 ENC28J60 Module

The ENC28J60 is a stand-alone Ethernet controller with an industry standard Serial Pe-
ripheral Interface (SPI). It is designed to serve as an Ethernet network interface for any
controller equipped with SPI. The ENC28J60 meets all of the IEEE 802.3 specifications.
It incorporates a number of packet filtering schemes to limit incoming packets. It also pro-
vides an internal DMA module for fast data throughput and hardware assisted checksum
calculation, which is used in various network protocols. Communication with the host con-
troller is implemented via an interrupt pin and the SPI, with clock rates of up to 20 MHz.
Two dedicated pins are used for LED link and network activity indication [35].

2.6.5 PCAP File Format

PCAP files are a common format for storing packet captures. A PCAP file includes an exact
copy of every byte of every packet as seen on the network, including OSI layers 2-7. The
PCAP file format was developed alongside the development of the tcpdump and libpcap
libraries in the 1990s. As these libraries became the de facto standard of network capturing
on Unix systems, this format became the most common format in the open source world
for capture files from any copper, fibre, or wireless network [36] [37].

Chapter 3

Hardware System Design

In this chapter, a general overview of the hardware components and architectures of two
proposed prototypes for this project is presented. The prototypes are based on different
hardware platforms: Espressif’s ESP32 and the Raspberry Pi.

3.1 ESP32 based Prototype

3.1.1 System Architecture

Our ESP32-based network intrusion detection system is designed to inspect the contents
and header information of Ethernet network packets that are captured using the ENC28J60
Ethernet module. Relevant features are then extracted from these packets and fed to a ma-
chine learning model. As shown in Figure 3.1, the system consists of 3 main components:

• Ethernet Packet Sniffer and PCAP Generator

• Packet Feature Extractor

• Model Inference

Each component in the system is responsible of communicating the necessary data that
the next component relies on. This establishes the desired data flow through the system,
which ensures its proper functioning.

24

CHAPTER 3. HARDWARE SYSTEM DESIGN 25

Figure 3.1: System Architecture Design

3.1.2 PCAP Generator Component

The Ethernet Packet Sniffer and PCAP Generator component, built around the ESP32, pro-
vides the Packet Feature Extractor component with PCAP files that are processed to extract
relevant features. The PCAP files are generated from the network’s traffic that is sniffed
by the ESP32. The Packet Sniffer is connected to a local network via an Ethernet Switch,
to allow for the monitoring of traffic of the different IoT devices that are connected to the
network.

The ESP32 microcontroller interfaces an ENC28J60, which exposes an SPI interface
for communication, using the VSPI (SPI3) peripheral. The ENC28J60 enables our micro-
controller to establish an Ethernet network connection by interfacing a SPAN/Mirror port
on a network switch; The SPAN port replicates the network traffic, by means of the switch’s
operating system, thereby allowing the ENC28J60 to receive a mirrored copy of all pack-
ets passing through the source ports of the switch. On the other side of the SPAN port,
the ESP32’s Ethernet interface is configured to work in promiscuous mode, which lever-
ages the mirroring effect created by the SPAN port and enables the system to capture and
analyze all network packets, regardless of their destination or source physical addresses.

Storage space is a crucial requirement for the ESP32 to transform the captured Ethernet
frames into PCAP files. There are various storage options for the ESP32. One option is
to partition the ESP32’s flash memory into new sections, and store the generated PCAP
files in a free section under a mounted filesystem, such as SPIFFS. Although this approach

CHAPTER 3. HARDWARE SYSTEM DESIGN 26

requires fewer hardware components, it risks wearing out the ESP32’s NOR flash memory,
which is typically rated for between 10,000 to 100,000 write cycles. Given our use case
involves frequent data writes, a Secure Digital (SD) card, which is a NAND-based flash
memory, is used. An SD card has a greater lifespan and can be safely overwritten many
more times. Thus, the ESP32 interfaces with an SD card module using the HSPI (SPI2)
controller, and mounts a FAT filesystem on the card to perform standard file manipulation
operations.

After capturing a specified number of Ethernet frames and creating a PCAP file, the
ESP32 transmits the file to the next component for feature extraction. This transmission
uses I2C communication with the ESP32 as the master and the next component’s micro-
controller as the slave, by using the I2C0 controller in master mode.

The interconnections of the hardware components are demonstrated in Figure 3.2. Ad-
ditionally, the physical implementation of this component is shown in Figure 3.3.

Figure 3.2: PCAP Generator Hardware Architecture

3.1.3 Packet Feature Extractor Component

The Packet Feature Extractor component functions as a pre-processing unit, responsible for
extracting essential features from network PCAP files and supplying these features to the
machine learning model.

CHAPTER 3. HARDWARE SYSTEM DESIGN 27

(a) Side view of the implementation showing the ENC28J60 interfacing

(b) Top view of the implementation showing the SD card module interfacing

Figure 3.3: PCAP Generator Hardware Implementation

This component includes an ESP32, which processes PCAP files received from the
PCAP Generator component. In this setup, the ESP32 operates as an I2C slave when
communicating with the PCAP Generator MCU, using the I2C0 controller in slave mode.
Due to the need for file manipulation during processing, storage space is necessary. To meet
this requirement, the ESP32 interfaces with an SD card module using the VSPI (SPI3) bus.

Once the processing is complete, the extracted features are transmitted to the final com-
ponent for machine learning model inference. Similar to its communication with the first

CHAPTER 3. HARDWARE SYSTEM DESIGN 28

component, the MCU of this component also employs the I2C protocol to communicate
with the subsequent component using its I2C1 controller in master mode.

Figure 3.4 showcases the hardware components layout and connections of this compo-
nent, while Figure 3.5 illustrates its physical implementation.

Figure 3.4: Feature Extractor Hardware Architecture

Figure 3.5: Feature Extractor Hardware Implementation

3.1.4 Model Inference Component

The Model Inference component is responsible for running the trained machine learning
model using extracted features from PCAP files as input.

CHAPTER 3. HARDWARE SYSTEM DESIGN 29

This component is centered around an ESP32 microcontroller which does the inference
of the model. The ESP32 receives input features from the PCAP Feature Extractor’s micro-
controller by means of an I2C communication, in which the ESP32 is the slave. In addition
to the I2C0 controller that is used in this communication, the ESP32 interfaces a buzzer and
two LEDs which are used in the established alerting mechanism; The green LED is main-
tained in the ON state as long as the network traffic is normal. Once a malicious network
activity is detected, the red LED is switched on and the buzzer is triggered.

The hardware architecture for this component is demonstrated in Figure 3.6, while Fig-
ure 3.7 showcases its physical implementation.

Figure 3.6: Model Inference Component Hardware Architecture

Figure 3.7: Model Inference Component Hardware Implementation

CHAPTER 3. HARDWARE SYSTEM DESIGN 30

3.2 Raspberry Pi based Prototype

Our Raspberry Pi-based NIDS is designed to capture and analyze Ethernet network pack-
ets all on one board. The Raspberry Pi board is equipped with an Ethernet port that is
connected, in our system, to a mirror port of a network switch. Additionally, the board
interfaces a buzzer and two LEDs, by which the alerting mechanism is established. The
hardware architecture for this system is demonstrated in Figure 3.8, while Figure 3.9 show-
cases its physical implementation.

Figure 3.8: System Architecture Design

Figure 3.9: System Hardware Implementation

Chapter 4

Software System Design

4.1 Firmware Design and Implementation

In order for the proposed ESP32 prototype to be functional, firmware was developed for its
three components. Each component’s firmware manages the communication peripherals
and manipulates data to ensure the operation of the system. All component firmware is
built upon the ESP-IDF Framework, which itself is based on a modified version of the Free
Real Time Operating System (FreeRTOS). The FreeRTOS provides the firmware with the
foundation for multitasking, synchronization and resource management, while the ESP-
IDF provides hardware abstraction, ready-to-use network stack as well as various low level
drivers.

