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ABSTRACT 
 

Distillation columns are essential in many industries for separating liquids based 

on the volatility of their components. However, traditional control methods often 

struggle to achieve 

high component purity due to the process's complexity. This project investigates 

the use of Model Predictive Control (MPC) on a binary distillation column, 

comparing its performance to conventional control techniques. Guidelines for 

tuning the MPC controller are also provided. Simulation results show that MPC 

greatly improves setpoint tracking and disturbance rejection compared to 

traditional methods, demonstrating its potential to enhance process efficiency 

and product quality. 
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General Introduction 
 

Distillation columns are critical components in the oil refining and petrochemical industries, 

facilitating the separation of liquid mixtures into their vapor and liquid phases based on different 

boiling points. Maintaining these columns at optimal operating conditions is essential for 

maximizing plant efficiency and profitability. Effective control of distillation columns must 

address several key factors, including safety, operational constraints, energy consumption, and 

product specifications. Traditional PID (Proportional-Integral-Derivative) controllers often 

struggle with the inherent nonlinearities and time-varying dynamics of distillation processes 

[1]. 

In contrast, Model Predictive Control (MPC) is a highly effective strategy for monitoring binary 

distillation columns. MPC employs a mathematical model of the process to predict future 

behavior and optimize control actions. This capability is particularly advantageous for binary 

distillation columns, as it can accommodate the nonlinear dynamics and multivariable nature 

of these systems. By leveraging MPC, it is possible to achieve more precise control over the 

distillation process, resulting in higher-quality products and reduced energy consumption [2]. 

This project presents a practical study about MPC of an industrial distillation column based on 

applying MPC on both single-input single-output and multi-input multi-output systems. The 

primary focus is to investigate the performance of PID and PID feedforward control strategies 

on MIMO (Multiple-Input Multiple-Output) systems. Using such controllers may lead to 

interaction between control loops, decreased system performance, instability, and difficulty in 

achieving the desired setpoints. Such problems and challenges make the MPC a good candidate 

to be used in the distillation column. In this thesis, Aspen HYSYS software has been utilized to 

simulate and test various control strategies applied on the distillation column. 

This project is divided into four chapters organized as follows: 

ChapterⅠ: introduces the fundamental principles of distillation columns and the control 

strategies employed to manage them, and defines briefly the depropanizer column. 

Chapter Ⅱ: explores the different conventional strategies that are used for controlling the 

distillation columns. It also introduces the RGA (Relative Gain array) method for identifying 

the interaction between loops and finally proposes solutions for such problems by either using 

decouplers or model predictive control. 

Chapter Ⅲ: gives a comprehensive overview of Model Predictive Control, from its historical 

roots to its theoretical foundations and the implementation of unconstrained MPC on a SISO 

system (separator). It also provides actionable insights on how to tune MPC parameters 

effectively. 

Chapter Ⅳ: focuses on the implementation of MPC on a MIMO system that is a binary 

distillation column (depropanizer) using HYSYS, analyzing its performance in comparison to 

PID and PID feedforward controllers. Finally, it offers guidelines for applying MPC to real 

columns with similar specifications to the studied column. 
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I.1 Introduction 

Distillation is a fundamental process in chemical engineering that separates components in a 

liquid mixture based on their varying boiling points. By vaporizing the mixture and then 

condensing vapor, distillation enables the purification and separation of valuable products.     

Understanding the basics of distillation, including its principles, components, and control 

strategies, is crucial for optimizing separation processes and ensuring product quality. In this 

chapter, we will explore the basics of distillation columns and the various strategies utilized 

for their control. 

I.2 Distillation system and its working principal  

As shown in Figure I-1 distillation towers also known as distillation columns consist of: A 

vertical shell where the separation of components is carried out , column internals such as 

trays or plates or packings that are used to enhance component separation, a reboiler that 

provides the necessary heat for vaporization of the liquid mixture, a condenser for cooling 

and condensing the vapor leaving the top of the tower, and a  reflux drum to hold the 

condensed vapor from the top of the column so that liquid (reflux) can be recycled back to 

the column [3].  

 

 

 

 

 

 

 

 

 

 

 

 

Figure I- 1  : Representation of distillation column system  [4] 



Chapter-I                                                                       Basic principles of distillation columns 

3 

 

In a distillation unit, the feedstock is introduced near the middle of the column at a feed tray, 

dividing the column into enriching (top) and stripping (bottom) sections. The feed flows 

down to the reboiler at the bottom, where heat is applied to generate vapor. The vapor is 

reintroduced at the bottom of the column, while the liquid from the reboiler (bottoms) is 

removed. 

As the vapor moves up the column and exits at the top, it is condensed by the condenser, 

with the liquid collected in the reflux drum. Some liquid is recycled as reflux, while the rest 

is removed as distillate or top product. This process involves internal flows of vapor and 

liquid within the column, as well as external flows of feeds and product streams into and out 

of the column [4]. 

I.3 Types of distillation columns  

Distillation has many different types designed for specific needs; it is categorized based     

on many factors. Each type offers unique advantages in terms of efficiency, capacity and 

suitability for different separation tasks.  

I.3.1 The feed composition   

Distillation can be categorized based on the nature of the feed that enters the column. 

 Binary distillation: The feed contains only two components [3]. 

 Multi-component distillation: The feed contains more than two components [3]. 

I.3.2 The product streams 

Distillation columns can be classified according to the number of product streams into: 

 Multi-product distillation columns 

   For applications where achieving extremely high purity for intermediate products is  

   not crucial, multi-product columns can be designed to recover more than two products  

   simultaneously. This is achieved by incorporating a series of lateral withdrawal points    

   along the length of the column, where either liquid or vapor phases are extracted [5]. 

I.3.3 The treatment method 

Distillation columns are primarily classified into two types based on the treatment method:   

 Batch distillation columns 

.  In batch operation, the feed to the column is introduced batch-wise. That is, the column      



Chapter-I                                                                       Basic principles of distillation columns 

4 

 

   is charged with ‘batch’, and then the distillation process is carried out. When the desired  

task is achieved, the next batch of feed is introduced [3].  

 Continuous Columns 

   In contrast, continuous columns process a continuous feed stream, no interruptions occur  

   unless there is a problem with the column or surrounding process units. They are capable  

   of handling high throughputs and are the most common of the two types [3].  

I.3.4 The column internals 

 Distillation towers can be divided into two types according to the tray’s composition: 

 I.3.4.1 Tray tower     

Trays of various designs used to hold up the liquid to provide better contact between vapor and 

liquid. Two common types of trays used in distillation columns are sieve trays and bubble cap 

trays [3]. 

 Bubble cap trays 

   Bubble cap tray features individual risers or chimneys filled over each hole, each capped     

   with a cap. These caps are designed with space to allow vapor to ascend through the    

   chimney, then directed downwards by the cap, finally discharging through slots in the  

   cap, and bubbling through the liquid on the tray [3]. 

           

Figure I- 2 : Bubble cap trays: (a) Vapor flow within a bubble cap (b) Bubble cap design with 

downcomers and weir  

 

 

(a)                                                                 (b) 
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 Sieve trays 

   Sieve trays are a simpler design compared to bubble cap trays. They consist of metal plates     

   with spaced holes. During distillation, vapor rises directly up through these holes and bubbles    

   through the liquid resting on the tray. The effectiveness of a sieve tray depends on the design    

   parameters, which include the number, size, and arrangement of the holes in the plate [3]. 

 

 Figure I- 3 :  Sieve Trays (a) weeping phenomenon in seive trays (b) Seive tray design 

 

  Figure I- 4 : Structured packing 

                                     

(a)                                                                     (b) 
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I.3.4.2 Packed column 

Packing are devices designed to enhance vapor-liquid contact. They minimize the pressure                                

drop across a packed section, which is important because a high-pressure drop would mean 

that more energy required to drive the vapor up the distillation column [3].     

I.4 Product Streams composition 

 The distillate refers to the product collected from the top of the column. It contains the lighter 

components which are the more volatile. There are two possibilities for the distillate: 

 Fully liquid: this requires a total condenser, where all the incoming vapor is 

condensed, providing liquid for both the distillate and reflux streams.The distillate‘s 

composition matches that of overhead vapor. 

 Fully vapor: A partial condenser is needed. Only a portion of the overhead vapor is 

condensed to form the reflux stream, leaving the uncondensed vapor as the distillate. 

The distillate’s composition differs from that of the overhead vapor. 

The bottoms product is always a liquid stream collected from the bottom of the column. It 

contains the heavier components, which are less volatile [6].  

I.5 Material and energy balance 

Material and energy balances are fundamental operations in the analysis of any process, based 

on conservation laws. Material balance in a distillation tower ensures that the amount of feed 

entering the column equals the total amount of products leaving the tower. Any imbalance 

results in material accumulating or depleting within the tower, disrupting the separation 

process. Conversely, energy balance asserts that the energy flow rate (input power) into a 

process must equal the energy flow rate (output power) out of the process, ensuring that the 

process neither gains nor loses internal energy [6] [7]. 

I.6 Control strategies 

To maintain balance, control loops are used as shown in Figure (I-6). A simple distillation 

column with a total condenser has six control valves: feed, reflux, distillate, bottoms,         

reboiler steam, and condenser cooling duty [8]. 
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Figure I- 5 : Schematic of a simple distillation columnalong with the control valves [10] 

 I.6.1 Basic control structures  

In a simple distillation tower, the feed valve is commonly controlled by an upstream                                   

unit in the process. Additionally, two valves are necessary to manage the reflux drum level 

and the reboiler level since liquid levels are not self-regulating. Another valve is utilized to 

maintain the column pressure, which signifies the vapor inventory within the column. 

Typically, the cooling duty valve in the condenser is employed for pressure regulation. Once 

the three inventory loops are established, the operator or a controller can adjust the positions 

of the remaining two control valves to oversee the separation process. This results in an 

operational degree of freedom of two for a basic distillation column. There are four basic 

control structures depending on which valves are used for level control: LQ structure uses 

distillate for reflux drum level and bottoms for reboiler level which leaves the reflux (L) and 

reboiler duty (Q) free to control separation. DQ structure uses reflux for reflux drum level 

while distillate and reboiler duty are used to control separation. In the LB structure, the     

bottoms level is controlled using the reboiler duty. Finally, in the DB structure reboiler and 

condenser levels are controlled using the reboiler duty and reflux respectively, this structure 

is rarely used as it violates the mass balance constraint [8].  
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Figure I- 6 : Schematics of LQ, DQ, LB and DB control structures 
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I.6.1.1 The Energy Balance (LQ) Structure  

The LQ control structure is the most common approach because it naturally accounts for how 

separation occurs in the column. Separation is driven by successive condensation and           

vaporization of the counter-current vapor and liquid streams as they flow through the          

column. The LQ structure controls the column's energy balance by manipulating the cold 

reflux (L), which provides condensation, and the reboiler duty (Q), which provides                

vaporization. These are logical controls because condensation and vaporization are the main 

drivers of separation. Adjusting L and Q alters the column's energy balance and thereby 

changes the distillate-bottoms split by influencing how components are distributed between 

the vapor and liquid phases as they rise and fall through the column [8]. 

I.6.1.2 Material Balance Structures  

Material balance control structures directly adjust the product split by changing the distillate 

or bottoms stream flow rate. This type of structure is needed when a conventional LQ 

structure using levels would be ineffective. The DQ structure is suitable for columns with a 

very high reflux ratio (L/D > 4). In this case, the distillate flow is a small fraction of the 

large reflux stream, making it difficult to control the reflux drum level with just the distillate 

flow. Therefore, the level must be controlled using the reflux flow instead. The LB structure 

is used for columns where the bottoms flow rate is much smaller than the boil-up. In such 

cases, the small bottoms stream cannot effectively control the reboiler level. So, the reboiler 

duty is manipulated instead to control the level. The DB structure is rarely used in steady 

state because the distillate and bottoms flows cannot be set independently due to the material 

balance constraint. However, in dynamic situations where the reflux and reboil are much 

greater than the distillate and bottoms, the DB structure may provide adequate control by 

manipulating both flows [8]. 

I.6.2 Other control structure variants  

Other structure variants in distillation columns involve: The L/D-Q, L/D-B, and D-Q/B 

control structures adjust the reflux ratio, reboil ratio, or both for controlling the separation. 

In the L/D-Q and L/D-B structures, the distillate stream can be used to control the reflux drum 

level even if it is small relative to the reflux, and the bottoms stream can control the reboiler 

level even if small relative to reboil. This is done by adjusting the respective streams in ratio 

to the reflux or reboil. Maintaining the reflux ratio through feedforward control is common      
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as it helps compensate for changes in the distillate rate before column dynamics affect     

purity. This is because changes in reflux due to liquid hydraulics between trays have a time 

constant of 15-30 seconds. Maintaining the reboil ratio through feedback control alone is 

not as popular because tray temperatures and compositions respond almost immediately to 

reboil changes due to fast vapor dynamics. Adjusting the reboiler duty in feedback is usually 

sufficient for effective control [8]. 

