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ABSTRACT

Visible Light Communication (VLC) has emerged as a promising wireless technology
that utilizes Light Emitting Diodes (LEDs) for simultaneous illumination and high-speed
data transmission. Compared to traditional Radio Frequency (RF) systems, VLC offers
advantages such as higher data rates, enhanced security, and reduced electromagnetic
interference. However, optimal LED placement remains a significant challenge, as it
directly impacts coverage, data throughput, and energy efficiency. Given the NP-hard
nature of this problem, conventional optimization methods are computationally infeasible
for large-scale deployments.

This research focuses on developing and enhancing meta-heuristic optimization algo-
rithms to efficiently address the LED placement challenge in VLC networks. We pro-
pose and evaluate three advanced techniques: Enhanced Whale Optimization Algorithm
(EWOA), Hybrid Coronavirus Herd Immunity Optimize with Firefly Algorithm (ICHIO-
FA), and a Multi-Objective Puma Optimizer (MOPO). These approaches integrate chaotic
maps, Opposition-Based Learning (OBL), non-dominated sorting, and crowding distance
mechanisms to improve search efficiency, convergence speed, and solution quality.

Extensive benchmarking against state-of-the-art meta-heuristics demonstrates that
our proposed methods significantly outperform existing algorithms in solution quality, ro-
bustness, and computational efficiency. The findings of this research contribute to advanc-
ing optimization techniques in VLC systems, providing scalable and efficient solutions, to
deployment in next-generation communication networks.

Keywords: Visible light communication (VLC); Light emitting diode (LED); Opti-
mization methods; meta-heuristic.



RÉSUMÉ

La communication par lumière visible (VLC) est une technologie sans fil prometteuse qui
exploite les diodes électroluminescentes (LEDs) pour assurer simultanément léclairage
et la transmission de données à haute vitesse. Comparée aux systèmes traditionnels à
radiofréquence (RF), la VLC offre plusieurs avantages, notamment des débits de trans-
mission plus élevés, une sécurité renforcée et une réduction des interférences électromag-
nétiques. Cependant, le placement optimal des LEDs demeure un défi majeur, influençant
directement la couverture, le débit de transmission et lefficacité énergétique. Étant donné
la complexité NP-difficile de ce problème, les méthodes doptimisation classiques devien-
nent inapplicables pour les déploiements à grande échelle.

Cette recherche vise à développer et améliorer des algorithmes doptimisation méta-
heuristiques pour résoudre efficacement le problème de placement des LEDs dans les
réseaux VLC. Nous proposons et évaluons trois techniques avancées : Enhanced Whale
Optimization Algorithm (EWOA), Hybrid Coronavirus Herd Immunity Optimizer avec
Firefly Algorithm (ICHIO-FA), et un Optimiseur Puma Multi-Objectif (MOPO). Ces
approches intègrent des mécanismes tels que les cartes chaotiques, lapprentissage par op-
position (OBL), le tri non-dominé et la distance dencombrement, afin daméliorer lefficacité
de la recherche, la vitesse de convergence et la qualité des solutions.

Une évaluation approfondie par rapport aux méta-heuristiques de pointe montre que
nos méthodes surpassent significativement les algorithmes existants en termes de qualité
des solutions, robustesse et efficacité computationnelle. Les résultats de cette recherche
contribuent à lavancement des techniques doptimisation dans les systèmes VLC, offrant
des solutions scalables et performantes pour les déploiements réels et les réseaux de com-
munication de nouvelle génération.

Mots clés: Communication par lumière visible (VLC); Diode électroluminescente
(LED); les méthodes d’optimization; les méta-heuristic.
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    الصمامات الثنائية الباعثة للضوء كإحدى التقنيات اللاسلكية الواعدة، حيث تعتمد على (VLC) الاتصالات بالضوء المرئي برزت

(LEDs)  وبالمقارنة مع أنظمة الترددات الراديوية .الإضاءة ونقل البيانات عالية السرعة في آنٍ واحد لتوفير (RF)  ّالتقليدية، توفر

التحديد  ومع ذلك، لا يزال .معدلات نقل بيانات أعلى، وأمان محسن، وتقليل التداخل الكهرومغناطيسي تعددة مثلمزايا م VLC تقنية

 .نطاق التغطية، ومعدل نقل البيانات، وكفاءة استهلاك الطاقة يشكل تحدياً كبيرًا، نظرًا لتأثيره المباشر على LEDs الأمثل لمواقع الـ

غير عملية من  طرق التحسين التقليدية ، فإنNP-Hard  المشكلات المعقدة من نوع وبالنظر إلى أن هذه المشكلة تصُنف ضمن فئة

 .الناحية الحسابية عند التعامل مع أنظمة واسعة النطاق

 VLC في شبكات LEDs توزيع الـ لمعالجة تحدي إرشادية-تطوير وتحسين خوارزميات التحسين الميتا تركز هذه الدراسة على

، الخوارزمية الهجينة لمناعة القطيع (EWOA) خوارزمية تحسين الحوت المحسّنة :هي ثلاث تقنيات متقدمة نقترح ونقيمّ. بكفاءة

تدمج هذه الخوارزميات  .(MOPO) ، وخوارزمية بوما متعددة الأهداف(ICHIO-FA)  للفيروس التاجي مع خوارزمية اليراعات

 ، وفرز الحلول غير المهيمن عليها، وآليات مسافة التزاحم(OBL)  ئط الفوضوية، والتعلم القائم على المعارضةالخرا عناصر مثل

 .كفاءة البحث، وسرعة التقارب، وجودة الحلول بهدف تحسين

لخوارزميات الأساليب المقترحة تتفوق بشكل كبير على ا إرشادية أن-مع أحدث الخوارزميات الميتا تجارب مقارنة موسّعة أظهرت

 تطوير تقنيات التحسين في أنظمة وتسُاهم نتائج هذا البحث في .جودة الحلول، والموثوقية، والكفاءة الحسابية من حيث الموجودة

VLC شبكات الاتصال من الجيل القادم لنشرها في قابلة للتوسعة وفعالة ، مما يوفر حلولًا. 

؛ أساليب التحسين؛ (LED) ؛ الصمامات الثنائية الباعثة للضوء(VLC)  الاتصالات بالضوء المرئي :الكلمات المفتاحية

 .إرشادية-الخوارزميات الميتا
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GENERAL INTRODUCTION

Wireless communication technologies are fundamental to modern society, driving progress
in telecommunications, transportation, and healthcare [14]. Their widespread adop-
tion enables seamless access to information, improved productivity, and increased con-
venience [15].

Most existing wireless systems rely on radio frequency (RF) technology for data trans-
mission. However, the growing demand for bandwidthdriven by broadband services such
as mobile video, high-speed internet, and video conferencinghas led to increased con-
gestion in the RF spectrum. According to the International Telecommunication Union
(ITU), more than 4.5 billion people used the internet in 2019 [16], intensifying pressure
on available RF resources and raising concerns about their ability to meet future commu-
nication needs. These limitations have encouraged the exploration of alternative wireless
technologies, including optical wireless communication (OWC).

OWC, which uses visible or infrared light to transmit data through free space, has
emerged as a promising complement to RF-based systems [17]. It offers advantages such
as higher data rates, increased security, and immunity to electromagnetic interference.
OWC is suitable for a wide range of applications, including satellite communication,
high-speed data transfer, mobile connectivity, and the Internet of Things (IoT).

A prominent subset of OWC is visible light communication (VLC), which operates
in the visible spectrum (380 THz790 THz) [18]. VLC transmits data by modulating
the intensity of light-emitting diodes (LEDs), enabling simultaneous illumination and
communication [19, 20]. LEDs are energy-efficient, long-lasting, and capable of rapid
switching [21, 22], making them well-suited for VLC. Due to its low power consumption,
high security, and resistance to RF interference, VLC is especially useful in environments
where RF communication is limited or undesirable. It can be seamlessly integrated into
existing lighting infrastructure for use in indoor networking [23], automotive and aerospace
systems [24,25], healthcare environments [26], and underwater communication [27].