4.1.1 Creating and Transmitting the PCAP files

The first component in the proposed system deals with the Ethernet frames that are re-
ceived from a mirror port of a switch. It sniffs the frames by using its Ethernet interface in
promiscuous mode and creates PCAP files out of a selected number of them. In addition,
the PCAP files are transmitted to the next component for further processing.

The firmware for this component relies on the pcap (file writer) ESP-IDF component1,
which allows for the tracing of captured packets in .pcap format2.

As depicted in Figure 4.1, the component starts working by executing a series of ini-
tializations of peripheral drivers, event handlers as well as 2 FreeRTOS tasks, which are
independent threads of execution that represent the core part of this component implemen-
tation.

1The libraries that are part of the ESP-IDF are referred to as ”components” by the ESP-IDF.
2The used component can be found at: https://components.espressif.com/components/espressif/pcap

31

https://components.espressif.com/components/espressif/pcap

CHAPTER 4. SOFTWARE SYSTEM DESIGN 32

Start

Initialize default Ethernet
(with TCP/IP stack)

Initialize sd card module

get current time

is time
set?

Reinitialize Ethernet
without TCP/IP stack

Initialize I2C peripheral

Create Mutex object, PCAP Creator
Task and PCAP Reader/Sender Task

Start Scheduler

Yes

No

Figure 4.1: PCAP Generator Initialization Flowchart

4.1.1.1 Default Ethernet Initialization

This section of the initialization is responsible for configuring and initializing the following
interfaces:

• The SPI interface for the ENC28J60 Ethernet module

• The light-weight IP (lwIP) TCP/IP stack by means of the ESP Network Interface
(ESP-NETIF), which is an abstraction layer built on top of the lwIP stack.

CHAPTER 4. SOFTWARE SYSTEM DESIGN 33

Additionally, the Ethernet driver is installed and attached to the created network interface
ESP-NETIF, and two event handlers are registered:

• Ethernet Event Handler: is used for logging useful information about Ethernet events
such as: starting and stopping events, and connecting and disconnecting events.

• ”got ip” Event Handler: is called when the ESP32 successfully connects to the in-
ternet and is assigned an IP address. It initializes a Simple Network Time Protocol
(SNTP) client and uses it to retrieve the current time from one of the registered NTP
servers.

4.1.1.2 SNTP Client

The ESP32 connects to a Network Time Protocol (NTP) server to get the current time.
This process is needed in order to fill in the timestamp fields in each Packet Record Header
of the PCAP file, as demonstrated in Figure 4.2. The first Timestamp field represents the
number of seconds that have elapsed since 1970-01-01 00:00:00 (Unix Seconds) when the
packet was captured. The second Timestamp field represents the number of microseconds
or nanoseconds that have elapsed since the last full second.

Figure 4.2: PCAP File Packet Record Fields [36]

CHAPTER 4. SOFTWARE SYSTEM DESIGN 34

4.1.1.3 Custom Ethernet Initialization

As the system deals with raw Ethernet packets, and since the ESP32’s Real Time Clock
(RTC) is now synchronized with the current time using the SNTP protocol, the TCP/IP
stack can no longer be attached to the Ethernet driver. This is due to the fact that passing
sniffed Ethernet frames to a custom input function, implies they will not be passed to the
higher layers of the TCP/IP stack. This conflict can be resolved by re-initializing the Eth-
ernet driver in promiscuous mode without the TCP/IP stack, and with a custom input path
for the sniffed Ethernet frames. The custom input callback function is called whenever a
new frame arrives, for which a structure containing its bytes pointer and length is pushed
to a queue. The queue is later used by the PCAP Creator task.

4.1.1.4 Tasks Synchronization and SD Card Access

As later explained in Sections 4.1.1.5 and 4.1.1.6, the two FreeRTOS tasks share an SD
card for manipulating PCAP files. To ensure synchronization when accessing the SD card
between the two tasks, a Mutex is used to lock and unlock access to the SD card. This will
prevent simultaneous access to the SD card, which could lead to data corruption or other
issues. A Mutex is a synchronization primitive that is used in FreeRTOS [38] for inter-
task communication and synchronization. It protects critical sections of code and shared
resources from concurrent access.

4.1.1.5 PCAP Creator Task

The PCAP Creator task continuously checks the queue for new data. When a new packet
arrives and is pushed to the queue, the task fetches the packet from the queue, and adds
it to the PCAP file that is currently being created. The task keeps count of the number of
packets that are recorded in the opened PCAP file, and uses that number to decide whether
to close the current file or create a new one. Creating a PCAP file involves the creation of a
new file in storage space. In this file, a global header, as seen in Figure 4.3, is written. The
global header is then followed by a packet record for each captured packet. The structure
of a PCAP file looks as follows:

• Global Header of the PCAP file

• First Packet Header

• First Packet Data

• Second Packet Header

CHAPTER 4. SOFTWARE SYSTEM DESIGN 35

• Second Packet Data

• . . .

Figure 4.3: PCAP File Global Header Fields [36]

As seen above, the file header contains the following fields:

1. Magic Number: is used to detect the file format itself and the endianness of the data.
The writing device writes the value 0xA1B2C3D4 into this field. Depending on the
endianness, the reading device will read either 0xA1B2C3D4 or 0xD4C3B2A1. The
read value will indicate whether the writing device is little-endian or big-endian.

2. SnapLen (Snapshot Length): is the maximum number of bytes that are recorded from
the captured packet.

3. LinkType: is a value that describes the type of link from which the packets were
captured. For example, a value of 1 = IEEE 802.3 Ethernet.

4. FCS and F: are fields for error detection.

A packet is recorded inside a PCAP file by writing its record header followed by a copy of
the first N bytes of the Ethernet packet, N being the value of the snaplen field in the PCAP
global header.

The flowchart in Figure 4.4 illustrates the PCAP Creator task working process.

CHAPTER 4. SOFTWARE SYSTEM DESIGN 36

Start

Read Ethernet packet from queue

Lock mutex object

is a PCAP
file

opened?
Create new PCAP file

Record packet in current PCAP file

is current
PCAP file

full?

Unlock mutex object

Close PCAP file

No

Yes

No

Yes

Figure 4.4: Flowchart of the PCAP Creator Task

4.1.1.6 PCAP Reader/Sender Task

The PCAP Reader/Sender task continuously checks for completed files that are ready to
be sent. The complete file content is read by the task and sent to the Feature Extractor
component using the I2C protocol. The PCAP file is then deleted after the transmission
process. The flowchart for this task is demonstrated in Figure 4.7.

CHAPTER 4. SOFTWARE SYSTEM DESIGN 37

Start

is there
full closed
PCAP file?

Lock mutex object

Read and Send file bytes through I2C

Delete the transmitted file from storage

Unlock mutex object

Yes

No

Figure 4.5: Flowchart of the PCAP Reader/Sender Task

4.1.2 Extracting Features from PCAP Files

The second component in the system extracts useful information about the PCAP files that
are created from the network traffic. The PCAP files are received from the first component
using I2C communication, and are saved in an SD card. Information about these files,
termed ‘features’, is then transmitted to the Inference component to be used as input to the
ML model. The names and descriptions of extracted features are shown in Table 4.1.

The firmware for this extraction process utilizes a modified version of the PcapPlusPlus
library3, a C++ library designed for the capturing, parsing, and crafting of network packets.
To reduce size and complexity of the application binary, and to ensure compatibility with
ESP32 targets, the source code responsible for capturing and crafting packets, which relies
on Linux and Windows network APIs, has not been compiled into the used version of the
library. Hence, the modified version is only capable of parsing packets, which is sufficient
for our project requirements.

The component starts by configuring and initializing the two I2C controllers, and the
SPI interface for the SD card module. The main function creates two FreeRTOS tasks, and

3The library documentation can be found at: https://pcapplusplus.github.io

https://pcapplusplus.github.io

CHAPTER 4. SOFTWARE SYSTEM DESIGN 38

a Mutex object to synchronize access to the SD card. The tasks functionalities are discussed
in sections 4.1.2.1 and 4.1.2.2, and the component initialization flowchart is shown below.

