p—

People’s Democratic Republic of Algeria
Ministry of Higher Education and Scientific Research

University M’ Hamed BOUGARA - Boumerdes

- —
Université de Boumerdes |
University of Boumerdes
T ——__—

Institute of Electrical and Electronic Engineering
Department of Electronics

Project Report Presented in Partial Fulfilment of

the Requirements of the Degree of

‘MASTER’

In Electrical and Electronic Engineering

Title:

Emulating Multi-node Embedded Systems
Using Renode

Presented By:
- HACHEMANE Abderrahemane
- KHOUAS Aness Mohamed

Supervisor:
Dr. MAACHE Ahmed

Abstract

Emulation is crucial prior to high-scale, complicated embedded systems, particularly for ped-
agogical and prototype utilization. The emulation process offers an ideal and cost-effective
approach, where we can be in a position to analyze and evaluate system designs with the as-
sumptions and some flaws that can be worked out before implementing them in the actual sys-
tem. This practice helps greatly in teaching since students can train on such concepts without
the necessity of having costly hardware.

This project introduces Renode, which is an effective emulation tool, to emulate an entire
embedded system including interconnected-node systems. Fast prototyping and the emulation
of various hardware elements, including their functionality, flexibility, and interactive commu-
nications, make Renode a versatile platform for development.

Our work starts with implementing a single-node embedded system using ZedBoard and
FreeRTOS, demonstrating the basic setup and functionality. We then expanded this imple-
mentation to accurately emulate a multi-node system, highlighting Renode’s ability to handle
complex, interconnected environments.

In fact, as our findings indicate, Renode is a valuable and efficient tool for modeling embed-
ded systems and IoT networks. The emulations were effective and the approach proved to be

sound in practice despite several difficulties that were met along the way.

Dedications

”In the Name of Allah, the Most Merciful, the Most Compassionate All praise be to Allah,
the Lord of the worlds. May prayers and peace be upon the Prophet Muhammad, His servant
and messenger. This work is dedicated wholeheartedly to my beloved parents, who have been

a constant source of inspiration, providing me with hope and encouragement when I faced

moments of doubt and despair. They have always been there, guiding and supporting me.

il

Acknowledgments

First and foremost, we would like to extend our deepest gratitude to God Almighty who
provided us with His blessing and the opportunity to successfully conclude our project.

In the successful accomplishment of our final year project titled "Emulating Multi-node
Embedded Systems Using Renode” we would like to express our deepest gratitude to our
supervisor, Maache Ahmed. We are immensely grateful for his valuable advice regarding our
project and future career prospects. His willingness to assist us, steadfast encouragement, and
continuous support were instrumental in making this project a reality. We deeply appreciate
his patience, dedication, and unwavering belief in our abilities.

Lastly, we are immensely thankful to our parents and friends for their unwavering support in
completing this report. We would like to extend our gratitude to all the individuals who have

supported us throughout this journey.

iii

Contents

Abstract

Dedication
Acknowledgments
Table of Contents
List of Figures

List of Abbreviations
General introduction

1 Introduction to Multi-Node Embedded Systems & Emulation

1.1 Introduction s
1.2 Embedded Systems

1.3 Hardware Emulation

Hardware & Software Overview
2.1 Introduction:
2.2 Zedboard Development kit L
2.2.1 ZedBoard Key Features
222 Zyng-7000 SoC
2.22.1 Programming Logic,
2222 Processing Systemo
2.2.2.3 In-Soc interconnection: AXI-bus protocol
2.2.2.4 Xilinix Analog to Digital Converter
223 OnBoardPeripherals
2.3 AMD Design Suite: Vivado & Vitis Lo oo

2.3.1 Vivado e
232 VIUS . . o o o e e e
24 Renode s,

v

ii

iii

iv

vi

vii

2.5 FreeRTOS o e
2.6 Summary: e e e
3 Design and Implementation of a Single-Node System
3.1 Introduction: e e
32 HardwarePart
3.2.1 Design Considerations
322 Implementation
3.3 Softwarepart e e
34 Results&Discussion L e
34.1 Results e
342 DISCUSSION v o e e e e e e e e e e e
3.5 Summary: . ..o e
4 Emulation and Testing The Multi-Node Systems
4.1 Introduction: e
42 Renodebasics
4.2.1 Renode Capabilities
4.2.2 Emulation Setup and Configuration
4.3 Single-node emulation
4.4 Multi-node emulation
4.5 DISCUSSION v v e e e e e e e e e e e e
4.6 Challenges and difficulties
477 Summary: L e e e e e e e e e e
Conclusion

18
19
20
20
21
23
27
27
28
28

29
30
30
30
31
31
33
37
38
38

39

List of Figures

1.1

2.1
22
2.3
24

3.1
3.2
33
34

4.1
4.2
4.3
4.4
4.5

Embedded systems examples[2] 4
Zedborad features [9] 10
Zyng-7020 block diagram [8] L L 11
zyng-7020 Architectural Overview 11
Interconnection between PS and XDC using AXI 13
including zedboard in the project oL 21
projectblock diagram 23
Tera term -Not connected- 27
UART output via Teraterm 28
The lunching of emulation 32
Emulationoutput 33
Multi-node architecture approach oL 34
The slave node UART output 36
The master node UART output 37

vi

List of Abbreviations

Abbreviation Meaning

SoC System on Chip

AXI Advanced eXtensible Interface

ADC Analog to Digital Converter

IDE Integrated Development Environment
RTOS Real-Time Operating System

GPIO General-Purpose Input/Output

1P Intellectual Property

CpPU Central Processing Unit

FPGA Field Programmable Gate Array

PS Processing System

PL Programmable Logic

DDR Double Data Rate

DMA Direct Memory Access

UART Universal Asynchronous Receiver-Transmitter

[oT Internet of Things

vii

General introduction

The growth of embedded systems and the popularity of IoT devices have impacted many fields
ranging from consumer electronics to industrial processes and much more. As these systems
grow more sophisticated and integrated, so has the demand for proper tools for the development
and testing of these systems. As a result of these changes, emulation, a practice of simulating
the behavior of hardware using software, has become practically indispensable to the lifecycle
of embedded systems. Through emulation, developers and educators can explore, assess, and
optimize system designs at a relatively low cost without physically implementing them on
system hardware.

Emulation is especially useful in educational environments by giving students actual experi-
ence in designing and debugging embedded systems without having to invest in a lot of actual
hardware. Nonetheless, there is a lack of well-documented and versatile emulation tools suit-
able for dealing with the complexity and large numbers of nodes needed in today’s multi-node
embedded systems.

The objectives of this work are to develop the topic of Renode as a strong and multipurpose
emulation environment to explain the emulation idea. Renode allows emulating entire systems,
including complex multi-node systems, providing developers with a versatile environment for
rapid prototyping and testing. Leveraging various types of hardware components and support-
ing interactive communication offers extensive adaptability, making Renode a versatile tool
that would effectively serve both educational and professional settings.

In this report, the first chapter will introduce the theoretical concepts behind the work, defin-
ing embedded systems, emulation, and multi-node systems. Next, in the second chapter, the
reader will get familiar with the tools used in the project such as ZedBoard, Renode, etc. Then,
the third chapter will discuss the implementation of a single-node embedded system using the

ZedBoard. At the end, the fourth chapter will show the multi-node emulation.

Chapter 1

Introduction to Multi-Node Embedded
Systems & Emulation

CHAPTER 1. INTRODUCTION TO MULTI-NODE EMBEDDED SYSTEMS &
EMULATION

1.1 Introduction

This is a brief chapter that provides the reader with a point of entry into the understanding
of what embedded systems, emulation, and multi-noding mean. These three subjects are con-
sidered the basis of the current embedded system design and development to equip them with
suitable approaches and enabling technologies for developing highly complex, dependable, and
portable systems.

Starting with the definition of the first topic, it is necessary to define embedded systems,
which can be described as specialized computer systems intended for the completion of partic-
ular functions in parallel with mechanical or electrical systems[1]. These systems are almost a
standard for current technologies, being integrated with all sorts of devices, from home appli-
ances to complex industrial equipment. Knowing the basics of embedded systems and how they
can be implemented requires comprehending the nature and make-up of embedded systems.

Next, emulation is described in detail; it is the process of providing a software model for
emulating the behavior of hardware components. Emulation permits designers to verify their
new system using the models without the utilization of physical hardware, thereby reducing the
issues in creating the physical embedded system. In this section, three aspects will be discussed
because they are the key motives for emulation: the emulation gives a controlled environment
for testing; it helps to debug the application; and finally, it is cheaper than developing using
devices.

Next, we assess multi-noding, a procedure through which several complex nodes are con-
nected with each other to accomplish one task. Multi-node systems are gradually being in-
corporated in many applications like sensor networks, self-driving cars, and smart industry
production lines. This section will explain how systems with multiple nodes are designed,
the issues faced during the synchronization and communication of multiple systems, and the
strategies that can be adopted to solve these issues.

By the end of this chapter, the reader will be well informed about what embedded systems
are and their requirements through emulation, and the issues associated with multi-noding. This
knowledge will form a base and build their understanding of the advanced topics covered in the

following chapters which cover detailed descriptions of all these topics and their interaction.