A typical VLC system consists of LEDs serving as transmitters and photodetectors
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(PDs) acting as receivers. One of the key technical challenges is determining the optimal
placement of LEDs to maximize system performance. This problem is computationally
complex and classified as NP-hard [28]. To address it, researchers have employed meta-
heuristic optimization algorithms to find efficient solutions for LED deployment while
meeting illumination and communication requirements.

Numerous meta-heuristic algorithms including evolutionary algorithms (EA), particle
swarm optimization (PSO), and hybrid methods have been proposed to tackle this prob-
lem. Ding et al. [29] used an EA to optimize LED placement in a 5 m × 5 m × 3 m room,
successfully reducing signal loss. Wang et al. [30] extended this work by optimizing for
maximum signal-to-noise ratio (SNR). Sharma et al. [31] proposed HypEA, which outper-
formed PSO. Stefan and Haas [32] used a genetic algorithm (GA) in a 2.5 m × 5 m × 3 m
space, improving area spectral efficiency.

Other studies explored PSO-based strategies to minimize signal outage [33], hybrid
SA-PSO algorithms for improved positioning accuracy [34], and enhanced Cuckoo Search
algorithms [35,36]. The Whale Optimization Algorithm (WOA) has also shown promise;
Kumawat et al. [28] applied it for optimizing LED panels, and Meng et al. [37] improved
it using elite opposition-based learning and Lévy flight, resulting in IWOA.

Additional contributions include the Modified Artificial Fish Swarm Algorithm
(MAFSA), which achieved high precision in a 4 m × 4 m × 6 m room [38], and the Manta
Rays Foraging Optimization (MRFO) algorithm, which outperformed several state-of-the-
art methods [39]. Multi-objective optimization has also been explored; for example, Costa
et al. [40] used NSGA-II to balance transmitted power and spectral efficiency.

While many existing studies have applied meta-heuristic algorithms to optimize spe-
cific performance metrics such as maximizing the signal-to-noise ratio (SNR), minimizing
positioning error, or reducing power consumption, these approaches typically focus on
single-objective formulations and simplified scenarios. Most of the current work targets
only one aspect of system performance, such as SNR, received power, accuracy, or er-
ror rates. In contrast, our research addresses a more complex and practical scenario:
optimizing the placement of multiple LEDs to serve multiple users in an indoor VLC
environment. We aim to jointly optimize both user coverage and throughput, providing
a more comprehensive solution that accounts for spatial distribution and communication
quality. Furthermore, this thesis advances the state of the art by introducing enhanced,
hybrid, and multi-objective meta-heuristic algorithms specifically designed to solve the
LED placement problem more effectively and efficiently.

Building on the growing interest in LED placement optimization for indoor VLC
systems, this thesis presents four major contributions aimed at addressing key challenges
in this domain:

1. Problem Formulation: We develop a system and mathematical model for LED
deployment that supports varying numbers of LEDs and users, using throughput
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and user coverage as performance metrics.

2. Improved Optimization Algorithm: We propose the Enhanced Whale Op-
timization Algorithm (EWOA) [41], which integrates sine chaotic mapping and
opposition-based learning to improve solution diversity and convergence.

3. Hybrid Meta-Heuristic Approach: We introduce ICHIO-FA [42], a hybrid
method combining an improved Coronavirus Herd Immunity Optimizer and Firefly
Algorithm to enhance optimization performance.

4. Multi-Objective Optimization: We develop MOPO (Multi-Objective Puma Op-
timizer), which applies non-dominated sorting and crowding distance mechanisms
to effectively balance competing objectives in LED placement.

This thesis is organized into five chapters, each addressing different aspects of LED
placement optimization in VLC systems:

• Chapter 1 presents a comprehensive overview of VLC technology, including its
architecture, modulation schemes, strengths, limitations, and real-world applica-
tions. It identifies key research challengessuch as user mobility, shadowing, and
illumination constraintsand reviews existing optimization strategies.

• Chapter 2 discusses optimization methodologies, with a focus on classical, heuris-
tic, and meta-heuristic algorithms. It covers their mathematical foundations, clas-
sification, and complexity, and compares single-objective versus multi-objective ap-
proaches, emphasizing bio-inspired algorithms for NP-hard problems like LED place-
ment.

• Chapter 3 introduces EWOA, an enhanced meta-heuristic that integrates chaotic
maps and opposition-based learning. Simulations show that EWOA outperforms
conventional algorithms in maximizing throughput and coverage.

• Chapter 4 presents the hybrid ICHIO-FA algorithm, which overcomes limitations
of standalone methods by combining chaotic strategies and OBL. It demonstrates
improved accuracy and convergence speed in optimizing LED placement.

• Chapter 5 describes MOPO, a multi-objective optimization algorithm designed
to balance throughput and coverage. It uses ranking, crowding distance, and non-
dominated sorting to achieve a diverse set of Pareto-optimal solutions. Results show
that MOPO outperforms NSGA-II and MOWOA in both diversity and convergence
rate.

Finally, the thesis concludes with a summary of key findings and outlines potential
directions for future research.
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CHAPTER 1

STATE OF THE ART IN VISIBLE LIGHT
COMMUNICATION

graphicx

1.1 Introduction

The global proliferation of mobile and wireless-enabled devicessuch as smartphones, tablets,
and IoT technologieshas grown at an unprecedented pace in recent years. While Radio
Frequency (RF) communication remains the most widely used wireless technology due to
its maturity and infrastructure readiness, it faces critical limitations, including bandwidth
saturation, electromagnetic interference, and security vulnerabilities.

In parallel, significant advances in semiconductor lighting technologies, particularly
Light Emitting Diodes (LEDs), have revolutionized the lighting industry [43]. LEDs are
now favored for their superior energy efficiency, durability, and extended lifespan com-
pared to traditional lighting systems. With their widespread adoption across residential,
commercial, and industrial applications, it is anticipated that LEDs will eventually replace
all conventional light sources.

What sets LEDs apart is their ability to support high-frequency switching, enabling
them to function not only as illumination devices but also as data transmitters. This
dual-purpose capability has paved the way for the development of Visible Light Commu-
nication (VLC), a branch of optical wireless communication that utilizes the visible light
spectrum (380780 THz) for data transmission [44]. In a typical VLC setup, LEDs act as
transmitters, while photodetectors (PDs) are used to receive modulated light signals and
decode information.

The core idea behind VLC is to repurpose existing indoor lighting infrastructure for
high-speed wireless communication, offering a secure, cost-effective, and interference-free
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alternative to RF systems. Although the concept of optical wireless communication dates
back to Alexander Graham Bells photophone in 1880, VLC has only recently gained at-
tention due to the advancements in LED technology and growing data demand. Modern
VLC systems can now achieve gigabit-per-second (Gbps) transmission rates, progress-
ing from 80 Mbit/s in 2008 to 3000 Mbit/s by 2014, highlighting its promise for future
communication systems.

This chapter presents a comprehensive overview of Visible Light Communication sys-
tems, covering both foundational concepts and advanced applications. The content is
structured as follows:

• VLC History: A brief account of the historical development of VLC, tracing its
roots and technological evolution.

• What is VLC Technology? An in-depth explanation of VLC as a communication
technology and how it leverages visible light for data transmission.

• VLC Architecture: A description of the components, structure, and communica-
tion flow in a typical VLC system.

• Modulation Techniques in VLC: An overview of the modulation schemes used
to encode and transmit data via light sources.

• Balancing Advantages and Challenges of VLC: A critical analysis of VLCs
strengths, such as bandwidth and security, and its limitations, such as line-of-sight
dependency.

• VLC Applications: Exploration of current and emerging applications of VLC
across sectors such as healthcare, transportation, industry, and smart homes.

• Conclusion: A summary of the key points and an outlook on future research
directions in VLC.

Through this structured exploration, the chapter aims to provide both a foundational
understanding and an up-to-date review of VLC technology, laying the groundwork for
subsequent chapters that delve into optimization techniques and practical implementa-
tions.