Start

Initialize I2C0 in slave mode
Initialize I2C1 in master mode

Initialize sd card interface

Create mutex object
Create PCAP Receiver/Writer Task

Create Feature Extractor Task

Start the Scheduler

Figure 4.6: Component Initialization Flowchart

4.1.2.1 PCAP Receiver/Writer Task

The PCAP Receiver/Writer task receives file data bytes from the first component and writes
these data into the sd card. The flowchart in Figure 4.7 demonstrates how it works.

4.1.2.2 Feature Extractor Task

The Feature Extractor task processes PCAP files that are received and stored in the sd
card. The features that are extracted can be grouped, based on their nature and the kind of
information they provide, into the following types:

• Flow Characteristics: these features describe the behavior of the network flow,
which in our case is represented by the packets contained in the Pcap file. They
include: Flow packets, Flow bytes, Number of packets in the flow, Rate, Srate, Drate.

• Protocol Information: these features provide information about the protocol types
that are involved in the network traffic. They include: Protocol type, Transport Layer
Protocols, Application Layer Protocols and other lower layers protocols.

• Flag Counts: these features record count of the TCP flags. They include: All TCP
flag values and ACK, SYN, FIN, URG, and RST counts.

CHAPTER 4. SOFTWARE SYSTEM DESIGN 39

• Dynamic Features: these are complex features which provide insights into the na-
ture of network traffic. They include: Magnitue, Radius, Covariance, Variance Ratio,
and Weight.

• Packets Statistics: these include Total Sum, Minimum, Maximum, Average, and
Standard Deviation of Packets.

Start

are there
available
data from

I2C?

Lock mutex object

Receive file bytes and write the file into sd card

Unlock mutex object

Yes

No

Figure 4.7: Flowchart of the PCAP Receiver/Writer Task

Metadata features, such as Protocol type and TCP flags, are extracted from the Pcap file
using functions and classes provided by the library. Flow characteristics, Dynamic features,
and Packets Statistics are calculated and updated iteratively during the file processing. At
each iteration, a packet from the file is accessed, parsed and information about it is col-
lected. These calculations require data objects that hold the necessary information about
the packets. The mainly used data objects are the following:

• incoming packets and outgoing packets arrays: these arrays are used to store the
sizes of incoming and outgoing Ethernet frames, respectively.

• ethernet sizes array: this array is used to store the sizes of the Ethernet frames con-
tained in the Pcap file.

CHAPTER 4. SOFTWARE SYSTEM DESIGN 40

• TCPFlow and UDPFlow Classes: these classes are used to keep track of packets that
are part of a particular flow from a source pair (source IP address, source port) to a
destination pair (destination IP address, destination port).

The task handles Pcap files and packets data using classes from the PcapPlusPlus li-
brary. A ‘Pcap File Reader Device’ object is created to open the Pcap file in read-mode.
It is used to read all packets contained in the file. A ‘Raw Packet’ object holds the packet
raw data. This data is not parsed and is kept in a byte array. In addition, this class provides
methods for obtaining the timestamp and frame length of the Ethernet packet. The ‘Packet’
class represents a parsed packet. A parsed packet is a RawPacket instance with information
about the protocol layers that are contained within the packet. It is implemented using a
linked list of ‘Layer’ objects, where each layer points to the next higher layer that is con-
tained in the packet. Flowchart of this task is shown in Figure 4.8.

As seen in the flowchart, features are extracted and calculated depending on the type of
the packet being processed. Dynamic features are calculated from ARP and IPv4 packets,
whereas flow features are extracted from TCP and UDP network flows.

Dynamic Features Calculation: Dynamic features are calculated using the incoming packets
and outgoing packets arrays. These arrays are updated on each packet processing. Arrays
of structures, that hold an IP address and its count of occurrences, are used to track IP
addresses of packets. A packet’s destination IP address is checked against recorded source
addresses, this checks whether this IP’s device has sourced some packets before. If it ex-
ists in the records, the frame size is added to the incoming packets array. Otherwise, its
occurence is recorded, and the frame size is also added. Similar process is repeated for the
source address of the packet.

IP Information: Information such as: Time to Live (TTL) and Protocol Type are extracted
from the IP packets.

Extracting TCP and UDP Features: TCP and UDP features are flow characteristics of
the TCP flows and UDP flows, respectively. A flow object defines a unique communication
path between two endpoints using a pair of source and destination IP addresses and ports.
TCPFlow and UDPFlow classes keep track of the existing flows within traffic, by saving

CHAPTER 4. SOFTWARE SYSTEM DESIGN 41

Start

Initialize arrays, variables and objects

is there a
Pcap file?

Lock mutex object

Create a Pcap file reader object

Send features array

Unlock mutex object

Are there
unread

packets in
file?

Delete Pcap file

Reset variables and flags

Create RawPacket object
Read packet timestamp and size

Parse the Raw packet

is it IPv4
or ARP?

Extract UDP features

Dynamic Features calculations Extract TCP features

is it IPv4?

Extract IP information is it TCP? is it UDP?

Yes

No

Yes

No

Yes

No

Yes

No Yes

No

Yes

No

Figure 4.8: Flowchart of Feature Extractor Task

CHAPTER 4. SOFTWARE SYSTEM DESIGN 42

these flows along with the packets’ lengths and timestamps that belong to them. Flow
records are updated with a new flow, or new packet information if the flow already exists.
Then, the total number of packets, flow byte count, flow duration, and directional (from
source to destination and from destination to source) packet counts are calculated for each
flow. Based on these features, Rate, Srate and Drate are also calculated.

4.1.3 Model Inference

The third component in the proposed system handles the inference, by predicting the cat-
egory of the incoming traffic data. This component checks for available data in the I2C
bus, then passes this data to the Predict() function which returns an array of predictions.
A detailed explanation and flowchart of this function can be found in section 4.3. This
function is converted to a C language format to be used with the ESP32, and is compiled
with the main program. In order to manage communication and inference in parallel, two
FreeRTOS tasks are created as follows:

• I2C Communication handler Task: this task manages communication over the I2C
bus, by waiting for availability of data for inference, then sending it to the Prediction
task via a queue.

• Prediction Task: this task is responsible for executing the prediction process, and
handling the corresponding output.

The structure of the esp-idf project for this component is shown below:

model inference/
main/

main.c
predict.c
predict.h

The combination of the self-contained and fast executable predict function, with the FreeR-
TOS multitasking ensures good overall performance and prediction.

CHAPTER 4. SOFTWARE SYSTEM DESIGN 43

Figure 4.9: Model Inference Component Flowchart

4.2 ML Model Development

The development of the machine learning model involves selecting an appropriate dataset,
preprocessing the data to allign with machine learning requirements, and finally selecting
the suitable algorithms and building the models.

CHAPTER 4. SOFTWARE SYSTEM DESIGN 44

4.2.1 Dataset Selection and Preprocessing

NIDS datasets are numerous due to the extensive research efforts in this area, with each
dataset comprising distinct features and labels, and each having its own specific target.

4.2.1.1 NIDS datasets

An intrusion detection dataset can be developed by collecting information from network
traffic flows. This information is required to study the attack patterns and abnormal ac-
tivity of various network attacks. After collecting the incoming and the outgoing network
traffic, network flow analysis is performed to study the network traffic. Flow analysis can
be described as the process of analyzing the network packet information such as source
IP address, destination IP address, source port number, destination port number, type of
network services, etc.. [39]

The behavioral patterns of network attacks change gradually. For this reason, it is
required to upgrade the used datasets in the dynamic environment. The following are some
popular datasets used in this domain:

• NSL-KDD: The NSL-KDD dataset is a refined version of the KDD’99 dataset. At-
tacks are classified into four categories: Denial of Service (DoS), Probe, Remote-to-
Local (R2L), and User-to-Root (U2R).