 

Figure I- 7 : Schematics of L/D-Q, L/D-B, and D-Q/B control structures[10] 
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 I.6.3 Temperature based inferential control  

The main control objective is to ensure that the impurity levels of light key and heavy key 

components in the distillate and bottoms streams remain below their design specifications. 

Directly controlling these impurity levels using composition measurements is not feasible 

due to long time delays between a disturbance and its impact on product purity. The 

individual trays in the column would respond faster to load disturbances like changes in feed 

flow or composition compared to the response time of the product streams. Therefore, 

controlling an inferential variable like tray temperature allows for tighter control of 

impurities in the distillate and bottoms. In a feedback system, adjustments to reflux or reboil 

can be made after a deviation in product purity to maintain the desired separation. 

The tray temperature can be used as an indirect measurement of the tray composition. At a 

constant pressure, the boiling point of a liquid mixture depends on its composition, heavier 

components boil at higher temperatures. For a binary mixture, the relationship between tray 

temperature and composition is exact, with the tray temperature increasing as the                

concentration of heavier components increases, and vice versa. For a multi-component     

mixture, the relationship is only approximate [8]. 

 I.6.3.1 Single-ended temperature control  

Single-ended temperature control refers to controlling the temperature of a single tray in the 

distillation column. This can be done by manipulating one of the two available degrees of 

freedom, which are typically the reflux rate or reboiler duty. Manipulating the reboiler duty 

(Q) is preferred as it provides a fast response, since all tray temperatures respond quickly to 

changes in Q. The reflux rate can also be used, as long as the controlled tray is not too far 

below the reflux (within about 10 trays). This strategy can be applied to different common 

control structures. In the LQ structure, either the reflux or reboiler duty can be used. In the 

DQ structure, if distillate rate (D) controls the temperature, it is nested with the reflux drum 

level controller. Similarly, in the LB structure if bottoms rate (B) controls temperature, it is 

nested with the reboiler level controller. The level controllers in these nested cases must be 

tuned tightly as PI controllers; otherwise, the temperature control will be very sluggish. 

Ultimately, both the reflux and reboiler are the only variables that directly affect tray 

temperature, so any control scheme must manipulate one of these to change temperature [8]. 
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Figure I- 8 :  Single ended temperature control structures using LQ and DQ scheme[ 10] 
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Figure I- 9 :   Dual ended temperature control structures using LQ, DQ, LB and DB   schemes 

[10] 
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I.6.3.2 Dual-ended temperature control  

Theoretically, since a distillation column has two degrees of freedom, it is possible to control 

two tray temperatures simultaneously. This is known as dual-ended temperature control. For 

example, in the LQ control structure the reflux rate could control a rectifying tray temperature 

while the reboiler duty controls a stripping tray temperature. However, in industrial practice 

it is more common to control a single tray temperature. This is because controlling two 

temperatures requires detuning the temperature controllers to account for interaction 

between the loops. More importantly, the two controlled tray temperatures may not be truly 

independent, meaning the controllers could end up seeking infeasible set points as they 

interact. Dual temperature control is feasible for very long distillation columns where the 

controlled trays are far enough apart to be essentially independent. However, for most 

columns, single temperature control is preferable to avoid interaction issues [8]. 

I.7 Depropanizer column  

A depropanizer is a multi-component distillation column, commonly used in oil refineries. 

It separates propane from a mixture of components containing ethane, propane, butane, and 

pentane. The control of a depropanizer is challenging. In addition, set points may fluctuate 

for various reasons, which may depend on the processing units. This can also result from 

technical issues like insufficient condensation capacity, the market demand, the available 

products [9]. 

I.8 Conclusion 

This chapter aims to provide a general overview of distillation columns, introducing their 

principle, fundamental types and the control strategies used to control a simple distillation 

column for effective performance.                                                                                                       

The next chapter will delve deeper into the theoretical background, focusing primarily on 

conventional control strategies and pairing problems encountered in distillation processes. 
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II.1 Introduction 

The technology used in developing the control configuration for the distillation column 

involves various control strategies and methods. An essential concept is the PID control, the 

most common feedback control algorithm used in industry. Understanding the process 

dynamics is essential before tuning the controller parameters. Additionally, the feedforward 

control is implemented to counteract disturbance, while the cascade control is used when there 

is a hierarchical relationship between variables in the system such as in multivariable 

processes. To address loop interaction and pairing issues decouplers and model predictive 

controllers are used to optimize the control system’s efficiency in managing the distillation 

column. 

II.2 Feedback Control 

In control theory and engineering, feedback control refers to a technique in which a system's 

output is continuously observed and compared with a desired reference or setpoint. Any 

difference between the intended and actual outputs—referred to as errors—causes the system 

to behave differently and requires correction. A controller decides these corrective measures 

and uses feedback data to direct the system in the desired direction of the intended state. 

Feedback control systems may maintain stability, regulate performance, and react to changes 

in the environment or operational conditions by continuously sensing, comparing, and 

changing. 

Conventional feedback controllers use one, two, or three methods to determine the value of 

the controller output. These methods, called the modes of control, are as follows: 

 Proportional (P) 

 Integral (I) 

 Derivative (D) 

These modes can be used singly or in combination. P, PI, and PID cover almost all the actual 

feedback controller applications, with the PI combination being the most prevalent [10] 

  II.2.1 Proportional Mode 

When operating in the proportional mode, a controller's output and the position of the final 

control element are directly proportional to the current measurement value. Unlike other 
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control modes, this mode does not take into account the past behavior of the measurement 

values or their rate of change.  

 m = Kc.e + b (II-1) 

Equation II-1 shows the behavior of a proportional controller (where m is the controller      

output,Kc  is the controller gain, e is the error and b is the output bias) [10]. 

The general block diagram is shown on the following figure: 

 

Figure II- 1 : Block diagram of a proportional controller[12] 

  Tuning such a controller for desired performance is relatively straightforward, typically 

requiring just one or two adjustments. However, despite its simplicity, the proportional 

controller suffers from a significant limitation: it tends to introduce an offset between the 

setpoint and the actual measurement value, particularly under varying load conditions [10]. 

 II.2.2 Integral Mode 

An integrator is the perfect tool for automating the adjustment of the controller output bias. It 

is called "automatic reset." This is often shortened to simply "reset." The behavior of an 

integral controller is given by the following equations: 

 

 
m = KC (e + 

1

TI
 ∫e dt) (II-2) 

 
M = KC (1 + 

1

TI S
 ) E    (Laplace) (II-3) 

 

The PI tuning parameters are the controller gain KC and the integral time TI. 
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The block diagram of a typical commercial PI controller is shown in the following figure: 

 

 

 

 

 

 

Figure II- 2 : Block diagram representation of a typical commercial PI controller [12] 

The Integral Time  𝐓𝐈 : 𝑇𝐼 is the reaction of a PI controller to a change in an error that is 

impacted by the reset parameter (𝑇𝐼). It represents the time required for the integral response 

to repeat the proportional response, which is dependent on the 𝑇𝐼 setting. A large TI values 

result in a slower integral response, while a small TI value leads to a faster response. 

However, many manufacturers use the reciprocal of  TI  (1/TI ). So, a higher value on the dial 

for 1/TI corresponds to a slower integral response, and vice versa [10]. 

II.2.3 Derivative Mode 

The improvement of control-loop performance is made by adding a component to the 

controller output proportional to the measurement's rate of change. This reduces variations 

by helping to predict changes in load. Equation II-4 shows how the derivative mode is added 

to the proportional and integral modes, with its contribution based on the rate of change of 

the product of the controller gain times error [10].  

 The tuning parameter TD adjusts the relative effect of this mode of control: 

 m = KC (e +
1

TI 
 ∫e dt + TD

 de

 dt
  ) (II-4)  

 

Figure II- 3 : Block diagram representation of an “ideal” PID controller 
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Proportional-plus-derivative (PD) control adds a term that considers the rate of change of the 

error (difference between desired and actual value). This anticipation, characterized by a lead 

time of TD minutes, allows the controller to react faster to disturbances compared to using only 

proportional control. This faster response is one of the key benefits of using the derivative 

mode in PD control. With proportional-plus-derivative control, the controller predicts the 

measurement TD minutes into the future and uses this predicted value to compute the controller 

output, rather than the current measurement. PD controllers are now common on modern 

controllers and ideal for temperature loops with low response times and minimal noise [10] . 

  The table shown next demonstrates the difference between the previously discussed modes: 

Table II - 1: Summary of feedback control modes [12] 

                  

Mode Common 

Name (s) 

Tuning 

Parameter 

Application 

Proportional Proportional    Gain, 𝐊𝐂  

     or  

Proportional Band 

PB 

 

 

 

 

 

 

 

 Used when: 

Simple form of control is desired, load 

does not change significantly  

or offset is acceptable.                                     

Also used when the control loop dynamics 

permit a relatively high gain to be set 

without causing excessive oscillation. 

Then, even if significant load changes are 

present, offset is only minimal 

Integral Reset  

Automatic Reset  

Min./Repeat, 𝐓𝐈 

    or 

Repeats/min.1/𝐓𝐈 

  

 

Used almost always in conjunction with 

proportional mode to eliminate steady 

state offset. 

 Occasionally used alone; known as 

Integral controller. For most applications, 

I-only controller provides inferior 

performance when compared with PI 

modes. 

Derivative  Rate Action  

Pre-Act 

Deriv. Time, 𝐓𝐃 Used usually in combination with P and I 

modes to improve loop performance by 

anticipating the effect of load changes. 

Used mainly on temperature loops or other 

loops that have similar characteristics (low 

noise level, fairly slow response).  
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II.3 PID Controller Algorithms 

The proportional, integral and derivative modes in PID controllers are arranged into three 

distinct controllers algorithms or forms known as interactive, noninteractive, and parallel 

forms. 

II.3.1 Interactive (series PID) 

Commercially available analog controllers were developed with pneumatic mechanisms to 

achieve proportional, integral, and derivative control objectives. However, the mathematical 

analysis of these mechanisms did not match the ideal PID controller's mathematical form. 

Instead, they could be represented by an interactive block diagram, and by the following 

equation, written in Laplace form: 

 

 
M(s) = k̂C (

( 1 + T̂I s) ( 1 + T̂D s)

T̂I s
)  E(s) (II-5) 

The “^” over the symbols indicates the entered value for the tuning parameters. 

 In the interactive controller, the controller gain, integral time and derivative time are not 

directly set by entering the parameters�̂�𝐶, �̂�𝐼  and �̂�𝐷  but by a combination of them. If any of 

the parameters is adjusted, it will affect the other remaining parameters [10]. 

 

Figure II- 4 : Block diagram of interactive controller 
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II.3.2 Noninteractive (ideal PID) 

This algorithm is used to establish robust and stable control systems that can effectively 

manage disturbances. If the time difference is   TD= 0, the interactive and  noninteractive forms 

are identical. Equation II-4 shows the mathematical representation of noninteractive controller 

[11].  

  

Figure II- 5 : Block diagram representation of noninteractive controller 

II.3.3 Parallel PID 

In the concept of parallel PID, also known as independent gains, the controller is structured 

such that each mode (proportional, derivative, and integral) has its own gain. This differs 

from the traditional PID controller, where a single gain parameter affects the three modes 

simultaneously. The equation and figure below are used to show this concept, as illustrated 

in [10].  

 m = kc e + kI ∫ e dt + KD  
de 

dt
 (II-6) 

where: 

The proportional gain 𝑘𝑝 = 𝑘𝑐  

The integral time is 𝑇𝐼   and  𝑘𝐼 =
𝑘𝑐

𝑇𝐼
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The derivative time is  𝑇𝐷 and 𝑘𝐷 = 𝑘𝑐  𝑇𝐷 

Figure II- 6 : Block diagram of parallel controller 

 The equations below provide equivalent parameters for a noninteracting controller 

based on         an interacting controller's parameters [10]: 

 

{
 
 

 
   𝑘𝑐 = �̂�𝑐 (

�̂�𝐼 + �̂�𝐷

�̂�𝐼
) 

 𝑇𝐼  =  �̂�𝐼 + �̂�𝐷

𝑇𝐷 = 
�̂�𝐼 �̂�𝐷

�̂�𝐼 + �̂�𝐷 

 (II-7) 

 While the equations below provide equivalent parameters for an interacting 

controller based on a noninteracting controller's parameters [10] : 

 

 

 where: 𝜆 =  
1

2
+ √

1

4
−
𝑇𝐷

𝑇𝐼
 (II-9) 

 

 

 

 

{
 

 
�̂�𝑐 =  𝜆 𝑘𝑐
�̂�𝐼 =  𝜆 𝑇𝐼

�̂�𝐷 = 
𝑇𝐷
𝜆

   (II-8) 
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II.4. Process Characterizations 

In industry, there are three primary types of process responses: self-regulating, integrating, 

and runaway. These responses are defined based on how the process reacts to a step change 

when the PID controller is not actively correcting the process. By understanding these types, 

one can draw general conclusions about the appropriate proportional (P), integral (I), and 

derivative (D) settings needed for effective control [7]. 