CHAPTER 1. INTRODUCTION TO MULTI-NODE EMBEDDED SYSTEMS &
EMULATION

1.2 Embedded Systems

Embedded systems are stand-alone and tailored computing systems whose application is lim-
ited to a specific function. Such systems are typically defined by their functionality that includes
working in real-time, low power consumption, and a resource-constrained nature. They can be
observed in numerous applications, from electronic devices to manufacturing equipment.

An embedded system, in its simplest form, consists of the following major components: a
microcontroller or microprocessor, memory, input/output ports, and firmware. The microcon-
troller or microprocessor serves as the brain of the system, executing programmed instructions
to perform desired tasks. Memory is classified into ROM and RAM. ROM is usually used to
store the firmware while RAM is used to store the temporary data generated in real-time exe-
cution. The third part is the I/O devices such as ADCs, and simple GPIOs which are used to
communicate with the outside world, facilitating interconnection and data sharing.

The key feature of embedded systems is that the system must interact with the physical
world on a real-time basis, thereby producing or responding within a resultant time. This is
important as it enables the embedded system to effectively execute the intended function in a
real-time manner. Moreover, embedded systems are developed to operate on low power and oc-
cupy minimum physical space, thereby being power and size-efficient. They are also made for
the purpose of performing certain functions and are usually designed for efficiency, dependabil-
ity, and affordability; hence, they cannot be underestimated in various innovative technological
uses. According to their usage, embedded systems can be classified into different categories.
Single-node embedded systems are most common in the industry, multi-node embedded sys-
tems are commonly used in home automation systems and interconnected sensor networks,

portable systems like smartphones, and real-time embedded systems.

ff

¥ @ @ éo

Industrial Robots GPS Receivers Digital Cameras DVD Players

(V)
-L Embedded Systems B

Wireless Routers MP3 Players

-
N
=] _
r‘ =
o -
Set top Boxes Gaming Consoles Photocopiers Microwave Oven

Figure 1.1: Embedded systems examples[2]

There are many substantial obstacles that engineers who are involved in the design and im-
plementation of the embedded system need to overcome in order to achieve the desired result.
The first problem is that of real-time performance because usually embedded applications have
strict performance requirements and the system should be capable of processing data and react-

ing to events in a particular time[3]. This means that schedulability analysis and optimization

4

CHAPTER 1. INTRODUCTION TO MULTI-NODE EMBEDDED SYSTEMS &
EMULATION

depend on precise timing analysis. Real-Time Operating Systems should be thanked for offer-
ing rather decent solutions to this issue. Another key issue is the utilization of limited resources
like CPU, memory, and power where proper coding methodology and the choice of the right in-
dustry standard boards play a vital role. Moreover, reliability and fault tolerance are important
attributes of embedded systems because the devices are used in various important applications
that have strict requirements for device performance. This involves extensive testing and data
validation processes to guarantee severe stability under different scenarios. Communicating
with a large number of peripherals and various external devices imposes additional challenges
with regard to the protocols and interfaces used to interact with the devices. Finally, the tech-
nology is growing at a very fast rate, and this implies that the embedded system needs to be
designed with the ability to be modified in the future but not redesigned[1]. Addressing these
challenges requires a combination of innovative design, thorough testing, and a deep under-
standing of both hardware and software aspects of embedded systems.

In embedded systems, it is not a very rare practice to execute applications on the bare metal
that is the hardware layer. But when it comes to real-time jobs that require precise efficient
solutions, employing special operating systems known as real-time operating systems or RTOS
are more effective. These systems are expected to deal with real-time applications, thus being
responsive to events promptly. There is a very famous RTOS called FreeRTOS. In the further
sections of this report, the reader will be introduced to FreeRTOS software: its functional-
ity, possibilities, and applications. The integration of Multi-node technology into embedded
systems has revolutionized the way devices and systems interact and communicate with each
other. Multi-node integration allows embedded systems to connect to each other, enabling them
to collect, analyze, and exchange data in real-time. This connectivity opens up a wide range
of possibilities for applications in various industries, from smart home devices to industrial

automation and highway systems[4].

1.3 Hardware Emulation

This section will give a detailed discussion of the several features that have made emulation
significant in the implementation phase. This will involve an analysis of the issues and charac-
teristics of today’s implementation environments and expectations in areas such as risk, cost,
time-to-market, and resource availability to the business. It will serve as a theoretical frame-
work to ensure that everyone involved in this study has a good grasp of emulation’s importance
in handling issues of the implementation phase before their appearance.

To put it in simple terms, emulation may be understood within the context of implementa-
tion preparation as the imitation of the functionalities and behaviors of a system, it can be a
computer, an SoC, or a piece of hardware. This means developing or working on a model that
can mimic the conditions and parameters of the original system by emulating tests before it is

released to the real environment. Emulation can be helpful in recreating a real environment,

CHAPTER 1. INTRODUCTION TO MULTI-NODE EMBEDDED SYSTEMS &
EMULATION

testing for various problems, and estimating how changes or upgrades will affect production
without affecting the actual environment. It makes it easier for organizations to understand the
behaviors of various systems in order to predict potential problems that can arise and find ways
to effectively address problems during their implementation[5]. Additionally, emulation plays
an important role in improving control over risks to achieve better system tests under various
conditions and situations. This makes it possible for organizations and individuals to prepare
and possibly look for ways of avoiding disruptions in case they happen during the implementa-
tion of the new process. Further, emulation helps in cost control by isolating problems that can
be corrected in the early stage without having to spend large amounts of money on rectifications
later during system implementation.

By promoting emulation, learning can be enhanced through the provision of cheaper soft-
ware and hardware that cannot be afforded by any learner. This makes the use of emulation-
based experiments effective in enabling real-like learning without having to spend very large
amounts of money such as costs of space, rent, maintenance, and occupational health and safety
measures[6]. Moreover, in emulation-based virtual laboratories, students are capable of per-
forming the experiments on the same platform and without the actual hardware in place, thus
there is likely to be even better understanding and knowledge retention on the subject content
and skills being taught.

Renode is an emulation framework available in the sphere of embedded systems that has
been created by Antmicro[7]. Despite the fact that this is open-source, Renode can efficiently
emulate a variety of processors, boards, and even devices. Renode is also an efficient emu-
lator for developers to model, experiment, and debug their embedded systems, enabling rapid
prototyping in pre-silicon configurations[7]. The subsequent chapter will thus aim at describ-
ing Renode in detail, in terms of the tools it consists of, its potential uses in the context of
embedded system development, its advantages, and more.

The topic of emulation in embedded systems can be a challenging and broad one that has

many

Chapter 2

Hardware & Software Overview

CHAPTER 2. HARDWARE & SOFTWARE OVERVIEW

2.1 Introduction:

In the previous chapter, the reader was introduced to the topic of multi-node embedded systems
and emulation. In this chapter, which forms the bridge between the theoretical background and
the practical elements of the work, the reader will be provided with a guide to the equipments
-both hardware and software- which are vitally involved in the designing and the implementing
of these systems.

First of all, we are going to familiarize with the Zedboard Development Kit, a full-featured
platform which is implemented around Zyng-7000 SoC from Xilinx. Next, we will explore the
AMD Design Suite: Vivado and Vitis are the two software suitable for designing hardware and
runtime software applications respectively. Vivado Design Suite is a software tool developed
by AMD to perform the analysis and synthesis of the HDL design and incorporating IP cores.
On the other hand, Vitis provides a unified software development environment for creating
embedded applications for FPGAs and SoCs. Then, we will explore the Renode Emulator, an
all-in-one platform that emulate the design, debug and test the phases of embedded system.
Renode makes it possible to test software on an emulated environment before its integration
with the physical hardware and this make the process of hardware development less expensive,

time-consuming, and with less risk factors.

CHAPTER 2. HARDWARE & SOFTWARE OVERVIEW

2.2 Zedboard Development kit

The ZedBoard is a powerful and versatile development platform based on the Xilinx Zyng-7000
All Programmable System-on-Chip (SoC). This board is designed to facilitate the development
and prototyping of embedded systems by integrating a dual-core ARM Cortex-A9 processor
with FPGA fabric, providing a comprehensive environment for both hardware and software
design. Its extensive feature set makes it an ideal choice for a wide range of applications, from

academic research and development to industrial automation and consumer electronics[8].

2.2.1 ZedBoard Key Features

As mentioned before, Zedboard has plenty of features and characteristics that makes it exciting
platform to develop both hardware and software on. One of the most important aspects is that
the ZedBoard delivers considerable processing power and distinctive memory design as well
as various peripherals. The introduced Zyng-7000 SoC is incorporating FPGA and dual core
ARM processor which can be targeted for implementing custom hardware accelerators and
can also efficiently perform the processing. Memory resources available with the board are
DDR3 SDRAM memory, QSPI Flash and available facilities for SD card interface provide the
adequate storage and high data access rate.

More so, the connectivity features supported by the ZedBoard include Gigabit Ethernet,
USB, a HDMI port, a VGA port and other I/O interfaces including the PMOD connectors
which are general purpose 1/0. These characteristics allow to connect the Zedboard with other
devices including peripherals, which defines it as a suitable solution for a vast majority of tasks
within the sphere of embedded systems. It also allows designing various applications due to
the extensive number of features available which are applicable in signal processing, embedded
systems, and real-time control.

On the following part of this report, we will focus on the general information regarding the
Zedboard, as well as the outline of advantages, processing capabilities, and possible applica-
tions of the board and in-this-project used components. Thus, knowing the working profile
of the Zedboard allows for the efficient and creative development of general and embedded
systems. One accessible source of information on ZedBoard is the hardware manual, which

contains all the essentials regarding the specifications and key features of the device[8].

