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abstract
The integration of neural networks in control theories has the potential to revolutionize

modern control engineering by enhancing performance measures and increasing plant
efficiency.

This project aims to explore the performance of three neural network controllers:
Neural Network Predictive controller , Neural Network Model Reference Controller,

and the Nonlinear Auto-Regressive Moving Average Controller and evaluate the potential
benefit s and challenges associated with each type of controller.

A system simulation was created on Simulink and Matlab scripts to compare a set
of performance measures. Data were collected from several simulations and averaged to
provide estimates.

The findings indicate that neural networks can significantly improve a plant’s response
and accuracy,especially the Nonlinear Auto-Regressive Moving Average (NARMA-L2)
and Neural Network Model Predictive Controllers. However, challenges such as con-
troller training and computational power suggest a need to optimize the network algo-
rithms.

While neural network controllers provided enhanced responses with minimal informa-
tion about the plants,each type studied has a specific field of application and limitations
under certain conditions.
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Introduction
In recent decades,control engineering’s field has witnessed a significant developments,striven
by the desire to improve the performance and efficiency of several systems.The applica-
tion of various control strategies, particularly nonlinear controllers, has been proven to be
a pivot area of focus, producing revolutionary results that the traditional control method-
ologies failed to produce,Thus unlocking field in system regulation and optimization.

This project explores the implications of integrating nonlinear control strategies into
modern control engineering and more specifically neural network controllers. By focus-
ing in the interplay between theoretical background and simulations, we strive to unravel
the potential benefits and challenges of neural network control methodologies, with an
illustrations and examples on their application in real-world scenarios.

chapter 1 : is a study covering the theoritical background, real world applications,and
assessments of several control system methods. We begin the investigation bygoing
through a review of the linear control strategies followed by nonlinear controlled tech-
niques.These complex control strategies such as sliding mode controllers, adaptive con-
trollers, the feedback linearization, model predictive controllers, and the artificial neural
network controllers, is made possible by this fundamental knowledge.

chapter 2 : focuses on neural networks, a powerful computational tool that’s proving
to have immense potential in enhancing system performance and adaptability. By exam-
ining the theory of neural networks, their estimation capabilities, and training algorithms,
we aim to provide insights into their functionalities.

Chapter 3: we strive to utilize neural networks and the inherent logic in nonlinear
control strategies to design and study a neural network-based control methodologies. By
a combination of theoretical analyses, simulation studies, and systematical evaluations,
we endeavor to shed light on the efficacy, limitations, and future prospects of advanced
control techniques in modern control engineering.

Chapter 4 : we strive to uncover the limitation and relative efficiency of each neural
network based control strategy.Comparing the results with two different study cases to
asses their actual behaviour under different circumstances.
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Chapter 1

Nonlinear Controllers

1.1 Introduction

Control engineering is a branch of engineering that deals with the design,analysis and
implementation of control systems: Control system is a system created to manipulate the
behavior of a plant to satisfy given specifications or to behave in a specific way. This
manipulation is applied on a plant using a controller, which is considered a subsystem
that directly influence the behaviour of the plant.

These controllers can be classified into two categories :

1. Linear Controllers:

Linear controllers are often used when a plant is accurately modeled by a linear
function and acts in a linear fashion with its input.

Most popular linear controllers that can be mentioned are :

(a) P.I.D controllers (PROPORTIONAL-INTEGRAL-DERIVATIVE)

(b) LEAD-LAG controllers

(c) STATE FEEDBACK controllers

(d) LINEAR QUADRATIC REGULATOR controllers(L.Q.R)

2. Non-Linear Controllers

Non-linear controllers are often used when a plant is strongly non-linear, has high
complexity and a wide operating range.Some of the most popular non linear con-
trollers are :

(a) SLIDING MODE controllers (S.M.C)

(b) ADAPTIVE controllers

(c) LINEARIZATION FEEDBACK controllers

(d) MODEL PREDICTIVE controllers (MPC)

(e) NEURAL NETWORK controllers (ANNC)

The interest of this chapter lies in non-linear controllers.

1



2 CHAPTER 1. NONLINEAR CONTROLLERS

1.2 Non-Linear Controllers

Nonlinear controllers manage systems with nonlinear behaviours by applying control
policies that are usually not linear functions of the states of the system. They handle
complex behaviors functions like saturation, dead zones, and hysteresis. Neural network
controllers are based on other non-linear controllers, which is why they will be discussed
in details.

1.2.1 Sliding Mode Controllers (S.M.C)

Siding mode controller is a type of controller that deals with non-linear systems. The pop-
ularity of the sliding mode controller is due to its low sensitivity to the plant’s parameters
and the disturbances.

The idea behind the sliding mode controller is to drive the system into a predefined
surface area where it would be maintained.

Let’s consider the system :

ÿ + a1ẏ + a2y = u

J =

∫ tf

0

|u| dt
(1.1)

With a J performance measure to be minimized as shown in eq.(1.1).By using the
pontryagin minimum principal [8] as follows :

H = |u|+ P (t)T (ẋ)

Ṗ (t) = −∂H

∂x
H(u⋆, x⋆, P (t)⋆) < H(u, x⋆, P (t)⋆)

(1.2)

By expanding on eq.(1.2) and using the system given in eq.(1.1). The control policy is
described as follows :

U =

{
Umax Pn(t)

⋆ < 0

− Umax Pn(t)
⋆ > 0

(1.3)

In this case, the plane considered is Pn , which minimizes the effort required in the pro-
cess.

While the equation obtained from using optimal control theory eq.(1.2) is tempting
due to its simplicity, there are scenarios in practice when such approach cannot be applied
that is mostly due to the fact that the plants are either not modeled accurately or are
unknown, which pushed scientist to create another approach that has been popular for the
last two decades.

This approach chooses the zero tracking error as its surface. Let’s consider the fol-
lowing system:

ẋ = f(x, t) + g(x, t)

y = h(x, t)
(1.4)

And a tracking error as a scalar function [9] that takes the system σ(x) : Rn −→ R as
follows :

σ = σ(e, ė, ë, . . . , ek) (1.5)
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Where k+1 is the relative degree of the system and e is the error.For simplicity’s sake
and to ensure that the system is completely stable when σ = 0; A reduced sub-system is
chosen to represent eq.(1.5).

σ = (
d

dt
+ p)ke (1.6)

With p being an arbitrary positive real number.
There are several approaches based on the sliding mode control approach:

1.2.1.1 Standard (or first-order) sliding mode control

These type of controllers are described by control input policy whose forms are :
U = −Umaxsign(σ)

U = −Umax
σ

|σ|+ ϵ
ϵ ≈ 0

U = −Umax
eσ/ϵ − e−σ/ϵ

eσ/ϵ + e−σ/ϵ
ϵ ≈ 0

(1.7)

However,these three forms(eq1.7) are only valid under certain conditions when uncer-

Figure 1.1: Standards sliding mode controller

tainties are not present.
For example ,figure 1.1 illustrates a control block diagram of a first-order system using

a sliding mode controller to minimize system effort and error
In case a disturbance is affecting the plant, the higher order SMC are employed.

1.2.1.2 High-order sliding mode control

One popular algorithm for 2nd order sliding mode controller is given [10] by the following
control policy :

U = −
√

Umax|σ|sign(σ) +
∫
−1.1Umaxsign(σ) dt (1.8)

The second order sliding mode controller eq.(1.8) is designed to reject all disturbances
by choosing suitable parameters through tuning.

The design of higher order sliding mode controller is shown in figure 1.2.This design
uses the saturation property of a physical device to control a nonlinear system, which
made it raise in popularity even further.

Example: Consider an inverted pendulum project, which involves controlling the
force applied to the cart to maintain balance. For the sake of simplicity,the focus will
be only on maintaining the pendulum balanced without caring about the distance.

Such system can be described by the non-linear eq.(1.9) :
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Figure 1.2: Higher order sliding mode controller

θ̈ =
m sin θ(lθ̇2 +Mcart cos θ) + u

Mcart +m sin θ2
(1.9)

In this example Mcart = 10kg,m = 0.1kg and l = 0.3m, thus eq.(1.9) can be ex-
pressed as follows:

θ̈ =
0.1 sin θ(0.3θ̇2 + 10 cos θ) + u

10cart + 0.1 sin θ2
(1.10)

(a) control signal
(b) inverted pendulum position control with
disturbance

Figure 1.3: Inverted pendulum position control

Figure 1.3 shows the control input required to keep the pendulum balanced vertically
figure 1.3a and the position angle with a disturbance input to the output 1.3b.

Moreover, the standard sliding mode controller truly shines when controlling either
linear or non-disturbed non-linear systems. To show such fact,two more systems de-
scribed by eq.(1.11) and eq.(1.12) respectively are considered :

ÿ − 2ẏ + y = 2u (1.11)

ÿ + y3ẏ + y + ẏ cos y − 5u = 0 (1.12)

Following the application of the sliding mode controller with the surface defined as the
surface for, which the error between the reference and the output to be zero,the following
graphs were obtained :
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(a) control signal (b) reference vs output linear system

Figure 1.4: Nonlinear system (eq1.11) controlled with S.M.C

(a) control signal (b) reference vs output non-linear system

Figure 1.5: Non linear system (eq1.12) controlled with S.M.C

1.2.2 Adaptive controllers

There are several adaptive controller that are popular in the industry.In this section, the
adaptive controller chosen was the model reference adaptive controller(MRAC), which
utilize a reference known model to control a plant.

Figure 1.6 shows the block diagram of a model reference adaptive controller.
Note that the adjustments mechanism depends on the designer.However, the mean

square error is often used to create a valid mechanism. let’s consider the error of a system
e = y − ymodel and the mean square error J = 1

2
e2 [1].

If the MIT algorithm is used to achieve a control policy of the form U = θ1r, then the
adaptive mechanism would follow this logic

dθ

dt
= −γ dJ

dt

=⇒ dθ

dt
= −γ dJ

de

de

dθ

(1.13)

Illustration : Figure 1.6 considers that the model’s reference transfer function is Gref ,
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Figure 1.6: Model reference adaptive controller [1]

the plant’s transfer function is G, thus eq.(1.13) becomes :

dθ

dt
= −γ dJ

de

de

dθ

= −γede
dθ

= −γeym
G

Gref

(1.14)

The parameters of the adaptive control can be chosen arbitrary or through errors and
trials, they affect how fast the system converges to the desired reference.