1.2 VLC History

Although VLC has gained significant traction in recent years, the concept of utilizing light
for communication dates back centuries. Various civilizations have historically employed
light-based signaling techniques to exchange information efficiently across distances [45],
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Figure 1.1: Fire communication system used in ancient Greece [1].

Figure 1.2: Alexander Graham Bell’s method of transmitting sound using sunlight [2].

[1] 1.1. Notable examples include the use of smoke signals by Native American tribes and
the transmission of light signals between naval vessels. These historical methods highlight
the long-standing effectiveness of optical communication for conveying crucial messages.

The modern evolution of optical wireless communication began in 1880 with Alexan-
der Graham Bell’s photophone, a revolutionary invention that laid the foundation for
contemporary VLC systems [2] 1.2. This device functioned similarly to a telephone but
used a flexible mirror system to modulate voice signals. By varying the frequency of the
modulated light, the photophone encoded audio signals onto sunlight reflections. At the
receiving end, selenium cells in conjunction with a concentrator mirror facilitated the de-
coding of transmitted signals, enabling successful communication over distances exceeding
200 meters.

Despite the photophone’s early success, its widespread adoption was hindered by the
emergence of RF communication. In 1894, Guglielmo Marconi’s invention of the radio
telegraph significantly expanded wireless communication capabilities by enabling long-
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range transmission via RF signals. As a result, RF-based communication rapidly outpaced
optical wireless systems, shifting technological focus toward radio waves.

Interest in light-based communication re-surged in the early 2000s, driven by advance-
ments in Light Emitting Diodes (LEDs) and their potential application in VLC systems.
In a pioneering experiment, a white LED was successfully used for both illumination and
data transmission in an indoor setting, achieving impressive throughput rates of up to
400 Mbps [46]. This breakthrough sparked further research into advanced modulation
techniques and LED technology improvements, solidifying VLC as a viable alternative to
RF communication.

A significant turning point in VLC development occurred in 2011 [47], when re-
searchers achieved major progress in the field. Today, VLC continues to attract consider-
able attention from leading research institutions and major corporations such as NASA,
Disney, and Philips, all of which are actively engaged in developing products and con-
ducting studies to expand its practical applications [48]. These ongoing efforts underscore
VLCs growing significance as a next-generation communication technology .

1.3 What is VLC technology ?

Visible Light Communication (VLC) is an advanced wireless communication technology
that operates within the visible light spectrum (400-800 nm) [3]. As a key branch of op-
tical wireless communication, VLC enables high-speed data transmission by modulating
light sourcesswitching them on and off at speeds imperceptible to the human eye. One of
its distinguishing advantages is its resistance to electromagnetic interference, making it
particularly suitable for environments where traditional Radio Frequency (RF) commu-
nication is restricted.

The emergence of VLC technology stems from the need to address several fundamental
limitations associated with RF-based wireless communication [49]. These limitations can
be categorized into three main challenges:

• Electromagnetic Spectrum Saturation The rapid increase in data traffic has led
to congestion within the RF spectrum, causing bandwidth limitations and perfor-
mance degradation. VLC offers an effective alternative by utilizing the untapped
visible light spectrum, thereby reducing the dependency on RF-based channels and
alleviating spectrum scarcity.

• Dual Functionality: Lighting and Communication Unlike RF systems, which are
solely designed for data transmission, VLC provides a dual-purpose functionality,
serving both as a lighting system and a data communication medium. This fea-
ture makes VLC highly adaptable for indoor environments, smart homes, offices,
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Figure 1.3: Light spectrum wavelength [3].

and vehicular communication systems, where illumination and data transfer can be
seamlessly integrated.

• Health and Safety Considerations The potential health risks associated with pro-
longed exposure to RF electromagnetic waves have raised concerns, particularly in
densely populated areas. VLC, which relies on visible light waves, is considered a
safer alternative, as it does not emit harmful radiation and poses no known biological
risks to humans.

At the core of VLC systems is a photosensitive receiver, which captures data signals
emitted from optical light sources. Among the various light sources used, Light-Emitting
Diodes (LEDs) play a crucial role as the primary medium for data transmission, display,
and illumination [50]. White LEDs have emerged as the preferred light source in VLC
due to their superior characteristics, including:

• High Modulation Bandwidth: Enables faster data transmission rates.

• Enhanced Sensitivity: Improves signal detection accuracy.

• Long Lifespan: Increases operational efficiency and reduces maintenance costs.

• Improved Brightness: Provides better illumination while supporting communica-
tion.

• Compact and Lightweight: Facilitates easy integration into smart lighting systems.

• Energy Efficiency: Consumes significantly less power than traditional light sources.

• Low Cost and User-Friendliness: Ensures affordability and ease of deployment.
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Figure 1.4: VLC Architecture diagram [4].

By leveraging the unique properties of LEDs, VLC technology enhances data transmis-
sion efficiency while simultaneously fulfilling illumination requirements. This strategic
integration of lighting and wireless communication makes VLC a promising field with
broad applications in smart infrastructure, healthcare, automotive communication, and
high-speed indoor networking.

1.4 VLC Architecture

Visible Light Communication (VLC) systems are structured into three main components:
a transmitter, a communication channel, and a receiver. These elements work together to
facilitate data transmission using optical signals instead of conventional radio frequency
waves [4]. VLC employs light-emitting diodes (LEDs) as transmitters and photodetectors
as receivers, allowing for high-speed and secure wireless communication.

1. Transmitter:

The transmitter plays a crucial role in encoding and sending optical signals. As
shown in Figure 1.5, data from the source is first converted into a digital bit stream
using a source encoder. To enhance data reliability and minimize errors caused by
channel distortions, a channel encoder introduces redundancy.

The encoded data is then modulated to control the intensity of the emitted optical
signal. While intensity modulation is the most commonly used approach, other
modulation techniques can also be implemented. A conductive circuit regulates the
current passing through the LED, adjusting its brightness accordingly.

LEDs are widely used as VLC transmitters due to their advantages, including low
power consumption, durability, cost efficiency, and rapid switching speeds, making
them suitable for both lighting and communication purposes [51].

25



CHAPTER 1. STATE OF THE ART IN VISIBLE LIGHT COMMUNICATION

2. VLC Channel:

The VLC channel serves as the medium through which the optical signal propagates.
During transmission, the signal experiences attenuation, noise, and interference,
which can affect overall system performance. Additionally, light rays may undergo
reflection, refraction, or scattering, leading to multipath propagation.

VLC channels are classified into two primary types:

- Line-of-Sight (LOS) Channel: The optical signal reaches the receiver directly with-
out obstruction. Signal attenuation depends on factors such as distance and envi-
ronmental conditions in outdoor applications. - Non-Line-of-Sight (NLOS) Channel:
The optical signal is reflected or scattered before reaching the receiver, resulting in
potential interference and signal distortion [52].

3. Receiver:

The receiver captures, filters, and processes the optical signal to extract transmitted
data. It consists of multiple components, including an optical filter, concentrator,
photodiode, amplifier, demodulator, and decoder.

The optical concentrator focuses the received signal onto the photodiode, optimizing
light capture. To minimize interference from ambient light sources, an optical filter
is applied before conversion into an electrical current by the photodiode. This
current is then amplified, demodulated, and decoded to reconstruct the original
transmitted data [53].

Commonly used photodetectors in VLC systems include PIN diodes and avalanche
photodiodes (APDs), valued for their high sensitivity, compact size, and fast re-
sponse times.

1.4.1 VLC Communication Layers

The VLC system operates based on two primary communication layers:

• Medium Access Control (MAC) Layer

• Physical (PHY) Layer

Each layer has specific functions that contribute to efficient VLC communication.

1.4.1.1 The MAC Layer (Medium Access Control)

The MAC layer manages data transmission and network coordination in VLC systems,
supporting multiple topologies such as peer-to-peer, broadcast, and star configurations [5].
It regulates access control, ensures mobility, enhances security, and prevents flicker while
managing network connections.
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Figure 1.5: Topologies supported by MAC in the IEEE 802.15.7 standard [5].