CHAPTER 2. HARDWARE & SOFTWARE OVERVIEW

ITAG/ VGA
power Debug Audiol/O GabE HDMI

ITAG/Debug
- XADC Header
USB UART
USBOTG _
FMC (LPC)
Pmods

Pmods Slide Switches Push Switches

* 5D card cage and Q5P| Flash reside on backside of board

Figure 2.1: Zedborad features [9]

2.2.2 Zynq-7000 SoC

Zyng-7000 is a family of system-on-chips (with minor differences between them)developed
by Xilinx. it includes both PL (programming logic) which is an FPGA and PS (processing
system) represented by ARM Cortex-A9 Processor. The integration of both PS and PL enables
developers to implement custom hardware accelerators, high-speed interfaces, and real-time
processing capabilities in a single chip. In addition to that,the zyng-7000 Soc contains many
other features among them the XADC which is an 12-bit analog to digital converter, AXI
which is high-frequency bus for internal connections, DMA which is a direct access memory
and many more features can be found in the zyng-7000 datasheet[10].

this section will focus on the PS, XADC, and the AXI-bus protocol due it’s pivotal role in
the project

10

CHAPTER 2. HARDWARE & SOFTWARE OVERVIEW

Block Diagram

od (4)
QsPI Flash

FMC (LPC)
SD Card
Audio CODEC
Gb Ethernet

use O1G

%

4

5
Multiplexed /O (MIO)

128x32 OLED

Clock

User Configured Logic

Fn

8 g

1 Switches

Dedicated

Clock

Figure 2.2: Zyng-7020 block diagram [8]

— il 1O Peripherals o
SPID Sattings Application Processaor Unit (AP
= B =
v 2C0 | Trc .
(150) 126 1] ARM Cortax -A% ARM Coftex -A9
e CAN D i System Lewel cPu cru
| CANTT R |-t Gantral Regs
| T | 54b
W UART1 V| — L] A
e —ro ! { e] Snoop Control unit AGH
(MDY 500 ﬂ | DMAS Slave
b 41 _so1 | Channel 1 512 KB L2 Cache and Controller Ports
USED___ ¥
USE 1 DM 2;'8”“;1
— L
ENET O | » :nsmnl | nherconnect
—ENET1 | Ceyical =
Bank1 Interconnect $+
M FLASH Memary - 1
(53:16) Interfaces F— Dap
LR Mermary
NAND <
GUAD 5P | Programmable DDR2/3,LFDDR2
B DEVE Logic to Memary - Controller
SMC Timing Interconnect
Caleulation
oMa 'yﬂl'.‘ 1215 |14 [15
aud & 16 |10)11 S S
4 {5 18 |7 Processin stemiF:
Resats I | Generalion | h s g Sy (FS)
g Dj1)2|3
ETETJET YRR 1 KN EVIE] Iy VR | I o conig 'R | Hgh Perormamea XADC I
Mio emio) PEPL AXI X AES/ AXI 32bi64b Slave
Clock Poris Mastar Slave SHA e
Ports Ports
Programmable Logic(PL)

Figure 2.3: zyng-7020 Architectural Overview

2.2.2.1 Programming Logic

The Programmable Logic (PL) part in a Zynq 7000 is the Field-Programmable Gate Array
(FPGA) component of the System-on-Chip (SoC). It is a programmable logic device that can
be used to implement custom digital circuits and interfaces. The PL is designed to work in con-

Jjunction with the Processing Subsystem (PS), which is based on an ARM Cortex-A9 processor.

11

CHAPTER 2. HARDWARE & SOFTWARE OVERVIEW

It consists of thousands (depends on zyng-7000 family member) of programmable logic ele-
ments called configurable logic blocks (CLBs). Each CLB has combinational (multiplexer) and
sequential (flip-flops) elements which combined together to implement any basic to complex
digital circuit. More details about the PL can be found in Zyng-7000 reference manual[10].

2.2.2.2 Processing System

The PS part is implemented using ARM Cortex-A9 dual core 32-bit pProcessor in addition to
multiplexed input/output unit (MIO) used to interact with the outside world. The ARM Cortex-
A9 is an implementation of ARM architecture referred to as the ARMv7-A architecture, which
is a 32-bit architecture. This implementation facilitates the execution of a large number of
programs and a range of applications, from simple tasks to complex computations. A key
point about Cortex-A9 is that it have two cores in it, making it possible to have a parallel
execution using multi-threading applications. The usage of the dual-core feature to process two
streams of data simultaneously aids in increasing speed and efficiency. Specifically developed
to incorporate power efficiency the Cortex-A9 contains several elements which can effectively
make the processor power consumption friendly, ideal for use in embedded systems. The ARM
Cortex-A9 features SIMD technology, which are Single Instruction, Multiple Data instructions
that enhance Multimedia and Signal Processing works. This is particularly useful in tasks such
as audio, video, or graphic processing where the processor can handle more complicated data
algorithms[11].

In addition to the CPU, PS contains memory presented in flash memory to store instruc-
tions(firmware), SRAM to store data in runtime, cache memory to optimise the execution time.
It contains as well, timers and circuit to interconnect with the I/O peripherals. And other circuits

can be found in [10] zyng-7000 reference manual.

2.2.2.3 In-Soc interconnection: AXI-bus protocol

Since zyng-7000 is a heterogeneous embedded processing platform that includes the software
programming ability of a powerful ARM processor (PS) together with the hardware program-
ming ability of an FPGA (PL) and other features, a very fast connection is established between
the parts.

This connection is implemented using the AXI-bus protocol. The AXI or Advanced eXtensi-
ble Interface is a high-performance, high-frequency bus protocol developed by ARM as a part
of Advanced Microcontroller Bus Architecture (AMBA)[12]. AXI provides a robust frame-
work for high-bandwidth and low-latency data transfer,for more details and features about the
AXI check [12].

12

CHAPTER 2. HARDWARE & SOFTWARE OVERVIEW

processing_systern?7_0

MDIO_ETHERNET 0 +|)|

DOR +]|| {O DDR
FIXED_10 + || o FiXED_IO
spiI0_0 +|| ps7_0_axi_periph

- USBIND_0 +|||)
M_AX|_GPO_ACLK ZYNQ M_AXI_GPO i i+ so0_axi xadc_wiz_0
TTCO_WAVED_OUT —= ACLK
TTCO WAVE1 OUT = ARESETN .?.
TTCO WAVEZ OUT 500_ACLK H-—N MO0 AX 4+
FCLK_CLKD 4= S00_ARESETN m<om
FCLK_RESETO_N MOD_ACLK
y—— MOO_ARESETN

ipZintc_inpt
“|+ saxiite channel_out[4.0]
" + Vp_Vn eoc_out
5_axi_adk alarm_out

5_axi_amesetn eos_out
busy_out

ZYNQT Processing System

AXI Interconnect

XADC Wizard

Figure 2.4: Interconnection between PS and XDC using AXI
The figure 2.4 shows the the interconnection using the AXI-bus protocols.

2.2.2.4 Xilinix Analog to Digital Converter

The XADC is an analog-digital converter part of the Zynq-7000 chip present on the Zedboard.
The features and capabilities of the XADC will be outlined in this part as follows. The XADC
is a dual 12-bit ADC that have 1 volt as maximum voltage reference[10]. On the XADC,
there are multiple different channels that can be used to start conversions. They can be divided
into two groups: analog input and internal sensors, the internal sensors that can be used are
temperature sensor and six power supply sensors(each one measure a different input voltage),
and 16 other general analog inputs. The XADC has more than one sampling configuration,
default, continuous, single pass.. [13] The scope of this study deals with continuous mode

XADC using temperature channel to monitor the temperature.

2.2.3 On Board Peripherals

The ZedBoard integrates various on-board peripherals for versatile embedded systems devel-

opment:
1. Switches: ZedBoard includes 8 slide switches for user input or configuration purposes.
2. user LEDs: There are 8 LEDs on the ZedBoard for visual feedback and status indication.

3. PMOD Connectors: ZedBoard includes PMOD connectors, which are standardized
connectors for interfacing with a variety of peripheral modules such as sensors, com-

munication modules, etc.
4. User Push Buttons: ZedBoard comes with 5 push buttons for user input or control.

5. JTAG Connector: ZedBoard includes a JTAG connector for programming and debug-
ging purposes.

13

CHAPTER 2. HARDWARE & SOFTWARE OVERVIEW

6. USB-UART Interface: ZedBoard features a USB-UART interface for serial communi-
cation and debugging. The USB-UART is wired to the UART1 of the PS of the zyng-
7000.

7. Expansion Headers: ZedBoard includes various expansion headers that expose addi-
tional interfaces like GPIO, SPI, 12C, XADC analog inputs etc., allowing you to connect

custom peripherals or expansion boards.

These on-board peripherals provide easy access to common interfacing components, making

ZedBoard a convenient platform for embedded systems development.

2.3 AMD Design Suite: Vivado & Vitis

Development environment kits can be viewed as essential tools for both software and hard-
ware development initiatives. These kits, as seen with devices such as AMD’s Vivado and
Vitis platforms for boards such as the ZedBoard, are essential elements in the development cy-
cle. To software engineers, these kits provide IDEs with debugging tools, profiling utilities and
optimize workflows hence increasing efficiency and productivity. On the hardware front, devel-
opment environment kits furnish designers with synthesis, and implementation tools essential
for realizing custom hardware designs. They facilitate verification and validation processes, en-
suring compliance with functional and timing requirements. Furthermore, these kits introduce
IP integration, allowing designers to seamlessly incorporate pre-designed IP cores into their
hardware designs. By combining software and hardware development kits, altogether encour-
age collaboration and synergy between software and hardware teams and enhance innovation
in embedded system design.