One popular field of engineering that often relies on the adaptive controllers is the
aerodynamic system since engineers have a specific behaviors that they would require the
system to imitate.

Example:
consider the non-linear system described by :

ÿ + y3ẏ + y + ẏ cos y − 5u = 0 (1.15)

and let’s take the reference as :

G(s) =
3

s2 + s+ 3
(1.16)

By trying to minimize the error between the output of the model system eq.(1.16) and
the actual system eq.(1.15),through applying the MIT algorithm.It is possible to obtain an
adaptive mechanism with a desired control policy of the form u = θr(t), where r(t) is
the reference input.

Figure 1.7a represents the control input obtained through designing the adaptive model
reference controller,thus forcing the output system to behave as depicted in figure 1.7

The adaptive mechanism used in this example is as follows :

θ̇ = −ηe −5
ẏ sin y − 1− 3y2ẏ

r(t) (1.17)

η represents the learning rate of the adaptive mechanism, which was taken to be equal
to η = 0.15
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(a) control signal
(b) model-reference output vs output of non-
linear system

(c) reference output vs output of non-linear
system

Figure 1.7: Non linear system (eq1.15) controlled with MRAC

1.2.3 Feedback Linearization
Linear systems are popular due to their simplicity and numerous available approaches in
designing and analysing-even though the conditions are quite severe -.Thus scientists and
engineers investigated whether or not it was possible to employ the linear system analysis
methods to design a non-linear controller.

Relative degree: The relative degree of a system is defined by how many times it
is necessary to differentiate the output non-linear function for the effect of the input to
appear [11].

Let’s consider the following system :{
ẋ = f(x) + g(x)u

y = h(x)
(1.18)

By considering the single-input-single-output eq.(1.18).One can differentiate the out-
put a number of times to find a new state space representation, which is both linear and
easy to control using linear controllers.

y = h(x)

ẏ =
dh(x)

dx
(f(x) + g(x)u)

...

(1.19)

Let’s define what is called the lie derivative as follows : Lfh = (∇h)f
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Thus eq.(1.19) can be re-written as :

y = h(x)

ẏ = Lfh+ Lghu

ÿ = L2
fh+ Lg(Lfh)u

...

(1.20)

One detail to notice when working with the eq.(1.20) is that the input does not influ-
ence the first r-1 derivative(r is the relative degree), which implies that those derivative do
not ’see’ the input,henceforth deducing that Lg(L

k
fh) = 0 when k ≤ r − 2.it is possible

to Write the eq.(1.20) as :
y
ẏ
...

y(r)

 =


1
Lf
...
Lr
f

h(x) +


0
0

...
Lg(L

r−1
f h(x))

u (1.21)

It can be observed that it is possible to alter the states of the eq.(1.21) as :


ẋ1

ẋ2
...

ẋr−1

ẋr

 =


0 1 0 . . . 0
0 0 1 . . . 0
...

...
... . . .

...
0 1 0 . . . 1
0 0 0 . . . 0

X +


0
0
...
0
1

V

y =
[
1 0 0 . . . 0

]
X

(1.22)

With x1 = y, x2 = ẏ, . . . , xr = y(r−1) and V = y(r) = α(x) + β(x)u
The eq.(1.22) is in the controller, which enables us to use a linear controller design

approach such as state feedback controller,thus finding a pseudo-control input V ,and by
extension finding the controller input u = −α(x)+V

β(x)
[11].

Example: consider the non-linear system described by :

ÿ + y3ẏ + y + ẏ cos y − 5u = 0 (1.23)

By expressing the system eq.(1.23) in the state space representation as a result the follow-
ing description is obtained :

[
ẋ1

ẋ2

]
=

[
x2

5u− x2 cosx1 − x1 − x2x
3
1

]
y = x1

(1.24)

Applying the linearization feedback method on the system eq.(1.24),a linear system
with a relative degree of 2 is deduced,and is described as follows :

[
ż1
ż2

]
=

[
0 1
0 0

]
z +

[
0
1

]
v

y = z1

(1.25)

Where z1 = y,z2 = ẏ and v = 5u− x2 cosx1 − x1 − x2x
3
1

It is possible to apply the state feedback to force the system to behave any way desired.
In this example, system was made to behave in a similar way to the linear system : G(s) =

3
s2+s+3

.
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(a) control signal (b) reference vs output of non-linear system

Figure 1.8: Non linear system (eq1.24) controlled with linearization feedback

Figure 1.9: Linear counter-part vs controlled non-linear

Figure 1.8a represents the output of the linearization feedback controller, while figure
1.8b shows the desired output(reference) and the actual output

Figure 1.9 represents both the desired output of G(s) = 3
s2+s+3

and the actual non-
linear output to the controlled plant.

One characteristic that makes linearization feedback controllers popular in the field is
its high compatibility with M.I.M.O systems.

As an example; consider the planar vehicle car model described by : ẋ
ẏ

θ̇

 =

 u1 cos θ
u1 sin θ

u2

 (1.26)

Manipulating the variables and applying linearization feedback lead to the following
results:
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(a) control signal u1 (b) control signal u2

(c) x-axis outputs vs x-axis reference (d) y-axis output vs y-axis reference

Figure 1.10: Non linear system of polar vehicle controlled with linearization feedback

1.2.4 Model Predictive Controller (MPC)

Model predictive controllers are optimal control based controllers that focus on mini-
mizing a specific performance measure,by relying on the plant’s model as well as the
provided constraints given to the controller program.These constraint usually describe the
limits of the plants such as the physical limits of the actuators as well as the maximum
and minimum possible inputs.

Figure 1.11: block diagram of the model reference controlled plant [2]
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figure 1.11 shows a plant controlled using an MPC controller

J = ||y(T )− yref ||TH||y(k)− yref ||+∫ T

=0

||y(t)− yref ||TQ||y(t)− yref ||+

||u(t)− uref ||TR||u(t)− uref ||
+ ||∆u||TS||∆u||. dt

(1.27)

The MPC strives to minimize the performance measure described by eq.(1.27). Notice
that if a linear system is considered instead of a nonlinear system, the model predictive
controller becomes an LQR controller[12] and [13].

One important characteristic and challenging aspect of the model predictive controller
is the necessity to design an approximate model that depends on both past and future
variable in order to estimate future output of the plant.

Algorithm 1: Algorithms for the Model Predictive Control (MPC)
1. Step 1: Gather Training Data

2. Step 2: Perform least square program

3. Step 3: Use Nonlinear Solver
Use a nonlinear optimization solver such as Hamiltonian approach

4. Step 4: Apply First Control Input
Apply the first control input from the optimal sequence uopt

Illustration: consider the following non-linear system [14] :

ẋ1 = (x2 − 1)− 2x1

ẋ2 = 2x2(1− x1)− x1 + u

y = 1− e1−x1

(1.28)

algorithm 1 describes the different functions necessary to design and implement the

(a) control signal (b) reference vs output of non-linear system

Figure 1.12: Model predictive control response

model predictive control, these steps were employed to design a controller for the sys-
tem described by the eq.(1.28).The results were as follows:
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figure 1.12 represent the control signal as well as the output of the controlled plant
in comparison with the reference input considered by the controller.One important aspect
of designing the MPC is to design the model as well as a subsystem to predict the future
values of the plant.

(a) estimation of the plant with 30 horizon values

(b) estimation of the plant with 150 horizon values

Figure 1.13: Estimation of the plant with finite past values

Figures 1.13 represent the estimation of the output of the plant based on the last few
control signals. notice from the graphs that the more data considered the better the esti-
mation is in comparison to the actual system.

1.2.5 Artificial Neural Network Controllers (ANNC)
Neural network controllers can be considered relatively new field of study in the control
engineering field.However, it has been gaining popularity,because it doesn’t require any
knowledge about the plants, which makes it suitable for controlling complex systems with
minimum knowledge about their behaviors.

The focus of this report is on the neural network based controllers.Chapter 2 focused
on neural network architectures, training methods, and some of their application in control
systems, while Chapter 3 covered practical examples and case studies demonstrating the
effectiveness of neural network controllers.



Chapter 2

Introduction to Neural Networks

2.1 Introduction
Adapting, learning, and decision making based on experiences and past data are the main
characteristics of the brain, which is considered to be the most complex and advanced
system in existence.

Figure 2.1: Analogy between brain’s neuron and ANN [3].

The primary aim of developing neural networks was to emulate human behavior
through mathematical modeling. This approach enables the network’s output to adapt
and learn from past data.

figure 2.1 shows an analogy between a the neuron inside the brain and the mathemat-
ical modeling of a single neuron. Thus, it is deduced that the dendrite corresponds to the
input in the NN., while the nodes represent the cell nucleus or soma responsible for pro-
cessing data. The weights play a role in rectifying and adjusting processed data, similar
to synapses. Finally, the axon serves as the output in an artificial neural network.

An artificial neural network is organized into layers, with each layer comprising nodes

13
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analogous to neurons, along with weights and biases. The neuron applies an activation
function, typically non-linear, to the weighted sum of inputs plus a bias, and then forwards
the outputs to the next layer as its input.

The neuron’s activation function is generally non-linear and bounded between two
values, which implies that the neural network is able to estimate any function or system
by training the weights and biases within the hidden layers.

2.2 Neural Network (NN)

A neural network is a model inspired by the structure and function of the human brain.
It consists of neurons, which are organized into layers. Each neuron processes the input
data, applies an activation function then produces an output. as shown in figure 2.2

Figure 2.2: Structure of an artificial neuron network(ANN) [4]

Neural network can be divided into several classes. However, The main classes that
are studied in control theory are the dynamic and static neural networks.

2.2.1 Dynamic neural network:
As the name suggests, the dynamic ANN is designed to process time dependent data; to
consider a neural network as dynamic. It is required to have either a memory or a closed
loop [15],[16];Examples for dynamic Neural Networkss are : recurrent NN figure 2.3a
and long-short term NN(2.3b) can be mentioned.

This chapter primarily focuses on a single-layer neural network, which serves as a
foundation for theoretical exploration.