1.4.1.1.1 Role of the MAC Layer: The MAC layer is responsible for:

• Managing mobility to ensure uninterrupted communication.

• Implementing security protocols for data protection.

• Controlling access to the VLC channel.

• Mitigating flicker caused by rapid LED switching.

• Handling network association and dissociation of devices.

1.4.1.1.2 Services from the MAC Layer to Upper Layers: The MAC layer
provides two key services:

• MCPS-SAP Data Service, which facilitates data exchange.

• MLME-SAP Management Service, which oversees network and transmission man-
agement.

1.4.1.1.3 Services from the Physical Layer to the MAC Layer: The physical
layer interacts with the MAC layer through:

• PD-SAP Data Service, responsible for efficient data transmission.

• PLME-SAP Management Service, which manages physical layer operations.

1.4.1.2 Physical Layer (PHY)

The physical layer defines the specifications for VLC communication devices and modu-
lation techniques. According to the IEEE 802.15.7 standard, VLC PHY is classified into
three categories based on application requirements [6].
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Figure 1.6: MAC frame structure [6].

Figure 1.7: PHY frame structure [6].

1.4.1.2.1 PHY I (Outdoor)

• Designed for outdoor environments.

• Supports data rates from 11.67 to 266.6 kbps.

• Utilizes convolutional and Reed-Solomon (RS) coding.

1.4.1.2.2 PHY II (Indoor)

• Optimized for indoor environments.

• Supports data rates from 1.25 to 96 Mbps.

• Uses Run-Length Limited (RLL) coding to maintain signal integrity.

1.4.1.2.3 PHY III (Multiple Optical Transceivers)

• Suitable for multiple transceiver systems.

• Achieves speeds between 12 to 96 Mbps.

• Employs Color Shift Keying (CSK) modulation for better performance.
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1.4.2 The IEEE 802.15.7 Standard for VLC

The IEEE 802.15.7 standard, introduced in 2011, regulates short-range wireless optical
communication through visible light. It enables intensity modulation of LED-based trans-
mitters while ensuring flicker-free operation [54].

This standard defines three access topologies: peer-to-peer, star, and broadcast. It also
specifies addressing schemes, modulation techniques such as On-Off Keying (OOK) and
Variable Pulse Position Modulation (VPPM), and error correction methods to optimize
performance in different environments [55].

To support dimming functionality, the standard includes mechanisms like OOK and
VPPM [56, 57]. It also establishes different Forward Error Correction (FEC) codes for
indoor and outdoor applications, considering factors like path loss and interference.

The IEEE 802.15.7 standard continues to evolve, integrating advancements such as
parallel transmission techniques and vehicular VLC applications, further enhancing its
role in wireless optical communication.

1.5 Modulation Techniques in VLC

The performance and efficiency of Visible Light Communication (VLC) systems are sig-
nificantly influenced by the choice of modulation techniques. Proper modulation ensures
reliable data transmission via light waves while mitigating signal degradation caused by
external factors. This section explores various modulation schemes utilized in VLC, high-
lighting their characteristics, advantages, and applications.

1.5.1 Intensity Modulation (IM)

Intensity Modulation (IM) is the fundamental modulation technique in VLC, encoding
data by altering the intensity of light emissions [7]. In this scheme, binary data variations
translate into fluctuations in light intensity, enabling straightforward implementation.
However, IM is susceptible to ambient light interference and environmental conditions
that can affect signal quality. Despite its simplicity, it necessitates interference mitigation
strategies to ensure reliable data transmission in practical VLC applications.

1.5.2 Amplitude Shift Keying (ASK)

Amplitude Shift Keying (ASK) conveys digital information by modulating the amplitude
of the optical carrier signal [7]. Although ASK is simple to implement, it is highly vulner-
able to noise and exhibits a limited modulation index, restricting its performance in noisy
environments. To enhance robustness, researchers are exploring advanced ASK variants
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Figure 1.8: FSK, ASK, and PSK modulation techniques [7].

incorporating error correction mechanisms, expanding its potential applications in VLC
systems.

1.5.3 Frequency Shift Keying (FSK)

Frequency Shift Keying (FSK) encodes data by varying the frequency of the light signal
based on the transmitted information [7]. One key advantage of FSK is its resistance
to amplitude-related disturbances. However, achieving high data rates with FSK can
be challenging due to the inherently high frequency of light carriers. To optimize FSK
for high-speed data transmission, advanced modulation index techniques and adaptive
frequency shifts are being investigated.

1.5.4 Phase Shift Keying (PSK)

Phase Shift Keying (PSK) modifies the phase of the optical carrier signal to represent
digital information [7]. PSK is well-suited for high-speed data transmission, offering
efficient bandwidth utilization and enhanced resistance to certain types of environmental
interference. Ongoing research focuses on developing adaptive algorithms that improve
PSKs robustness against environmental distortions, ensuring stable VLC performance
across different conditions.
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Figure 1.9: On-Off Keying modulation [8].

1.5.5 On-Off Keying (OOK)

On-Off Keying (OOK) is a straightforward form of intensity modulation, where the light
source is switched on and off according to the binary data stream. While easy to imple-
ment, OOK has limitations in achieving high data rates and maintaining signal quality in
environments with strong ambient light. Despite these challenges, OOK remains a viable
choice for specific VLC applications. Recent research aims to enhance OOK by employing
adaptive pulse width strategies to improve data rates and counteract interference from
background light sources [8].

1.5.6 Pulse Width Modulation (PWM)

Pulse Width Modulation (PWM) encodes data by altering the duration of emitted light
pulses. This technique provides a balance between simplicity and data rate efficiency,
making it suitable for moderate- to high-speed VLC applications. Current advancements
in PWM focus on refining pulse width control mechanisms, incorporating adaptive al-
gorithms to dynamically adjust pulse durations based on environmental conditions for
optimal data transmission.

1.5.7 Orthogonal Frequency Division Multiplexing (OFDM)

Orthogonal Frequency Division Multiplexing (OFDM) is a sophisticated modulation tech-
nique widely adopted in VLC systems to support high-speed data transmission. By divid-
ing the data into multiple orthogonal subcarriers, OFDM enables parallel data transmis-
sion, mitigating channel fading effects and enhancing system resilience. Ongoing research
is directed toward optimizing subcarrier allocation strategies and improving synchroniza-
tion mechanisms to adapt OFDM to dynamic VLC environments, thereby increasing its
robustness and adaptability.
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1.6 Balancing Advantages and Challenges of VLC

VLC is emerging as a cutting-edge wireless communication technology, presenting a host
of benefits alongside certain inherent challenges. This section provides an in-depth exam-
ination of both the advantages and limitations of VLC, offering a comprehensive under-
standing of its potential and areas requiring further refinement.

1.6.1 Advantages of VLC

VLC offers several key advantages, including:

• Extensive Bandwidth Availability:

By utilizing the vast visible light spectrum, which spans from 380 to 780 THz, VLC
provides nearly 400 THz of available bandwidth [44]. This bandwidth is significantly
larger than that of traditional Radio Frequency (RF) communication, making VLC
an unregulated, globally accessible, and practically limitless solution for high-speed
data transmission.

• Health and Safety Compliance:

Unlike RF-based communication, which has raised concerns regarding potential
health risks, VLC relies solely on visible light, posing no known hazards to human
health. The use of LEDs for signal transmission enables high-power communication
without adverse biological effects, making it a safe and viable alternative to RF
systems [55].

• Interference-Free Operation in Sensitive Environments:

VLC is well-suited for deployment in settings where RF signals may interfere with
critical electronic systems, such as hospitals, aircraft, and industrial automation.
Since VLC does not generate electromagnetic interference, it can be safely integrated
into environments that are traditionally restricted for RF-based communications.

• Enhanced Security Against Eavesdropping:

A distinctive security feature of VLC stems from its reliance on visible light, which
cannot penetrate walls or opaque objects. This physical limitation naturally pre-
vents unauthorized interception of signals, making VLC particularly suitable for
applications that demand high-security data transmission.