2.3.1 Vivado

The Vivado Design Suite by AMD is a hardware development environment for the develop-
ing FPGA systems containing a wide variety of tools and features that make it suitable for
creating, verifying, and implementing complex circuits in FPGA and SoC technologies by Xil-
inx. Vivado includes a variety of tools and elements to help engineers at every stage of the
design process, from architecture and logic synthesis to implementation, testing, and analysis
and even exporting hardware. As the result, Vivado offers a simple graphical user interface
and wide range tools, which allows engineers to deliver the most of FPGAs and SoCs, and to
create fast and optimized embedded systems for various application in automotive, aerospace,
telecommunication industries and others[14].

Vivado has a rich list of features and capabilities aimed at improving development of embed-
ded systems with FPGA and SoC technologies. Vivado’s IP integrator facilitates integration of

Xilinx IP cores and custom IP interfaces on a system level design for better integration and ease

14

CHAPTER 2. HARDWARE & SOFTWARE OVERVIEW

of configuration. As for the debugging and verification instruments, it includes the wide variety
of the features of the Vivado Logic Analyzer that allows for the real-time examination of the
sorting signals for the debugging of the hardware. Vivado has the ability to export the gener-
ated hardware as form of a file so software development kits (sdk) use it as a base hardware
for applications. Since Vivado is a comprehensive tool, it also offers capabilities to address
time analysis and power issues that projects may have. Built around an efficient graphical user
interface, the tool is a versatile environment created with an eye for the newcomer in design as
well as a powerful environment for complex designs that professional designers will find vital

to the creation of today’s hardware platforms[14].

2.3.2 Vitis

The Vitis Software Development Kit (SDK) is an advanced development environment provided
by AMD, designed to facilitate the creation, analysis, and optimization of software applications
for SoC systems. Vitis SDK integrates seamlessly with Xilinx hardware, allowing developers to
program, debug, and profile software on a variety of platforms including Xilinx Zynq® SoCs,
MPSoCs, and Versal ACAPs. Key features of Vitis SDK include support for heterogeneous
computing, enabling the use of both CPUs and programmable logic (FPGA circuits) for ef-
ficient task execution. It offers a comprehensive set of libraries and APIs tailored for FPGA
acceleration, and an intuitive GUI as well as command-line interfaces for versatile develop-
ment workflows. Additionally, Vitis SDK provides advanced debugging and profiling tools,
which help in identifying performance bottlenecks and optimizing both software and hardware
components. With its robust support for high-level synthesis (HLS) and direct integration with
Vivado Design Suite, Vitis SDK streamlines the development process, ensuring high perfor-

mance and power efficiency in embedded applications[15].

2.4 Renode

Renode is an open-source framework developed by Antmicro, with the main purpose of emulat-
ing embedded systems, prototyping, validation, and debugging. With the help of this software,
developers can model and emulate entire hardware systems, from individual microcontrollers
to interconnected 10T devices, peripherals, sensors, environments, and wired or wireless com-
munication between nodes, on a host computer. This makes it possible to test and verify the
functionalities of software in a emulated hardware and can be repeated several times without
involving physical platforms. Renode simulates various architectures and peripherals, which
helps in getting deep visibility of systems and makes any problem easily identifiable at an early
stage. This tool improves the productivity and effectiveness of embedded systems in line with
standard development tools and CI/CD [16].

It is noteworthy that Renode can be used in various domains and applications, and thus it is

15

CHAPTER 2. HARDWARE & SOFTWARE OVERVIEW

becoming important to the embedded system development and testing field. One of the most
important uses is in developing IoT devices, where it allows the emulation of all interconnected
devices, so that complete testing of communication protocols and general network behavior can
be done without requiring several physical devices. Renode can be used in industrial automa-
tion to design and test the performance and reliability of control systems within the industrial
field. Another important area in which it is applied is the academic and research field, where
design can take place within a flexible environment that enables new solutions to be tested on
their architectures. Also, the possibility to run unmodified binaries is useful in continuous in-
tegration and continuous delivery (CI/CD) where updated pieces of software have to be tested
automatically on different hardware platforms. Altogether, due to its flexibility and the avail-
ability of almost all essential features, Renode can be used at any stage of development, from
initial prototyping to extensive product deployment and servicing [17].

When it comes to how it works, Renode treats any piece of hardware as a C# object, defining
methods for that object to behave the same as real hardware. It classifies the peripherals into
three categories: 8, 16, and 32-bit peripherals to make the connection to the system’s bus easier.
Sensors, DACs, and ADCs are emulated using functions that simulate the input and output of

these devices [7].

2.5 FreeRTOS

FreeRTOS is an open-source real-time operating system (RTOS) kernel specifically developed
for microcontrollers used in embedded systems for concurrent monitoring and execution of
multiple tasks. Its functionality includes preemptive and cooperative multitasking, task pri-
oritization, and dynamic memory allocation. FreeRTOS includes support for task manage-
ment, scheduling, as well as methods of passing information and coordinating between tasks:
semaphores, mutexes, queues etc. These features assist in coordinating tasks and keeping data
synchronous throughout different functions. The other benefit of FreeRTOS is that it also
supports an idle mode which is appropriate for low power applications like battery operated
devices[18]. One of the fundamental features of FreeRTOS is modularity and the possibility
of integration. It can be ported to a variety of microcontroller architectures such as MSP432,
ZYNQ-7000 PS, arduino and many more. Such flexibility means that developers can employ
FreeRTOS in a wide variety of applications without having to limit themselves by a particular
type of hardware platform[19]. Additionally, FreeRTOS is accompanied by extensive docu-
mentation and a strong community, which means a wide range of resources for developers[20].
Due to the strong foundation and the continuous updates and support for FreeRTOS, FreeRTOS
will always continue to be a stable and optimal choice for real-time applications in embedded
systems. Due to the incorporation of cloud connectivity features in FreeRTOS, it also helps
to create IoT applications and guarantees secure and effective connection for numerous 10T
devices[21].

16

CHAPTER 2. HARDWARE & SOFTWARE OVERVIEW

2.6 Summary:

The chapter is the overview of the Hardware and Software, initial concepts that will help the
reader approach the following topics. First we have seen the Zedboard Development kit’s major
points and the programmable component, Zyng-7000 SoC, along with the Processing system,
and interconnect within the SoC using AXI-bus protocol. Also, it discusses the Xilinx Analog
to Digital Converter and on board peripheral devices. The subsequent section of the chapter
describes the tools that are included in the AMD Design Suite: Vivado and Vitis as well as their
purposes. Additionally, it brings into discussion Renode, an open-source emulation platform
designed for embedded systems. In the next chapter we will design and implement a single

node embedded system using Zedboard.

17

Chapter 3

Design and Implementation of a
Single-Node System

CHAPTER 3. DESIGN AND IMPLEMENTATION OF A SINGLE-NODE SYSTEM

3.1 Introduction:

In this chapter, we step into the action to set up and build a single-node system with the help
of an exciting-to be in environment, known as the Zedboard. Moving on from the theoretical
concepts outlined earlier in the report, where we introduced the reader to the capabilities of the
Zedboard hardware, as well as the tools represented in the Vivado and Vitis design suites and
the context of the FreeRTOS open source real-time operating system, this chapter will detail
the practical approach to build a functioning single-node system.

We will start with the simplest configuration, one physical node, and develop techniques for
emulating multi-node system in subsequent chapter. As a starting point, the single-node system
will set the context for the difficulties and issues faced in the design of embedded systems prior
to expanding to a wider multiple-node environment.

As a practical application, our single-node system will monitor the temperature using the
XADC (Analog-to-Digital Converter) and the on-chip temperature sensor of the ZYNQ-7000.

lastly, we will present findings of our work, by showing the results to illustrate performance
of the proposed system and describe the problems that were identified during the process of
implementation. After reading through this chapter, the reader will have grasped the ways and
means of designing, programming, and validating a single-node system using to the Zedboard,
Vivado, Vitis, FreeRTOS.

This knowledge will then lay the groundwork for the next chapter on multi-node systems
where the system has more than just one node. All of these skills and understanding are going
to be beneficial during our further work, aimed at the design and emulation of multi-node

systems, which can improve the functionality and scalability of embedded systems.

19

CHAPTER 3. DESIGN AND IMPLEMENTATION OF A SINGLE-NODE SYSTEM

3.2 Hardware Part

In this section we introduce the design constrains and the implementing steps for the hardware
part to configure the Zedbaord to work as a single-node embedded system that monitor the
internal temperature of the zyng-7000 and send it to PC via usb-uart port. At the end of this

section we obtain a generated file to load it to the Zedboard in order to configure it.

3.2.1 Design Considerations

In order to achieve the needed hardware, we mainly need four parts: the processing systems
of the zynqg-7000, the XADC IP, the AXI interconnect IP and processor system reset IP. The
objective of the design is to configure and connect the mentioned IPs in such way they work
together.