Taking into consideration 2.2, it is can be observed that a mathematical modeling of
the ANN is as follow:

Y = W0σ(W1σ(. . . σ(WnX))) (2.1)
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(a) recursive neural network RNN

(b) long short-term memory neural network L.S.T.M

Figure 2.3: Dynamic ANN

where :

Wm =


w1,1,m w1,2,m w1,3,m . . . w1,j,m b1m
w2,1,m w2,2,m w2,3,m . . . w2,j,m b2m
. . . . . . . . . . . . . . . . . .

wi,1,m wi,2,m wi,3,m . . . wi,j,m bim

 (2.2)

and

X = x̄ =



x1

x2

x3

. . .
xj−1

u
1


=

(
xT u 1

)T (2.3)

With x being the state and output and u is the input. For simplicity’s sake, the only
case to consider in the two first chapters is the NN with one hidden layer thus it becomes

G(x) = W ∗ σ(V ∗X))) + ϵ(x) (2.4)

In control theories, the interest lies in the dynamic NN, of course there are two types of
dynamic NN:

2.2.2 Static neural network:
A prime example of static neural networks is seen in classification and regression tasks
where data are independent of time. Static neural networks do not account for time and
do not retain memory of past data [15],[16].
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2.2.3 Linear in parameters NN (LPNN)

The Linear in-Parameters Neural Network (LPNN) is obtained by fixing the weights of
the first layer, e.g. V = I in (2.4) [4]. Hence, the function G(x) can be expressed as

G(x) = Wσ(X) + ϵ(X) (2.5)

2.2.4 Nonlinear in parameters NN(NLPNN)

On the other hand, when the neural network first layer weights are not fixed, i.e., as in
equation (2.4) the resulting network is called Nonlinear-in-Parameter Neural Network
(NLPNN) [4].

While it is obvious that LPNN is simpler,easier and faster than NLPNN,it cannot
represent and is not suitable for a large class of non-linear system

2.3 Neural Network Estimator

mathematical theorem : Let f be a continuous differentiable function, thus it can be
approximated by the series.

f(x) = f(a) +
df(x)

dx
|x=a(x− a) + · · ·+ 1

k!

dkf(x)

dxk
|x=a(x− a)k + ϵ (2.6)

The series (2.6) shows that a function can be approximated using a weighted sum of
another function. However, one of its limitation is that the function must be continu-
ously differentiable.That limitation drove mathematicians to look for a way to estimate
any function within a small error.That’s where neural network estimator came into the
picture.Where one would use the error and adjusting weights to obtain a specific result.

Theorem: [17] Let In denote the n-dimensional unite cube, i.e., [0, 1]n, and also the
space of continuous functions on In is represented by C(In). By considering a continuous
function σ(.), which satisfies the following specification

σ(t) −→

{
1 as t −→∞
0 as t −→ −∞

given any function f ∈ C(In) and ϵ > 0, there exist vectors Wj, Vjandbj for j =
1, . . . , N and a function G(x) such that

|f(x)−G(X)| ≤ ϵ for all x ∈ In
where

G(x) =
N∑
j=1

Wjσ(Vjx+ bj) = Wσ(V x+ b) = Wσ(
(
V b

)(x
1

)
) (2.7)

By that definition, it is possible to estimate a large number of states by minimizing
the performance measure using the neural network methods The universal approximation
theorem stated in shows that a NN with a back-propagation training algorithm has the
potential of behaving as a universal approximating algorithm assuming the performance
measured an error between two outputs of some kind e.g(mean square error, absolute error
. . . ).
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2.3.1 Neuro-Observer
In engineering system; it is imperative to know the states of a plant due to their role in
defining the stability and behavior of the overall system.One might even need the internal
states to control and stabilize the system.

One popular technique for observer sub-system is known as The Luenberger ob-
server.As a remainder consider : {

Ẋ = AX +BU

Y = CX +DU
(2.8)

and {
ˆ̇X = AX̂ +BU + L(Y − Ŷ )

Ŷ = CX̂ +DU
(2.9)

If the performance measure of the observer is defined as follow E = X − X̂ then Ė =

Ẋ − ˆ̇X
From eq.(2.9) and eq.(2.8),the following result is obtained :

Ė = AX +BU − AX̂ +BU + L(Y − Ŷ ) (2.10)

Ė = AX +BU − AX̂ −BU − L(CX +DU − CX̂ −DU) (2.11)

By simplifying the eq.(2.11)

Ė = AX − LCX − AX̂ + LCX̂

Ė = (A− LC)(X − X̂) = (A− LC)E
(2.12)

Figure 2.4: Classical observer
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Figure 2.4 shows the block diagram implementation of the classical observer. How-
ever,this this observer is valid only for linear systems or around a fixed-point in a nonlinear
system.Moreover,there are cases where the Jacobian of a nonlinear system does not ex-
ist or is not observable; on the other hand, linear system might be not observable under
the circumstance of the nonexistence of a gain L that enables the error to vanish at some
point. *

Unfortunately, most systems have unknown states at all times other than at the initial
time thus it would be difficult to choose a suitable control signal.

If only input and outputs of the plant are observable,In this situation, previous outputs
may be used as a state vector, which then would allow us to estimate the desired input as
well as to observe the internal states at all time.

In numerous pieces of literature : observers are referred to as state estimators.However,it
is also true that most of the time and in a number of real-life applications,sensors can only
read the output data of the plant,making the states unobservable with traditional meth-
ods.This limitation hinders the design of controllers.

Unlike a classical observer: the neural network observer can extract the state data re-
gardless of whether or not the system is linear or nonlinear.In this section, two approaches
have been studied

2.3.1.1 The indirect approach :

The indirect approach refers to a combination of a neural network to estimate the unknown
nonlinear function of the system dynamics and a classical observer such as Luenberger
that was introduced in the section before.{

Ẋ = f(X, u)

Y = CX
(2.13)

Let the system represented by the state space eq.(2.13) describes a plant’s behaviour. With
f(X, u) being a nonlinear matrix function,and let there be a hurwitz matrix A such that the
pair (A,C) is observable.By adding and subtracting AX from f , the new equation becomes
f(X, u)+AX−AX = g(X, u)+AX where g is a nonlinear function, which enable us to
analyse the observability of the equation more easily by invoking the Luenbergerobserver.{

Ẋ = AX + g(X, u)

Y = CX
(2.14)

Now by defining an observer state such that{
ˆ̇X = AX̂ + ĝ(X̂, u) + L(Y − Ŷ )

Ŷ = CX̂
(2.15)

Each of these two equations, eq.(2.14) and eq.(2.15), can be expressed in termss of the
neural network. {

Ẋ = AX +WσK(X, u) + ϵ(t)

Y = CX
(2.16)

With σK = σK−1 and σ1 = σ(V [X, u]T ).

*if the states cannot be observed; the systems are called non-observable, and one can say that the
observablity matrix is singular
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{
ˆ̇X = AX̂ + Ŵσk(X̂, u) + L(Y − Ŷ )

Ŷ = CX̂
(2.17)

(a) simplified NN based Luenberger observer

(b) NN based Luenberger observer

Figure 2.5: Neural network based Luenberger observer [4]

Figure 2.5 is a diagram representing the equations(2.17)and(2.16) in a block diagram
and their interconnection, where M(s) = (sI − A)−1 and G = L [4]

This method was implemented in Matlab using the back-propagation algorithm and a
linear in parameter neural network.

Figure 2.6 shows the output of the implemented estimating one layer Artificial neural
network*.It has been noticed from the graphs that the while the output was accurately
estimated, the internal states were either shifted, amplified or both,which is due to the fact
that this kind of observer focus on minimizing the output error and create what is referred
as generalized states†.

This enables the designer to use those states as the plant’s actual states since a linear
mapping does not affect the poles or the behaviour of the system.

NOTE:
Although figure 2.6 depictss almost perfect identification, it’s important to acknowl-

edge that indirect methods carry a high risk of failure, typically because of the difficulty
in finding the appropriate Hurwitz‡ matrix to minimize the feedback gain L.

*it is worth mentioning that these system identification and observers implemented using a simple
sigmoid function with a single layer LPNN,thus it can only observe up till 3rd order systems.With an
increase in complexity there is an increase in the number of layers.

†The generalized states are a linear mapping of the actual states
‡the hurwitz matrix plays a huge role in minimizing the error and ensuring the stability of an indirect

approach type of neural network observer: It defines the singularity of the observation matrix
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(a) estimation of a nonlinear system

(b) estimation of a nonlinear limit cycle

Figure 2.6: Estimation using Dynamic systems ANN with one layer

2.3.1.2 The direct approach

To implement the direct approach;it is necessary to know the numbers of layers as well
as the activation function of the neural network used for the training.However-unlike the
indirect approach-it has almost no limitation other than the hardware limitations such as
the saturation of components and maximum voltage and current output.That is mainly due
to the fact that the direct approach does not depend on any feedback gain, which ensures
that only the characteristics of the neural network affects the estimations.

Taking into consideration the system described by eq.(2.13),where f is a nonlinear
function.The observer would approximate the states as follows :{

ˆ̇X = Ŵσ(V [X̂, U ]T )

Y = CX
(2.18)

Figure 2.7 and figure 2.8 depicts the block diagram of the neural network-based ob-
server, derived from equations eq.(2.13) and eq.(2.18)
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Figure 2.7: Connection of NEURAL NETWORK observer of a motor

Figure 2.8: Observer based on R.B.F neural-network [5]

Using these approximated states it is possible to design a proper control signal to
operate the plant as desired, which would open a window of infinite possibilities.

It’s noteworthy that the direct approach to neural modeling of a system may pose
greater theoretical complexity. Nevertheless, adjusting our variables offers the potential
to considerably reduce the computational complexity of the algorithm.