• UNSW-NB15: It includes nine types of attacks and normal network activities: Fuzzers,
Analysis, Backdoors, DoS (Denial of Service), Exploits, Generic, Reconnaissance,
Shellcode, and Worms. It contains 49 features extracted from network traffic.

• IoT-23: This dataset aims to reflect real-world IoT deployments and usage scenarios,
including typical IoT communication protocols, such as MQTT, HTTP, and others.
It detects two classes: benign traffic and malicious traffic. It is used for binary clas-
sification.

• Bot-IoT: The classes in this dataset include a combination of normal and botnet
traffic, such as DDoS, DoS, OS and Service Scan, Keylogging, with the DDoS and
DoS attacks further organized, based on the protocol used [40].

• CIC-IDS-2017: This dataset, provided by the Canadian Institute for Cybersecurity
(CIC), consists of labeled network flows, including full packet payloads in pcap for-
mat. The dataset is publicly available and includes CSV files for machine and deep
learning applications. It contains both benign and the most common attacks.

CHAPTER 4. SOFTWARE SYSTEM DESIGN 45

• CIC-IoT-2023: It reflects the current landscape of IoT devices and their associ-
ated network traffic. The dataset includes 33 attacks that are classified into seven
categories: DDoS, DoS, Recon, Web-based, Brute Force, Spoofing, and Mirai, in
addition to Benign Traffic.

In this project, the CIC-IoT-2023 dataset was selected due to its rich set of features extracted
from the network traffic, the types of attacks and threats to which IoT devices are mostly
exposed to, and because it is the newest dataset that reflects the current landscape of IoT
traffic.

4.2.1.2 CIC-IoT-2023 Dataset

The CIC IoT 2023 dataset was created to help develop security software for IoT environ-
ments. It includes 33 types of attacks conducted on 105 IoT devices, classified into seven
categories: DDoS, DoS, Reconnaissance, Web-based, Brute Force, Spoofing, and Mirai,
in addition to Benign Traffic. This dataset includes multiple attacks that are not present in
other IoT datasets.

DDoS attacks include many strategies, such as flooding attacks like UDP and ICMP
Floods, and fragmentation-based attacks. These attacks cause service disruptions by over-
whelming a single source with traffic. Web-based attacks, including SQL Injection and
XSS, target web applications. Brute force attacks repeatedly try to gain unauthorized ac-
cess. Spoofing attacks involve faking identities or altering network traffic. Mirai attacks
use methods like GRE IP Flood and UDP Plain attacks, mostly targeting IoT devices [40].

Table 4.1: List of Features in the CIC IoT 2023 Dataset

Feature Description
Destination IP Address The IP address of the destination device.
Destination Port The port number of the destination device.
Source IP Address The IP address of the source device.
Source Port The port number of the source device.
Protocol Type UDP, TCP, IGMP, ICMP..
Flag Flag values (e.g., FIN, SYN).
ACK count Number of packets with ACK flag set in the same flow
SYN count Number of packets with SYN flag set in the same flow
FIN count Number of packets with FIN flag set in the same flow
URG count Number of packets with URG flag set in the same flow

Continued on next page

CHAPTER 4. SOFTWARE SYSTEM DESIGN 46

Table 4.1 – continued from previous page
Feature Description
RST count Number of packets with RST flag set in the same flow
Tranport Layer Protocol Transport Layer Protocol (TCP or UDP)
Application Layer Protocol Application layer (e.g., HTTP, DNS, Telnet)
Rate Rate of packet transmission in a flow
Srate Rate of outbound packets transmission in a flow
Drate Rate of inbound packets transmission in a flow
Tot sum Summation of packets lengths in flow
Min Minimum packet length in the flow
Max Maximum packet length in the flow
AVG Average packet length in the flow
Std Standard deviation of packet length in the flow
Tot size Packet’s length
Number The number of packets in the flow
Flow Bytes/s The flow rate in bytes per second.
Flow Packets/s The flow rate in packets per second.
Magnitue The square root of the sum of Average of lengths of incom-

ing packets in the flow and Average of lengths of outgoing
packets in the flow

Radius The square root of the sum of Variance of lengths of incom-
ing packets in the flow and Variance of lengths of outgoing
packets in the flow

Covariance Covariance of the lengths of incoming and outgoing packets
Variance Ratio of Variance of the lengths of incoming packets in the

flow to Variance of the lengths of outgoing packets in the
flow

Weight Product of Number of incoming packets and Number of out-
going packets

Table 4.1 presents a detailed description of a set of features present in the dataset. The
‘Timestamp’ records the specific time each packet is captured. ‘Flow Duration’ shows
how long a packet has been in transit. ‘Protocol Type’ classifies packets by their network
protocols, including common ones like IP, UDP, and TCP. The dataset also includes indi-
cators for application layer protocols such as ‘HTTP’, ‘HTTPS’, and ‘DNS’ which allows
to identify specific application-level behaviors. Counts of flags like ‘FIN’, ‘SYN’, ‘RST’,

CHAPTER 4. SOFTWARE SYSTEM DESIGN 47

‘ACK’, and ‘URG’ provide information on specific packet-level interactions and potential
anomalies. Statistical metrics like ‘Covariance’ and ‘Variance Ratio’ measure the variabil-
ity in packet lengths, helping to understand the relationship between incoming and outgo-
ing packet sizes. ‘Weight’ represents the total count of incoming and outgoing packets and
offers a comprehensive view of traffic patterns.

Several features seen above are considered categorical data; ‘Protocol Type’ feature in
the dataset is a categorical one that indicates the type of network protocol: TCP or UDP. To
handle categorical features, one-hot encoding is employed. It is a technique used to convert
categorical variables into a numerical format suitable for ML algorithms.

Figure 4.10: One-hot Encoding Example of Categorical Features

DDoS DoS
M

ira
i

Ben
ign

Spo
ofi

ng

Rec
on

W
eb

Base
d

Brut
e Forc

e

0

1

2

3

·107
3.4 · 107

8.09 · 106

2.63 · 106
1.1 · 106 4.87 · 105 3.55 · 105 24,829 15,829

N
um

be
ro

fR
ow

s

Figure 4.11: Distribution of Attack Categories in CIC IoT 2023 Dataset

CHAPTER 4. SOFTWARE SYSTEM DESIGN 48

Because the number of samples in this dataset exceeds 40,000,000, it can significantly
increase the training, testing, and inference time when run on lightweight edge devices such
as MCUs. Additionally, as shown in Figure 4.11, the dataset is unbalanced due to the large
disparity in the number of rows for each attack type. Models trained on this dataset might
become biased towards the majority classes, leading to poorer performance on the minority
classes. To tackle this issue, we performed undersampling on majority classes, by reducing
instances of DoS and DDoS categories. The final version of this dataset was divided into
70% for training and 30% for testing.

Figure 4.12: Dataset Pre-processing Steps

4.2.2 ML Model Building

Different algorithms were used to train different models. The corresponding results will be
compared to decide which trained model to deploy on the edge, as shown in Chapter 5:

4.2.2.1 Naive Bayes

Prior probabilities of each class are calculated, along with the likelihoods or the probabili-
ties of each feature for each class.

These results are saved for further calculations of posterior probabilities. Additionally,
we use log-probabilities instead of raw probabilities to enhance numerical stability and
avoid floating-point underflow.

CHAPTER 4. SOFTWARE SYSTEM DESIGN 49

Once the model is trained, we use the calculated priors and likelihoods to find the
probabilities of a new instance and predict the correct class.

4.2.2.2 Decision Tree

The decision tree was initialized with a maximum depth of 50 nodes. The criterion chosen
was ‘Gini Index’ and the splitter used was ‘best’. Once the model is trained, it is saved in a
PKL file and loaded for further predictions. Traversing starts at the root of the decision tree
and goes through its children nodes until a leaf node is reached. The corresponding class is
then assigned as the predicted result.