 Self -regulating process 

Self-regulating processes can maintain a new stable output on their own after a change in     

input or load.  They require an integral controller to achieve a perfect match between the  

desired output (setpoint) and the actual output (process variable). More aggressive integral    

control eliminates offset faster, but can cause instability (oscillations) in slow processes [7]. 

Figure II- 7  : Self-regulating response to a step-change [9] 

 Integrating processes 

Liquid level control is a classic example where the liquid level ramps at a rate proportional 

to the difference between flow rates in and out. Unlike self-regulating processes, integrating 

processes reach new setpoints without offset using only proportional control. However, too 

much proportional will lead to oscillations and noise. Integral control action is not necessary 

to eliminate offset but can be helpful for handling load changes. Integrating processes can be 
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turned into self-regulating processes by natural internal negative feedback, which brings the 

system to equilibrium [7] 

 

 

 

 

 

 

 

 

 

                        Figure II- 8 : Integrating process’s response to a step-change [9] 

 

 Runway processes (negative self-regulation or negative lag) 

Inverted pendulums represent a classic illustration of runaway processes, where instability 

ensues upon tipping, causing them to continuously deviate from the vertical position. Such 

processes demonstrate exponential growth in reaction to load changes due to positive feedback 

loops. Derivative control is crucial for runaway processes, while proportional and integral 

actions alone are insufficient. Natural negative feedback mechanisms can transform a runway 

process into a self-regulating one, as observed in water-cooled nuclear reactors [7].                                                                                          

Figure II- 9 Response of runaway process to an open-loop step change [9] 
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II.5 Tuning 

Tuning controllers involves adjusting their parameters to optimize their performance. 

Traditional tuning techniques, like Ziegler-Nichols, are accessible to people with limited 

computational abilities, while automated methods are executed by the controller and processed 

by a personal computer [12]. 

In order to ensure a good tuning, the following steps are applied as mentioned in [12] : 

 Study the process characterization by performing a process test (Open loop test or 

Closed Loop test.) 

 Quantify the behavior of the process by defining the Process gain, time constant and 

dead time. 

 Calculate the controller parameters according to the process defined in the previous 

step. 

 Implement the controller parameters calculated in the previous step. 

 Test the controller performance by making a step change in the set point, and the 

disturbance rejection test. 

 In the case of unsatisfied performance, go back to the previous steps.  

The model of this study can be approximated by a FOPDT (first-order system plus dead time), 

represented by the following transfer function: 

 

 

G(s) =  
Kpe

− θs

1 + τs
 

 

(II-10) 

Kp: Process gain. 

θ : Process dead time (time delay) 

τ: Time constant  

II.5.1 Open-Loop Tuning methods 

Open loop tuning methods perform the following steps provided by Broida and explained  

in [12] : 

 Observe the process response to a known change in the controller output. 

 Analyze the response data ( 𝐾𝑝= 
∆𝑦

∆𝑢
  , dead time and time constant). 

 Calculate controller tuning coefficients using the parameters obtained from the analysis. 
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II.5.1.1 ZIEGLER – NICHOLS OPEN - LOOP METHOD 

The Ziegler-Nichols method as described in [13] is a classic approach, involves deriving 

KC and Tiand Td from the parameters of a first-order- plus-deadtime model. These calculations 

are influenced by the type of controller being used (P, PI, PID). Table Ⅱ-2 summarizes these 

calculations. 

Table II - 2 : ZIEGLER-NICHOLS Open loop coefficient [16] 

Mode       𝐾𝐶      Ti      Td 

P  τ /Kpθ - - 

PI 0.9 τ/Kpθ 3.33θ - 

PID Series 1.2 τ/Kpθ 2θ 0.5θ 

PID Parallel 1.5 τ/Kpθ 2.5θ 0.4θ 

                  

II.5.1.2 ISA (Greg McMillan) 

Greg McMillan's approach to tuning PID controllers presented in [14] emphasizes the 

importance of considering the performance objectives in the tuning process. He classified the 

performance objectives into three levels: Aggressive, moderate and slow.  The coefficients 

calculation is shown in the table below: 

Table II - 3 : Greg McMillan Open loop coefficient [16] 

Performance KC Ti Td 

Aggressive τ ∕ Kpθ 3θ  ≤ 
1

2
 θ 

Moderate 1

2
 τ ∕ Kpθ 

3θ  ≤ 
1

2
 θ 

Slow 1

4
  τ ∕ Kpθ 3θ  ≤ 

1

2
θ  
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II.5.1.3 Internal Model Control (IMC) 

Internal Model Control (IMC) is a controller synthesis method that uses the process model and 

performance specifications to derive a control equation. It includes compensation for dead 

time in the process. When the dead time is relatively small compared to the process time 

constant, an approximation can be used to simplify the control equation [12] .The parameters 

are calculated according the desired performance to be met.  

Table II - 4 : Internal Model Control coefficient [16] 

Performance KC Ti Td 

Disturbances    τ ∕ Kpθ   τ 1

2
 θ 

SP Change (PI) 0.6 τ ∕ Kpθ 

(PID) 0.83 τ ∕ Kpθ 

  τ 1

2
 θ 

5% Overshoot 1

2
  τ ∕ Kpθ 

   τ 1

2
 θ 

 

II.5.1.4 the Lambda Method 

The Lambda tuning method is a synthesis method commonly used in the paper industry. It 

involves designing a controller specifically for the process. To do this, two key pieces of 

information are needed:  

1. A process model, including all relevant parameters such as gain and time constant.  

2. Performance specifications for the control loop, such as how the loop should respond to a 

unit step change in the set point. 

The Lambda tuning technique uses open-loop data kp, τ, and θ, with the addition of a 

parameter λ to determine the desired time constant for closed-loop response to set point 

changes. Here is how it works: 

 When there is a high confidence in process parameters, set λ= τ. 

 In cases of low confidence in process parameters, set λ to be within the range 

       2τ < λ < 4τ. 
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Figure II- 10 : Desired closed-loop response to set point change: the basis of lambda tuning [12] 

The Lambda method equation for controller tuning according to [12] depends on the process 

model: 

• PI when the model is time - constant - plus - dead - time.  

• PID when the model is two - time - constants - plus - dead - time.  

Table II - 5 : Lambda Method Tuning Equations [14] 

Control mode  Proportional Integral Derivative 

PI KKC = 
𝜏

𝜏𝐶𝐿+𝜃
 TI = τ - 

PID-Series KKC =  
𝜏1

𝜏𝐶𝐿+𝜃
 TI = 𝜏1 TD =  𝜏2  

PID-Parallel KKC = 
𝜏1+𝜏2

𝜏𝐶𝐿+𝜃
 TI = 𝜏1 + 𝜏2 TD = 

𝜏1𝜏2

𝜏1+𝜏2
 

 

The key parameters of lambda tuning are the process time constant (τ), process time delay 

(θ), the process gain (K), the proportional gain (K𝑐), the closed loop time constant (𝜏𝐶𝐿) and 

Time constants used for series and parallel PID controllers (𝜏1and 𝜏2 ). 

II.5.2 Ziegler – Nichols Closed - Loop Method 

Ziegler-Nichols closed-loop method is used to tune PID controllers. It involves finding the 

process's behavior under proportional-only control by:                                                                                                                                            

1. Disabling the integral and derivative terms of the controller. 

2. Increasing the controller gain until the system starts oscillating continuously. 
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3. Recording the gain value (ultimate gain Ku) and the oscillation period (ultimate period Pu) 

at this point. 

These values are then plugged into specific equations provided in and shown in Table II-6 to 

calculate the PID controller settings that achieve a desired response. The method offers 

settings for P-only, PI, PID (series structure), and PID (parallel structure) controllers [12]. 

Table II - 6 : Ziegler–Nichols closed-loop tuning equations [14] 

Control mode  KC TI TD 

P-only KC = 0.45 KU  - - 

PI KC = 0.5 KU TI = PU/1.2 - 

PID-Series KC = 0.6 KU TI = 0.5 PU 𝑇𝐷 = PU/8 

PID-Parallel KC = 0.75 KU TI = 0.625 PU TD = PU/10 

                   

II.6   Feedforward Control 

Feedforward control involves adjusting the control input preemptively to compensate for the 

effect of a measured disturbance on the output, aiming to maintain the output at its setpoint 

despite the disturbance. This proactive compensation contrasts with feedback control, which 

adjusts the control input based on the output error. 

The design of a feedforward compensator is illustrated using block diagrams in figure II-12, 

where  Gd represents the disturbance to output transfer function and Gp represents the control 

input to output transfer function. The control input u is adjusted by the feedforward 

compensator with the transfer function Gff such that Gp.u + Gd.d = 0.  Solving for Gff yields 

Gff = - Gd/ Gp.  Assuming Gd and Gp are first-order plus dead time transfer functions, the 

feedforward compensator takes the form of a lead-lag plus dead time transfer function. 

Modern Distributed Control Systems (DCS) allow for the configuration of lead- lag plus dead 

time blocks into the control system, facilitating the implementation of feedforward 

compensators [7].  
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   Figure II- 11 : Design of feedforward compensator: (a) A process (b) Process with feed 

forward compensator [9] 

II.7 Cascade Control 

To cascade controllers means to connect the output signal of one controller to the setpoint of   

another controller. Both controllers monitor distinct parameters within the same process. The 

primary controller acts as the master loop, it provides the desired operating point for the 

secondary loop (slave loop) through the manipulation of its setpoint [7]. The key advantage 

of the cascade control is the ability to separate the control of critical process parameters from 

disturbances such as those caused by control valves exhibiting hysteresis or stiction. 

Responding quickly to certain disturbances will enhance system’s overall performance [15]. 

Tuning a cascade involves tuning the inner loop first, followed by tuning the outer loop. 

Tuning a cascade is generally no more difficult than tuning two simple feedback loops, as it 

involves tuning two controllers. Two potential issues are inadequate dynamic separation 

between the loops, and   interacting stages within the process. For dynamic separation, the 

inner loop needs to be at least 5 times faster than the outer loop. Less separation makes the 

outer loop difficult to tune [15].  
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II.8 Loop Interaction 

Multivariable control deals with processes involving multiple variables; while a single-loop 

PID controller can be used for each variable, tuning can be difficult due to interactions between 

the loops [12]. 

II.8.1 Multivariable Processes  

 Figure II-13 depicts a multivariable process, with inputs being either manipulated variables 

or disturbances. The control system determines the values of manipulated variables, while 

external factors determine disturbance values. Outputs are categorized as controlled variables, 

which should be maintained near their targets (setpoint), and dependent variables that are 

influenced by both manipulated variables and disturbances and are not targeted but may have 

constraints in some applications [12]. 

 

 

 

 

 

 

 

 

Figure II- 12 : Multivariable process [14] 

II.8.2 Multivariable Processes Representation  

For a 2 × 2 process, a simplified representation is shown in Figure II-14, where a block with 

arrows shows how inputs affect outputs, in which the manipulated variables are u1 and u2, 

while y1 and y2 are the controlled variables: 
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Figure II- 13 : A block diagram of a 2x2 multivariable process 

A 2 × 2 multivariable process is expressed by the following equations:  

 {
𝑦1(s) =  𝐺11(𝑠) 𝑢1(s) + 𝐺12(𝑠)𝑢2(𝑠)
 𝑦2(s)  =  𝐺21(𝑠)𝑢1(s)  +  𝐺22(𝑠)𝑢2(s)

 (II-11) 

                                Thus:                        

 [
 𝑦1 
𝑦2
] = [

 𝐺11 𝐺12 
 𝐺21 𝐺22 

] [
𝑢1
 𝑢2
 ] (II-12) 

                                Then:               

 Y =  G. U (II-13) 

The equations provided in [12] for a multivariable process are most conveniently expressed 

using vectors and matrices in which: 

Y: Vector of controlled variables  

G: Transfer Matrix  

 U: Vector of manipulated variables 

II.8.3 RGA Method 

RGA (relative Gain Array) was introduced by Bristol in 1966 [16]. It offers a jointly-

conditioned relative measure of input-output interactions within a multi-input multi-output 

(MIMO) system [17]. A widely-used metric, it quantifies the interaction of a control loop with 

other loops by comparing the steady state process gain observed by the controller when the 

other loops by comparing the steady state process gain observed by the controller when the 

other loops are inactive to the process gain when all other loops are active (with all other 

outputs at their setpoints). Mathematically, if the 𝐢𝐭𝐡 output is regulated by the 𝐣𝐭𝐡 input, its 

relative gain is defined as: 
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𝛌𝐢𝐣 =  

(
𝛛𝐲𝐢
𝛛𝐮𝐣
)
𝐮𝐤=𝐜𝐨𝐧𝐬𝐭𝐚𝐧𝐭,𝐤≠𝐣

(
𝛛𝐲𝐢
𝛛𝐮𝐣
)
𝐲𝐤=𝐜𝐨𝐧𝐬𝐭𝐚𝐧𝐭,𝐤≠𝐢

 (II-14) 

 

Negative λ values imply inconsistent process gain, advising against certain input-output 

pairings. Pairings with λ close to 1 are preferred, indicating independence from other loop 

states. 