There are two main methods, which have been popular in system identification and
plant’s modeling using neural networks:

The first one is the standard approach using the system state space description :
By considering the back-propagation error to be :E = 1

2
(ẏ− ˙̂y)T (ẏ− ˙̂y). It is possible

to express the update equation of the weights as follows:{
Ẇ = (η(ẏ − ˙̂y)TC)T (σ(V T

[
x̂ u

]T
)T

V̇ = (η(ẏ − ˙̂y)TC)T
[
x̂ u

]
(diag(σd(V

T
[
x̂ u

]T
))W T

(2.19)

The equations 2.19 can be implemented by using the simplified algorithm 2
The algorithm was tested with the system described by:

Φ̈ = −10 sinΦ− 2Φ̇ + u(t) (2.20)
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Different inputs were tested and the results are shown in figure 2.9

(a) estimation of nonlinear pendulum sys-
tem linear-in-parameter method

(b) nonlinear system estimation nonlinear-
in-parameter method

(c) estimation of a nonlinear system with high
frequency input

Figure 2.9: Estimation of Dynamic systems using one layer online ANN

The second popular approach considers modeling a system by using the input-output
relation of the system. Let’s consider the system described by the eq.(2.20). It is possible
to describe the future values of such system as a function of the previous outputs as well
as the current and past inputs.

y[n+ 1] = f(y[n], y[n− 1], . . . , y[n− ny], u[n], u[n− 1], . . . , u[n− nu]) (2.21)

eq.(2.21) describes the behaviour of the system depending on the inputs and outputs
over an specific interval of time. As seen in this chapter. Any nonlinear function can be
estimated using a dynamic(online) neural network. However in this case an estimator of
the form eq.(2.22) is considered :

ŷ[n+ 1] = λσ(W Tσ(V T x̄)) (2.22)

This dynamic neural network was implemented by following the algorithm 3. the
results can be seen in figure 2.10 which represent the plant model estimation using the
algorithm 3
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(a) nonlinear system estimation

(b) estimation of system with noise

Figure 2.10: Estimation of Dynamic systems using input-output relationship

NOTE:
While neuro-observers generalizes the states ,is robust, can handle non-linearities,

and is capable of adapting parallel processing. It has some limitations such as its great
computational resources’ requirement as well as the necessity for a high speed proces-
sor.Moreover, the number of layers depends on the complexity of the system.

A prime example of the downside and the requirement for training will be mentioned
later in the chapter about neural network model reference adaptive controller in chapter 3
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Algorithm 2: Weighted Function Algorithm
Input: input, output
Output: ŷ

1 Initialize W , C, p, V , learning rate, and step time;
2 y hat← output(1);
3 for i← 1 to size(output) do
4 if i > 1 then
5 ˙̂y ← output(i)−output(i−1)

step time
;

6 end
7 else
8 ˙̂y ← output(1)

step time
;

9 end
10 x← output(i);
11 u← input(i);
12 hidden layer ← activation(V ′ × [x, u]′);
13 x hat dot← W ′ × hidden layer;
14 y hat dot← C × x hat dot;
15 p(i, 1)← y hat+ step time× y hat dot;
16 E ← errored(y dot, y hat dot);
17 y hat← p(i, 1);
18 V ← V + step time× (learning rate× E ′ × C)′ × [x, u]×

derivitive(V ′ × [x, u]′)×W ′;
19 W ← W + step time× (learning rate× E ′ × C)′ × (hidden layer)′;
20 end

2.4 Training and Learning Algorithms

There are four types of training when in comes to machine learning and neural networks[15].

1. supervised learning

This type of training is based on the fact that the algorithm is supplied with a set
of data., which consists of inputs and output; these data are then generalized by the
algorithm to respond accordingly to the input.

2. unsupervised learning

This type of training has no type of support and is not provided with a target;It
focuses on finding similarities between inputs.The input are then categorised based
on these similarities

3. reinforcement learning

This type of training is a mixture of both supervised and unsupervised learning, no
data is provided to the algorithm however, if the output is wrong, it is told that those
data were not the ’correct’ ones.

4. evolutionary learning

biological organisms adapt to improve their survival rates.This type of training tries
to mimic this biological trait of evolution;however it is outside of the scope of this
project report.Which focuses on reinforced training mostly.
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Algorithm 3: NN estimator(input, output)
Input : input, output
Output: p

1 W ← zeros(7, 1);
2 C ← [1 0];
3 p← zeros(size(output), 1);
4 V ← zeros(7, 7);
5 p(1)← output(1);
6 p(2)← output(2);
7 p(3)← output(3);
8 p(4)← output(4);
9 p(5)← output(5);

10 learning rate← 0.98;
11 step time← 0.1;
12 lamb← 5;
13 for i← 5 to size(output) - 1 do
14 x1← output(i);
15 x2← output(i− 1);
16 x3← output(i− 2);
17 x4← output(i− 3);
18 x5← output(i− 4);
19 u1← input(i);
20 u2← input(i− 1);
21 x← [x1;x2;x3;x4;x5;u1;u2];
22 net0← V ⊤ · x;
23 net1← activation(net0);
24 net← W⊤ · net1;
25 R← derivative(net);
26 Q← derivative(net0);
27 p(i+ 1)← lamb· activation(net);
28 e← output(i+ 1)− p(i+ 1);
29 V ← V + step time · learning rate · e⊤ · lamb ·R ·Q ·W · x⊤;
30 W ← W + step time · learning rate · e⊤ · lamb ·R · net1;
31 end
32 return p;
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The neural networks used in control engineering are dynamic, that is to say that they
vary with time, however such networks also require training before hand, which is why
the neural networks that have been used in the controllers as well as in the observers
training algorithms can be classified as reinforced training.

2.5 Stability of a Neural Network
To study the stability of a neural observer,it might be necessary to re-define the definition
of a stable observer.

Let us define the stability of the neural observer to be the behaviour of the error be-
tween the observed outputs and the actual output and how it converge due to a sudden
change in the inputs and states.

In the previous sections,the direct and indirect method were introduced to design an
observer.however since the two methods are equivalent.only one case will be studied con-
cerning the stability .

Consider the following descriptions :

ė = Ae+ W̃σ(x̄) + w(t)

˙̂
W = η(ecT c)TσT (x̄) + ρŴ

e = X − X̂

W̃ = Wideal − Ŵ

(2.23)

By considering the equations 2.23. One can check the stability of the neural network
by considering the lyaponov candidate V (X) = 1

2
XTPX + 1

2ρ
tr(W̃ T W̃ ) Where :

* e : represents the error between the observed outputs and the actual outputs.

* W̃ :represents the difference between the ideal weights Wideal and the estimated
weights Ŵ

* w(t): represents some external disturbance plus the NN error.

* P: is a positive definite matrix such that ATP + PA = −Q with Q being a positive
definite matrix.

* ρ: small positive constant to avoid oscillation of the estimated weights.

Of course by considering the constraints on the weights as well as the maximum values
defined for the activation functions of the neuron. the stability condition may be developed
even further as follows:

V̇ (x) = −1

2
x̃TQx̃+ x̃P (W̃σ(x) + w) + tr(W̃ T ˜̇W )

≤ −1

2
λmin(Q)||x̃||2 + ||x̃||||P ||(||W̃σmax + ||w||) + σmax||W̃ ||||m||||x̃||

+ (||W ||||W̃ || − ||W̃ ||2)||c||||x̃||

(2.24)

With

* m = ηρ−1A−T cT c
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according to lyaponouv condition of stability. it is required for V̇ (x) to be negative,
to do so, solving the inequality for ||W̃ || using the quadratic formula.

||x̃|| ≥
2||P ||||w||+ (σmax||P ||+||W ||||c||+σmax||m||)2

2

λmin(Q)
= b (2.25)

equation 2.25 shows that the neural network observer provide an estimation within an
error of b and is stable in the sense of lyaponouv [4].

such concept may be extended to all dynamic neural networks. That is to say, any
neural network with a valid design is stable within a ”n-dimensional” ball.



Chapter 3

Study of Three Neural Network
Controller

3.1 Introduction
While the non-linear controllers introduced in Chapter 1 showcased remarkable accuracy
in terms of results, it is necessary to note that such controllers require knowledge or at
least a close estimation of the system behaviors, as well as access to the internal states.
On the other hand, using neural networks, which only require training data to function, is
more beneficial and flexible.

Throughout this chapter,three distinct neural network controllers have been intro-
duced,exploring their principles, training methodologies, and applications in control en-
gineering.

3.2 Model Reference Neural Network Controller

3.2.1 Fundamental Concept
Neural network based-Model reference controller has been relatively popular due to two
reasons, one of, which being its simplicity and the other reason is the intuitive theoretical
explanation behind its behavior.This controller requires a reference model similar to the
MRAC controller, on the other hand, the way the neural network controller is design
differs significantly from the MIT and lyapounov methods.

Chapter 1 was a detailed study of some controllers. Those controlled will be a basis for
defining the functionality of the neural network based model reference controllers.Now,
let’s delve into the process of analyzing such controllers using the linearization feedback
analysis method. {

Ẋ = AX +Br

y = Cx
(3.1)

{
Ẋ = f(x, u)

y = x1

(3.2)

Systems described by eq.(3.1) and eq.(3.2) represent the reference system and the
plant model respectively. To simplify the analysis of such a plant, one might use the lie-
differentiation used in the linearization feedback analysis method seen in Chapter(1) as
follows :

28
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
Ż =

 0 1 . . . 0 0
... 0 1

... 0
0 0 0 . . . 0

Z +

 0
...
1

 v

y = z1

(3.3)

Where z1 = y, z2 = ẏ, . . . , zr = y(r−1) and v = y(r) = α(x) + β(x)u.
By that definition, one can write the control signal u as u =

v+Krref−α(x)

β(x)
; As seen in

chapter(2).Any equation can be approximated using an artificial neural network as long
as there are enough data to train the network.and the control signal u =

v+Krref−α(x)

β(x)
is

no exception to the rule.
The desired output of the neural network is an estimate of the control signal obtained

from using the feedback linearization or at least an equivalent function.
The question would be how to approximate the control signal using a neural network?
A popular approach relies on using the back-propagation method with a slight param-

eters manipulation.

1. the first step is to use the estimator seen in chapter(2) to estimate the plant with a
small degree of error.

2. the second step is to create another neural network such as :

û = Ŵσk(

 x
u
r

) (3.4)

Where r is the reference signal. Eq.(3.4) represent the ANN to estimate a control
signal in such a way that the plant model behave in a similar way to the reference
model.

3. the third step is to define the error as e = yref − ŷ and J = 1
2
eT e. This particular

modification enables us to train the network using the training algorithm :

Ŵ = −η ∂J

∂Ŵ
= −η∂J

∂e

∂e

∂ŷ

∂ŷ

∂û

∂û

∂Ŵ
(3.5)

Eq.(3.5) is currently the most efficient approach in designing the control signal
using back-propagation.