The processing system will be the central component responsible for controlling and pro-
cessing information in the entire system. The XADC IP performs the sampling and converting
of the analog signal, so that the system is able to interface with the on-chip temperature sensor
which is connected directly to it. This is important in the monitoring of temperature of the
Soc. The AXI interconnect IP provides a medium of communication between the processing
system and the various IP cores that are present in the design. It works like an efficient and fast
highway that allows the data exchange between the components. The processor system reset
IP will control the reset signals that are present in the design and will co-ordinate the resets of
the system when needed.

When these four essential blocks are appropriately configured and interconnected, the end
hardware architecture will provide the performance and functionality to the intended applica-
tion demands. The processing system will manage the flow and control of data, the XADC will
perform the analog interfacing, the AXI interconnect will facilitate connection between them

and the reset IP will manage resets for the system.

20

CHAPTER 3. DESIGN AND IMPLEMENTATION OF A SINGLE-NODE SYSTEM

3.2.2 Implementation

In this section, we will discuss the steps and methods used to implement the hardware needed.
This includes the setup of the environment, the configuration of the necessary blocks and IP
cores, and at the end obtain the intended hardware platform.

Firstly, we setup the development environment. This involves installing Vivado and Vitis
development suite, we used the 2023.1 version. The installation and the setup of the environ-
ment is straight forward. A boards file for the Zedboard needs to be downloaded from [22], and

paste it in the path bellow in order to get known by Vivado.
vivado_install_path\Xilinx\Vivado\20xx.x\data\boards\board_files

Subsequently, we launch the the Vivado design software and start creating new project. In
this step we are going to choose "Zedboard” as platform this should help us in further steps by

letting vivado knows the target platform.

Pars | Boards
@ To fetch the latest available boards from git repository, dick on ‘Refresh’ button. Dismiss
Reset All Filters

Vendor: | All v Name: | All v Board Rev: | Latest 4

Q T,
Search: zed ~ (1 match)

Display Name Preview Status Vendor File Version Part /0 Pin Count Board Rev

Zedboard

Installed digilentinccom 1.1 xc7z020clg484-1 484 D3

Figure 3.1: including zedboard in the project

After the creation of the project, we tested the functionality of the available board by writing
a VHDL code to test switchs and leds. The process is as follows, first, in the project manager
we add sources then choose VHDL file. The second step is we wrote a simple VHDL code to

implement some logic functions. Next is an example of a VHDL code.

21

CHAPTER 3. DESIGN AND IMPLEMENTATION OF A SINGLE-NODE SYSTEM

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity Test_hardware is
Port (a in STD_LOGIC;
b : in STD_LOGIC;
€ in STD_LOGIC;
d out STD_LOGIC;
e : out STD_LOGIC) ;

end Test_hardware;

architecture Behavioral of Test_hardware is
begin

d <= a and b;

e <= (a or not b) xor c;

end Behavioral;

After writing the VHDL code, the next step is to assign the SoC pins to the switches and LEDs
available on the ZedBoard. This is done by creating a constraints file (XDC file) that includes
the necessary pin assignments. Xilinx provides a constraints file with all possible assignments;
we just need to use three switches and two LEDs. Finally, we generate the bitstream to load
it onto the board. This process ensures that your VHDL design interacts correctly with the
physical switches and LEDs on the ZedBoard.

Following successful testing, we transitioned to the hardware implementation phase. Be-
ginning in the project manager, we selected ”Create block design” to lay the foundation for
our project. Within this design, we integrated essential components the "ZYNQ processing
system” which is the PS part. Additionally, we incorporated the "XADC wizard”. The next
step is the configuration of the XADC IP by double clicking on the block. Then we select
continuous operating mode to monitor the temperature, and choosing the temperature analog
sensor, select the channel sequencer and disable the alaram outputs. This step can be done by
software when accessing the xadc control register, but it easier to do it in vivado graphically.
After that we run the ”"Block automation” feature which is provided with vivado to configure
the processing system automatically and connects it with external I/O and memory, its notewor-
thy to disable unneeded features like TTC timers and communication ports and so on. Vivado
provides a feature called "RUN CONNECTION AUTOMATION”, which interconnects the IP

cores automatically by adding AXI-bus and processor system reset IP cores.

22

CHAPTER 3. DESIGN AND IMPLEMENTATION OF A SINGLE-NODE SYSTEM

rst_ps7_0_100M ps7_0_axi_periph
slowest_syne_d mb_reset
ext_s in bus_struct_reset[0:0] r a
€ aux_resel_in peripheral_reset[0:0]
= mb_debug_sys rst interconnect_aresatn[0:0] 1 S00_ACLK W M00_AxI + b +
= dem_locked peripheral_: S00_ARESETN gfig +
| - MOO_ACLK —
Processor System Reset MOO_ARESETN
processing_system7_0 J |—
AXI Interconnect
MDIO_ETHERNET 0 + L <
DDR + [DDR
FIXED_IO + [FIXED_IO
SDIO 0 +
USBIND 0 +

- 3
L M_AXI_GPO_ACLK W_AXI_GPO - et
o ZYNQ TTCO WAVED OUT -
TTCO_ WAVE! OUT =
TTCO_WAVEZ_OUT =
FCLK_CLKO pm—r
FCLK RESETO N @=—'

ZYNQT Processing System

Figure 3.2: project block diagram

The figure 3.2 shows the final block diagram for the hardware part.

3.3 Software part

After we have successfully complete the hardware design and implementation phase for this
project we now move to the next phase, which is the software development phase. This phase
will use Vitis software development kits (SDK) and FreeRTOS. These tools will help us to
develop a good and efficient software that takes the full advantage of hardware features that we
have developed early on.

First of all, after opening Vitis SDK and the creation of the work space, the creation of a
hardware platform is the needed step to be done. This step can be done by importing the hard-
ware file(.xsa) generated earlier and build the platform. This operation automates the process
of setting up the software development environment with the correct hardware settings and
peripherals.

Following that, we create an example application from the templates. That will include the
needed source and header files automatically without the need to import them manually. As we
are working with freeRTOS, we create the “FreeRTOS _hello_world” application and associated
with the hardware platform created previously.

The objective of the software code is to implement two freeRTOS tasks, the first task reads
the temperature from the sensor using the XADC and send it to a queue periodically. The
second task should read form the queue and sends the data through UART port.

The following is breakdown of the code:

23

)

)

CHAPTER 3. DESIGN AND IMPLEMENTATION OF A SINGLE-NODE SYSTEM

¢ Header files:

Listing 3.1: header files

#include <stdio.h> // Standard I/O functions

#include

"xparameters.h" // Xilinx hardware parameters generated by Vitis

to initialize the platform
"xadcps.h" // XADC driver header
"xuartps.h"// UART driver header

#include
#include
#include
#include
#include

#include

"xil printf.h" // Xilinx-specific printf
"FreeRTOS.h" // FreeRTOS header
"task.h" // FreeRTOS task management

"queue.h" // FreeRTOS queue management

* Definitions and prototypes:

Listing 3.2: Definitions and prototypes:

// Definitions for XADC to match the xparamaters header

#define XADC_DEVICE_ID XPAR_PS7_XADC_O_DEVICE_ID

// Task parameters
TEMP_MONITOR_TASK_PRIORITY (tskIDLE_PRIORITY + 1)

#define
#define
#define

TEMP_PRINT_TASK PRIORITY

(tskIDLE_PRIORITY + 1)

TASK_STACK_SIZE (configMINIMAL_STACK_SIZE)

// Queue length

#define

QUEUE_LENGTH 10

// Function prototypes

void vTempMonitorTask (void *pvParameters) ;

void vTempSenderTask (void xpvParameters);

// Global variable for the queue handle

QueueHandle_t xTempQueue;

* XADC configurations:

Listing 3.3: XADC config

// Configure the XADC sequencer

// Set the sequencer mode to safe to prioritizes safety and reliability

in the sampling process

24

CHAPTER 3. DESIGN AND IMPLEMENTATION OF A SINGLE-NODE SYSTEM

XAdcPs_SetSequencerMode (&XADC_Driver_Instance, XADCPS_SEQ_MODE_SAFE) ;

// Enable the temperature channel

XAdcPs_SetSeqChEnables (&§XADC_Driver_Instance, XADCPS_SEQ_CH_TEMP) ;

// Set the input mode for the temperature channel

XAdcPs_SetSegInputMode (&§XADC_Driver_ Instance, XADCPS_SEQ_CH_TEMP) ;

// Set the sequencer mode to continuous passing

XAdcPs_SetSequencerMode (&§XADC_Driver_Instance,

)

XADCPS_SEQ_MODE_CONTINPASS) ;

Tasks implementations:

Listing 3.4: tempearture monitoring task

void vTempMonitorTask (void *pvParameters) ({
ul6 temp_raw;

int temp_f£f;

// Temperature monitoring loop
while (1) {

temp_raw = XAdcPs_GetAdcData (&XADC_Driver_Instance,
XADCPS_CH_TEMP); //Read temp from XDAC FIFO

temp_f = XAdcPs_RawToTemperature (temp_raw);// convert the
readings to meaningful temperature unit by applying

calibration factors provided by Xilinx.

// Send temperature to the queue
if (xQueueSend (xTempQueue, &temp_f, portMAX DELAY) != pdPASS)

{
xil_printf ("Failed. Queue is full !\n");

}// check for queue before sending.