• Cost-Effective Implementation:

The affordability of VLC arises from its ability to leverage existing LED light-
ing infrastructure. Since VLC transceivers primarily consist of LED emitters and
photo-diode receivers, system implementation costs are significantly lower compared
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to other wireless technologies. Furthermore, VLC operates within the unlicensed
spectrum, eliminating regulatory expenses.

• Eco-Friendly and Energy-Efficient Communication:

VLC aligns with global sustainability efforts by utilizing energy-efficient LED light-
ing for both illumination and data transmission. By re-purposing existing lighting
infrastructure, VLC reduces additional power consumption, contributing to energy
conservation and lower carbon emissions.

1.6.2 Challenges and Limitations of VLC

Despite its numerous benefits, VLC is subject to several limitations that must be addressed
to ensure widespread adoption and reliability [58], [59]:

• Interference and Background Noise:

The presence of ambient light sources, including sunlight and artificial illumination,
introduces interference and noise, which can degrade VLC performance. Effec-
tive interference mitigation techniques are crucial to maintaining a high Signal-to-
Interference-plus-Noise Ratio (SINR) at the receiver.

• Limitations on Optical Power:

To comply with safety regulations, VLC systems must adhere to optical power
constraints within the visible spectrum. Unlike infrared or ultraviolet light, which
have stricter power limitations, visible light emissions must also consider human
comfort, preventing excessive glare and ensuring acceptable illumination levels.

• Flicker and Human Perception Issues:

VLC systems that rely on intensity modulation may introduce flickering effects,
which can cause visual discomfort or nausea in extreme cases. Advanced modu-
lation techniques are required to smooth signal transitions and prevent noticeable
flickering, ensuring user comfort.

• Line-of-Sight (LOS) Dependency and Blockage Issues:

Since visible light cannot penetrate opaque objects, VLC performance is highly
dependent on maintaining a clear line-of-sight (LOS) between the transmitter and
receiver. Any obstruction between the communicating devices can lead to signal
degradation or complete transmission failure. Addressing this challenge requires
the integration of Non-Line-of-Sight (NLOS) techniques, such as optical reflections
or relay systems.
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Figure 1.10: Li-Fi Architecture [9].

While VLC presents significant opportunities for high-speed, secure, and cost-effective
wireless communication, overcoming these challenges is essential for its broader implemen-
tation across various applications. Continuous advancements in interference mitigation,
modulation techniques, and hybrid communication strategies will further enhance VLCs
feasibility and efficiency in real-world scenarios.

1.7 VLC Applications

VLC is a revolutionary technology with diverse applications across various domains. Its
ability to provide high-speed, secure, and interference-free wireless communication makes
it a promising alternative to traditional RF-based systems. This section explores the
major indoor and outdoor applications of VLC, highlighting its advantages in different
scenarios.

1.7.1 Indoor Applications

• Li-Fi (Light Fidelity) Optical Wi-Fi:

Li-Fi, a key application of VLC, utilizes visible light for high-speed wireless com-
munication, serving as an alternative to traditional Wi-Fi. By modulating light
frequencies from standard LED fixtures, Li-Fi enables multi-Gb/s data transmis-
sion to mobile terminals within short distances [9]. This innovation enhances data
security and reduces congestion in RF-based networks.

• Indoor Positioning and Navigation:

VLC offers high-precision indoor localization, overcoming the limitations of GPS
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in enclosed spaces such as shopping malls, airports, and hospitals. By leveraging
techniques such as received signal strength (RSS), time of flight (ToF), and trian-
gulation, VLC can achieve centimeter-level accuracy, making it highly valuable for
navigation in complex indoor environments [60].

• RF Spectrum Offloading:

The growing demand for wireless connectivity often leads to RF spectrum conges-
tion. VLC provides a complementary solution by offloading high-data-rate trans-
missions from traditional RF networks. Hybrid VLC-RF systems can efficiently
distribute data, reducing overall network load and improving performance in high-
density areas [49].

• Healthcare and Aviation Communication:

VLC’s electromagnetic interference-free (EMI-free) nature makes it ideal for envi-
ronments where RF signals can disrupt sensitive electronic equipment. In hospitals,
VLC can facilitate wireless communication for medical devices without interfer-
ing with critical healthcare equipment. Similarly, in aviation, VLC reduces cabling
complexity and weight, improving efficiency in aircraft communication systems [11].

• Hazardous and Industrial Environments:

In industrial settings such as petrochemical plants, mining operations, and military
applications, VLC provides a safe and reliable communication alternative. Unlike
RF, which can pose explosion risks in flammable environments, VLC ensures secure
data transmission using existing lighting infrastructure, making it a preferred choice
for such high-risk areas [11].

1.7.2 Outdoor Applications

VLC also demonstrates strong potential in outdoor environments, where RF communica-
tion may struggle due to interference, limited spectrum, or high attenuation.

• Underwater Optical Communication:

Traditional RF signals experience severe attenuation underwater, limiting their
range. VLC presents a viable alternative by utilizing visible light for short-range,
high-speed underwater communication. It enables communication between divers,
remotely operated underwater vehicles (ROVs), and underwater base stations, sig-
nificantly enhancing data transmission in marine applications [10].

• Smart City Infrastructure and IoT Connectivity:

VLC can play a crucial role in the development of smart cities by integrating with
public lighting systems. Streetlights equipped with VLC transmitters can function
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Figure 1.11: Underwater VLC applications [10].

Figure 1.12: Vehicular VLC (V-VLC) applications [11].

as data access points, providing public Wi-Fi, real-time environmental monitoring,
and intelligent traffic management. This integration enhances sustainability, energy
efficiency, and smart city connectivity [61].

• Intelligent Transportation Systems (ITS):

VLC contributes to vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I)
communication, improving road safety and traffic management. VLC-based ITS
applications enable features such as collision avoidance, adaptive traffic signals, and
pedestrian safety assistance. By leveraging traffic lights and vehicle headlights as
VLC transmitters, data exchange in real-time enhances driving conditions and re-
duces accidents [62].
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Figure 1.13: Visible Light Communications Applications [12].

The broad spectrum of VLC applications highlights its potential as a next-generation
wireless communication technology. Whether in controlled indoor settings or challenging
outdoor environments, VLC offers enhanced security, high-speed data transmission, and
interference-free connectivity. As research and development progress, VLC is expected to
revolutionize communication systems across various domains, driving the advancement of
smart cities, intelligent transportation, and industrial automation.

1.8 Conclusion

In this chapter, we provided a comprehensive overview of Visible Light Communica-
tion (VLC), an emerging wireless communication technology that utilizes Light Emitting
Diodes (LEDs) for data transmission. We discussed the key advantages of VLC over tradi-
tional Radio Frequency (RF) communication, including its extensive bandwidth availabil-
ity, improved security, energy efficiency, and immunity to electromagnetic interference.

We explored the historical progression of light-based communication, tracing its ori-
gins from early optical signaling techniques to the invention of Alexander Graham Bells
photo-phone. Despite the initial challenges faced by optical communication technologies,
modern advancements in LED technology have reignited interest in VLC, enabling sig-
nificant improvements in data transmission rates, modulation techniques, and real-world
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applications.
Furthermore, we examined the architecture of VLC systems, detailing the roles of

transmitters, receivers, and the optical wireless channel. Special emphasis was placed on
modulation techniques such as On-Off Keying (OOK), Pulse Width Modulation (PWM),
and Orthogonal Frequency Division Multiplexing (OFDM), each offering distinct advan-
tages for various VLC applications.

This chapter serves as the foundation for the subsequent sections of this thesis. The
following chapters will delve into the proposed optimization methodologies, their imple-
mentation, and performance evaluation. By addressing the challenges associated with
LED placement in VLC systems, this research aims to contribute to the development
of more efficient, scalable, and practical VLC deployment strategies for future wireless
communication networks.