For the nonsingular matrix G, the relative gain array is defined in [16] as follows: 

 RGA= G(s)⊗ (G(s)−1)T (II-15) 

⊗: represents the Hadamard multiplication. 

 The corresponding RGA matrix as indicated in [18]: 

 k =  lim
𝑠=0

𝐺(𝑠) =  [
𝑘11 𝑘12
𝑘21 𝑘22

] (II-16) 

         

 

Λ =[
𝜆11 𝜆12
 𝜆21 𝜆22

] =[

𝑘11𝑘22

𝑘11𝑘22−𝑘12𝑘21 

− 𝑘12𝑘21

𝑘11𝑘22−𝑘12𝑘21 

− 𝑘12𝑘21

𝑘11𝑘22−𝑘12𝑘21 

𝑘11𝑘22

𝑘11𝑘22−𝑘12𝑘21 

  ] (II-17) 

 If the diagonal elements of the RGA are close to 1, then the interaction level in the process is 

very low. Otherwise (less than or greater than 1) the interactions are strong. 

 For a 2x2 matrix if λ11=1, λ22=1 and λ12=λ21=0. This is the case of partial interaction, 

therefore the input 𝑢1can control the output𝑦1 and input 𝑢2 controls the output𝑦2. If  λ12= 1,  

𝑦2  must be controlled by  𝑢1 and 𝑦1 by 𝑢2. 

  If  𝝀𝒊𝒋 is negative, the corresponding loop response may change direction of variation (reverse 

response method), if the other loops are closed. In addition, the loop itself can be unstable or 

the overall process becomes unstable if the loop considered will not open [16]. 
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II.8.4 Addressing interaction problems 

To confirm that interaction is the issue, ensure each loop performs well when the other is 

manually controlled. If both loops function properly individually but cycle excessively 

together in automatic mode, the problem is likely interaction [12].  

The most used methods to eliminate the effect of interactions are: 

II.8.4.1 Decoupling 

Decoupling involves integrating additional intelligence between primary controllers and final 

control elements to create the impression of independent loops. Typically, the final control 

elements are valves, although lower-level flow-control loops are preferred. The traditional 

form is known as "forward" decoupling.  

 Our approach to forward decoupling is similar to the method utilized in feedforward control. 

The block diagram shown in figure represents a process with two inputs and two outputs 

involving a decoupler [10]: 

 

 

 

 

 

 

 

 

 

Figure II- 14 : Block diagram of forward decoupling 

𝐷1, 𝐷2 are the decoupler gains. From figure. 

The corresponding transfer functions for 𝑦1 and 𝑦2 are: 

 

𝑦1(𝑠) = ( 𝐺11(𝑠)+ 𝐷2. 𝐺12 (s)) 𝑢1(𝑠) + ( 𝐺12(𝑠)+𝐷1. 𝐺11(𝑠) )  𝑢2(s) 

𝑦2(𝑠) = ( 𝐺21(s) +𝐷2. 𝐺22(𝑠) ) 𝑢1(𝑠) + ( 𝐺22(𝑠)+ 𝐷1. 𝐺21(𝑠) )  𝑢2(s) 

 

    (II-18) 

As indicated in [10] , to eliminate the effect of  𝑢2 on 𝑦1 , we choose 𝐷1 according to the 

following equation 
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    𝐷1  =  − 

G12(𝑠)

G11(𝑠)
      (II-19) 

And the effect of 𝑢1 on 𝑦2,  we choose 𝐷2 as follows: 

 
               𝐷2  =  − 

G21(𝑠)

G22(𝑠)
                  (II-20) 

II.8.4.2 Model Predictive Control (MPC) 

It is developed by Shell Oil, it enhances control of complex processes by integrating 

decouplers, dead time compensation, and constraint control. MPC replaces PID controllers 

and adjusts all manipulated variables to meet setpoints for each controlled variable. It can 

control final elements directly or act as the outer loop of a cascade. 

Originally, MPC enabled optimization package decisions on multivariable processes. 

However, if optimization decisions were directed to single-loop controllers, process 

interaction could lead to control problems. Process optimization is often necessary to justify 

installing MPC, as the cost may not be justified for simpler processes like the flow-pressure 

process [12].  

II.9 Conclusion   

This chapter aims to elucidate the most beneficial control strategies in industries, 

encompassing feedback, feedforward, and cascade control. We also delve into control modes 

and PID algorithms, discussing tuning methods and the impact of process dynamics on 

controller mode choice. Finally, we explore multivariable control, highlighting the 

significance of addressing interactions as our primary motivation for introducing model 

predictive control. 

. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter Ⅲ: Model predictive Control 
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Ⅲ.1 Introduction 

This chapter introduces MPC (model predictive control) as a type of modern controller and 

provides a compact overview of its essential elements. Moreover, it demonstrates the 

underpinning theory of predictive control along with the computational algorithm. Then we 

will simulate a single-input single-output system to investigate the effect of different 

parameters used to tune the MPC. 

Ⅲ.2 History of Predictive control  

Model Predictive Control (MPC) emerged in industry to overcome complex control problems. 

Initially presented in practical applications, it later gained theoretical grounding from 

academics. Commercial software, requiring significant computing power, made MPC 

accessible, with early adoption in petroleum refining, particularly for catalytic cracking units. 

As technology improved and expertise grew, MPC spread to other industries, including batch 

processes, and is now widely used across the entire industrial processing sector [10]. 

Traditional control methods, like PID controllers, excelled at single-loop regulation but 

struggled with complex, interconnected industrial processes. In response, engineers turned to 

Predictive Control techniques specifically designed for the demands of industrial practice. 

 These Predictive Control techniques, like Dynamic Matrix Control (1980), Generalized 

Predictive Control (1987), have significantly affected industries. While some companies 

develop custom solutions, these commercially available options represent the forefront of 

modern Model Predictive Control technology [19]. 

 Dynamic Matrix Control (DMC): DMC stands out as a popular method for 

controlling chemical processes using Model Predictive Control (MPC). Its strength lies 

in its model simplicity and error minimization. DMC calculates optimal control 

adjustments over a time horizon, similar to solving the least-squares problem. DMC is 

an effective approach for the chemical processing industry [20].  

 Generalized Predictive Control (GPC): is one of the most popular methods of model 

predictive control (MPC), widely implemented in industrial applications. It effectively 

handles different control problems with a reasonable number of variables design. It 

calculates a sequence of future control signals that minimizes a defined cost function 

over a prediction horizon optimizes a functional cost using a receding horizon to 
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compute the output. The model for predictions is the Controlled Autoregressive 

Integrated Moving Average (CARIMA), which can be efficiently identified and 

adjusted online by sampling input and output data. GPC controllers offer stable control 

for processes with time-varying parameters and delays. It requires a dynamic model, 

which can be developed through an identification process based on step response data 

[21]. 

Linear Quadratic Regulator (LQR): LQR controller is a powerful tool for optimization 

performance. It relies on a full understanding of the system's state, which can be challenging 

to obtain in practice. To address this, high-gain observers can be used to estimate the missing 

state values. However, for LQR controller to function effectively, the system must be fully 

controllable. Meaning the ability to maneuver the system to any desired state using available 

controls. The controllability can be easily verified using softwares like MATLAB [22]. 

 Although LQR controller performs well, MPC emerges as the superior choice due to its 

dynamic nature. This likely refers to MPC's ability to adapt to changing conditions and handle 

constraints, which LQR's fixed control strategy may not handle as effectively. This 

adaptability makes MPC more suitable for complex systems [23].  

Ⅲ.2 Model Predictive control Philosophy  

From a philosophical standpoint, MPC mimics how humans choose control actions that we 

believe will produce the best-anticipated result (or output) within a certain period. We employ 

an internal model of the relevant process to arrive at this decision. We constantly revise our 

decisions with the help of new observations [24] 

 

The most important components of the MPC are presented on the following section: 

 Process Model 

MPC requires a mathematical model that describes the dynamics of the system being 

controlled, that can be identified from experimental data. It typically includes equations that 

describe how the system's states evolve over time in response to control inputs and 

disturbances [10]. 

 Prediction Horizon 

The prediction horizon specifies the number of sample values of the process output (controlled 

values), in the step response model into the future over which predictions are made [10]. 

 Control Horizon 
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The control horizon determines the number of the controller output (Manipulated variables). 

It is typically shorter than the prediction horizon. [10]. 

 

 Feedback Correction 

 It is done by calculating the difference between the actual control variable and the predicted 

one. This calculation at every sample helps with the correction for the next predicted control 

variable [10]. 

 
Figure III-  1 : Model Predictive Control concept 

Ⅲ.3 Implementation of MPC 

This section shows the computational steps made by an MPC, in both constrained and 

unconstrained cases. 

 Ⅲ.3.1 Unconstrained MPC on Single-Input Single-Output 

System 

This section demonstrates the mathematical expressions for a single-input, single-output 

system (SISO) as explained in [10]: 

Ⅲ.3.1.1 Process Model 

The MPC model is based on a step-response model. represented by the sequence P: 
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P =

[
 
 
 
 
P1
P2
⋮
⋮
PN]
 
 
 
 

 (Ⅲ-1) 

   

Ⅲ.3.1.2 Prediction 

The sequence 𝒙^ represent the current prediction of CV (controlled variable), for the next N 

sample periods. 

 

[
 
 
 
 
 
 
 
x1
^

x2
^

x3
^

⋮
xK
^

⋮
xN
^ ]
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
x0
x0
x0
⋮
⋮
⋮
⋮
x0]
 
 
 
 
 
 

+

[
 
 
 
 
 
 
P1
P2
P3
⋮
PK
⋮
PN

     

0
P1
P2
⋮

PK−1

   

⋮
PN−1

   

0
0
P1
⋮
⋮
⋮
…

        

⋯
⋯…
⋱ 
P2
⋮

       

0
0
0
⋮
P1
⋮

PN−K+1

 

]
 
 
 
 
 
 

[

∆m0

∆m1

⋮
∆mK−1

] (Ⅲ-2) 

 
xˆ =  x0  +  P∆m 

 

(Ⅲ-3) 

N: Is the Prediction horizon. 

K: Is the Control horizon.  

Δm: Is the sequence of moves observed in the controller output (MV). 

𝒙𝟎 : the current value of the CV. 

If the set point is known during the prediction horizon, then the error values in the future can 

be predicted: 

 𝐞𝐢
^  = 𝐱𝐬𝐩,𝐢  − 𝐱𝐢

^  (Ⅲ-4) 

 e0
^  = xsp  − x0

^ (Ⅲ-5) 

 

By substituting equation (Ⅲ-3) into (Ⅲ-4): 

 ei
^ = e0  − P∆m (Ⅲ-6) 

 

Ⅲ.3.1.3 Calculating Control moves 

The control moves are calculated through minimizing the cost functional J: 

 
J =  ∑ (ei

^) 2
N

1
= eˆTeˆ (Ⅲ-7) 
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The Substitution of (Ⅲ-6) into (Ⅲ-7) results in equation (Ⅲ-8): 

 

 J =  e0
Te0 -2e0 

T P∆m+ ∆mTPT   P∆m 

 
(Ⅲ-6) 

   

The minimization procedure is made by setting the cost functional derivative equals to zero: 

 

𝜕𝑗

𝜕∆𝑚
=

|

|

𝜕𝑗

𝜕∆𝑚0

𝜕𝑗

𝜕∆𝑚1

⋮
⋮

𝜕𝑗

𝜕∆𝑚𝑘−1
 

|

|

   = 0 (Ⅲ-7) 

          

 

The simplification of equation (Ⅲ-9) result in equation (Ⅲ-10): 

 
∆m = [PT P]−1PTe0  

                 

(Ⅲ-10) 

Consider the KxN matrix W defined as:  𝑊 = [𝑃𝑇 𝑃]−1𝑃𝑇 

The current control move ∆𝑚0 to be made is: 

 
Δm0 = [W1

T]e0 
              

(Ⅲ-8) 

Ⅲ.3.1.4 Incorporating Feedback 

Equation (Ⅲ-9) is the difference between the measured present value x0 and the predicted 

present value x0
^ :          

 ∆x0= x0 − x0
^            (Ⅲ-12) 

 