Figure 3.1: NN based MRAC controller block diagram[6]
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The algorithm is as follows :

Algorithm 4: Model Reference Adaptive Control with Neural Network
(MRAC-NN)

Inputs: Plant estimator from Chapter 1;
Neural network architecture;
Training data: state variables (x), control signal (u), reference signal (r),
reference output (y ref);
Parameters: Learning rate (η);
Number of training iterations;
Output: Trained neural network weights (Ŵ );

1 while not converged do
2 Estimate the plant using the estimator from Chapter 1;
3 Initialize neural network weights randomly;
4 for i← 1 to Number of training iterations do
5 Compute the estimated control signal:

û = Ŵ ∗ activation function([x, u, r]);
6 Compute the output of the plant using the estimated control signal:

yhat = Plant estimator([x, û]);
7 Calculate the error between the reference output and the estimated output:

e = yref − yhat;
8 Calculate the cost function: J = 1

2
eT e;

9 Compute the gradients of the cost function with respect to the neural
network weights: dJŴ = −η · ∂J

∂e
· ∂e
∂ŷ
· ∂ŷ
∂û
· ∂û

∂Ŵ
;

10 Update the neural network weights using gradient descent:
Ŵ = Ŵ + dJŴ ;

11 end
12 end
13 Output the trained neural network weights (Ŵ );

3.2.2 NN-based MRAC Applications and Illustrations
Let’s consider three different illustrations :

1. illustration 1: the first illustration is provided by matlab

θ̈ = −10 sin θ − 2θ̇ + τ (3.6)

Illustration depicted in eq.(3.6) is shown in figure 3.2

The goal is to control the arm is such way that the arm has exactly an angle equal
to that of the reference.
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Figure 3.2: Pendulum model diagram

(a) reference model vs output of the con-
trolled system (b) control signal input to the pendulum

Figure 3.3: Pendulum control

2. Illustration 2:
ẍ = 20u− ẋ2sign(ẋ)− 0.5 (3.7)

Expression eq.(3.7) describes the behaviour of a small sized car in one dimension
under an input force.

Neural network controllers depends highly on the data set used during the train-
ing,figure(3.4a) shows how the plant behaves if a reference signal that was not part
of the training is

Neural network controllers are significantly influenced by the dataset utilized dur-
ing their training process. figure 3.4a provides insight into the behavior of the
plant when confronted with a reference signal that was not included in the train-
ing dataset.While figure(3.4c) represent the plant behavior for when the reference
signal was part of the training.
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(a) system response when the controller is
untrained for input less than 1 (b) control signal input to 1D car

(c) ideal output vs output speed signal of the 1D car

Figure 3.4: 1D car control

3. Illustration 3: 
ẋ1 = x1(3− x1 − 2x2) + u

ẋ2 = x2(2− x1 − x2)− u

y = x1

(3.8)

Since this is the last illustration of the model reference neural network control;three
different references are considered to assess how well the neural network controller
can handle different types of systems commonly encountered in control engineer-
ing applications : the first reference is over-damped second order response,second
reference has been chosen as a first order system and the third reference was an
oscillatory second order system.
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Table 3.1: Model Reference Neural Network Control illustration

System Reference Order Reference vs Plant Output Control Signal

Oscillatory Second Order

under-damped Second Order

first order system

Note:
One important method used in NN-based MRAC is the cumulative error approach.This

method uses the concept of tracking error to then apply a mixture method linearzation
feedback and linear state feedback control method.

r(k) = λn−1(x1(k)− ¯x1(k)) + λn−1(x2(k)− ¯x2(k)) + · · ·+ (xn−1(k)− ¯xn−1(k)) (3.9)

The eq.(3.9) is applied to the system eq.(3.2) and eq.(3.1).By forcing the tracking error
r(k + 1) = Krr(k), one can obtain a control policy of the form :

u(k) = A ¯x(k) +B ¯rref (k)− ˆf(x(k), u(k))− ΛE(k) +Krr(k) (3.10)

Where E(k) =


en−1

en−2
...
e2

 and Λ =
[

λ1 λ2 . . . λn−1

]
While this method is popular due to its accuracy, the computational power required

is several folds larger than the approach discussed in this section., which is why it is not
suitable to use it in more complex and MIMO systems.
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3.3 NARMA L2 Controllers

3.3.1 Fundamental Concept
Nonlinear auto-regressive moving average is a more general and wider type estimated
model than the traditional auto-regressive moving average linear model.The principle idea
is to create a neural network that would estimate the plant. let’s consider a Nonlinear auto-
regressive moving average estimation to the plant.

y[k + 1] = N(y[k], y[k − 1], . . . , u[k], u[k − 1], u[k − 2], . . . ) (3.11)

Eq.(3.11) is any nonlinear function that may approximate the behavior of the system and
it is assume to exist.applying taylor series mentioned in chapter (2).eq.(3.11) can be re-
written as :

y[k + 1] = N(y[k], . . . , 0, 0, 0, . . . ) +

p∑
i=0

∂N

∂u[k − i]
|u=0 u[k − i]

= f(y[k], . . . ) +

p∑
i=0

gi(y[k], . . . )u[k − i]

(3.12)

eq.(3.12) has been named NARMA Level 1 or NARMA L1 for short, issue with the
first level of the NARMA is that there are as many neural networks as there are input
delays, this would require a relatively large computational power to design a controller
and thus is not suitable for application.Henceforth the second level of the NARMA was
invented and is design in a similar way to the first level. let’s consider the effect of the
control input on the output of the system only :

y[k + 1] = N(y[k], . . . , 0, u[k − 1], u[k − 2], . . . ) +
∂N

∂u[k]

∣∣
u[k]=0 u[k]

= f(y[k], . . . , u[k − 1], . . . ) + g(y[k], . . . , u[k − 1], . . . )u[k]

(3.13)

eq.(3.13) has been named NARMA Level 2 or NARMA L2 for short, which only requires
two Neural networks in order to estimate a nonlinear function.However what is desired is
to controlled the plant, to do so y[k+1] = yr is considered as the desired response, which
implies that u[k] is the required control signal for the systm to behave as desired.

u[k] =
yr − f(y[k], . . . , u[k − 1], . . . )

g(y[k], . . . , u[k − 1], . . . )
(3.14)

eq.(3.14) represent the control policy of the input signal.
figure(3.5) represents the block diagram and control signal adjustment of NARMA L2

neural network controller.
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Figure 3.5: NN based NARMA-L2 controller block diagram [5]

the algorithm is as follow :

Algorithm 5: NARMA-L2 Neural Network Control Algorithm
Inputs: Plant estimator from Chapter 1; Neural network architecture; Training

data: state variables (x), control signal (u)
Parameters: Learning rate (η); Number of training iterations
Output: Trained neural network weights

1 while not converged do
2 Estimate the plant using the estimator from Chapter 1;
3 Initialize neural network weights randomly;
4 for i← 1 to Number of training iterations do
5 Compute the estimated control signal:

ŷ = Ŵf ∗ activation function([x, u]) + Ŵg ∗ activation function([x, u])u;
6 Calculate the error between the reference output and the estimated output:

e = yref − ŷ;
7 Calculate the cost function: J = 1

2
eT e;

8 Compute the gradients of the cost function with respect to the neural
network weights: dŴf = −η · ∂J

∂e
· ∂e
∂ŷ
· ∂ŷ

∂Ŵf
;

9 dŴg = −η · ∂J∂e ·
∂e
∂ŷ
· ∂ŷ

∂Ŵg
;

10 Update the neural network weights using gradient descent:
Ŵf = Ŵf + dŴf ;

11 Ŵg = Ŵg + dŴg;
12 end
13 end
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3.3.2 NARMA-L2 Applications and Illustrations

Let’s consider three different illustrations :

1. illustration 1: this illustration is provided by matlab :

ÿ = −9.81 + 15i2(t)

y
sign(i)− 12ẏ

3
(3.15)

Figure 3.6: Diagram of maglev

(a) magnetic levitation controlled
(b) control signal input to the magnetic lev-
itation

Figure 3.7: Magnetic levitation

2. Illustration 2: Expression eq.(3.16) describes the behaviour of a small sized car in
one dimension under an input force.

ẍ = 20u− ẋ2sign(ẋ)− 0.5 (3.16)

NARMA-L2 controllers depends highly on the variation that the inputs have on
the plant’s output as well as the data set’s elements included during the training
process.Thus by extension the size of the data set. figure 3.8a provides an insight
to the behaviour of the plant when the data set training elements are focused on the
extremum of the plant’s output.

Considering figure 3.8a and zooming around the first period of time before the refer-
ence changes,figure 3.9 is obtained.It is possible to define figure 3.9 as representing
the response of the NARMA-L2 controller to a step input signal.
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(a) car speed controlled NARMA (b) control signal input to the car NARMA

Figure 3.8: CAR SPEED CONTROL with NARMA-L2

Figure 3.9: Step response of car speed with NARMA

3. Illustration 3: eq3.17 is commonly found in mechanical engineering,robotics and
mechatronics. {

ẋ1 = x2

ẋ2 = 5u− x2 cosx1 − x1 − x3
1x2

(3.17)

Since this is the last illustration of the NARMA-L2 neural network controller;three
different references are considered to assess how well the neural network controller
can handle different types of systems commonly encountered in control engineering
applications : the references are over-damped second order response, first order
system ,and an pure oscillatory second order system.The results of the simulation
are summarized in table3.2

One important aspect to notice from the results of table 3.2 is that the NARMA-
L2 controller has a significant trade-off between the raise time and the overshoot,
Moreover the rising time is maximized when the reference undergoes a jump.Similarly
to the MRAC neural network seen in the section 3.2, these limitations depends on
the hardware used and more importantly on the characteristics of the neural network
built.
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Table 3.2: NARMA-L2 Control illustration

System Reference Order Reference vs Plant Output Control Signal

pure Oscillatory Second Order

under-damped Second Order

first order system

3.4 Predictive Neural Network Controller

3.4.1 Fundamental Concept
Neural network predictive controller is optimal control based controller that uses the char-
acteristic of the neural network to estimate the output and predict the optimal control that
minimizes a given performance measure, which is why the neural network predictive con-
troller is referred to as neural network based model predictive controller.

Chapter 1 investigated the model predictive controllers theory.However,in this section,
the systems are considered to be in discrete-time.