38



CHAPTER 2

OPTIMIZATION ALGORITHMS

2.1 Introduction

Optimization is a fundamental discipline with applications spanning various fields, includ-
ing research, mathematics, computer science, management, and industrial engineering. It
is concerned with systematically identifying the most effective and efficient solution from
a range of feasible options for a given problem. As technological advancements continue
to introduce increasingly complex challenges, the demand for robust and efficient opti-
mization methods has grown significantly.

Optimization problems can be classified based on multiple criteria, including the na-
ture of decision variables, the presence of constraints, the number of objectives, and
computational complexity. These problems are typically categorized as continuous or dis-
crete, constrained or unconstrained, single-objective or multi-objective, and deterministic
or stochastic. Given this diversity, different optimization techniques have been developed
to address specific problem domains effectively.

A wide range of optimization algorithms has been proposed to tackle these challenges,
broadly classified into classical methods and Artificial Intelligence (AI)-based techniques.
Classical methods, such as gradient descent, linear programming, and quadratic pro-
gramming, have been widely used for structured optimization problems. However, their
efficiency tends to decline when dealing with highly complex, high-dimensional, or non-
convex problems. To address these limitations, AI-driven approachessuch as genetic algo-
rithms, particle swarm optimization, ant colony optimization, and neural networkshave
emerged as powerful alternatives. These techniques offer adaptive, flexible, and scalable
solutions, particularly in real-world applications where traditional methods may struggle.

In certain cases, hybrid optimization approaches that integrate classical and AI tech-
niques can further enhance performance by leveraging the strengths of both paradigms.
These hybrid models improve convergence speed, robustness, and accuracy, making them
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highly effective for solving large-scale and multi-objective optimization problems.
Given the critical role of optimization across various domains, this chapter provides

a comprehensive overview of optimization problems and their classification criteria. We
examine different types of optimization problems based on decision variables, objectives,
constraints, and computational complexity. Additionally, we explore various solution
methodologies, categorizing them into classical algorithms and AI-based techniques. A
clear understanding of these methodologies enables researchers and practitioners to make
informed decisions when selecting the most suitable optimization approach for their spe-
cific problem domains.

2.2 Optimization Problem

An optimization problem in computer science is defined as a task that requires solving
through specialized algorithms known as optimization algorithms. These algorithms eval-
uate various potential solutions within a defined search space and return the best possible
solution based on predefined criteria. Fundamentally, an optimization problem consists of
three key components: the search space, the objective function, and constraints. Mathe-
matically, an optimization problem is represented as follows [63]:

P = (D, f, C) (2.1)

where P denotes the optimization problem, D represents the search space of the problem
domain, f is the objective function, and C refers to the problem’s constraints.

The search space D consists of a set of decision variables that define the domain of
possible solutions. It is expressed as:

D = {X1, X2, . . . , Xn} (2.2)

where n represents the dimensionality of the problem domain.

2.2.1 Objective Function

The objective function is a mathematical representation of one or more objectives that
need to be optimized. Depending on the nature of the problem, these objectives may be
subject to constraints C. The objective function evaluates the quality of a given solution
and attempts to produce an optimal output based on the relationship between decision
variables in D. It is defined as follows [63]:

f : D −→ R

∀d ∈ D, f(d) = fitness(R)
(2.3)
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The objective function serves two primary purposes: first, to evaluate the quality
of potential solutions using Eq. (2.2), and second, to guide the search process towards
promising regions of the search space [64]. In the literature, optimization problems are
categorized into two types based on their objective functions:

1. Minimization Problem:
In a minimization problem, the objective function seeks to find the global minimum
solution, where the lowest fitness value corresponds to the best performance. It is
mathematically defined as follows:

Minimize f

∀d ∈ D, f(d) ≤ f(d)
(2.4)

2. Maximization Problem:
In a maximization problem, the goal is to find the global maximum solution, where
the highest fitness value represents the best performance. It is defined as follows:

Maximize f

∀d ∈ D, f(d) ≥ f(d)
(2.5)

2.3 Classification of Optimization Problems

Optimization problems can be categorized based on various factors, including the type of
decision variables, the number of objectives, the presence of constraints, and computa-
tional complexity. This classification aids in selecting the most appropriate optimization
technique for solving a given problem effectively.

2.3.1 Classification Based on Decision Variable Type

In an optimization problem, decision variables represent a set of unknown and control-
lable parameters that belong to a defined domain. Optimization algorithms adjust these
variables to achieve the best possible outcome for the objective function. Based on their
nature, decision variables can be classified into three types:

2.3.1.1 Quantitative Variables

Quantitative variables are numerical in nature and can be further divided into:

1. Continuous numerical variables: These variables can take any value within a
given range in the real number domain R, forming an uncountable set of values.

2. Discrete numerical variables: Discrete variables have a countable set of possible
values, typically taking on integer values within a defined range.
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Figure 2.1: Classification of optimization problems

3. Mixed numerical variables: These variables combine both continuous and dis-
crete numerical values, often used in hybrid optimization problems.

2.3.1.2 Qualitative Variables

Qualitative variables, unlike quantitative ones, do not take numerical values. Instead,
they are represented by labels or categories. They can be classified into:

1. Categorical and ordinal variables: These variables have an inherent order
among their categories, meaning the sequence of values holds significance.

2. Categorical and nominal variables: In contrast, nominal categorical variables
lack any meaningful order or hierarchy among their values.

2.3.1.3 Mixed Variables

Mixed (or hybrid) variables contain both quantitative and qualitative components. They
are commonly encountered in real-world optimization problems such as the Traveling
Salesman Problem (TSP), where both numerical and categorical decision-making is re-
quired.
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2.3.2 Classification Based on the Number of Objectives

Depending on the number of objectives to be optimized, an optimization problem can be
classified into one of two categories:

2.3.2.1 Single-Objective Optimization

A single-objective optimization (SO) problem focuses on optimizing a single criterion or
an aggregate function that combines multiple criteria into one. This type of optimization
is straightforward in terms of determining the best solution, as it is simply the one with
the most favorable fitness value. However, SO problems often fail to provide trade-off
solutions for competing objectives.

2.3.2.2 Multi-Objective Optimization

Multi-objective optimization (MO) involves optimizing two or more conflicting objectives
simultaneously [65]. Unlike SO problems, MO problems do not yield a single best solution
but instead produce a set of trade-off solutions known as Pareto-optimal solutions. These
solutions represent the best possible compromises among conflicting objectives.

2.3.3 Classification Based on Constraints

Constraints define the limitations and feasibility conditions of an optimization problem.
Based on the presence and nature of constraints, optimization problems can be categorized
into:

2.3.3.1 Unconstrained Optimization

Unconstrained optimization involves optimizing an objective function without any restric-
tions on the variables. In some cases, constrained optimization problems are transformed
into unconstrained problems by incorporating penalty terms into the objective function.
This technique allows constrained problems to be solved using unconstrained optimization
methods.

2.3.3.2 Constrained Optimization

In constrained optimization, the objective function is optimized while satisfying a set of
predefined constraints. These constraints can be classified as:

• Hard constraints: Constraints that must be strictly satisfied. If a solution violates
a hard constraint, it is discarded.
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• Soft constraints: Constraints that are desirable but not mandatory. If a solution
does not satisfy a soft constraint, it is still accepted but may result in suboptimal
performance.

2.3.4 Classification Based on Computational Complexity

Another criterion for classifying optimization problems is computational complexity, which
refers to the time and resources required by an algorithm to find a solution. It also reflects
the difficulty of solving the problem. Based on complexity, optimization problems can be
categorized into the following classes:

2.3.4.1 P Problems

Polynomial-time (P) problems are those that can be efficiently solved using deterministic
algorithms within polynomial time. These problems are considered tractable.

2.3.4.2 NP Problems

Non-deterministic Polynomial-time (NP) problems form a larger class that includes prob-
lems for which a solution can be verified in polynomial time, even if finding the solution
may not necessarily be efficient.