// Delay for a period
vTaskDelay (pdMS_TO_TICKS (1000)) ;

25

CHAPTER 3. DESIGN AND IMPLEMENTATION OF A SINGLE-NODE SYSTEM

Listing 3.5: Temperature transmissiom task

I void vTempSenderTask (void xpvParameters) {

5

o

int received_temp;

// Temperature print loop
while (1) {
// Receive temperature from the queue
if (xQueueReceive (xTempQueue, &received_temp, portMAX DELAY)
== pdPASS) {

XUartPs_Send (&UART_Instance, (u8x)received_tempr, sizeof (
tx_buffer));

xil_printf ("Temp is: $d C\n", received_temp);

main function:

Listing 3.6: Main function

int main () {
// Create the queue
xTempQueue = xQueueCreate (QUEUE_LENGTH, sizeof (int));

// Create tasks

xTaskCreate (vTempMonitorTask,
"Temp Monitor Task",
TASK_STACK_SIZE,
NULL,
TEMP_MONITOR_TASK_ PRIORITY,
NULL) ;

xTaskCreate (vlempSenderTask,
"Temp Sender Task",
TASK_STACK_SIZE,
NULL,
TEMP_PRINT_TASK_PRIORITY,
NULL) ;

// Start the scheduler
vTaskStartScheduler () ;

// the scheduler is running and will never return here.

return 0;

26

CHAPTER 3. DESIGN AND IMPLEMENTATION OF A SINGLE-NODE SYSTEM

At this level, both software and hardware parts for the single node implementation of the
embedded system are completely set. Well, as we all know, when things have been set up,
the next thing that is supposed to be done is to determine how the system functions. In the
proceeding section, an explanation of the results achieved from the setup described above will
be discussed. The aim of testing and however briefing is to analyze the behavior of the system,
evaluate it to determine whether or not it is functioning as expected and, in general, to determine

if it meets the requirements that have been set out.

3.4 Results & Discussion

Now let us turn to the Results and Discussion presented in the following section. Here, the
results of the completed installation and configuration of software and hardware will be dis-
cussed. We shall be able to review how efficient our designed system is, discover the difficulties

faced while implementing the system and consider the prospects for change.

3.4.1 Results

Before obtaining the result, a UART-USB communication needs to be configured. By using
third party emulation programs that provide an interface for connecting to remote systems via
various communication protocols such as serial. We setup “Tera term” application to com-
municate with serial and we set the baudrate to 115200, same as baudrate configured in the
Zedboard UART.

File Edit Setup Contro

Figure 3.3: Tera term -Not connected-

We connect the Zedboard to the PC using ”"JTAG Programing” port for the programming,

27

CHAPTER 3. DESIGN AND IMPLEMENTATION OF A SINGLE-NODE SYSTEM

and "USB-UART” port for sending the data and run the application via Vitis. The communica-

tion starts and we get the following result:

Figure 3.4: UART output via Tera term

Task 2 is sending the temperature values via UART and displayed using Tera term.

3.4.2 Discussion

After letting the the temperature measurement run for a period we notice that temperature is
slowly increasing then it settle. This is due to the heat sink which transfer the heat from the

SoC to the environment making the it cooler [10].

3.5 Summary:

This chapter shifted from theoretical discussions to actual practice by implementing a single-
node system with help of Zedboard hardware. Our objective was to offer a more practical
perspective on the topic of embedded systems design. This initial implementation sets the
stage for the exploration of multi-node systems covered in the following chapter. The practical
application of the concepts that we take is illustrated through the experiment where we used
XADC and on-chip sensor to measure temperature. In the process. By now, readers learned
about designing, implementing, and validation of the single-node systems on a Zedboard using
the Vivado, Vitis, and FreeRTOS tools. This knowledge helps them when it comes to designing
and emulating multi-node systems hence improving on the functionality of embedded systems

and scalability.

28

Chapter 4

Emulation and Testing The Multi-Node

Systems

CHAPTER 4. EMULATION AND TESTING THE MULTI-NODE SYSTEMS

4.1 Introduction:

Expanding the work done in the previous chapter focused on the design and implementation of
a single-node system and its results and discussions, this chapter goes deeper into the discussion
about emulation and testing of multi-node systems. With the help of the Renode framework
that has been mentioned earlier, it is possible to dive deeper into the description of various
interconnected systems and show the work of their components as functions of the overall
system. Multi node systems, which define an architecture with interrelated individual nodes,
usually, present challenges and issues when it comes to design and implementation especially
in communication and synchronization.

Both emulation and testing play significant roles to guarantee that there would be no prob-
lems with the network’s communication, coordination, and functionality before the real imple-
mentation. In this chapter, we will discuss how to accomplish accurate emulation of a multi-
node embedded system, leverage capabilities of Renode for developing successful test plans.
By the end of this chapter, you will be able to use Renode to emulate different embedded

systems, boards, peripherals and connection between them efficiently.

4.2 Renode basics

4.2.1 Renode Capabilities

Renode is a command line interface (CLI) application. It gives the user access to emulation
objects (devices) and reveals a few basic commands. The Monitor allows the user to view and
alter the states of those objects as well as carry out the actions that they provide. Renode also
have a built-in logger system that log lots of information about the operation of the emulated
environment in the logger window.This feature is very helpful when it comes to debugging.
Typically, the user would begin by setting up, configuring, and connecting the appropriate
emulated (guest) platform or platforms (referred to as “machines”) using a series of instruc-
tions. This can be done automatically using nested Renode scripts (.resc) which encapsulate
some of the repeatable elements in this activity (normally, the user will want to create the same
platform over and over again in between runs, or even script the execution entirely to test).[7]
In addition, Renode supports a broad range of hardware systems (Zedboard is supported),
including different CPU varieties, architectures, and I/O capabilities, sensors and so on. Fur-
thermore, for non-supported or user-created devices, users need to create their own peripheral
models. This would involve writing the necessary code (in C# or python as mentioned earlier
in Chapter 2) to define the behavior of the new device within the Renode framework. Once the

peripheral model is created, it can be integrated into the Renode emulation environment.

30

CHAPTER 4. EMULATION AND TESTING THE MULTI-NODE SYSTEMS

4.2.2 Emulation Setup and Configuration

When beginning emulation in Renode there are several initialization steps that need to be per-
formed in order to properly start the emulation and load all the necessary software. Manually
it becomes very large to carry and time consuming, especially if many changes are made in the
layout. To make these steps more efficient and repeatable, it can be saved as a Renode script
(.resc). It is also worth mentioning that this script contains all the necessary commands to cre-
ate and configure an emulation environment, allowing you to include this script in the Renode
monitor. By using the (.resc) script, you can ensure that the emulation setup is consistent and
reproducible, reducing the risk of errors that might occur with manual configuration.

Firstly, we will start with creating a single node emulation setup to gain a clearer under-
standing of the steps involved and to ensure that all is well as a first check. Finally, once the
single-node setup is up and running, we will extend the script to add another node to emulate

interconnected node system.

4.3 Single-node emulation

First of all we create a platform to begin with, this can be done using “mach create” command
followed by a label to give it a specific name. After that, we load the “zedboard.repl” which
is a file provided by Renode containing description of the emulated zedboard. The command
essential to that is "machine LoadPlatformDescription” followed by the path location of zed-
board.repl. For the next step we load the (.elf) file which is the executable file generated after
compiling and linking the software by Vitis. By using ”sysbus LoadELF @/path/of/genereted/-
file/output.elf”’. subsequently, we use command “showAnalyzer uart” to interact with the zed-

board’s uart port. Last but not least, we add the “start” command to begin the emulation.

Listing 4.1: Renode Script for a single-node Zedboard

:name: Zedboard

:description: This script configures a single-node Zedboard.

Sname?="Zedboard_UART_echo_test"

mach create S$name

machine LoadPlatformDescription @platforms/boards/zedboard.repl

showAnalyzer uartl

Sbin?=@path/to/your/binary/file.elf

31

CHAPTER 4. EMULATION AND TESTING THE MULTI-NODE SYSTEMS

load binaries
sysbus LoadELF $bin

start

The following algorithm represents the software (.elf) given above, it initialize UART then

reads and echo-back characters to test the UART functionality on emulation.

Algorithm 1 UART echo loop

1: init UART

2: while true do

3 if Receiver flag is set then

4: recetved_char < UART FIFO > receive the char
5: UART FIFO < received_char > echo back the char
6

7

8

9

if received_char = Enter’ then > Enter key
go to the next line
else if received_char =" Backspace' then > Backspace key
: delete the character
10: end if
11: end if
12: end while

After those steps are done, in the Renode monitor we use ’include” command to include our

script.

R=NOD=

Renode, version 1.15.8.30178 (9111b18e-202483181638)

include @F:\renodews\scripts\zed3.resc
Starting emulation...
(Zedboard_UART_echo_test)

Figure 4.1: The lunching of emulation
Now we can pause the emulation and debug or test many scenarios use debug commands

provided by Renode[7]. The emulation output can be showed in the UART analyser as men-

tioned before.

32

CHAPTER 4. EMULATION AND TESTING THE MULTI-NODE SYSTEMS

The Zedboard emulation is working successfuly !

This message is sent and displayed charcter by charcter, from UART Rx then echo it back from
UART Tx. Which is displayed UART analayser window.

Figure 4.2: Emulation output

In order to confirm the emulation reliability, the same test has been done on a physical hard-
ware(Zedboard). The behavior of the both systems (physical and emulated) was identical. So,
after the single-node emulation analysis and receiving positive outcomes, we should proceed
with the further research and move to the two-node emulation analysis. With this scaling, we
will be able to study the behavior of nodes and their communication, giving an idea about

Renode scaling capabilities.