Now, the entire profile, including the predicted current value, is shifted by this difference, as 

shown in equation (Ⅲ-13). For i=0, 1…N          

 xî
^ ← xî

^ + ∆x0               (Ⅲ-13) 

 

Ⅲ.3.1.5 Incorporating Feedforward Control  

Consider the disturbance sequence D Obtained from a unit step-response model on the process. 
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D =

[
 
 
 
 
 
 
d1
d2
d3
⋮
dK
⋮
dN]
 
 
 
 
 
 

               (Ⅲ-10) 

 

[
 
 
 
 
 
 
 
x1
^

x2
^

x3
^

⋮
xk
^

⋮
xN
^ ]
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
x0
x0
x0
⋮
⋮
⋮
⋮
x0]
 
 
 
 
 
 

+

[
 
 
 
 
 
 
d1
d2
d3
⋮
dK
⋮
dN]
 
 
 
 
 
 

∆u +

[
 
 
 
 
 
 
P1
P2
P3
⋮
PK
⋮
PN

  

0
P1
P2
⋮

PK−1

   

⋮
PN−1

0
0
P1
⋮
⋮
⋮
…

  

⋯
⋯…
⋱ 
P2
⋮

0
0
0
⋮
P1
⋮

PN−K+1

 

]
 
 
 
 
 
 

[

∆m0

∆m1

⋮
∆mK−1

] 
              

(Ⅲ-11) 

   

 
xˆ =  x0 + D ∆u +  P ∆m  

              

(Ⅲ-12) 

         

 
e0  = xsp  − x0 − D∆u   

              

(Ⅲ-13) 

Ⅲ.3.1.6 Tuning MPC 

 Trajectory tuning: is used. This method sets up a path for the system to return to a 

desired value (set point) over time. The speed of this return is controlled by a parameter 

called lambda (λ). A small value for λ will cause the controller to be aggressive; a 

larger value will result in a more conservative controller [10]. 

xsp,i = (xsp,i − x0)(1 − exp (−
i∆t

λ
))              (Ⅲ-14) 

 

 Move Suppression: the cost functional J is augmented by the weighted sum of squares 

of the control moves [10]. 

 

J =∑ei
^ 2

N

1

+∑qi ∆mi−1
2

K

1

 
           

(Ⅲ-15) 

Simultaneously: 

 
∆m = [PTP + Q] −1PTe0 

          

(Ⅲ-16) 

 
W = [PTP + Q] −1PT 

       

(Ⅲ-17) 
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Figure Ⅲ-2 summarizes the MPC algorithm: 

 

 
Figure III-  2 : Model Predictive Control concept 

Ⅲ.3.2 Unconstrained MPC on MIMO System 

Assuming R as number of CVs, S as number of MVs and T as number of DVs: 

 

Figure III-  3 : Multiple-Input, Multiple-Output Process 

Based on Figure Ⅲ-3, from each MV to each CV there will be a step-response model (Some 

may be null; that is, not every MV will affect all of the CVs.) These models are designated 

𝑷𝒊𝒋, where subscript “i” represents “to CV” and subscript “j” represents “from MV” [10]. 

Hence: For i = 1... R; and j = 1…, S   
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Pij =

[
 
 
 
 
Pij,1
Pij,2
⋮
⋮
Pij,N]

 
 
 
 

 

 

 

 (Ⅲ-18) 

From each DV to each CV there will be a similar step-response model (some may be null), 

where subscript “i” represents “to CV” and subscript “k” represents “from DV. For i = 1…, 

R; k = 1…, T  

 

                         dik =

[
 
 
 
 
dik,1
dik,2
⋮
⋮

dik,N]
 
 
 
 

  (Ⅲ-19) 

                     

The vectors representing the current values and predicted profiles of the CVs illustrated in (Ⅲ-

20) and (Ⅲ-21), respectively. For i = 1…, R                

 

xi,0 =

[
 
 
 
xi,0
xi,0
⋮
⋮
xi,0]
 
 
 

 (Ⅲ-24) 

 

xi
^ =

[
 
 
 
 
 
xi,1
^

xi,2
^

⋮
⋮
xi,N
^
]
 
 
 
 
 

 (Ⅲ-25) 

The vectors representing future control moves in equation (Ⅲ-26). For j = 1 to S: 

 

∆mj =

[
 
 
 
 
∆mj,1

∆mj,2

⋮
⋮

∆mj,K−1]
 
 
 
 

 (Ⅲ-26) 

 

The predicted profile for each of the CVs shown in equation (Ⅲ-27) for i = 1 to R: 

 

xi
^  =  xi,0 +∑dik∆uk

T

k=1

 +∑Pij∆mj

S

j=1

 

 

(Ⅲ-27) 

 

Ⅲ.3.3 Constrained MPC 

            In real-world applications, constraints on process variables, manipulated variables, and 
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auxiliary variables may be hard or soft. Physical limits define hard constraints,  whereas soft 

constraints are determined by process design, equipment limitations, and safety 

considerations. If a feasible solution satisfies all constraints simultaneously, they can be 

treated equally. However, if no feasible solution can satisfy all constraints at the same time, it 

may be preferable to plan a "smooth violation" of each limit [10]. 

Ⅲ.4 Rahul Shridhar and Douglas J. Cooper equations 

In order to calculate the MPC controller parameters Rahul Shridhar and Douglas J. Cooper 

[25] suggest set of equations presented in this section. For this purpose, the process dynamics 

are approximated by first order plus dead time (FOPDT) model: 

                                    𝐺(𝑠) =
𝐾𝑝𝑒

−𝜃𝑝𝑠

𝜏𝑝 𝑠+1
 

 Sample time:"𝑇𝑠" is the largest value that satisfies 𝑇𝑠 ≤0.1𝜏𝑝 and 𝑇𝑠 ≤0.5𝜃𝑝. 

 

 Response horizon “N”, where 𝑇𝑟 is the rise time. 

 N =
θp

Tr
 +  1   (Ⅲ-28) 

   . 

 Prediction Horizon “P”:   

 P = int(
θp

Ts
)+int (

5τp

Ts
) +1          (Ⅲ-29) 

 

 Control Horizon “M”:      

 
M = 𝑖𝑛𝑡 ( 

θp 

Ts
) + 𝑖𝑛𝑡 ( 

τp

Ts
 ) + 1  

           

(Ⅲ-30) 

 

 Weighting factor: according to Iglesias [26], equation (Ⅲ-31) ensures that tuning is 

always smooth. 

 r = 1.631Kp (
τp

θp
)0.409  (Ⅲ-31) 

Ⅲ.5 Simulation of a Single-Input Single-Output System  

The simulated process is a separator having the steady state model shown on Figure Ⅲ-4 and 
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its data illustrated in Table Ⅲ-1. Whereas this model and its data were provided at the 

internship at IAP-Boumerdes (Institut Algerien de Petrol). 

Table III - 1: Separator specification and mixture data 

Separator 

Type Vertical – Flat cylinder 

Diameter (m) 1.067 

Height (m) 3.734 

Volume (𝐦𝟑) 3.337 

Liquid Volume (𝐦𝟑) 0.9501 

Temperature (°C) 72.49 

Pressure (KPa) 103.5 

Feed Flow (Kgmole/h) 457.5 

Feed composition (mole fraction) 0.199 Acetone / 0.3166 2-Propanol / 0.4844 H2O 

Liquid composition (mole 

fraction) 

0.1409 Acetone / 0.3203 2-Propanol / 0.5388 H2O 

Vapor composition (mole 

fraction) 

0.4132 Acetone / 0.303 2-Propanol / 0.2838 H2O 

 

Figure III-  4 : Steady state model of a Separator 

Ⅲ.5.1 Applying MPC Controller 

MPC controller is used to control the liquid percent level of the separator. TRF-1 Block is 

used for an approach of the process to the real case (3rd order system response). 
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Figure III-  5 : MPC controller applied to the Separator 

Process model: 

The process model obtained from the step change test is shown on Table III - 2: 

Table III - 2 : Level Process Model 

Process gain -7.37 

Process time constant 58 

Delay 10 

Model mismatch: 

It refers to a situation where the mathematical model used in the simulation does not accurately 

represent the actual system being controlled. In this case, a random model is substituted in the 

process model tab. 

 

Figure III-  6 : MPC Controller response to a model mismatch 

For a better understanding of process dynamics effect on the system, additional test is made. 

The process model is given by: 𝐺(𝑠) =
−7.37𝑒−10𝑠

58 𝑠+1
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To study the effect of each dynamic on its own; we make changes on one at a time. The 

recorded results are shown on the following tables. 

 Process gain: where 𝐾𝑝  = -7.37. The initial performance is shown in the colored 

column. 

Table III - 3 : The process gain analysis 

k 𝐾𝑝 ±5% ±10% ±20% ±50% ±70% ±90% 

Disturban

ce 

rejection 

(%) 

1.53% 1.54% 1.58% 1.58% 1.6% 1.63% 1.66% 

Oscillatio

ns 

No 

oscillati

on 

No 

oscillati

on 

No 

oscillati

on 

No 

oscillati

on 

No 

oscillati

on 

No 

oscillati

on 

No 

oscillati

on 

𝑇𝑟(min) 30 33 28 32 36 40 49 

𝑇𝑠(min) 36 35 37 38 41 47 58 

It can be noticed from Table Ⅲ-3, that the process gain has an impact on the controller 

performance as the error value increases. For a ±10% error in the process gain, an increase of 

3% in settling time and a 3.27% in the disturbance rejection overshoot. While a ±50% error 

gain leads to 16.7% increase in settling time and 4.57% overshoot, which is unacceptable. 

starting from a 50% error in the process gain value will lead to slowing down the process; that 

increases both the settling time and the disturbance rejection percentage overshoot. 

As for ±90% will result in a massive increase in the settling time (73.33%) and in disturbance 

rejection 8.5%. 

 Time constant: where 𝜏𝑝=58min. The initial performance shown in the colored 

column: 

Table III - 4: The process time constant analysis 

𝜏 1

2
𝜏𝑝 

3

4
𝜏𝑝 

𝝉𝒑 2. 𝜏𝑝 3. 𝜏𝑝 4. 𝜏𝑝 

Disturban

ce 

rejection 

(%) 

1.58% 1.57% 1.53% 1.43% 1.39% 1.4% 

Oscillatio

ns 

Small 

Oscillatio

ns 

Small 

Oscillatio

ns 

No 

oscillatio

n 

Small 

Oscillatio

ns 

More 
oscillatio

n  

More 

Oscillatio

ns  

𝑇𝑟(min) 27 28 30 20 18 17 

𝑇𝑠(min) 32 32 36 25 22 22 

It can be noticed from Table Ⅲ-4, that the increase and decrease of process time constant will 

result in oscillations. Decreasing the time constant by half results in a decrease of 11% in 
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settling time and 3.27% increase in disturbance rejection overshoot, however, small 

oscillations are induced. 

Increasing the time constant by 4-times the initial value will result in decreasing settling time 

by 38.9% and 9.2% disturbance overshoot, but massive oscillations occur leading to system 

instability (Limit Cycle) as shown in Figure Ⅲ-6.  

The results obtained from table’) show how the accuracy of identifying a process model is 

crucial for an MPC controller. It is safer to state that a gain error up to 20% and no more than 

10% for the time constant can be tolerated in identifying the process dynamics.     

MPC Parameters: 

Calculating the parameters of the MPC according to the previous equations in section (Ⅲ.4):   

Table III - 5: The Model predictive control initial parameters  

N 𝑇𝑠(min) P M GammaU GammaY 

102 5 61 14 1 1 

Ⅲ.5.2 Tuning MPC: 

In this section, we will study the effect of each parameter to conclude the right way to tune 

MPC for the desired response. Start by observing the effect of each parameter on the 

performance. Start changing each parameter at a time while keeping other parameters 

constants. The disturbance is made by opening the Feed valve by 3% (50%-53%) and record 

the overshooting. 

While set-point change is made by changing, the controller output by 3% as well (28.47%-

31.47%) and record the results. The colored row is the initial parameters performance. 

1. Prediction horizon      

Table III - 6:  The prediction horizon analysis 

P Disturbance rejection (%) 𝑇𝑟(min) 𝑇𝑠(min) 

45 1.6% 29 35 

49 1.6% 30 35 

54 1.57% 31 37 

57 1.57% 28 36 

59 1.55% 30 36 

61 1.53% 30 36 

64 1.55% 30 35 

67 1.56% 30 36 

70 1.56% 33 37 

76 1.6% 32 36 

From results obtained in Table Ⅲ-6, it can be observed that the prediction horizon does not 

have a great impact on the process performances; however, increasing its value would increase 
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the computational steps that may affect control quality (±35.5% prediction error results in 4.5% 

increase in disturbance overshooting and a 2.8% rise in settling time). 