The first step of any neural network based controller is the plant estimation that was
developed in chapter 2.Which is then followed by designing the performance measure as
follows :

J(k) =

N2∑
i=1

(ŷ(k + i)− yref (k + i))2 + ρ
Nu∑
j=1

(u(k + j − 2) + u(k + j − 1))2 (3.18)

Eq.(3.18) is designed in MATLAB by varying the constants Nu, N2 and ρ, which rep-
resent the control horizon,cost horizon and the control weighting factor(penalty) as seen



3.4. PREDICTIVE NEURAL NETWORK CONTROLLER 39

in chapter(1).Moreover, the minimization algorithm as well as its characteristics can be
varied depending of the desired behaviour of the system as well as personal preferences.

Figure 3.10: Neural network predictive controller [5]

Figure(3.10) represent a diagram of the neural network predictive control.
One of the major drawbacks of the NNMPC is the computational power required at

each stage.The neural network has a complexity relative to the number of layers and nodes
at each layer as mentioned in chapter(2),on top of that, at each stage it is necessary for the
optimization block shown in figure(3.10) to execute a complex algorithm that finds the
optimal control signal to minimize the performance measure J(k).

the algorithms are as follow :

Algorithm 6: MPC Neural Network Control Algorithm
Inputs: Plant estimator from Chapter 1; Neural network architecture; Training

data: state variables (x), control signal (u)
Parameters: Learning rate (η); Number of training iterations; Cost horizon;

Control horizon; Effort weight
Output: Trained neural network weights

1 while not converged do
2 Estimate the plant using the estimator from Chapter 1;
3 Initialize neural network weights randomly;
4 for i← 1 to Number of training iterations do
5 Compute the estimated control signal:

ŷ = Ŵf ∗ activation function([x, u]);
6 Calculate the error between the reference output and the estimated output:

e = yref − ŷ;
7 Calculate the cost function: J = 1

2
eT e;

8 Compute the gradients of the cost function with respect to the neural
network weights: dŴ = −η · ∂J

∂e
· ∂e
∂ŷ
· ∂ŷ

∂Ŵ
;

9 Update the neural network weights using gradient descent:
Ŵ = Ŵ + dŴ ;

10 end
11 end

3.4.2 NN Based MPC Applications and Illustrations
For the illustrations of the MPC, two different scenarios are considered due required com-
putational power:
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Algorithm 7: CSRCHBAC Algorithm
Inputs: Initial solution x0, Step size α, Backtracking factor β, Maximum

iterations Nmax, Tolerance ϵ
Output: Optimal solution x∗

1 Initialize solution x← x0;
2 for n← 1 to Nmax do
3 Generate random search direction d;
4 Steer search direction d;
5 Compute trial solution xtrial = x+ α · d;
6 Evaluate trial solution’s performance ftrial;
7 while ftrial > f(x) do
8 Backtrack: α← β · α;
9 Compute new trial solution xtrial = x+ α · d;

10 Re-evaluate trial solution’s performance ftrial;
11 end
12 Update solution: x← xtrial;
13 if ∥∇f(x)∥ < ϵ then
14 break;
15 end
16 end

Output: Optimal solution x∗

1. illustration 1 eq.(3.19) represents the state space representation of a continuous
steering tank reactor that was provided by MATLAB.

˙h(t) = w1(t) + w2(t)− 0.2
√
h(t)

˙Cb(t) = (Cb1 − Cb(t))
w1(t)

h(t)
+ (Cb2 − Cb(t))

w2(t)

h(t)
− k1Cb(t)

(1 + k2Cb(t))2
(3.19)

where w2 = 0.1,Cb1 = 24.9,Cb2 = 0.1,K1 = 1,and K2 = 1

Figure 3.11: Continuous steering tank reactor [5]

Figure 3.12a depicts the response of neural network based model predictive control
of the Continuous Steering Tank Reactor with a control signal figure 3.12b while
figure 3.13a represents the response of the Continuous Steering Tank Reactor when
the reference has a first order behaviour with the control signal depicted in figure
3.13b.



3.4. PREDICTIVE NEURAL NETWORK CONTROLLER 41

(a) concentration of the steering tank output vs
reference (b) control signal input to the steering tank

Figure 3.12: Continuous steering tank control with NN-MPC

(a) concentration of the steering tank output vs
reference with a 1st order reference

(b) control signal input to the steering tank with
a first order reference

Figure 3.13: Continuous steering tank control with NN-MPC 1st order ref

2. illustration 2 This example represent the system behaviour of a 1 dimensional car
damped with a nonlinear damping force and a mechanical damping constant,which
was taken equivalent to the worst case scenario.

ẍ = 20u− ẋ2sign(ẋ)− 0.5 (3.20)

figure 3.14a represent the output signal of the controlled car with a control signal
represented in figure 3.14b.

NN predictive controllers depends highly on the reference signal as well as their
variations.Moreover, the system’s output and the data set’s elements included dur-
ing the training process have a significant impact on the convergence speed.
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(a) speed control of a 1D car (b) control signal of the 1D car

Figure 3.14: Car in 1 dimension system

Finally the parameters used within the optimizer program determine the form and
characteristics as well as the behaviour of the system’s response.

figure 3.14 provides an insight to the behaviour of the plant when the data set
training elements are focused on the extremum of the plant’s output,while using
the Cyclic Steered Random Search with Backtracking (CSRCHBAC) algorithm to
minimize the performance measure.



Chapter 4

Simulation and Results

4.1 Introduction

The preceding chapter (chapter 3) extensively explored the theories behind the considered
controllers, each sharing a similar architecture but employing distinct techniques. Thus,
it is crucial to compare their respective performances.

Before delving into this investigation, it is essential to clarify the concept of objective
truth. Experimental results attain objectivity only when multiple researchers consistently
achieve the same outcomes. To ensure clarity and mitigate ambiguities, our comparison
focuses on two distinct nonlinear SISO models.

The performance metrics under scrutiny include disturbance rejection, dynamic error,
control effort, response times and overshoot.

4.2 Case Study 1 : Liquid Level Control

4.2.1 Modeling
Figure 4.1 depicts the diagram of a liquid level control of a tank, which was the first
system considered.

Figure 4.1: Liquid level control system [5]

Applying fluid mechanics to figure 4.1 provides a significant insight about the system
studied.As commonly known in the physics field : The energy of a system is conserved

43
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throughout an isolated system, thus it can be written mathematically such as Einitial =
Efinal.An imaginary portion of the water is taken into consideration,which enables us to
apply the physical formulas as if it was a solid object,therefore:Einitial = ρV gH = Efinal =

1

2
ρV v2

v =
√

2gH
(4.1)

with ρ being the density of the water
V is the volume taken into consideration
Einitial is the initial energy
Efinal is the final energy
g = 9.81 is the gravitational acceleration
H is the height of the system
v is the speed output from the tank.
Controlling the level(height) of the tank was the purpose of figure 4.1,thus the volume

variation is considered :
V̇ = AtankḢ = Qin −Qout

Qout = Aopeningv = Aopening

√
2g
√
H

Qin = u
(4.2)

with
Atank represents the cross section area of the tank.
Aopening represents the cross section area of the hole from which the water flows out.
Qin is the in-flow of the water(control input)
Qout is the out-flow of the water
eq.(4.2) can be simplified to a system equation of the form of the eq.(4.3):

Ḣ = αu− β
√
H (4.3)

Taking Atank = 2m2 and Aopening = 0.25m2,therefore eq.(4.3) becomes :

Ḣ = 0.5u− 0.125
√
H (4.4)

4.2.2 Simulation and Results
The uncontrolled tank level system has a nonlinear relationship between the flow-rate of
the water and the level system;Figure 4.2 shows the relation between them.

Figure 4.2: Input flow rate vs tank level of an uncontrolled system
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(a) step reference output with different neural
network controllers

(b) zoomed output with MPC,MRAC and
NARMA-L2 controllers

(c) sinusoidal tank level control with NN con-
troller

Figure 4.3: Tank level control with NN controller

Applying the neural network controllers seen in chapter 3:
Figure 4.3 depicts the behaviour of the response due to neural network controller

trained with a input flow rate between 4 and 10 m3/min.
Moreover, by considering a sinusoidal input reference, the following results-represented

in figure 4.3c are obtained

4.2.3 Performance Study
As mentioned in the introduction of this chapter.The performance studied of the system
cover several aspects, ranging from the noise disturbance rejection to response time and
overshoot.

4.2.3.1 Noise Disturbance Rejection

To study the effect of the disturbance on the output of the system; it is imperative to
specify the kind of noise affecting the system,thus three cases were considered :

1. Figure 4.4a,which shows the effect of high frequency and high amplitude noise on
the system

2. Figure 4.4b,which represents the effect of high frequency and low amplitude noise
on the system

3. Figure 4.5 that depicts low frequency high amplitude noise effect.

Summarizing these results in table 4.1 using a Matlab script, that took as input data
with noise, without noise and the noise itself.



46 CHAPTER 4. SIMULATION AND RESULTS

(a) step response with high amplitude high fre-
quency noise

(b) response with low amplitude high frequency
noise

Figure 4.4: High frequency noise on the tank system

(a) NARMA (b) NNMPC (c) NNMRAC

Figure 4.5: High amplitude low frequency noise on the tank system

From the table 4.1, it can be seen that while NARMA L2 has the best high frequency
disturbance rejection, it also has the worst low frequency disturbance rejection.On the
other hand, NNMPC has the best high frequency disturbance rejection but is unreliable in
rejecting low frequencies.

Discussion :
The results of this simulation were as follows :

1. NNMRAC reduced the noise disturbance by half at both high and low frequen-
cies(table 4.1) : that is due to the architecture of the neural network which consists
of a plant estimator as well as a control signal estimator.

This was unexpected since modern MRAC might be more effective at reducing
certain types of low frequency noise comapred to high frequency noise

2. NNMPC reduced the noise disturbance by 40% at high frequencies while it is un-
able to reduce the low frequency noise (table 4.1) : that is due to the approach used
during the design,the minimization algorithm reduces the performance measure be-
tween a reference value and the output of the NN estimator.
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Table 4.1: Tank’s noise rejection

Noise Attenuation Low Frequency (1Hz) High Frequency(250Hz)
NNMRAC 50% 50%
NNMPC 0% 60%

NARMA L2 80% 0.8%

The NN estimator would consider the noisy output of the system to be the undis-
turbed.Therefore no noise reduction would occur.

3. NARMA L2 reduces the low frequency noise by 80% while the high frequency
noise was reduced only by 0.8% (table 4.1) : that is due to the NARMA L2 de-
sign.Where a slow variation of a signal causes minimum effect on the controller
response on the other hand, a sudden change may cause an even larger error.