4.4 Multi-node emulation

Based on the previous single-node emulation, this section will introduce multi-node emulation
and their interconnection. To begin with, let’s take the script 4.2 of creating a single node and
build on it. It’s as simple as duplicate each command with paying attention to some changes,
hardware labels (names) and software paths. This can be done using the “mach set” command
to select the platform then load each one individually. In addition to that we need to emulate a

communication between the two nodes, we use the "UARThub” to do that. this is the script:

Listing 4.2: Renode Script for a double-node Zedboard

:name: Zedboard

:description: This script configures two nodes of Zedboard.
Snamel?="Zedl"

Sname2?="Zed2"

Sbinl?=@path/to/your/binary/filel.elf

Sbin2?=@path/to/your/binary/file2.elf

mach create S$namel

mach create S$name?2

emulation CreateUARTHub "uartHub" ## create the uarthub

33

CHAPTER 4. EMULATION AND TESTING THE MULTI-NODE SYSTEMS

mach set Zedl

machine LoadPlatformDescription @platforms/boards/zedboard.repl

showAnalyzer uartl
sysbus LoadELF $binl

connector Connect sysbus.uartl uartHub ##connect the uart to the
uart hub

mach set Zed2

machine LoadPlatformDescription @platforms/boards/zedboard.repl

showAnalyzer uartl
sysbus LoadELF $bin2

connector Connect sysbus.uartl uartHub ##connect the uart to the

uart hub

uartHub Start

start

The topology given by the script in listing 4.2 is described as follows:

Multi-node architecture:

Emulated
— - Zedboard N
7/

/

-

Emulated Zedboard
Master

Emulated Zedboard
Slave

UART
Analyzer 2

UART
Analyzer 1

Host machine

Figure 4.3: Multi-node architecture approach

The figure 4.3 shows two nodes a master and a slave, as well as a communication between

them using the UARThub mentioned in the listing 4.2.

The goal of this emulation is to monitor the temperature in the slave node and send it to be

stored and displayed by the master node. Hence, two firmware’s has been needed.

For the slave node, we developed two FreeRTOS tasks: vTasktemp and vTasktransmit. The

vTasktemp task is responsible for monitoring temperature values. It emulates reading these

34

CHAPTER 4. EMULATION AND TESTING THE MULTI-NODE SYSTEMS

values by utilizing a function that simulates a temperature sensor, as described earlier. The
vTasktransmit task handles the transmission of these temperature readings to the master node
via UART port.

Listing 4.3: slave node software pseudo-code

// Define functions

— uart_init(baud_rate, clock_frequency) // Initialize UART with baud
rate and clock frequency

— uart_send (message) // Send a message via UART

— readTemperatureSensor () // Simulate reading temperature with
realistic variation

—FreeRTOS task functions

//In the vTasktemp task:
— Read temperature using readTemperatureSensor function

— Inqueue the the readings in FreeRTOS queue

//IN vTasktransmit task:
—Dequeue the temperature from the FreeRTOS queue
—Send the message with temperature via UART using uart_send function

— Delay for a period

// In the main function:

— Initialize clock frequency and baud rate

— Initialize UART

— Initialize a the FreeRTOS queue and create the tasks

— start the scheduler

For the master node, we developed two FreeRTOS tasks: vTaskReceive and vTaskDisplay.
The vTaskReceive task is responsible for reading data from the UART port and storing it in a
buffer. Once the data is read, it queues the temperature readings into a FreeRTOS queue for
further processing. The vTaskDisplay task retrieves the temperature values from the queue and
displays them on the screen, ensuring that the master node continuously monitors and outputs
the received temperature data in a timely manner. This setup allows for efficient data handling

and real-time monitoring of temperature values sent from the slave node.

Listing 4.4: master node software pseudo-code

// Define functions

— intToString (value, str, base)

35

CHAPTER 4. EMULATION AND TESTING THE MULTI-NODE SYSTEMS

// Convert an integer to a string
— uart_send (message)
// Send a message via UART
— uart_receive ()
// reads from the UART’s FIFO
— FreeRTOS tasks functions

//In the vTaskReceive task:
— Check if a character is received
— If received:
— Read the received character
— Store the received character

— Enqueue the received character

//In the vTaskDisplay task:
— Convert received character to string //using intToString fun
— Send temperature received from the slave is: //via UART
— Send the converted string via UART

— Insert a delay to avoid busy waiting

// In the main function:

— Initialize clock frequency and baud rate

— Initialize UART

— Initialize a the FreeRTOS queue and create the tasks

— start the scheduler

After including the script and starting the emulation, this is the output we got from each
UART.

* Slave node output:

OO N CCCCT " " 88_R%%RERRERRE" *

Figure 4.4: The slave node UART output

36

CHAPTER 4. EMULATION AND TESTING THE MULTI-NODE SYSTEMS

* Master node output:

master. Temperature received
master. Temperature received
master. Temperature received
master. Temperature received
master. Temperature received
master. Temperature received
master. Temperature received
master. Temperature received
master. Temperature received
master. Temperature received

master. Temperature received

master. Temperature received

Figure 4.5: The master node UART output

4.5 Discussion

After successfully emulating a single-node system and confirming the same output between the
physical and emulated hardware, we moved on to multi-node emulation. At first look, emu-
lation seemed unusual due to the output shown in Figure 4.4, which shows the slave’s output.
The characters appearing on the screen are actually integers, but the "UART analyzer” inter-
prets them as characters and prints them accordingly. We suggest a solution for improvement
of this emulation problem by creating an other analyzer that shows the frame transmitted as it
is. Hence, making analysing and debugging UART transmissions easier. On the other hand, we
see in in Figure 4.5 the temperature values displayed by the master after receiving them from
the slave.

For the communication protocol, and since the Zedboard has the ability to communicate
using Ethernet port, we tried to emulate the connection between the nodes using the TCP/IP
protocol. Therefor, we faced many problems due to the complexity of the protocol implement-
ing and lack of time; despite that, our application functions as intended, because it doesn’t need

a high speed communication.

37

CHAPTER 4. EMULATION AND TESTING THE MULTI-NODE SYSTEMS

4.6 Challenges and difficulties

We experienced some difficulties while emulating using Renode, because the process of its
development since it’s an open source software. The first challenge was the unavailability of
strong documentation, which is an issue because Renode is often updated, and the materials
which can be found on the Internet sometimes describe the tool features that are no longer
relevant. This made it challenging to seek for more particular information on setting up the
emulated environment, incorporating the required peripheral devices, and managing problems
as they occurred. Further, we came across such cases where the base addresses of some periph-
erals did not match the expected addresses, making a difference with regards to the emulator
and the actual hardware. This made it necessary to look at the peripheral details to determine
any contradictions in the respective device documentation and configure or bypass different

features to allow proper functionality of the emulated system.

4.7 Summary:

Thus, in the given chapter we learned that by using Renode, we can emulate embedded that
guarantee effective communication, synchronization, and performance. Through practical ex-
amples and discussions, we have shown how to efficiently emulate different embedded systems,
boards, peripherals, and their connections using Renode. We also suggested a solution to an
issue occurred during the emulation. With these skills, you now have what it takes to address
potential challenges of emulating multi-node systems using Renode while guaranteeing effi-

ciency.

38

Conclusion

This work has established the need for emulation in embedded systems and IoT and the use-
fulness of Renode as a flexible emulation platform. The feature of emulating the full system
along with its capability to support multiple nodes makes Renode a useful tool for prototyping
and testing. The interactivity and the support for various components of the hardware make it
provide flexibility in its use and integration in both learning and working environments.

In conclusion, it can be seen that the importance of emulation will grow in tandem with
the advancements in embedded systems and the increasing deployment of these systems in
various domains. Tools like Renode will play a vital role in facilitating efficient and effective
development and testing processes, improving outcomes in this dynamic field.

In the future, we want to master emulation using Renode by implementing more complex
communication protocols such as TCP/IP and wireless communications, design and use our
user-peripheral and hardware and integrate it in the emulation, as well as test the capability of
high nodes scaling. We wish that our work lays a ground for students and researchers to use

emulation in academic purposes to advance more in the embedded systems field.

39

Bibliography

[1]

(2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

Peter Marwedel. Embedded System Design: Embedded Systems Foundations of Cyber-
Physical Systems. 2010. 1SBN: 9789400702561. po1: 10 .1007 /978 -94-007 -
0257-8.

BAP Software. What is Embedded Systems? Accessed: 2024-06-10. 2023. URL: https:
//bap-software.net/en/knowledge/what-is—-embedded-systems/.

Asma Mushtaq. “What are the Challenges in Embedded Systems Design?” In: (2023).
URL: https://eevibes.com/computing/introduction-to-computing/

what—-are-the-challenges—in-embedded-systems—-design/.

Varun G Menon et al. “An IoT-enabled intelligent automobile system for smart cities”.
In: Internet of Things 18 (2022), p. 100213. 1SSN: 2542-6605. DOI: https://doi.
org/10.1016/3.1i0t.2020.100213.URL: https://www.sciencedirect.
com/science/article/pii/S2542660520300494.