4.2.2.3 Random Forest

The random forest model was initialized with 50 decision trees. By having a large number
of estimators, the model can capture more complex patterns and reduce the variance.

4.2.2.4 Neural Network

This model consists of four layers: three hidden layers and one output layer as shown in
Figure 4.13 (units stand for neurons).
Batch normalization was used to stabilize and accelerate the training process. The param-
eters were initialized in the following way: The gamma vector (γ) was set to 1, the beta
vector (β) was set to 0, the moving mean was initialized to 0, and moving variance was
initialized to 1. Initializing these parameters provide a stable starting point to avoid unnec-
essary shift. The activation functions used are ReLU for the hidden layers and Softmax for
the output layer. ReLU (Rectified Linear Unit) is defined as:

ReLU(x) = max(0, x) (4.1)

The Softmax function is defined as:

Softmax(zi) =
ezi∑
j e

zj
(4.2)

The final output layer uses the Softmax activation function to convert the raw scores into
probabilities for each class.

The Adam optimizer was used for training our ANN (Adaptive Moment Estimation),
which is an extension of the Stochastic Gradient Descent algorithm. It computes adaptive
learning rates for each parameter.

CHAPTER 4. SOFTWARE SYSTEM DESIGN 50

For multiclass classification, categorical cross-entropy loss function was set, which cal-
culates the log loss for each class, weights it by the true class label, and sums these values
across all classes. It is defined as:

Loss = −
∑
i

yi log(pi) (4.3)

Figure 4.13: Model Layers Structure

CHAPTER 4. SOFTWARE SYSTEM DESIGN 51

4.3 Raspberry Pi Implementation

Among the models built above, the Decision Tree model was chosen, due to its high perfor-
mance and relatively small size compared to other models. A detailed discussion is found
in section 5.3.

The system is designed to sniff network packets, process them, and make predictions
about their nature, distinguishing between benign traffic and potentially harmful activity.

Packets are captured using Tshark tool (Terminal oriented version of Wireshark for
capturing and displaying packets) and stored in a PCAP file. Because raw data cannot be
directly fed into the ML model, preprocessing is required to extract the necessary features
which are used by the model to make predictions.

Preprocessing involves extracting relevant information from PCAP files, such as packet
size, protocols used, and other network traffic characteristics that are mentioned in Table
4.1. These features are then formatted into an array that suits the input format of the Deci-
sion Tree model. Section 4.1.2 explains the process of extracting the necessary features.

Predicting the label of the received data is performed by a function of if-else statements,
generated from the decision tree trained model. The flowchart in Figure 4.15 explains how
this function is defined.

The advantage of this approach is the fast real-time prediction; direct execution of if-
else statements is faster than model deserialization and avoids computational costs and
memory overhead. Additionally, it is a self-contained code that is portable to different pro-
gramming environments, as seen in section 4.1.3.

The program utilizes multi-threading to fulfill real-time requirements:

• Thread1: Sniffing Packets

• Thread2: Preprocessing

• Thread3: Predicting

CHAPTER 4. SOFTWARE SYSTEM DESIGN 52

Figure 4.14: Implementation on Raspberry Pi Flowchart

CHAPTER 4. SOFTWARE SYSTEM DESIGN 53

Figure 4.15: Generating the Predict() Function Flowchart

Chapter 5

Results and Analysis

In this project, four ML models were trained to detect network intrusions in IoT networks.
The objective of this analysis is to evaluate the performance of these models, covering
their strengths and weaknesses within the context of our application. Based on the insights
gained from this analysis, we will select the most appropriate algorithm for this task to
deploy on edge.

5.1 Hypothesis on the Performance of ML Models

Among the four ML models that were trained for a Network Intrusion Detection System, it
is hypothesized that their overall performance, ranked from the least to the most effective,
will follow this order: Naive Bayes, Neural Network, Decision Tree, then Random Forest.

This hypothesis relies on the idea that Random Forest will outperform other models due
to its ensemble nature and robustness, followed by Decision Tree for its interpretability and
efficiency. Neural Networks, while powerful, are hypothesized to rank third due to their
resource demands. Naive Bayes is expected to have the lowest performance because of its
strong independence assumptions, which may not represent the complex environment of
IoT network traffic.

5.2 ML Models Evaluation

A detailed evaluation of each model’s performance is illustrated using a detailed evaluation
metrics to provide a clear comparison: accuracy, precision, recall, and F1-score.

54

CHAPTER 5. RESULTS AND ANALYSIS 55

5.2.1 Naive Bayes

The choice to explore Naive Bayes classifier was driven by the primary advantages of its
simplicity and ease of implementation, based on straightforward probabilistic principles.
This makes Naive Bayes suitable for real-time applications. It also performs effectively
with small datasets. Unlike some more complex algorithms that require large amounts of
data to achieve high performance, that is an advantage in the case of our dataset, which was
under-sampled to overcome the imbalance.

Table 5.1: Confusion Matrix Results of Naive Bayes

Class True Positives False Positives False Negatives True Negatives (TN)
DDoS 0.97 1.063 0.032799 5.932663
DoS 0 0.000039 0.99888 6.999543
Benign Traffic 0.57 1.1305 0.43239 5.865572
Mirai 0.33 0.00829 0.67609 6.984082
Spoofing 0.097 0.04512 1.0001 6.856242
Reconnaissance 0.87 2.1137 0.13608 4.878682
Web Based 0 0 1.004 6.994462
Brute Force 0.048 0.16069 0.95 6.839772

Table 5.2: Performance Metrics for Naive Bayes

Class Accuracy Precision Recall F1 Score
DDoS 0.8707 0.4776 0.9672 0.6392
DoS 0.8750 0.0000 0.0000 0.0000
Benign Traffic 0.7489 0.3351 0.5685 0.4214
Mirai 0.9028 0.9755 0.3287 0.4902
Spoofing 0.8611 0.6824 0.0886 0.1575
Reconnaissance 0.7296 0.2918 0.8650 0.4372
Web Based 0.8742 0.0000 0.0000 0.0000
Brute Force 0.8722 0.2291 0.0482 0.0793
Weighted Average 0.8475 0.4039 0.7111 0.4897

Starting with accuracy as shown in Table 5.2, we observe varying values across different
classes. The classifier achieves an accuracy of 0.8707 for the ‘DDoS’ class. However, the
accuracy for other classes such as ‘DoS’, ‘Web Based’, and ‘Brute Force’ is notably lower.

Moving on to precision, it is high for classes like ‘Mirai’ and ‘Spoofing’. However, it
is considerably lower for classes such as ‘DoS’ and ‘Web Based’, implying a higher rate of
false positives in these predictions. The recall for the ‘DDoS’ class is high. However, the

CHAPTER 5. RESULTS AND ANALYSIS 56

recall for classes like ‘DoS’ and ‘Web Based’ is notably lower, indicating a higher rate of
false negatives in these predictions.

5.2.2 Neural Network

Neural Networks were chosen among the models because of their capability to learn pat-
terns from raw data, and discover underlying structures that may not be immediately ap-
parent. Additionally, it requires less computational power compared to other deep learning
algorithms such as Convolutional Neural Networks with a more complex architecture.