2. Control horizon 

Table III - 7: The control horizon analysis 

M Disturbance rejection (%) 𝑇𝑟(min) 𝑇𝑠(min) 

1 2.54% 150 169 

4 1.6% 30 50 

6 1.61% 28 37 

8 1.61% 27 37 

10 1.62% 28 37 

12 1.61% 29 35 

14 1.53% 30 36 

16 1.62% 28 37 

18 1.61% 31 39 

20 1.61% 30 39 

22 1.61% 30 37 

24 1.62% 31 35 

26 1.61% 34 40 

28 1.62% 35 42 

30 1.62% 33 42 

35 1.62% 35 44 

59 1.61% 36 49 

 

 

 

Figure III-  7 :  Responses to step change with different control horizon 

From results shown in Table Ⅲ-7, and response in Figure Ⅲ-7, it can be observed that the 

control horizon has a remarkable impact on the process performances. Decreasing its value 

would decrease the rise time. Decreasing the control horizon by 57% (8 steps) reduces the rise 

time by 6.7%. However, the response is more aggressive leading to less stable control actions. 

This explains the time gap between settling time and the rising time. 
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Decrease in the control horizon to the minimum value (1-2) have a massive drawback, For a 

value of 1, a 66% rise in disturbance overshoot and increase in settling time (about 5-times 

more than the initial value). 

Increasing the control horizon (about 4-times greater than initial value) does not have a great 

impact on disturbance rejection (a 5% increase in disturbance overshoot) in comparison to 

reducing it, but it will also increase the process settling time by 36%, in addition to increasing 

computational complexity.  

3. Response horizon “N”:  

 

Figure III-  8 : Responses to step change with different Response horizon 

Table III - 8: the response horizon analysis 

N Disturbance rejection (%) 𝑇𝑟(min) 𝑇𝑠(min) 
1

4
 𝑁 

1.54% 

Oscillations 

28 32 

1

2
 𝑁 

1.54% 

Oscillations 

32 33 

3

4
 𝑁 

1.6% 

Reduced Oscillations 

30 35 

N=102 1.53% 

No Oscillations 

30 36 

2.N 1.62% 

No Oscillations 

34 39 

3.N 1.61% 

No Oscillations 

29 28 

4.N 1.61% 

No Oscillations 

24 33 

 

From results obtained in Table Ⅲ-8 and Figure Ⅲ-8, small values of response horizon make 

the system oscillates. While increasing it does not have a remarkable impact on the 

performance. However, increases the computational complexity. 
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4. weighting functions:   

  Gamma_U: This weighting function represents the priority given to minimizing changes in  

the control input. The initial performance is shown in the colored column.  

Table III - 9: The weighting function Gamma_U analysis 

Gamma_U 0.1 0.2 0.4 0.6 0.8 1 

Disturbance 

rejection 

(%) 

Unstable 

system 

(Big 

Oscillations) 

1.38% 

Oscillations 

1.45% 

No 

Oscillations 

1.53% 

No 

Oscillations 

1.54% 

No 

Oscillations 

1.53% 

𝑇𝑟(min) 30 27 27 29 28 30 

𝑇𝑠(min) 34 29 30 30 30 36 

 

 

 

Figure III-  9 :  Responses to step change with different Gamma_U values 
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Figure III-  10 : Responses to disturbance with different Gamma_U values 

Based on obtained results from Table Ⅲ-9, Figure Ⅲ-9, Figure Ⅲ-10; Smaller value for 

Gamma_U (0.1-0.3) make the process oscillate leading to instability (limit cycle) However, 

for values (0.4-0.9) leads to (5.22%-0.65%) reduction in disturbance rejection overshoot, and 

the settling time is decreased as well (by 16.7%) for an optimized performance. 

Gamma_Y: This weighting function represents the priority given to tracking the desired 

setpoint or reference trajectory for the output. The initial performance shown in the colored 

column. 

Table III -10: The weighting function Gamma_Y analysis 

Gamma_Y 0.1 0.2 0.4 0.6 0.8 1 

Disturbance 

rejection 

(%) 

2.69% 2.14% 1.88% 1.76% 1.67% 1.53% 

𝑇𝑟(min) 45 41 29 32 29 30 

𝑇𝑠(min) 57 54 40 36 36 36 
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Figure III-  11 : Responses to step change with different Gamma_Y values 

 

Figure III-  12 :  Responses to disturbance with different Gamma_Y values 

According to results from Table Ⅲ-10, Figure Ⅲ-11, Figure Ⅲ-12, smaller value for 

Gamma_Y leads to slowing down the system and increasing the disturbance rejection. For 

values (0.1-0.3), a massive drawback can be noticed; (24.2%-75.2%) increase in disturbance 

rejection and (58.3%-11%) rise in settling time.  

Final Parameters 

The MPC parameters calculated at first are not necessarily the optimal ones, in order to 

determine it; a several trial-and-error are made based on the results obtained from the previous 

analysis. Tuning the MPC, starts off by the control and prediction horizon tuning; in attempt 

to reduce the settling time and disturbance rejection overshoot. 

Once this step is done, we move to optimizing the system through the weighting functions 

tuning (tuning Gamma_U and Gamma_Y). 
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Final parameters are shown on Table III - 11: 

Table III - 11: The Model predictive control tuned parameters 

N 𝑇𝑠(min) P M GammaU GammaY 

115 5 60 14 0.4 1 

 

Ground Rules: 

After the study, the tuning of each parameter on its own, and simulation of the separator 

process, the following steps are recommended when tuning MPC: 

 Process Model: the accuracy of the process model is crucial for a good control. 

Considering the operating region while identifying the system is very important, the 

dynamics of a system may change when changing the operating conditions. In other 

words, the dynamics of the system at the top of the distillation column are not the same 

as at the bottom.  

No more than 20% for gain error 6% for the time constant are accepted, that is why 

several tests for process identification are required; also called “MODEL TUNING”. 

 Response horizon N: its value must be large enough such that the last step response 

model parameter is equal to the steady state gain. 

 Prediction Horizon: Must be at a range where the control horizon is always less than 

the prediction horizon. However, it should not be too large; attention is required by the 

time the prediction value is 10-12 steps greater than the initial one.  

 Control horizon: should choose a value that guarantees a smooth response with small 

disturbance rejection overshoot, it is about 1/4 to 1/2 of the prediction horizon. 

 Weighting Functions: A value of one implies that objective of the function, is as 

important as other objectives in the optimization problem. A value closer to zero 

would mean that the objective is less important relative to other objectives. Gamma_U 

& Gamma_Y need to be selected conversely; increasing the value of Gamma_U 

implies decreasing the value of Gamma_Y and vise-versa, according to the desired 

performance. 
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III.6 Conclusion 

This chapter has discussed the MPC theory and philosophy, along with a simulation of a 

distillation column that shows the MPC tuning procedure that needs to be followed when 

dealing with a Single-Input Single-Output system. 

Next chapter will show a detailed application of MPC on a binary distillation column along a 

comparison with some traditional controllers.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter IV: Results and Discussion  
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IV.1 Introduction 

In this chapter, a study is made on a 2x2 process with loop interactions and disturbance 

rejection problems, using different controllers in attempt for an optimal performance. 

First, an overview of the software used for the simulation, the studied process, and its data. 

Next; a deep study on performance of each controller, and finally we will dive into the new 

method of control (MPC) by comparing its results with the ones from the conventional 

methods; a rule of thumb is presented for the process controlled by the end of the chapter. 

IV.2 Simplifications in Depropanizer Processes 

 In depropanizer operations, although the initial feed contains a complex mixture of 

components (such as N2, CO2, C1, C2, C3, i-C4, n-C4, i-C5, n-C5, C6, and H2O), the process 

can be simplified by focusing on the two key components: propane (C3) and iso-butane (i-

C4). This simplification involves preliminary filtering stages to remove non-essential 

components and impurities, allowing the system to be approximated as a binary mixture. 

Assumptions such as constant relative volatility and ideal gas behavior are made to further 

streamline the analysis. The primary goal of these simplifications is to concentrate on the 

control aspects of the depropanizer, ensuring efficient separation and product purity.  

IV.3 Steady State Model 

The column configuration chosen for the simulation (using Aspen Hysys) is a depropanizer 

that consists of a total condenser, 30 stages. The column pressure was 1389 Kpa and the 

column had two feed streams: 40 % propane and 60% i-butane are fed at tray 14 at a 48°C 

temperature. At standard operating points, the temperature at tray 5 and tray 25 was 45°C and 

70°C, respectively. The reflux ratio was set to 3.095 and the distillate flow rate 0.4 kg mole.  
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Figure IV -  1 : Steady-state model of depropanizer distillation column 

IV.4 Dynamic Model  

Before transitioning to dynamic mode, the dynamic characteristics of the equipment must be 

specified. This process uses the nominal operating conditions from the steady-state regime as 

a starting point. Additionally, PID controllers are added to identify the system’s transfer 

matrix. For the dynamic model, the temperatures at tray 5 and tray 25 are considered as 

outputs, while the reflux ratio and reboiler heat duty are considered as inputs. Whereas this 

model and its data were provided at the internship at IAP-Boumerdes (Institut Algerien de 

Petrol). 

 

Figure IV -  2  : PID-controlled distillation column system 

By applying a 3% step change to both inputs and observing the system’s response. Using the 

Broida method, we obtained the following results: 

[
𝑻𝟓
𝑻𝟐𝟓

] = [

−𝟐. 𝟏𝟖

𝟏 + 𝟏𝟐𝟕𝒔

𝟑. 𝟏𝟐

𝟏 + 𝟏𝟗𝟑𝒔
−𝟐. 𝟏𝟕

𝟏 + 𝟗𝟓𝒔

𝟑. 𝟐𝟓

𝟏 + 𝟏𝟏𝟏𝒔

]   [
𝑳
𝑸
 ] 
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Where: 

𝑻𝟓 : is the temperature at tray 5 

𝑻𝟐𝟓 : is the temperature at tray 25 

L: is the reflux flow rate  

Q: is the reboiler heat duty 

IV.4.1 Design of PID Controllers 

The PID controllers are designed according to the following tables:  

Table IV - 1 : TIC-100 controller settings 

Connections  

Name  TIC-100 

Process variable Main Tower/ Stage Temperature 5 

Output target  Reflux/ control valve 

Configuration  

Action Direct 

PV minimum 0 

PV maximum 100 

Table IV - 2 : TIC-101 controller settings 

Connections  

Name  TIC-101 

Process variable Main Tower/ Stage Temperature 25 

Output target  QB / control valve 

Configuration  

Action Reverse 

PV minimum 30 

PV maximum 130 
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IV.4.2 Applying PI Controller  

Initially PI parameters obtained using the methods shown in section II-5 

Table IV - 3 : PI controller initial parameters 

PI controller     𝐾𝐶   𝑇𝑖(min) 

TIC-100 0.45 127 

TIC-101 0.3 111 

Setpoint change on TIC 100 

An increase in the setpoint of TIC-100 controller from 45°C to 50°C will cause the 

condenser reflux valve to close. This, in turn, will lead to an increase in the temperature of 

tray 5 to the operator's desired setpoint value as shown in Figure IV-3. 

 

 
 

Figure IV -  3 : Setpoint change in TIC-100 with initial PI parameters 

 

This change in temperature at TIC-100 affects the temperature of the tray 25 with an 

overshoot of 4% in the response as shown in the Figure IV-4. 

 

 
 

 

Figure IV -  4 :  TIC-101 response to a setpoint change in TIC-100 with initial PI parameters 
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Setpoint change on TIC 101 

A setpoint change of TIC-101 controller from 70°C to 75°C causes the opening of the 

reboiler valve, thus the temperature at tray 25 will increase up to the operator required 

setpoint value as shown in IV-5. 

 

Figure IV -  5 : Setpoint change in TIC-101 with initial PI parameters 

 This change in temperature at tray 25 affects the temperature of the tray 5 with an overshoot 

of 4.9% in the response as shown in the Figure IV-6. 

 

Figure IV -  6 : TIC-100 response to a setpoint change in TIC-101 with initial PI parameters 

The obtained results are summarized in Table IV-4: 

Table IV - 4: Performance analysis of the controllers with PI initial parameters 

PI 

Controller  

 𝑇𝑠(min)  𝑇𝑟(min) Disturbance 

rejection 

SP change in 

TIC-100 

SP change 

In TIC-101 

TIC-100 783  585  6.31% No overshoot 4.9% 

TIC-101 931  634  4.18% 4% No overshoot 

Temperature in tray-5 takes a long time to settle (783 min), for minimization purpose, we 

increase the controller gain. 