This phenomenon can be explained by the NARMA formula :

ŷ = f(0) +
∂f

∂u
(0)u

4.2.3.2 Dynamic Error

The graphs represented in figures 4.6a and 4.6b depict the errors of the output of the
system represented on figures 4.3a and 4.3b respectively

Moreover,the error of the sinusoidal input (figure 4.6c) provides a deeper understand-
ing of the system behaviour

Table 4.2: Error comparison of the tank

Controller maximum steady state error approximate dynamic error
error for a step input from 8.3 to 7.7 for the sinusoidal reference

NNMRAC 1.8 0.8 e = 0.35 + 0.25sin(2π
56
t)

NNMPC 0 0 e = 0.2sin(2π
60
t)

NARMA L2 0.2 0.2 e = 0.08sin(2π
60
t)

Table 4.2 shows in details the error of different responses for each type of controller,
while it can be seen that the error of sinusoidal reference are close approximation,though
they still provide an idea of the limits of each controller.

Discussion :
The results of this simulation were as follows :

1. NNMRAC produced relatively large error compared to the other neural network
controllers.it had a maximum error e = 1.8 throughout all the simulations of the
tank control, while the dynamic error for a sinusoidal response was approximated
to e = 0.35 + 0.25sin(2π

56
t) (table 4.2).

these results were as expected due to the complexity of the controller.Since the two
neural controllers were interconnected and dependent on each other which amplifies
the error produced by the second network.

2. NNMPC had a non existent steady state error throughout the simulations.The dy-
namic error for a sinusoidal response was approximated to e = 0.20sin(2π

60
t) (table

4.2).
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(a) error of MPC,MRAC and NARMA-L2 con-
trollers

(b) zoomed error with MPC,MRAC and
NARMA-L2

(c) error of the sinusoidal response of the tank

Figure 4.6: Error tank level control with NN controller

The steady state error as well as the dynamic error for sinusoidal response were
expected to be close to zero as a result of using the minimization algorithm to
minimize the error between the reference and the output of the system.

3. NARMA L2 had a maximum steady state error e = 0.2 throughout the simula-
tions with a dynamic error for a sinusoidal response was approximated to e =
0.08sin(2π

60
t) (table 4.2).

Both the steady state error and the dynamic error for sinusoidal input were less than
expected.

4.2.3.3 Control Effort ∆U

Figures 4.7a and 4.7b shows the control efforts of each controllers under different situa-
tions. figure 4.7a shows the control efforts of the response represented by figure 4.3a,thus
enabling us to conclude that probably the less trained areas of the network may oscillate
as shown in figure 4.8. which in return causes the control effort to increase dramatically.

Overcoming the variations of the control effort can be done by using a smooth refer-
ence input for the NARMA L2 and by over training the system for the NNMPC as shown
in figures 4.7a and 4.7b.
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(a) control signals for step response of different
controllers

(b) control signal for the sinusoidal reference of
different NN controllers

Figure 4.7: Tank control signal

(a) zoomed in MPC response (b) zoomed in NARMA response

Figure 4.8: Tank output signal in under-trained areas

The NNMPC can reduce the control effort by increasing their importance in the per-
formance measure that is being minimized.

Table 4.3 summarizes the characteristics of the controllers’ control effort under differ-
ent circumstances.

Discussion :
The results of this simulation were as follows :

1. it has been witnessed that NNMRAC produced minimum amount of control efforts
whether the it was for a step response as shown in figure 4.7a or a smooth response
as shown in figure 4.7b.The control effort of this type of NN controller was similar
to the control effort produced by a linear controller

These results were relatively unexpected,since the controller is forcing a plant to
behave in a similar fashion to a reference plant.

2. NNMPC it has been witnessed that NNMPC produced a large amount of control
effort specifically for a step response of under-trained areas of the NN controllers
as 4.7a and a smooth response as shown in figure 4.7b.The control effort of the well
trained area for the step response were seen to be close to non-existent.
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Table 4.3: Tank’s Control Effort

Response step reference Sinusoidal Reference

NNMRAC Minimum over all the range of
study

Minimum over all the range of
study

NNMPC Medium in under-trained area and
non-existent in well-trained areas

Maximum in continuous varying
references

NARMA L2
Maximum in under-trained area
and non-existent in well-trained
areas

Non-existent

This result was expected,which was a reason as to why the minimization algorithm
had a parameter that can be modified to reduce the effort produced by the controller.

3. NARMA produced large effort only under two specific situations : The first situ-
ation is the sudden change for the step response.The second situation is for step
response of under-trained areas.

This result was expected,since the NARMA L2 cannot handle sudden changes in
the reference.

4.2.3.4 Response Time & Overshoot

Table 4.4 summarizes the system’s performances depicted in figure 4.9 when different
controllers are employed.

In that regards, NNMPC has an overwhelming better performance than the other neu-
ral controllers.

Figure 4.9: Tank step response

Table 4.4: Tank’s Performance

Controller Overshoot Rising Time Settling time
NNMRAC 9.4−9.25

9.25
× 100 = 1.62% t6.7 = 2.1s Tss = 9s

NARMA L-2 8.3−8.2
8.2
× 100 = 1.21% t6.7 = 2.3s Tss = 3.6s

NNMPC 0% t6.7 = 2.3s Tss = 3.6s

Discussion :
The results of this simulation were as follows :
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1. NNMRAC step response depends entirely on the reference model used.with a small
error margin.the NNMRAC reference model was designed to have 0% overshoot, 2
seconds rising time and 3 seconds settling time.The results however were different
with an overshoot of 1.62%, a rising time of 2.1 seconds which was relatively close
to the desired value and a settling time of 9s.

These results were as unexpected.The NN controller was design to produce specific
results but the performance obtained was different.

2. NNMPC produced excellent results with a 0 % overshoot, a rising time of 2.3 sec-
onds which was relatively and a settling time of 3.6s.

While the overshoot was expected to be close to zero, the settling time as well as
the rising time was expected to be larger due to the complexity of the minimization
algorithm.

3. NARMA L2 produced excellent results with a 1.21 % overshoot, a rising time of
2.3 seconds which was relatively and a settling time of 3.6s.

These results were as expected. with a rising time of 2.3 second and a settling time
of 3.6 seconds.However the overshoot was expected to be over 10 % due to the
inability of the NARMA L2 to handle sudden changes.

4.3 Case Study 2: Motor Nonlinear Control System

4.3.1 Modeling
Figure 4.10 depicts the diagram of a motor nonlinear circuit, which was the second system
considered. Applying Kirchhoff voltage law on the motor provides an insight about the

Figure 4.10: Motor nonlinear circuit system[7]

system’s behaviour, thus it can be written mathematically as
∑

(V ) = 0.Moreover,by
applying the torque law on the motor’s load such as

∑
(τi) = τ .It can be deduced that

the state space representation is written as follows :va −Raia − La
dia
dt
− vb = 0

Jω̇ = TM −Dω − TL

(4.5)

where
ω- the angular speed
va- the input voltage
La- the total inductance 0.0917H
Ra - the total resistance 7.2Ω
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D- the viscous-friction coefficient 0.0004Nm/rad/s.
J - moment of inertia 0.0007046kgm2

ia -motor current
[7] provides an example of a nonlinear motor with the values mentioned before.Moreover,it

specified that : vb = KmLf iaω and TM = KmLf i
2
a.

where :
Lf -field winding inductance
Km -torque/back EMF constant
KmLf = 0.1236Nm/WbA

4.3.2 Simulation and Results
The uncontrolled motor speed system has a nonlinear relationship between the motor
current and the motor speed system;figure 4.11 shows the relation between them.

Figure 4.11: Input voltage vs motor speed of an uncontrolled system

Applying the neural network controllers seen in chapter 3:
Figure 4.12a and 4.12b depicts the step response behaviour due to different neural

network controllers trained with an input voltage Va between 0 and 15 V. Moreover, by
considering a sinusoidal input reference, the following results-represented in figure 4.12c
are obtained :

4.3.3 Performance study
Once again.Similarly to the tank performance analysis;the performance studied of the
system covers a wide area of analysis-ranging from the disturbance rejection until the
response time and overshoot.

4.3.3.1 Noise Disturbance Rejection

To study the effect of the noise disturbance on the system output; it is imperative to specify
the kind of noise affecting the system,thus two cases were considered:

1. low frequency noise

2. high frequency noise

Figures 4.13 and 4.14 show the behaviours of the system when an outside disturbance is
applied at the output.
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(a) step response of the system with different
controllers

(b) step response of the system in under-trained
areas V /∈ [0, 15]

(c) sinusoidal response with sine reference

Figure 4.12: Response of the system

Table 4.5: Motor’s noise rejection

noise attenuation low frequency(0.23Hz) high frequency(1KHz)
NNMRAC 100 % 0%
NNMPC 100 % 0 %

NARMA L2 100 % 0 %

From table 4.5, all three controllers had the exact same behaviour to a sudden distur-
bance at the output.As a result, the low frequency noise were completely rejected while
the high frequency noise could not be reduced.

One important observation seen during this experiment is that the low frequency noise
caused the NARMA L2 and MPC to revise their control signal, thus producing and even
better step response.

Discussion :
The results of this simulation were as follows :

1. NNMRAC completely rejects low frequency noise(table 4.5) but cannot handle high
frequency noise : that is due to the architecture of the neural network which consists
of a plant estimator as well as a control signal estimator.

This was expected since modern MRAC might be more effective at reducing certain
types of low frequency noise compared to high frequency noise

2. NNMPC reduced the noise disturbance by 100% at low frequencies while it is un-
able to reduce the high frequency noise (table 4.5) : that is due to the approach used
during the design,the minimization algorithm reduces the performance measure be-
tween a reference value and the output of the NN estimator.

The NN estimator would consider the noisy output of the system to be the undis-
turbed.Therefore no noise reduction would occur,one way to solve such issue is to
reduce the sampling time during the training stage.
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(a) response with high amplitude high frequency
noise

(b) response with low amplitude high frequency
noise

Figure 4.13: High frequency noise on the motor

(a) response with high amplitude low frequency
noise on the motor

(b) response with low amplitude low frequency
noise

Figure 4.14: Low frequency noise on the motor

3. NARMA L2 reduces the low frequency noise by 100% while the high frequency
noise was reduced only by 0% (table 4.5) : that is due to the NARMA L2 de-
sign.Where a slow variation of a signal causes minimum effect on the controller
response on the other hand, a sudden change may cause an even larger error.