Table 5.3: Confusion Matrix Results of Neural Network

Class True Positives False Positives False Negatives True Negatives
DDoS 1 0.00006 1.9029 5.095502
DoS 0 0 1.001572 6.99689
Benign Traffic 0.99 3.620742 0.01491 3.37281
Mirai 0.2 0.16225 0.80064 6.835572
Spoofing 0.0017 0.00016 0.9937 7.0029
Reconnaissance 0.022 0.11313 0.981 6.882332
Web Based 0 0 1.001 6.997462
Brute Force 0 0 1.005 6.993462

Table 5.4: Performance Metrics of Neural Network

Class Accuracy Precision Recall F1 Score
DDoS 0.7269 0.9999 0.0005 0.0011
DoS 0.9997 0.0000 0.0000 0.0000
Benign Traffic 0.5069 0.2150 0.9851 0.3524
Mirai 0.8450 0.5528 0.1998 0.2930
Spoofing 0.7063 0.9054 0.0017 0.0034
Reconnaissance 0.6855 0.1620 0.0218 0.0387
Web Based 0.6998 0.0000 0.0000 0.0000
Brute Force 0.6998 0.0000 0.0000 0.0000
Weighted Average 0.7321 0.2753 0.1088 0.0708

For the ‘DDoS’ class, the high precision shown in Table 5.4 indicates that when the
model predicts DDoS, it is usually correct, but the very low recall shows it misses most
actual DDoS instances. In the ‘DoS’ class, the model fails to identify DoS instances. For

CHAPTER 5. RESULTS AND ANALYSIS 57

‘Benign Traffic’, The high recall means most benign traffic instances are correctly iden-
tified, but the low precision indicates many false positives. The ‘Mirai’ class’s results
show that it identifies this category but there is room for improvement. For ‘Spoofing’,
the classifier has a high precision but very low recall. The ‘Reconnaissance’ class’s results
indicate poor performance in recognizing reconnaissance activities. Both the ‘Web Based’
and ‘Brute Force’ classes results suggest that the model fails to identify instances of these
classes. Results indicate that the neural network classifier has limitations in effectively
classifying the different types of traffic, with particularly low recall and F1 scores pointing
to its struggle in correctly identifying positive instances.

5.2.3 Decision Tree

The choice of Decision Trees is due to its simplicity and high performance. They are also
able to handle complex, non-linear relationships within data.

Table 5.5: Confusion Matrix Results of Decision Tree

Class True Positives False Positives False Negatives True Negatives
DDoS 1 0.00183 0.00029 6.996342
DoS 1 0.00016 0.00013 6.998172
Benign Traffic 0.99 0.28301 0.00632 6.719132
Mirai 1 0.00001 0 6.998452
Spoofing 0.94 0.0533 0.06 6.945162
Reconnaissance 0.91 0.0919 0.0852 6.911362
Web Based 0.9 0.0403 0.0977 6.960462
Brute Force 0.78 0.00412 0.225 6.989342

Table 5.6: Performance Metrics for Decision Tree

Class Accuracy Precision Recall F1 Score
DDoS 0.9999 0.9982 1.0000 0.9991
DoS 0.9999 0.9998 0.9999 0.9999
Benign Traffic 0.9967 0.7776 0.9937 0.8738
Mirai 0.9998 0.9999 1.0000 1.0000
Spoofing 0.9986 0.9460 0.9400 0.9430
Reconnaissance 0.9974 0.9085 0.9144 0.9114
Web Based 0.9985 0.9577 0.9021 0.9292
Brute Force 0.9935 0.9490 0.7759 0.8510
Weighted Average 0.9976 0.9517 0.9383 0.9425

CHAPTER 5. RESULTS AND ANALYSIS 58

For the ‘DDoS’ class, the Decision Tree achieves almost perfect performance as seen
in Table 5.6. The classifier is highly accurate in identifying DDoS attacks with minimal
errors. Similarly, the ‘DoS’ class also shows near-perfect results. For ‘Benign Traffic’,
while the recall is very high, indicating that most benign traffic is correctly identified, the
lower precision suggests a slightly higher rate of false positives. The ‘Mirai’ class exhibits
perfect performance. The ‘Spoofing’ and ‘Web Based’ classes have strong performance as
well. For the ‘Reconnaissance’ class, these values indicate good performance, however,
some misclassifications still occur. For the ‘Brute Force’ class, the lower recall compared
to precision indicates a higher rate of false negatives for this class.

5.2.4 Random Forest

Random forest is robust to noise and overfitting. By averaging the results of many decision
trees, Random Forest reduces the risk of overfitting that can occur with a single decision
tree.

Table 5.7: Confusion Matrix Results of Random Forest

Class True Positives False Positives False Negatives True Negatives
DDoS 1 0.0113 0.00009 6.9846
DoS 1 0.00016 0.000674 6.9976
Benign 1 0.3315 0.003278 6.6637
Mirai 1 0.000042 0.00292 6.9955
Spoofing 0.77 0.0271 0.2277 6.9736
Reconnaissance 0.92 0.1519 0.0762 6.8504
Web Based 0.9 0.0622 0.1026 6.9336
Brute Force 0.82 0.0017 0.175 7.0017

Table 5.8: Performance Metrics of Random Forest

Class Accuracy Precision Recall F1 Score
DDoS 0.9999 0.9884 0.9999 0.9941
DoS 0.9998 0.9998 0.9993 0.9996
Benign 0.9513 0.7514 0.9968 0.8559
Mirai 0.9999 0.9994 0.9971 0.9983
Spoofing 0.9912 0.9665 0.7713 0.8580
Reconnaissance 0.9817 0.8572 0.9232 0.8891
Web Based 0.9886 0.9354 0.8973 0.9160
Brute Force 0.9968 0.9972 0.8244 0.9034
Weighted Average 0.9910 0.9488 0.9240 0.9329

CHAPTER 5. RESULTS AND ANALYSIS 59

For the ‘DDoS’ class, the Random Forest achieves near-perfect performance. Similarly,
for the ‘DoS’ class, the classifier shows excellent results. For the ‘Benign’ class, the recall
is very high, but the lower precision suggests a higher rate of false positives. The ‘Mirai’
class also exhibits strong performance. For the ‘Spoofing’, ‘Reconnaissance’ and the ‘Web
Based’ classes are well classified. For the ‘Brute Force’ class, the classifier shows a high
precision, but the recall is slightly lower.

Results show that the Random Forest classifier performs very well across all classes.
The results are similar to the ones obtained by Decision Tree.

5.3 ML Models Comparison

Beginning with Naive Bayes, it demonstrated moderate accuracy of 0.8475. However, its
precision and recall scores varied across the different classes. It exhibited relatively high
recall for DDoS attacks but struggled with precision, indicating a tendency to misclassify
benign traffic as DDoS.

Moving to Neural Network, it resulted in a lower accuracy of 0.7321. Despite achieving
high precision for certain classes like DDoS and Spoofing, there is a low recall across var-
ious categories. In addition, it was unable to effectively detect DoS attacks. These findings
suggest that while the Neural Network may excel in certain areas, its overall effectiveness
has some limits. As mentioned by Gaël Varoquaux, the research director at Inria and one of
the creators of Scikit-learn, for the same amount of time spent on random search, tree-based
models scores are always high above neural networks. [41]

In contrast, the Decision Tree model exhibited exceptional performance, with an accu-
racy of 0.9976. It demonstrated near-perfect precision and recall scores across most classes,
indicating robustness in detecting different types of intrusions.

Finally, the Random Forest model also showcased good performance, with a weighted
average accuracy of 0.9910. Similar to the Decision Tree, it achieved high precision and re-
call scores across various classes, demonstrating consistency in detecting diverse intrusion
patterns.

Table 5.9: Average Accuracy of Each Model

Model Accuracy Precision Recall F1 Score
Naive Bayes 0.8475 0.4039 0.7111 0.4897
Neural Network 0.7321 0.2753 0.1088 0.0708
Decision Tree 0.9976 0.9517 0.9383 0.9425
Random Forest 0.9910 0.9488 0.9240 0.9329

CHAPTER 5. RESULTS AND ANALYSIS 60

In addition, categorical variables are often seen as a major problem for using Neural
Networks on tabular data. Results obtained by G. Varoquaux, L. Grinsztajin and E.Oyallon
show that when trained on numerical variables only, a narrower gap reveals between tree-
based models and NNs, compared to when categorical variables are included [41].