As for TIC-101 controller, oscillations can be noticed on the response curve, a decrease in 

the integral time can eliminate it. Table IV-5 is proposed for a better performance. 
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Table IV - 5: PI Controller modified parameters 

PI controller      𝐾𝐶   𝑇𝑖(min) 

TIC-100 0.55 127 

TIC-101 0.3 55 

 

Setpoint change on TIC-100  

Change in TIC-100 result in the response shown in Figure IV-7: 

 

Figure IV -  7 : Setpoint change in TIC-100 with Table IV-4 parameters 

This change in temperature at TIC-100 affects the temperature of the tray 25 with an 

overshoot of 2.97°C (4.2%) in the response as shown in the Figure IV-8: 

 

 

Figure IV -  8 : TIC-101 response to a setpoint change in TIC-100 with Table IV-4 parameters 

 

 

Setpoint change on TIC-101 

Setpoint change in TIC-101 result in the response shown in Figure Ⅳ-9: 
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Figure IV -  9 : Setpoint change in TIC-101 with Table Ⅳ-4 parameters 

It affects TIC-100 by a 1.94°C (4.3%) response overshoot, as shown in Figure Ⅳ-10: 

 

Figure IV -  10 :TIC-100 response to a setpoint change in TIC-101 with Table Ⅳ-4 parameters 

The settling time in tray-5 temperature has decreased by 6.7%. As for TIC-101 controller; 

oscillations are still noticed on the response curve. A further tuning is required. 

After a continues error trial tests, the obtained parameters are illustrated in Table Ⅳ-6: 

Table IV - 6: PI Controller Tuning Parameters 

PI controller      𝐾𝐶   𝑇𝑖(min) 

TIC-100 0.56 45.7 

TIC-101 0.5 40 

 

In order to test the performance of the PID parameters shown in Table Ⅳ-6. A Setpoint 

change and disturbance rejection tests are made on both controllers. 

Setpoint change in TIC-100 

An increase in the setpoint of TIC-100 controller from 45°C to 50°C will cause the 

condenser reflux valve to close. This, in turn, will lead to an increase in the temperature of 
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tray 5 to the operator's desired setpoint value as shown in Figure Ⅳ-11. 

 

Figure IV -  11 :  Setpoint change in TIC-100 with PI tuned parameters 

This change in temperature at tray 5 affects the temperature of the tray 25; with an overshoot 

of 2.71°C (3.87%) in the response as shown in the Figure Ⅳ-12. 

 

Figure IV -  12 : TIC-101 response to a setpoint change in TIC-100 with PI tuned parameters 

Setpoint change on TIC-101 

An increase in the setpoint of TIC-101 controller from 70°C to 75°C causes the opening of 

the reboiler valve, thus the temperature at tray 25 will increase up to the operator required  

 setpoint value as shown in Ⅳ-13. 

 

 

Figure IV -  13 : Setpoint change in TIC-101 with PI tuned parameters 
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This change in temperature at tray 25 affects the temperature of the tray 5; with an overshoot 

of 2.06 °C (4.58%) in the response as shown in the Figure Ⅳ-14. 

 

Figure IV -  14 : TIC-100 response to setpoint change in TIC-101 with PI tuned parameters 

Disturbance rejection 

An increase in the feed valve opening from 50% to 60% will result in a change in 

temperature on both tray 5 and 25, causing an overshooting of 2.7°C (6%) for TIC-100 and 

2°C (2.86%) for TIC-101 as shown in Figure Ⅳ-15 and Figure Ⅳ-16, respectively. 

 

 
 

 Figure IV -  15 : TIC-100 response to a 10% disturbance with PI tuned parameters 

 

 

Figure IV -  16 : TIC-101 response to a 10% disturbance with PI tuned parameters 

The performance of the two controllers is shown in Table Ⅳ-7: 
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Table IV - 7:  Performance analysis of the controllers with PI tuned parameters 

PI 

Controller  

 𝑇𝑠(min)  𝑇𝑟(min) Disturbance 

rejection 

SP change in 

TIC-100 

SP change 

In TIC-101 

TIC-100 327 254 6% No overshoot 4.58% 

TIC-101 236 150 2.86% 3.87% No overshoot 

According to the results obtained, The PI controller demonstrates a faster rise time compared 

to the system operating without any control, even though the rise time remains relatively large. 

This indicates that the PI controller improved the response speed. 

It was observed that temperature fluctuations at tray 5 directly influenced the temperature at 

tray 25, and conversely, changes in temperature at tray 25 affected the temperature at tray 5. 

This bidirectional interaction is problematic because the chemical process is highly sensitive 

to temperature variations, which will affect the rate of temperature change, potentially 

compromising the quality of the distillate. 

The disturbance rejection test caused an overshooting of (6%) and (2.86%) for TIC-100 and 

TIC-101, respectively. This is due to the increased feed flow having a temperature of 48°C 

that causes a rise of 2.7°C in tray 5 temperature and decrease of 2°C in tray25. 

Although the PI parameters were tuned, the interactions and disturbance problems were not 

solved yet. The derivative action will be added next, in attempt to minimize the set of problems 

stated. 

 

 

IV.4.3 Applying PID Controller 

The PID parameters are illustrated in Table Ⅳ-8: 

Table IV - 8: PID Controller Parameters 

PID controller      𝐾𝐶   𝑇𝑖(min)   𝑇𝑑(min) 

TIC-100 0.56 45.7 5 

TIC-101 0.5 40 4 

Setpoint change in TIC-100 

An increase in the setpoint of TIC-100 controller from 45°C to 50°C will cause the 

condenser reflux valve to close. The response is shown in Figure Ⅳ-17. 
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Figure IV -  17 :  Setpoint change in TIC-100 with PID parameters 

This change in temperature at tray 25 affects the temperature of the tray 5; with an overshoot 

of 2.22 °C (3.17%) in the response as shown in the Figure Ⅳ-18. 

 

 

Figure IV -  18 : TIC-101 response to a setpoint change in TIC-100 with PID parameters 

 

 

Setpoint change on TIC-101 

  An increase in the setpoint of TIC-101 controller from 70°C to 75°C causes the opening of 

  the reboiler valve, thus the temperature at tray 25 will increase up to the operator required  

 setpoint value as shown in Ⅳ-19. 
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Figure IV -  19 : Setpoint change in TIC-101 with PID parameters 

This change in temperature at tray 25 affects the temperature of the tray 5; with an overshoot 

of 2°C (4.4%) in the response as shown in the Figure Ⅳ-20. 

 

Figure IV -  20 : TIC-100 response to setpoint change in TIC-101 with PID parameters 

Disturbance rejection 

An increase in the feed valve opening from 50% to 60% will result in a change in temperature 

on both trays 5 and 25, causing an overshooting of 2.46°C (5.5%) for TIC-100 and 2.36°C 

(3.37%) for TIC-101 as shown in Figure Ⅳ-21 and Figure Ⅳ-22, respectively.
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Figure IV -  21 : TIC-100 response to a 10% disturbance with PID parameters 

 

Figure IV -  22 : TIC-101 response to a 10% disturbance with PID parameters 

The performance of the two controllers is shown in Table Ⅳ-9: 

Table IV - 9:  Performance analysis of the controllers with PID parameters 

PID 

Controller  

 𝑇𝑠(min)  𝑇𝑟(min) Disturbance 

rejection 

SP change in 

TIC-100 

SP change 

In TIC-101 

TIC-100 221 183 5.5% No overshoot 4.4% 

TIC-101 235 148 3.37% 3.17% 0.64% 

According to the results obtained in Table Ⅳ-9, the settling time is decreased by 32.42% for 

TIC-100. 

It was observed that temperature fluctuations at tray 5 influenced the temperature at tray 25 

by 0.7% less than PI controller. As for the changes in temperature at tray 25 temperature, it 

caused an overshooting of 0.64% at TIC-101, but reduced its impact on tray 5 by 0.14%. 

The derivative action did not have a great impact on the disturbance rejection; whereas it can 

be noticed a 0.51% increase in TIC-101, and a 0.5% decrease on TIC-100.Overall, it can be 

stated that the derivative action helped in slightly smoothening the response of the controllers, 
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but it did not solve interaction & disturbance rejection problems. 

The forward decouplers will be used next in attempt to remove the already stated problems. 

IV.4.4 Adding Decouplers  

We have observed that interaction occurred between two control loops. The degree of 

interaction can be evaluated by calculating the Relative Gain Array (RGA) matrix; by 

applying Equation (II-14), we get the gain matrix: 

                                   k =[
−2.18 3.12
−2.17 3.25

] 

The corresponding RGA by applying Equation (II-15) is: 

                   Λ = RGA =[
22.5207 −21.5207
−21.5207 22.5207

] 

This matrix shows that the interaction is very strong, thus the use of decouplers is essential 

to eliminate or to reduce the effect of loop interaction. Decoupler elements are calculated as 

follows: 

                                   DC1= - 
G12

G11
 = 1.05 

                                 

                                  DC2= - 
G21

G22
 = 0.67 

Implementing the forward decouplers and testing the performances again. 

Setpoint change in TIC-100  

By applying a setpoint change on the TIC-100 controller from 45°C to 50°C, the reflux valve 

close thus the temperature of tray 5 will increase up to the value required. The response is 

shown in Figure Ⅳ-23: 

 

Figure IV -  23 : Setpoint change in TIC-100 with a decoupler 

The 25th tray temperature response shows an overshoot of 0.84°C (1.2%) responding the 5°C 

increment in the setpoint of TIC-100. As shown in Figure Ⅳ-24: 
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Figure IV -  24 : TIC-101 response to setpoint change in TIC-100 with a decoupler 

Setpoint change in TIC-101 

By applying a setpoint change on the TIC-101 controller from70°C to 75°C, the reboiler 

valve opens thus the temperature of tray 25 will increase up to the SP value required. 

 

Figure IV -  25 : Setpoint change in TIC-101 with a decoupler 

The 5-tray temperature response shows an overshoot of 0.64°C (1.42%) to the 5°C 

increment in the setpoint of TIC-101. 

 

Figure IV -  26 : TIC-100 response to setpoint change in TIC-101 with a decoupler 

Disturbance rejection 

 Opening 10% on the feed valve (increasing from 50% to 60%) leads to an overshoot of 

2.55°C (5.66%) in the response of TIC-100 as shown in Figure Ⅳ-27: 
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Figure IV -  27 : TIC-100 response to 10% disturbance with a decoupler 

In the same manner, we apply a 10% disturbance on TIC-101.This will lead to an overshoot 

of 2.3°C (3.3%) as shown in Figure Ⅳ-28: 

 

Figure IV -  28 : TIC-101 response to 10% disturbance with a decoupler 

Table Ⅳ-10 illustrates the results obtained: 

Table IV - 10:  Performance analysis of the controllers when using forward decoupling 

PID With 

decouplers  

 𝑇𝑠(min)  𝑇𝑟(min) Disturbance 

rejection 

SP change in 

TIC-100 

SP change 

In TIC-101 

TIC-100 232 194 5.66% 1.16% 1.42% 

TIC-101 226 149 3.3% 1.2% No overshoot 

Upon comparing the dynamic model analysis before and after decoupling, significant 

improvements are evident. The overshoot in tray 25 temperature, caused by setpoint change 

in tray 5, decreased notably from 2.22°C (3.17%) to 0.84°C (1.2%), demonstrating the 

effectiveness of decouplers in mitigating the influence of tray 5 temperature variations. 

Furthermore, the overshoot in tray 5 temperature, caused by change in tray 25, decreased by 

3.02% (from 2°C to 0.64°C) indicating that the variation in tray 5 temperature does not have 

a huge impact on tray 25 anymore.Since, decouplers do not directly handle disturbances, their 

primary focus on reducing interactions; let us try a further minimization to these problems by 
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using an MPC controller. 

IV.5 Applying MPC Controller 

 Model Predictive Controller (MPC) is used instead of two PID controllers for managing the 

temperatures of Tray 5 and Tray 25. 

 

Figure IV -  29 :  Distillation column control with MPC 

We provide the transfer matrix G(s), obtained earlier, to the MPC controller:  

𝐺(𝑠) = [

−2.18

1 + 127𝑠

3.12

1 + 193𝑠
−2.17

1 + 95𝑠

3.25

1 + 111𝑠

]    

In a multi-variable system, the slowest loop needs to be considered in calculating the MPC 

parameters; in other words, the calculations are based on the dynamics of the loop having the 

largest time constant and delay. 

 The initial parameters of the MPC, calculated according to equations of section Ⅲ.4, are 

shown on the next Table Ⅳ-11: 

Table IV - 11: MPC calculated parameters 

𝑇𝑠 N P M Gamma-U Gamma-Y 

19.3 75 52 15 1 1 

 

An initial comparative response using MPC controller & PID shown next: 
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Figure IV -  30 : Response to step change in tray 5 using MPC and PID-Decoupler 

 

Figure IV -  31 : Response to step change in tray 25 using MPC and PID-Decoupler 

Based on responses illustrated in Figure Ⅳ-30 and Figure Ⅳ-31, MPC controller respond faster 

to step change in comparison to PID with a decoupler. 