Abraham A Clements et al. “HALucinator: Firmware Re-hosting Through Abstraction
Layer Emulation”. In: 29th USENIX Security Symposium (USENIX Security 20). USENIX
Association, Aug. 2020, pp. 1201-1218. 1SBN: 978-1-939133-17-5. URL: https://
WWW . usenix . org/conference/usenixsecurity20 /presentation/

clements.

Mark Jonas and Drew Chambers. “The Use and Abuses of Emulation as a Pedagogical
Practice”. In: Educational Theory 67 (June 2017), pp. 241-263.D0OI1: 10.1111/edth.
12246.

Renode Wiki. https://renode.readthedocs.io/en/latest/. Accessed:
2024-06-09.

AVENT. Hardware Manual for [ZedBoard Getting Started Guide]. AVENT. 2012. URL:
https://www.avnet .com/wps/wcm/connect /onesite/7ae0£f288 -
1cc5-4283-9e85-300c5401b680/GS-AES-Z7EV-7Z2020-G-V7-1.pdf?
MOD=AJPERES&CACHEID=ROOTWORKSPACE.Z18_NALA1T41LOICDOABNDMDDGO0O00-
72e0£288-1ccb5-4283-9e85-300c5401b680-—nxyWIES.

40

https://doi.org/10.1007/978-94-007-0257-8
https://doi.org/10.1007/978-94-007-0257-8
https://bap-software.net/en/knowledge/what-is-embedded-systems/
https://bap-software.net/en/knowledge/what-is-embedded-systems/
https://eevibes.com/computing/introduction-to-computing/what-are-the-challenges-in-embedded-systems-design/
https://eevibes.com/computing/introduction-to-computing/what-are-the-challenges-in-embedded-systems-design/
https://doi.org/https://doi.org/10.1016/j.iot.2020.100213
https://doi.org/https://doi.org/10.1016/j.iot.2020.100213
https://www.sciencedirect.com/science/article/pii/S2542660520300494
https://www.sciencedirect.com/science/article/pii/S2542660520300494
https://www.usenix.org/conference/usenixsecurity20/presentation/clements
https://www.usenix.org/conference/usenixsecurity20/presentation/clements
https://www.usenix.org/conference/usenixsecurity20/presentation/clements
https://doi.org/10.1111/edth.12246
https://doi.org/10.1111/edth.12246
https://renode.readthedocs.io/en/latest/
https://www.avnet.com/wps/wcm/connect/onesite/7ae0f288-1cc5-4283-9e85-300c5401b680/GS-AES-Z7EV-7Z020-G-V7-1.pdf?MOD=AJPERES&CACHEID=ROOTWORKSPACE.Z18_NA5A1I41L0ICD0ABNDMDDG0000-7ae0f288-1cc5-4283-9e85-300c5401b680-nxyWIEs
https://www.avnet.com/wps/wcm/connect/onesite/7ae0f288-1cc5-4283-9e85-300c5401b680/GS-AES-Z7EV-7Z020-G-V7-1.pdf?MOD=AJPERES&CACHEID=ROOTWORKSPACE.Z18_NA5A1I41L0ICD0ABNDMDDG0000-7ae0f288-1cc5-4283-9e85-300c5401b680-nxyWIEs
https://www.avnet.com/wps/wcm/connect/onesite/7ae0f288-1cc5-4283-9e85-300c5401b680/GS-AES-Z7EV-7Z020-G-V7-1.pdf?MOD=AJPERES&CACHEID=ROOTWORKSPACE.Z18_NA5A1I41L0ICD0ABNDMDDG0000-7ae0f288-1cc5-4283-9e85-300c5401b680-nxyWIEs
https://www.avnet.com/wps/wcm/connect/onesite/7ae0f288-1cc5-4283-9e85-300c5401b680/GS-AES-Z7EV-7Z020-G-V7-1.pdf?MOD=AJPERES&CACHEID=ROOTWORKSPACE.Z18_NA5A1I41L0ICD0ABNDMDDG0000-7ae0f288-1cc5-4283-9e85-300c5401b680-nxyWIEs

BIBLIOGRAPHY

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

Xilinx Inc. Zyng-7000 SoC Data Sheet: Overview.2018. URL: https://docs.amd.
com/v/u/en-US/ds190-2yng—-7000-Overview.

ARM webpage for cortex a9. URL: https://developer.arm.com/Processors/
Cortex—A9.

ARM Limited. AMBA AXI and ACE Protocol Specification. Accessed: 2024-06-03. 2024.
URL: https://documentation—-service.arm.com/static/651¢c285c15583d1bff97

token=.

Pascal Engeler. Using the Zyng-7000 XADC and signal pre-conditioning. 2017. URL:
https://ethz.ch/content /dam/ethz/special-interest /phys/
quantum-electronics/tigi-dam/documents /semester_theses/

vacationthesis-Pascal_Engeler.pdf.

Vivado Overview. https://www.xilinx.com/products/design—-tools/
vivado.html. Accessed: 2024-06-10. AMD.

Vitis Unified Software Platform. https : / /www . xilinx . com / products /
design-tools/vitis.html. Accessed: 2024-06-10. AMD.

Antmicro. Renode - Antmicro’s Open Source Simulator for Complex Embedded Systems.
https://renode.io/cases/. Accessed: 2023-06-10. 2023.

Antmicro. Use Cases. https://antmicro.com/platforms/renode/. Ac-
cessed: 2023-06-10. 2023.

FreeRTOS. FreeRTOS Functionality. Accessed: 2024-06-10. 2024. URL: https://

www.freertos.org/features.html.

FreeRTOS. FreeRTOS Portability. Accessed: 2024-06-10. 2024. URL: https://www.
freertos.org/RTOS_ports.html.

FreeRTOS. FreeRTOS Support and Documentation. Accessed: 2024-06-10. 2024. URL:
https://www.freertos.org/Documentation/RTOS_book.html.

FreeRTOS. FreeRTOS and AWS IoT. Accessed: 2024-06-10. 2024. URL: https://

www.freertos.org/iot-libraries.html.

Avent. Use Cases. https://digilent.com/reference/software/vivado/board-files. Accessed:
2023-06-10. 2023.

41

https://docs.amd.com/v/u/en-US/ds190-Zynq-7000-Overview
https://docs.amd.com/v/u/en-US/ds190-Zynq-7000-Overview
https://developer.arm.com/Processors/Cortex-A9
https://developer.arm.com/Processors/Cortex-A9
https://documentation-service.arm.com/static/651c285c15583d1bff972f94?token=
https://documentation-service.arm.com/static/651c285c15583d1bff972f94?token=
https://ethz.ch/content/dam/ethz/special-interest/phys/quantum-electronics/tiqi-dam/documents/semester_theses/vacationthesis-Pascal_Engeler.pdf
https://ethz.ch/content/dam/ethz/special-interest/phys/quantum-electronics/tiqi-dam/documents/semester_theses/vacationthesis-Pascal_Engeler.pdf
https://ethz.ch/content/dam/ethz/special-interest/phys/quantum-electronics/tiqi-dam/documents/semester_theses/vacationthesis-Pascal_Engeler.pdf
https://www.xilinx.com/products/design-tools/vivado.html
https://www.xilinx.com/products/design-tools/vivado.html
https://www.xilinx.com/products/design-tools/vitis.html
https://www.xilinx.com/products/design-tools/vitis.html
https://renode.io/cases/
https://antmicro.com/platforms/renode/
https://www.freertos.org/features.html
https://www.freertos.org/features.html
https://www.freertos.org/RTOS_ports.html
https://www.freertos.org/RTOS_ports.html
https://www.freertos.org/Documentation/RTOS_book.html
https://www.freertos.org/iot-libraries.html
https://www.freertos.org/iot-libraries.html

People’s Democratic Republic of Algeria

Ministry of Higher Education and Scientific Research

University M’Hamed
BOUGARA - Boumerdes

Institute of Electrical and Department of Electronics

Electronic Engineering

Université de es |
University of Boumerdes
B

Authorization for Final

Year Project Defense
Academic year: 2023/2024

The undersigned supervisor: ~ Dr. MAACHE Ahmed authorizes the student(s):

HACHMANE Abderrahemane Option: Computer.

KHOUAS Aness Mohamed Option: Computer.

to defend his / her / their final year Master program project entitled:

Emulating Multi-node Emended Systems using Renode

during the [X]June []September session.

Date: 11/06/2024

The Supervisor The Department Head

i

	Abstract
	Dedication
	Acknowledgments
	Table of Contents
	List of Figures
	List of Abbreviations
	General introduction
	Introduction to Multi-Node Embedded Systems & Emulation
	Introduction
	Embedded Systems
	Hardware Emulation

	 Hardware & Software Overview
	Introduction:
	Zedboard Development kit
	ZedBoard Key Features
	Zynq-7000 SoC
	Programming Logic
	Processing System
	 In-Soc interconnection: AXI-bus protocol
	Xilinix Analog to Digital Converter

	On Board Peripherals

	 AMD Design Suite: Vivado & Vitis
	Vivado
	Vitis

	Renode
	FreeRTOS
	Summary:

	 Design and Implementation of a Single-Node System
	Introduction:
	Hardware Part
	Design Considerations
	Implementation

	Software part
	Results & Discussion
	Results
	Discussion

	Summary:

	Emulation and Testing The Multi-Node Systems
	Introduction:
	Renode basics
	Renode Capabilities
	Emulation Setup and Configuration

	Single-node emulation
	Multi-node emulation
	Discussion
	Challenges and difficulties
	Summary:

	Conclusion