2.3.4.3 NP-Hard Problems

NP-hard problems are problems as difficult as the hardest NP problems. A problem
is classified as NP-hard if an NP-complete problem can be reduced to it in polynomial
time. Some NP-hard problems can be solved in polynomial time, but in general, they are
computationally challenging.

2.3.4.4 NP-Complete Problems

NP-complete problems belong to both the NP and NP-hard categories. These problems
are among the most difficult in the NP class, as no polynomial-time algorithm has been
found to solve them efficiently. However, their solutions can still be verified in polynomial
time.

2.4 Main methods for tackling optimization Prob-
lems

The main methods for tackling optimization problems can be categorized based on their
search techniques into three main groups: Enumerative, Deterministic, and Stochas-
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Figure 2.2: Classification of optimization problems based on computational complexity.
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tic Methods.

2.4.1 Enumerative Methods

Enumerative methods systematically evaluate all possible solutions within the search
space. While this approach ensures that the optimal solution is identified, it is com-
putationally expensive and impractical for large-scale problems due to the exponential
growth of the search space [66].

2.4.2 Deterministic Methods

Deterministic methods rely on gradients or derivatives to guide the optimization process.
Some widely used deterministic techniques include:

• Greedy algorithms

• Hill Climbing methods

• Branch and Bound

• Depth-First Search (DFS) and Breadth-First Search (BFS)

• Best-First Search

• Calculation-based approaches [67,68].

However, as highlighted by Parkinson et al. [66] and Coello et al. [69], deterministic
methods struggle with the following types of optimization problems:

• Problems with discrete decision variables.

• High-dimensional search spaces.

• Presence of multiple local optima (multimodal functions).

• Non-differentiable objective functions and constraints.

• Discontinuous functions or fragmented feasible regions.

• Cases where evaluation programs may crash for some design configurations.

Given these limitations, both enumerative and deterministic approaches are generally
unsuitable for solving real-world and engineering-related MOPs. Consequently, they will
not be further discussed in this thesis.
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2.4.3 Stochastic Methods

Stochastic optimization techniques have demonstrated significant success in solving com-
plex MOPs, primarily due to advancements in computational power and processing capa-
bilities. These methods initiate the optimization process with a randomly generated set
of candidate solutions and iteratively refine them over multiple iterations [70].

Most stochastic algorithms used for multi-objective optimization are inspired by nat-
ural phenomena and are commonly referred to as meta-heuristics. These algorithms
are typically classified into four categories based on their source of inspiration:

• Evolutionary-based algorithms.

• Physics-based algorithms.

• Human behavior-inspired algorithms.

• Swarm intelligence-based algorithms [71].

Yang [72] further categorizes meta-heuristics based on their search strategies into trajectory-
based and population-based approaches.

While numerous meta-heuristics exist for solving single-objective optimization prob-
lems, only a subset of them have been successfully adapted to handle multi-objective
optimization problems.

2.5 Optimization Problem Algorithms

Over the years, numerous algorithms have been developed to tackle optimization problems
efficiently. These algorithms differ in their approaches to searching for optimal solutions,
and based on their nature and methodology, they can be broadly categorized into two main
groups: classical algorithms and Artificial Intelligence (AI) based approaches,
as illustrated in Figure 2.3.

2.5.1 Classical Algorithms (Exact Approaches)

Classical algorithms represent the earliest methods introduced in the literature for solv-
ing optimization problems. Also known as exact approaches, these algorithms are highly
efficient in finding precise solutions. However, when applied to large-scale or complex
problems, classical methods can become computationally expensive, often requiring ex-
cessive processing time to reach an optimal solution. Table 2.1 presents a summary of
well-known classical optimization algorithms along with their classifications.
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Figure 2.3: Classification of Optimization Algorithms

Categories of classical algorithms :

Search-Based Algorithms that explore all or a large portion of the solution space using
exhaustive or blind search techniques. While simple and general, they are compu-
tationally expensive and often impractical for large-scale problems.

Tree-Based Algorithms that represent the problem as a decision tree and explore branches
selectively, often using pruning strategies to reduce the search space.

Recursive/Deterministic Methods that solve problems by breaking them into over-
lapping subproblems and solving them recursively with deterministic strategies.

Mathematical Traditional optimization methods grounded in mathematical program-
ming. These include linear, nonlinear, integer, and quadratic programming, suitable
for problems that can be formulated with mathematical constraints and objective
functions.
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Constraint-Based Methods that focus on satisfying constraints rather than optimizing
an explicit objective. Constraint Programming is commonly used in scheduling and
combinatorial problems.

Convex Optimization A subclass of mathematical optimization where the objective
and constraints form a convex set, enabling efficient identification of globally optimal
solutions.

Geometric Programming A type of mathematical programming suitable for problems
involving posynomial functions. Commonly applied in engineering design and re-
source allocation tasks.

Table 2.1: Classical Optimization Algorithms

Acronym Category Full Name Reference
BF Search-Based Brute Force

Search
Cormen et al. (2009)

BnB Tree-Based Branch and
Bound

Land & Doig (1960)

BnC Tree-Based Branch and
Cut

Padberg & Rinaldi (1991)

DP Recursive/Deterministic Dynamic Pro-
gramming

Bellman (1957)

ILP Mathematical Integer Linear
Programming

Wolsey (1998)

MILP Mathematical Mixed-Integer
Linear Pro-
gramming

Nemhauser & Wolsey (1988)

LP Mathematical Linear Pro-
gramming

Dantzig (1947)

NLP Mathematical Nonlinear
Programming

Bazaraa et al. (2006)

QP Mathematical Quadratic
Programming

Gould et al. (1999)

CP Constraint-Based Constraint
Programming

Tsang (1993)

SOCP Convex Optimization Second-Order
Cone Pro-
gramming

Alizadeh & Goldfarb (2003)

SDP Convex Optimization Semidefinite
Programming

Vandenberghe & Boyd (1996)

DPG Geometric Programming Geometric
Programming

Duffin et al. (1967)
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2.5.2 Artificial Intelligence Algorithms

In addition to classical approaches, Artificial Intelligence (AI)-based or approximate algo-
rithms have been widely adopted for solving optimization problems. These methods were
primarily developed to overcome the limitations of exact algorithms, particularly their
scalability issues. AI-based approaches offer advantages such as flexibility, cost-efficiency,
and faster solution generation. However, their primary drawback is that they do not
always guarantee an exact optimal solution. AI-based optimization methods are further
divided into two main subcategories: heuristic algorithms and meta-heuristic algorithms.

2.5.2.1 Heuristic Algorithms

Heuristic algorithms are approximate techniques that utilize problem-specific knowledge
or rules of thumb to find near-optimal solutions. Unlike general-purpose optimization
methods, heuristics are typically tailored to the structure of a particular problem, which
can limit their flexibility across diverse problem domains.

These algorithms are valued for their speed and simplicity, often producing good-
quality solutions within reasonable computational time. However, they generally do not
guarantee optimality and may perform poorly on large or highly complex problems. As
such, their applicability is often best suited to small or medium-scale scenarios.

Common examples of heuristic algorithms include the A-Star (A*) algorithm and
the Greedy algorithm, both widely used in pathfinding and search problems.

Table 2.2 summarizes several well-known heuristic algorithms used in optimization
and search.

Table 2.2: Heuristic Algorithms

Acronym Full Name Reference
A* A-Star Algorithm Hart et al. (1968)
Greedy Greedy Algorithm Cormen et al. (2009)
Hill Climbing Hill Climbing Algorithm Russell & Norvig (2010)
BestFS Best-First Search Pearl (1984)
Beam Search Beam Search Lowerre (1976)

2.5.2.2 Meta-Heuristic Algorithms

Meta-heuristic algorithms are among the most widely used methods for solving optimiza-
tion problems due to their efficiency, adaptability, and problem-independence. These
algorithms balance exploration and exploitation, allowing them to find near-optimal solu-
tions within a feasible time frame. However, similar to heuristics, they do not guarantee
finding the exact optimal solution. Based on their search behavior, meta-heuristics can
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be classified into two categories: single-solution-based and population-based algo-
rithms.