It has also been shown in Enchun Shao’s work that Decision Tree and Random Forest
models performed better than Support Vector Machine in classifying many attack catae-
gories. [42]

Table 5.10: F1 Scores of ML Models Found by Enchun Shao

Model Brute Force Web-Based DDoS Port Scan
Decision Tree > 80% > 80% > 85% > 90%
Random Forest > 90% > 85% > 85% > 90%
SVM < 80% < 80% < 60% < 75%

These results are a proof that tree-based models are the most suitable for this kind of tasks.

5.3.0.1 Explaining the Bias of the Models

The Neural Network model is biased towards benign traffic, misclassifying certain types
of attacks, such as reconnaissance, web-based attacks, and spoofing, due to the similar pat-
terns to normal network traffic, making them harder to differentiate. However, ‘DoS’ and
‘Mirai’ attacks are better classified because they involve distinctive and anomalous patterns
that deviate more from normal network behavior, which makes it easier for the model to
learn and recognize. Mirai, for example, often uses GRE (Generic Routing Encapsulation)
packets or large volumes of TCP SYN packets. Mirai’s traffic can be identified by the
presence of a large number of short-lived TCP connections, often with SYN packets with-
out corresponding ACK packets [43]. On the other hand, ‘Reconnaissance’ attacks involve
probing a network to gather information. The patterns are subtle because the volume of
traffic might be low, and the behavior may resemble legitimate network scanning. Similar
to ‘Spoofing’ attacks that involve falsifying the source IP address of packets, which may
appear as a normal traffic.

This explains why the model tends to fail to classify these types of attacks, since the
features used to represent them, such as packet count or byte count, might not reveal the
nuanced behavior of a port scan or a spoofed packet. Thus, the model requires much more
instances compared to other attacks like ”DDoS”.

In conclusion, based on our analysis and the F1-Score graph in Figure 5.1:

CHAPTER 5. RESULTS AND ANALYSIS 61

DDoS DoS
Benign

Mirai
Spoofing

Recon
Web Based

Brute Force
0

0.5

1

F1
Sc

or
e

Decision Tree Random Forest Neural Network Naive Bayes

Figure 5.1: Comparison of F1 Scores for Different Models on Various Attacks

The models are ordered from least to most performant as follows: Neural Network, Naive
Bayes, Random Forest, Decision Tree.

It has been shown that tree-based models are the most suitable for this task. Both
Decision Tree and Random Forest performed excellently. Therefore, we have decided to
select the Decision Tree model for further implementating on edge. This decision was
made considering the model’s performance and its suitability for deployment in resource-
constrained environments. For less resource-constrained environments, Random Forest
will be the right choice because of its robustness and good generalization.

5.4 Testing with External Pcap Files

To test the performance of the model, some external Pcap files were downloaded from
Github for ”DoS”, ”DDoS” attacks, benign traffic. Additionally, real-time normal traffic
Pcap files, captured by Tshark, were used.

Figure 5.2: Prediction on Real-Time Traffic

CHAPTER 5. RESULTS AND ANALYSIS 62

Figure 5.3: Prediction on ”DoS” Pcap File

Figure 5.4: Prediction on ”DDoS” Pcap File

Figure 5.5: Prediction on Benign Traffic Pcap File

Chapter 6

Conclusion and Future Work

In conclusion, this thesis presents a Machine Learning based Network Intrusion Detection
System designed for IoT devices. By deploying the system on edge, we ensure rapid re-
sponse to attacks, while safeguarding the privacy of network users through localized data
processing. Two prototypes were built, leveraging Raspberry Pi and ESP32 Microcontroller
platforms, the latter comprising three subsystems each utilizing an ESP32 MCU.

Exploring four distinct Machine Learning algorithms, our system achieves impressive
accuracy, reaching up to 99.76% and an F1-score of 94.25% for tree-based models. After a
detailed evaluation and comparison, we identify the tree-based models as the most robust,
demonstrating near-perfect precision and recall scores across various intrusion types. In
contrast, the Neural Network exhibits limitations in overall effectiveness, while the Naive
Bayes model shows inconsistency in detecting specific intrusion categories.

For future work, we aim to add support for IPv6 packets to our system. Currently, our
prototype handles IPv4 traffic, but as IPv6 adoption grows, it’s crucial for our NIDS to be
compatible with both protocols. This will ensure that our system remains versatile and ca-
pable of securing networks that use either IPv4 or IPv6. Additionally, we intend to explore
different low-end hardware platforms for deploying our NIDS. While we’ve successfully
implemented it on the ESP32 Microcontroller, expanding to other hardware options will
increase the system’s accessibility and scalability. Moreover, we plan to leverage the WiFi
capabilities of the ESP32 to extend our NIDS to wireless IoT networks to address the chal-
lenges posed by wireless environments. Our research will also focus on developing more
complex deep learning models, such as LSTM, to further enhance detection capabilities.
We plan to conduct real-time simulation tests using hping3, slowloris, and nmap to assess
the system’s responsiveness under different attack scenarios.

63

Bibliography

[1] M. Antonakakis, T. April, M. Bailey, M. Bernhard, E. Bursztein, J. Cochran,
Z. Durumeric, J. A. Halderman, L. Invernizzi, M. Kallitsis et al., “Understanding the
mirai botnet,” in 26th USENIX security symposium (USENIX Security 17), 2017, pp.
1093–1110.

[2] P. A. Networks. 98 percent of iot traffic is unencrypted. [Online]. Available:
https://unit42.paloaltonetworks.com/iot-threat-report-2020/

[3] Cisco. What is cybersecurity? [Online]. Available:
https://www.cisco.com/c/en/us/products/security/what-is-cybersecurity.html

[4] L. B. William Stallings, Computer Security: Principles and Practice. PEARSON,
2014.

[5] S. Wilson, Cybersecurity and Artificial Intelligence: Threats and Opportunities.
Contrast Security, 2023.

[6] W. Samuel Marchal, Bartosz Nawrotek, Applying artificial intelligence in
Cybersecurity. Finnish Transport and Communications Agency Traficom, National
Cyber Security Centre Finland, 2024.

[7] R. Bace and P. Mell, Intrusion Detection Systems. NIST National Institute of
Standards and Technology, 2001.

[8] ReasonLabs. What is intrusion? [Online]. Available:
https://cyberpedia.reasonlabs.com/EN/intrusion.htm

[9] A. Nasaf, “Intrusion detection system: A survey and taxonomy,” HAL Open Science,
2021.

[10] H. Badgujar. What is ids (intrusion detection system) how it works? [Online].
Available: https://medium.com/@hrushikeshbadgujar/
what-is-ids-intrusion-detection-system-how-it-works-732d81a13fb5

64

https://unit42.paloaltonetworks.com/iot-threat-report-2020/
https://www.cisco.com/c/en/us/products/security/what-is-cybersecurity.html
https://cyberpedia.reasonlabs.com/EN/intrusion.htm
https://medium.com/@hrushikeshbadgujar/what-is-ids-intrusion-detection-system-how-it-works-732d81a13fb5
https://medium.com/@hrushikeshbadgujar/what-is-ids-intrusion-detection-system-how-it-works-732d81a13fb5

BIBLIOGRAPHY 65

[11] L. Hung-Jen, R. L. Chun-Hung, L. Ying-Chih, and T. Kuang-Yuan, “Intrusion
detection system: A comprehensive review,” in Journal of Network and Computer
Applications.

[12] T. Mehmood and H. B. Md Rais, “Machine learning algorithms in context of
intrusion detection,” in 2016 3rd International Conference on Computer and
Information Sciences (ICCOINS), 2016, pp. 369–373.

[13] Host-based intrusion detection. KROLL REDSCAN. [Online]. Available:
https://www.redscan.com/services/hids/

[14] M. S. Aliero, A. M. Ahmad, U. S. Kalgo, and S. A. Aliero, “An overview of internet
of things: understanding the issues and challenges of a more connected world,”
International Journal of Computing and Communication Networks, vol. 2, no. 1, pp.
1–11, 2020.