This phenomenon can be explained by the NARMA formula :

ŷ = f(0) +
∂f

∂u
(0)u

4.3.3.2 Dynamic Error

The graph represented on figure 4.15a depicts the errors of the output of the system for
the step response of figure 4.12a,while the graphs represented on figure 4.15b depicts the
errors of the output of the system for the sinusoidal response of 4.12c.

Table 4.6 shows in details the error of different responses for each type of controller,
while it can be seen that the error of sinusoidal reference are close approximation,though
they still provide an idea of the limits of each controller.
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(a) dynamic error of MPC,MRAC and
NARMA-L2 controllers

(b) dynamic error of the sinusoidal response of
the motor

Figure 4.15: Motor’s speed dynamic error with different NN controller

Table 4.6: Error comparison of the motor

controller max steady state error approximate dynamic error
error for step input from 15.34 to 2.67 for sinusoidal reference

NNMRAC 2 0.4 e = −0.3 + 0.3sin(2π
16
t)

NNMPC 0.05 0.003 e = 0.2sin(2π
8
t)

NARMA L2 0 0.006 e = 0.05sin(2π
11
t)

One significant observation would be that the NARMA L2 provides the best results
when it comes to error minimization.

Discussion :
The results of this simulation were as follows :

1. NNMRAC produced relatively large error compared to the other neural network
controllers.it had a maximum error e = 2 throughout all the simulations of the
tank control, while the dynamic error for a sinusoidal response was approximated
to e = −0.3 + 0.3sin(2π

16
t) (table 4.2).

these results were as expected due to the complexity of the controller.Since the two
neural controllers were interconnected and dependent on each other which amplifies
the error produced by the second network.

2. NNMPC had almost a non-existent steady state error throughout the simulations.The
dynamic error for a sinusoidal response was approximated to e = 0.20sin(2π

8
t) (ta-

ble 4.2).

The steady state error as well as the dynamic error for sinusoidal response were
expected to be close to zero as a result of using the minimization algorithm to
minimize the error between the reference and the output of the system.

3. NARMA L2 had a maximum steady state error e = 0.2 throughout the simula-
tions with a dynamic error for a sinusoidal response was approximated to e =
0.05sin(2π

11
t) (table 4.2).

Both the steady state error and the dynamic error for sinusoidal input were less than
expected.
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4.3.3.3 Control Effort ∆U

Figures 4.16 show the control efforts for the step response of each controller under differ-
ent situations: Figure 4.16a shows the control effort for the step response represented in
figure 4.12a,while figure 4.16b represents the control efforts for the step response shown
in figure 4.12b,thus enabling us to conclude that probably the less trained areas of the
network may oscillate.Therefore causing the control effort to increase dramatically.

(a) control effort (b) control effort under-trained areas

(c) control effort with sine reference

Figure 4.16: Speed control signal of a motor

Overcoming the increase of the control effort could be done by using a smooth refer-
ence input as shown in figure 4.16c.

Table 4.7: Motor Control Effort

Response Step reference Sinusoidal Reference

NNMRAC Minimum over all the range of
study

Minimum over all the range of
study

NNMPC
maximum during rising time and
non-existent in the steady states
and Medium in under-trained areas

Medium in continuous varying
references

NARMA L2
Maximum in under-trained area
and non-existent in well-trained
areas

Non-existent

Table 4.7 summarizes the characteristics of the controllers’ control effort under differ-
ent circumstances.

Discussion :
The results of this simulation were as follows :
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1. it has been witnessed that NNMRAC produced minimum amount of control efforts
whether the it was for a step response as shown in figure 4.16a or a smooth response
as shown in figure 4.16c.The control effort of this type of NN controller was similar
to the control effort produced by a linear controller

These results were relatively unexpected,since the controller is forcing a plant to
behave in a similar fashion to a reference plant.

2. NNMPC it has been witnessed that NNMPC produced a large amount of control
effort specifically for a step response of under-trained areas of the NN controllers
as 4.16a and a smooth response as shown in figure 4.16c.The control effort of the
well trained area for the step response were seen to be close to converge to zero as
the system stabilizes.

This result was expected.Moreover it can be improved by increasing the importance
of the control effort in the performance measure of the controller.

3. NARMA produced large effort only under two specific situations : The first situ-
ation is the sudden change for the step response.The second situation is for step
response of under-trained areas as shown in figure 4.16b.Otherwise the effort was
minimum throughout the simulation.

This result was expected,since the NARMA L2 cannot handle sudden changes in
the reference.

4.3.3.4 Response Time & Overshoot

Table 4.8 summarizes the system’s performances depicted in figure 4.17 when different
controllers are employed.

In that regards, NARMA L2 has an overwhelming better performance than the other
neural controllers.

(a) step response (b) zoomed in performances

Figure 4.17: Speed response of a motor

Table 4.8: Motor’s Performance

Controller Overshoot Rising Time steady state time
NNMRAC 22.14−12

12
× 100 = 84.5% t10.8 = 0.065s Tss = 4.5s

NARMA L-2 0% t10.8 = 0.14s Tss = 0.28s
NNMPC 16.5−15

15
× 100 = 10% t10.8 = 0.189s Tss = 2.4s

Discussion :
The results of this simulation were as follows :
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1. NNMRAC step response depends entirely on the reference model used.with a small
error margin.the NNMRAC reference model was designed to have 10% overshoot,
0.022 seconds rising time and 0.05 seconds settling time.The results however were
different with an overshoot of 84.5%, a rising time of 0.065 seconds which was
relatively close to the desired value and a settling time of 4.5s.

These results were as unexpected.The NN controller was design to produce specific
results but the performance obtained was different.

2. NNMPC produced excellent results with a 10 % overshoot, a rising time of 0.189
seconds which was relatively and a settling time of 2.4s.

the results are close to the first case study, however the overshoot seems to be larger
for fast systems.

3. NARMA L2 produced excellent results with a 0% overshoot, a rising time of 0.14
seconds which was relatively and a settling time of 0.28s.

These results were as expected.However was non-existent which goes against the
idea that NARMA L2 is unable to handle sudden changes.

4.4 Conclusion

Throughout the simulations.It has been noticed that each controller has their own appli-
cation areas.As a result of considering two systems,which can be characterized by their
settling time :motor system is a fast system, while the tank system considered was 7 times
slower.

The results were as follows:

1. slow systems (tank system):

A decent choice would be the neural predictive controller whose results were distin-
guished during the simulation,it proved to have non-existent overshoot, minimum
rising time, the best settling time,and the best noise rejection at low frequencies and
a medium noise and disturbance rejection at high frequencies .Moreover the error
was almost non-existent.

The worst would be the neural network model reference controller whose results
were proved to have the worst settling time,significant error increase and average
disturbance rejection.However,it was the fastest in terms of rise time.

2. fast systems (motor system):

A decent choice would be the NARMA L2 controller whose results were dis-
tinguished during the simulation,it proved to have non-existent overshoot, mini-
mum rising time, the best settling time,and a good noise and disturbance rejec-
tion.However, the downside were observed in its inability to handle high frequency
noises.

The worst would be the neural network model reference controller whose results
were proved unable to handle sudden changes in references causing an overshoot
proportional to the change in reference, the worst settling time.

Slow system such as a tank system or a motion planning project are best controlled
using the MPC,which utilizes the optimal control theories to provide a control policy.Fast
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systems such as plane system dynamic control or a motor speed control are best controlled
using the NARMA L2.

Neural network model reference on the other hand is more suited to control linear
systems or non-linear system around a specific fixed point.this is due to the fact that
NNMRAC has two neural controllers connected together in such a way that the second
network is entirely dependent on the first network.



Conclusion

The design and implementation of advanced control techniques, specifically nonlinear
controllers and neural networks, can significantly improve the performance and efficiency
of a plant’s responses. This thesis has explored the theoretical study and evaluations of
three different neural network controllers: the Neural Network Predictive Controller, the
Neural Network Model Reference Controller, and the Nonlinear Auto-Regressive Moving
Average Controller.

After evaluating the response and behavior of the controlled plant’s responses and
accuracy, our findings indicate that neural network controllers can significantly enhance
plant performance and response. However, there are challenges, such as the extensive
data requirements for controller training and the substantial computational power needed,
which suggest the need for further optimization of these algorithms.

Throughout the simulations, the results demonstrated that while neural network con-
trollers provided enhanced responses with minimal information about the plants, each
type studied has specific fields of application and limitations under certain conditions.

The key contributions of this work are:

1. A comprehensive analysis of the theoretical foundations and practical implementa-
tions of nonlinear and neural network-based controllers.

2. The design and implementation of neural network-based observers and the neural
network controllers of interest.

3. Simulations of various plants and their compatibility with different control tech-
niques in general, and with neural network-based controllers specifically.

4. An objective evaluation of the performance of three distinct neural network con-
trollers, highlighting their potential benefits and challenges.

5. Insights into the necessary optimizations needed and future research directions for
neural network controllers in control engineering.

In conclusion, this thesis has demonstrated the potential of neural network controllers
to revolutionize modern control engineering by enhancing performance measures and in-
creasing plant efficiency. However, to fully realize their potential, future research should
focus on developing more optimal algorithms and general neural network controllers that
are applicable regardless of the plant’s behavior, or on developing stronger processors ca-
pable of handling vast amounts of data within the required response time. By addressing
these limitations and challenges, we can create more robust and efficient control systems
in the future.

Future Work
The main contribution of this report has been to investigate and compare the performance
of three neural network controllers on nonlinear SISO systems. Through this project,

60
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significant insights and understanding were obtained about the strengths and limitations
of each controller, highlighting their areas of application in the real world.

However, further research is required in this field of study, such as extending and gen-
eralizing from SISO plant systems to MIMO plant systems. By addressing this issue, it
is possible to improve our understanding of neural network control techniques. More-
over, researching other techniques for adjusting the parameters of the neural network
controllers to improve their performance is essential.

Another interesting field of investigation involves adaptive control strategies that al-
low the neural network controllers to adjust their parameters online under unforeseen
changes in the system or operating conditions. Additionally, exploring the integration
and creation of neural network-based controllers with other types of nonlinear controllers
could provide valuable advancements.
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