MPC works well when adding disturbance forbid the massive overshoot as well, as shown on 

Figure Ⅳ-32, and Figure Ⅳ-33: 

 

Figure IV -  32: Response to disturbance in tray 5 with MPC and PID-Decoupler 
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Figure IV -  33 : Response to disturbance in tray 25 with MPC and PID-Decoupler 

The desired performance would be met by the fine-tuning procedure, which is the disturbance 

rejection, the loop interaction problems, and the settling time of the loops. 

IV.6 Tuning MPC Controller  

After multiple trial and error experiment based on the ground rules recommended at the end 

of chapter-Ⅲ, the final parameters are shown on Table Ⅳ-12: 

Table IV - 12:  MPC tuned parameters 

𝑇𝑠 N P M Gamma-U Gamma-Y 

9.3 116 97 11 0.7 0.5 

Setpoint change in Tray-5 

By applying a setpoint change on the Tray-5 from 45°C to 50°C, the reflux valve close thus 

the temperature of tray 5 will increase up to the setpoint. This latest results in decreasing the 

settling time of Tray-5 temperature up to 79min (1h19min) with an overshooting of 1°C 

(2.2%).
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As for the effect on Tray-25, it is completely eliminated (no overshooting). The results are 

shown on Figure Ⅳ-34: 

 

Figure IV -  34 : Response of temperature at tray-5 and 25 to a setpoint change at Tray-5 with 

MPC 

Setpoint change in Tray-25 

By applying a setpoint change on Tray-25 controller from 70°C to 75°C, the reboiler valve 

opens thus the temperature of tray 25 will increase up to the SP value required. This results 

in decreasing the settling time up to 48 min making it the faster loop, and an overshoot of 

1.33°C (1.9%). 

While Tray-5 respond by an overshooting of 1.19°C (2.64%). The results are demonstrated 

in Figure IV -35: 

 

 

 

 

 

 

 

 

 

 

Figure IV -  36 : Response of temperature at tray-5 and 25 to a setpoint change at Tray-25 with 

MPC 
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Disturbance rejection 

Opening 10% on the feed valve (increasing from 50% to 60%) leads to an overshoot of 

1.6°C (3.5%) in the response of Tray-5, and a 2.04°C (2.8%) for Tray-25 as in Figure Ⅳ-36: 

 

Figure IV -  37 : Response of temperature at tray-5 and 25 to a 10% disturbance with MPC 

The results are recorded in Table Ⅳ-13: 

Table IV - 13:  Performance analysis of Trays 5 and 25 using MPC controller 

MPC   𝑇𝑠(min)  𝑇𝑟(min) Disturbance 

rejection 

SP change in 

TIC-100 

SP change 

In TIC-101 

Tray-5 79 68 3.5% 2% 2.64% 

Tray-25 48 47 2.8% No overshoot 1.77% 

Results: 

Comparing the dynamic model analysis before and after using MPC, remarkable performance 

improvements can be noticed. The settling time of both loops has decreased by almost three 

times (for Tray-5) and four times (for Tray-25) in comparison with the decouplers; allowing 

the fast process stability when a setpoint change occurs. 

Disturbance rejection has been reduced as well; a 2% reduction in the case of Tray-5, and 

0.8% in Tray-25. 

 The MPC controller offers the best minimization on the loop interaction problems and 

disturbance rejection, as well as reducing settling time for a faster response. However, in 

attempt to decrease the settling time and loop interactions, a small overshooting resulted when 

changing the setpoint. This problem, in addition to disturbance rejection, can be solved by 

DMC (dynamic matrix control) provided by ASPEN-TECH or RMPC (robust model 
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predictive control) provided by HONEYWELL company. 

Unfortunately, these technologies are licensed and are not available for use.  

A comparison between the controller’s performances analysis is shown next:  

Table IV - 14: Comparison between Tray-5 controllers based on the performance analysis 

Controllers/ 

/Index 

PI 

TIC-100 

PID 

TIC-100 

PID with 

decoupler 

TIC-100 

MPC controller 

Tray-5 

 𝑇𝑟(min) 254 183 194 68 

 𝑇𝑠(min) 327 221 232 79 

SP change in 

Tray-5 

No overshoot No overshoot 1.16% 2% 

SP change 

In Tray-25 

4.58% 4.4% 1.42% 2.64% 

Disturbance 

rejection 

6% 5.5% 5.66% 3.5% 

Table IV - 15: Comparison between Tray-25 controllers based on the performance analysis 

Controllers/ 

/Index 

PI 

TIC-101 

PID 

TIC-101 

PID with 

decoupler 

TIC-101 

MPC controller 

Tray-25 

 𝑇𝑟(min) 150 148 149 47 

 𝑇𝑠(min) 236 235 226 48 

SP change in 

Tray-5 

3.87% 3.17% 1.2% No overshoot 

SP change 

In Tray-25 

No overshoot 0.64% No overshoot 1.77% 

Disturbance 

rejection 

2.86% 3.37% 3.3% 2.8% 
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(a) 

 

(b) 

Figure IV -  38 : Final Comparison between Tray-5 controllers’ performance: (a) according to 

settling time & rise time –(b) according to overshooting 
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(a) 

 

(b) 

 

Figure IV -  39 : Final Comparison between Tray-25 controllers’ performance: (a) according to 

settling time & rise time –(b) according to overshooting 

Based on Table Ⅳ-14, Table Ⅳ-15, Figure Ⅳ-38, Figure Ⅳ-39, and previous discussions, it is 

safer to state that MPC controller is the best solution in handling the complexity of multiple 

variables system, and dealing with interactions and disturbance rejection by offering the 

optimal results. 
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Difficulties & Challenges: 

Model Predictive Control can handle MIMO complex systems with interactions between 

variables, effectively reject disturbances and maintain control performance, and can be applied 

to a wide range of processes, including nonlinear and time-varying systems. However, set of 

drawbacks can be mentioned: 

 The performance of MPC heavily relies on the accuracy of the process model. 

Inaccurate models can lead to unstable control; a model tuning is required first. 

 The parameters tuning of MPC to set an optimal control is highly exhausting and time 

consuming due to the multiple trials and errors tests. 

 It requires expertise in both control theory and the specific process being controlled. 

Despite these drawbacks, MPC remains a powerful control strategy in many industries, 

Especially where high performance and constraint handling are needed.  

Rules of Thumb: 

After the study and simulation of MPC applied on a depropanizer distillation column, and the 

previous ground rules suggested at chapter-III; a set of recommendations to be followed when 

dealing with a column having the same specifications. 

Column Specifications: 

Table IV - 16: Specifications of the tuned distillation column (Depropanizer) 

Tower specifications 

Number of trays/Stage numbering 30/Top-down 

Type of Trays Sieve 

Tray diameter (m) 10.94 

Tray volume (𝑚3) 51.75 

Tray space (m) 0.55 

Condenser 

Condenser Type Total 

Condenser Diameter (m) 1.193 

Condenser Height (m) 1.789 

Condenser Volume (𝑚3) 2 

Condenser Pressure (KPa) 1350 

Condenser Temperature (°C) 41.46 

Reboiler 
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Reboiler Type Regular 

Reboiler Diameter (m) 1.193 

Reboiler Height (m) 1.789 

Reboiler Volume (𝑚3) 2 

Reboiler Pressure (KPa)   1369 

Reboiler Temperature (°C) 81.33 

Feed specifications 

Composition 40% Propane - 60% I-Butane 

Temperature (°C) 48.85 

Pressure (at) 20 

Flow (kgmole/s) 1 

 

MPC Tuning Procedure: 

Based on the ground rules of chapter-III, Although Some changes occurred due to changing 

the type of the process and dealing with a more complex MIMO system; here is a set of 

recommendations to be followed when tuning such a depropanizer having the specifications 

mentioned on Table Ⅳ-16. 

The slowest loop needs to be considered (the process having the greatest lag time & dead 

time). 

Process Model: 

 Accuracy of the system is crucial for a good control.  

 The process identification region must match the operating region; modeling the 

process needs to be done in the same region that we are controlling it, to avoid model 

mismatch. 

 For a dead time, dominant process (when the delay is much larger than the process 

lag), the execution interval should generally be at least half of the plant time delay 

(𝑻𝒔=0.5 𝜽𝒑). However, if unmeasured load disturbances are significant and frequent 

(disturbances that affect the process but are not measured by the system), it's crucial 

to improve the model accuracy and reduce the execution interval to one tenth of the 

plant time delay (𝑻𝒔=0.1 𝝉𝒑) [27]. 

 

 



Chapter-IV                                                                                             Results and Discussion 

81 

 

Response horizon: its value must be large enough such that the last step response model 

parameter is equal to the steady state gain. 

Control horizon: 

 First decrease the value of control horizon by four steps; and check whether the 

performance obtained is better comparing to the initial one. Check in the same way 

for four steps increase.  

 Compare your results then choose the optimal value for the control horizon according 

to the desired performance. 

 

Prediction horizon:  

 Check the performance obtained for two steps increase and two steps down. Then 

pick the optimal value. 

Once these steps are made, and the performance is improved, move to the optimization 

procedure. 

 

Weighting functions: 

 

 Start by decreasing the Gamma_U by 0.2 while keeping the Gamma_Y at 1, then check 

the performance obtained. 

 Repeat the previous step again with Gamma_Y. 

 The effect of each function will be clear to you by this step; then continue on changing 

their values according to the desired performance; if the goal is decreasing the settling 

time and fastening the process and minimizing the overshooting, then the Gamma_Y 

is the one that should be considered. A value that is less than 0.5 would result in an 

aggressive response and a massive overshoot. 

 As for minimizing oscillatory response for the system, then Gamma_U should be 

considered in this case. A value that is less than 0.7 would lead the system to oscillatory 

response. 

 A balance should be made, between these two functions, during the tuning procedure 

so that the desired performance is met. 
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General conclusion 
 

This thesis aimed to investigate the application of Model Predictive Control (MPC) on 

a binary distillation column to enhance process efficiency and product quality. 

 

The research demonstrated that MPC significantly improves setpoint tracking and 

disturbance rejection compared to traditional PID control methods. Key findings include 

the successful mitigation of interaction issues through forward decouplers and the superior 

performance of MPC under varying operating conditions. 

 

These results highlight MPC's potential in handling the complexities of multivariable 

processes, offering a more robust control strategy for industrial applications. The findings 

align with existing literature on advanced process control but provide new insights into 

the specific challenges and solutions for binary distillation columns. 

 

This thesis contributes to the field by providing a detailed comparison of MPC and PID 

control methods, establishing a set of guidelines for MPC tuning, and demonstrating 

the practical benefits of MPC in industrial distillation processes. 

 

One limitation of this study was the dependency on simulation models, which may not fully 

capture all real-world process dynamics. Additionally, the complexity of MPC tuning 

requires careful consideration to avoid suboptimal performance. 

 

Future research could explore the application of MPC to more complex distillation 

processes and investigate the integration of real-time adaptive control mechanisms. 

Further studies should also consider the impact of varying feed compositions and more 

sophisticated disturbance models. 
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Appendix A 
 

 

 

1. Introduction to Aspen HYSYS 

 
HYSYS is a powerful engineering simulation tool, uniquely designed in terms of its 

architecture, interface, and interactive operation. Its integrated steady state and dynamic 

modeling capabilities allow the same model to be evaluated from either perspective, with 

full sharing of process information, representing a significant advancement in engineering 

software. 

The various components of HYSYS offer a robust approach to steady state modeling. With a 

comprehensive selection of operations and property methods, users can confidently model a 

wide range of processes. The design of HYSYS enhances process understanding, 

maximizing the return on simulation time. 

The inherent flexibility, unparalleled accuracy, and robustness of its property package 

calculations result in more realistic models. Widely used in chemical engineering, HYSYS 

supports research, development, modeling, and design across various industries, from 

upstream processes, gas processing, and cryogenic facilities to refining and chemical 

processes. 

2. Implementation of MPC controller in HYSYS 

After implementing the steady state model of the process we need to convert into a dynamic 

system by sizing of volume equipment and piping (pumps, compressors, valves) such that the 

program can calculate the pressure differences and thus the flow rates. After passing to dynamic 

model controllers can be added. The steps to follow in order to add an MPC controller to the 

system are as follows: 

 Bring the MPC controller from the pallet and click on it to have a window as shown in the 

figure below then connect the MPC controller to its appropriate “process variable source” 

and “output target object”: 

 

 

 

 

 

 

 

 



 

 move to” MPC Setup” then “Basic” and choose the Process Model Type, along with the 

control interval that specify the sampling interval: 

 

 move to” Advanced” then enter the MPC control setup that are pre-calculated: 

 

 

 

 

 

 

 



 

 Now, specify the process Model (process gain 𝐾𝑝, process time constant 𝑇𝑝, and delay), 

then click « Update Step Response » button to calculate the step response data for the 

process models. 

 

 

 

 

 