[15] Artificial Intelligence. Oxford English Dictionary. [Online]. Available:
https://www.lexico.com/definition/artificial intelligence/

[16] AI set to exceed human brain power. CNN. [Online]. Available:
http://edition.cnn.com/2006/TECH/science/07/24/ai.bostrom/

[17] Biggest confusion: Ai vs ml vs deep learning. Medium. [Online]. Available:
https://popatavani666.medium.com/
biggest-confusion-ai-vs-ml-vs-deep-learning-8aa11343fd12

[18] A. L. Samuel, “Some studies in machine learning using the game of checkers.” IBM
Journal of research and development, 1959.

[19] Everything you need to know about machine learning. Analytics Vidhya. [Online].
Available: https://www.analyticsvidhya.com/blog/2021/03/
everything-you-need-to-know-about-machine-learning/

[20] Y. W. Qiong Liu, “Supervised learning,” ResearchGate, January 2012.

[21] K. Pykes. Introduction to unsupervised learning. [Online]. Available:
https://www.datacamp.com/blog/introduction-to-unsupervised-learning

[22] M. N. Antonio Coronato, Syed Tahir Hussain Rizvi, “A gentle introduction to
reinforcement learningand its application in different fields,” ResearchGate, January
2020.

https://www.redscan.com/services/hids/
https://www.lexico.com/definition/artificial_intelligence/
http://edition.cnn.com/2006/TECH/science/07/24/ai.bostrom/
https://popatavani666.medium.com/biggest-confusion-ai-vs-ml-vs-deep-learning-8aa11343fd12
https://popatavani666.medium.com/biggest-confusion-ai-vs-ml-vs-deep-learning-8aa11343fd12
https://www.analyticsvidhya.com/blog/2021/03/everything-you-need-to-know-about-machine-learning/
https://www.analyticsvidhya.com/blog/2021/03/everything-you-need-to-know-about-machine-learning/
https://www.datacamp.com/blog/introduction-to-unsupervised-learning

BIBLIOGRAPHY 66

[23] H. Zhang, “The optimality of naive bayes,” ResearchGate, January 2004.

[24] O. M. Lior Rokach, “Decision trees,” ResearchGate, January 2005.

[25] Decision tree classification algorithm. Javatpoint. [Online]. Available:
https://www.javatpoint.com/machine-learning-decision-tree-classification-algorithm

[26] L. Breiman, “Random forests,” ResearchGate, October 2001.

[27] Random forest. Medium. [Online]. Available:
https://medium.com/@denizgunay/random-forest-af5bde5d7e1e

[28] Y. B. Ian Goodfellow and A. Courville, Deep Learning. The MIT Press, 2016.

[29] Perceptron model: The foundation of neural networks. Medium. [Online]. Available:
https://medium.com/@ilyurek/
perceptron-model-the-foundation-of-neural-networks-4db25b0148d

[30] V. D. F. Facundo Bre, Juan M. Gimenez, “Prediction of wind pressure coefficients on
building surfaces using artificial neural networks,” ResearchGate, November 2017.

[31] J. Schmidhuber, “Deep learning in neural networks: An overview,” ScienceDirect,
January 2015.

[32] Raspberry pi 4 your tiny, dual-display, desktop computer. Raspberry Pi 4. [Online].
Available: https://www.raspberrypi.com/products/raspberry-pi-4-model-b/

[33] Esp32 chips. Espressif Systems. [Online]. Available:
https://www.espressif.com/en/products/socs/esp32

[34] Esp-idf documentation. Espressif Systems. [Online]. Available:
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/

[35] Enc28j60 data sheet. Microchip. [Online]. Available:
https://ww1.microchip.com/downloads/en/DeviceDoc/39662c.pdf

[36] What is a pcap file. Endace. [Online]. Available:
https://www.endace.com/learn/what-is-a-pcap-file

[37] Libpcap file format. Wireshark. [Online]. Available:
https://wiki.wireshark.org/Development/LibpcapFileFormat

[38] R. Barry and T. F. Team, Mastering the FreeRTOS™ Real Time Kernel. FreeRTOS.

https://www.javatpoint.com/machine-learning-decision-tree-classification-algorithm
https://medium.com/@denizgunay/random-forest-af5bde5d7e1e
https://medium.com/@ilyurek/perceptron-model-the-foundation-of-neural-networks-4db25b0148d
https://medium.com/@ilyurek/perceptron-model-the-foundation-of-neural-networks-4db25b0148d
https://www.raspberrypi.com/products/raspberry-pi-4-model-b/
https://www.espressif.com/en/products/socs/esp32
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/
https://ww1.microchip.com/downloads/en/DeviceDoc/39662c.pdf
https://www.endace.com/learn/what-is-a-pcap-file
https://wiki.wireshark.org/Development/LibpcapFileFormat

BIBLIOGRAPHY 67

[39] R. L. Ankit Thakkar, “A review of the advancement in intrusion detection datasets,”
ScienceDirect, 2020.

[40] UNSW Sydney - The University of New South Wales, “The Bot-IoT Dataset,”
https://research.unsw.edu.au/projects/bot-iot-dataset, 2021.

[41] G. V. Léo Grinsztajn, Edouard Oyallon, “Why do tree-based models still outperform
deep learning on tabular data?” Journal of Edge Computing, July 2022.

[42] E. Shao, “Encoding IP address as a feature for network intrusion detection,” Master’s
Thesis, Faculty of Purdue University, 2019.

[43] M. Antonakakis, “Understanding the Mirai Botnet,” Journal of Edge Computing,
2017.

https://research.unsw.edu.au/projects/bot-iot-dataset

	front
	CyLi_Master_thesis (11)
	Abstract
	Acknowledgments
	Introduction
	Motivation
	Problem Statement
	Objectives
	Methodology
	Overview of the Startup
	Structure of the Report

	Theoretical Background
	Overview of Cybersecurity
	Types of Cybersecurity Threats
	Artificial Intelligence in Cybersecurity

	Intrusion Detection Systems
	Classification of an IDS based on monitored activity
	Classification of an IDS based on detection method
	Anomaly-based network IDS

	Classification of an IDS based on response upon detection

	Internet of Things
	Overview of Artificial Intelligence
	Machine Learning
	Machine Learning Types
	Supervised Learning
	Unsupervised Learning
	Reinforcement Learning

	Machine Learning Algorithms
	Naive Bayes:
	Decision Tree
	Random Forest
	Neural Networks

	Evaluation Metrics

	Implementation Tools and Technologies
	Raspberry PI
	ESP32 Microcontroller and ESP-IDF
	Communication protocols
	Ethernet Protocol
	SPI Communication Protocol
	I2C Communication Protocol

	ENC28J60 Module
	PCAP File Format

	Hardware System Design
	ESP32 based Prototype
	System Architecture
	PCAP Generator Component
	Packet Feature Extractor Component
	Model Inference Component

	Raspberry Pi based Prototype

	Software System Design
	Firmware Design and Implementation
	Creating and Transmitting the PCAP files
	Default Ethernet Initialization
	SNTP Client
	Custom Ethernet Initialization
	Tasks Synchronization and SD Card Access
	PCAP Creator Task
	PCAP Reader/Sender Task

	Extracting Features from PCAP Files
	PCAP Receiver/Writer Task
	Feature Extractor Task

	Model Inference

	ML Model Development
	Dataset Selection and Preprocessing
	NIDS datasets
	CIC-IoT-2023 Dataset

	ML Model Building
	Naive Bayes
	Decision Tree
	Random Forest
	Neural Network

	Raspberry Pi Implementation

	Results and Analysis
	Hypothesis on the Performance of ML Models
	ML Models Evaluation
	Naive Bayes
	Neural Network
	Decision Tree
	Random Forest

	ML Models Comparison
	Explaining the Bias of the Models

	Testing with External Pcap Files

	Conclusion and Future Work
	Bibliography