1. Single-Solution-Based Algorithms

Single-solution-based meta-heuristics, also known as trajectory-based algorithms,
generate and iteratively improve a single candidate solution throughout the opti-
mization process [73]. These algorithms rely on neighborhood search mechanisms,
where an initial solution is gradually refined through local modifications. They are
particularly effective for problems where local search is computationally feasible and
can lead to high-quality results.

Table 2.3 summarizes widely used single-solution-based meta-heuristics along with
their references.

Table 2.3: Single-Solution-Based Meta-Heuristics

Acronym Full Name Reference
SA Simulated Annealing Kirkpatrick et al. (1983)
TS Tabu Search Glover (1986)
HC Hill Climbing Russell & Norvig (2010)
GLS Guided Local Search Voudouris & Tsang (1999)
ILS Iterated Local Search Lourenço et al. (2003)

RVND Random Variable Neighborhood Descent Mladenovi & Hansen (1997)
VND Variable Neighborhood Descent Hansen & Mladenovi (2001)

LAHC Late Acceptance Hill Climbing Burke & Bykov (2008)
RLS Randomized Local Search Hoos & Stützle (2004)

2. Population-Based Algorithms

Unlike single-solution-based methods, population-based meta-heuristics operate on
a set of candidate solutions (a population) rather than a single solution. These
algorithms simulate natural or social behaviors to explore and exploit the search
space effectively. Population-based approaches can be further divided into four
main categories as like summarized in table 2.4:

(a) Evolutionary-Based Algorithms
Evolutionary algorithms are inspired by natural evolution principles, such
as Darwinian selection, crossover, and mutation. These methods iteratively
evolve a population of solutions by applying genetic operations to improve
fitness over successive generations.

(b) Swarm Intelligence-Based Algorithms
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Table 2.4: Population-Based Meta-Heuristic Algorithms

Acronym Full Name Reference
Evolutionary-Based Algorithms

GA Genetic Algorithm Holland (1975)
DE Differential Evolution Storn & Price (1997)
ES Evolution Strategy Rechenberg (1973)

BBO Biogeography-Based Optimization Simon (2008)
Swarm Intelligence-Based Algorithms

PSO Particle Swarm Optimization Kennedy & Eberhart (1995)
ACO Ant Colony Optimization Dorigo & Gambardella (1997)
ABC Artificial Bee Colony Karaboga (2005)
GSO Glowworm Swarm Optimization Krishnanand & Ghose (2009)
GWO Grey Wolf Optimization Mirjalili et al. (2014)

FA Firefly Algorithm Yang (2008)
MPA Marine Predator Algorithm Faramarzi et al. (2020)
AO Aquila Optimizer Abualigah et al. (2021)

Physics-Based Algorithms
AEFA Artificial Electric Field Algorithm Abdel-Basset et al. (2020)
GSA Gravitational Search Algorithm Rashedi et al. (2009)
MVO Multi-Verse Optimizer Mirjalili et al. (2016)
HGSO Henry Gas Solubility Optimization Hashim et al. (2019)
AOA Arithmetic Optimization Algorithm Abualigah et al. (2021)

Human-Based Algorithms
TLBO Teaching-Learning-Based Optimization Rao et al. (2011)

HS Harmony Search Geem et al. (2001)
DTBO Driving Training-Based Optimization Ibrahim et al. (2021)
EMA Exchange Market Algorithm García-Borroto et al. (2014)
LCA League Championship Algorithm Rahimian et al. (2014)
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Swarm Intelligence (SI) algorithms mimic the collective behavior of social or-
ganisms such as insects, birds, and fish. These methods utilize decentralized
interactions among individuals to explore the search space efficiently.

(c) Physics-Based Algorithms
Physics-based meta-heuristics draw inspiration from natural physical phenom-
ena and laws, such as gravitational forces, thermodynamics, and electromag-
netic interactions. These methods simulate physical processes to optimize so-
lutions.

(d) Human-Based Algorithms
Unlike the previously mentioned categories, human-based meta-heuristics are
inspired by human behavior, decision-making processes, and learning mech-
anisms rather than natural phenomena. These algorithms model social and
cognitive interactions to enhance optimization performance.

In conclusion, optimization algorithms provide a diverse range of methodologies for
solving complex optimization problems. Classical approaches offer precise solutions but
struggle with scalability, whereas AI-based techniques, particularly meta-heuristics, offer
greater flexibility and efficiency. Understanding the different categories of optimization
algorithms helps in selecting the most suitable method for a given problem, ensuring
optimal performance in real-world applications.

2.6 Multi-Objective Optimization Problems (MOPs)

Optimization problems that require optimizing more than one objective simultaneously
are referred to as Multi-Objective Optimization Problems (MOPs). These problems yield
multiple optimal solutions rather than a single one [74].

Solving an MOP involves determining a decision variable vector x = {x1, x2, . . . , xn}
(decision space) that optimizes a vector of objective functions:

f(x) = {f1(x), f2(x), . . . , fn(x)}

2.6.1 Objective function space

While satisfying a set of constraints, which may include equality constraints hi(x) or
inequality constraints gi(x). The feasible solution space is bounded by the limits xmin
and xmax, which define the search space for each decision variable [75].

The general mathematical formulation of an MOP is expressed in Eq. (2.6) [76]:
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Figure 2.4: Regions of a design problem with two-variable and two objective functions [13]

min f(x) = {f1(x), f2(x), . . . , fn(x)},

subject to: hi(x) = 0, i = 1, 2, . . . , p,

gi(x) ≤ 0, i = 1, 2, . . . , q,

xmin ≤ x ≤ xmax.

(2.6)

2.6.2 Pareto-Optimality in MOPs

Unlike single-objective optimization, where an absolute optimal solution exists, MOPs
result in a set of optimal solutions known as Pareto-optimal solutions. According to
Rao [77], a solution X is Pareto-optimal if there is no other feasible solution Y such that:

fi(Y) ≤ fi(X), ∀i = 1, 2, . . . , k,

with at least one strict inequality for some objective function j, meaning:

fj(Y) < fj(X).

This means that no feasible solution can improve one objective without deteriorating
another, leading to a trade-off situation.

A commonly used approach to evaluate solutions in MOPs is the Pareto Dominance
Relationship, which does not aim to find a single best solution but rather identifies
a diverse set of non-dominated solutions forming the Pareto Front (PF) [66]. Each
solution on the Pareto front represents an optimal trade-off, and the final selection depends
on the decision-maker’s preference.

Figures 2.4 and 2.4 illustrates the difference between the decision variable space and
the objective function space, and and True Pareto front, highlighting non-dominated
solutions (Pareto-optimal solutions) in blue.
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Figure 2.5: Non-dominated solutions and True Pareto front [13]

2.6.3 Characteristics of Pareto Fronts

The process of finding Pareto-optimal solutions is iterative, refining an initial approxi-
mation of the Pareto front over successive generations. Depending on the nature of the
optimization problem, Pareto fronts can be continuous or discontinuous (discon-
nected), convex or concave [78].

A multi-objective optimization problem is considered convex if both the feasible re-
gion and the objective functions are convex, leading to a convex Pareto front. If either the
feasible region or one of the objectives is non-convex, the problem is considered concave,
which may result in a Pareto front that is concave or even disconnected.

Not all regions of the objective function space are feasible; certain areas may contain
no solutions due to inherent constraints, causing discontinuities in the Pareto front [66].
Figures 2.4,2.5 visually represents these discontinuities.

2.6.4 Essential Aspects of Multi-Objective Optimization

In single-objective optimization, the performance of meta-heuristic algorithms de-
pends on their ability to balance exploration (avoiding local optima) and exploitation
(refining known solutions) [79].

In multi-objective optimization, however, additional considerations come into play.
A good multi-objective optimization algorithm must ensure:

1. Precision (convergence): The solutions should be as close as possible to the true
Pareto front.
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2. Diversity (coverage): The solutions should be well-distributed across the Pareto
front.

This ensures that decision-makers have a broad range of trade-offs to choose from.
Figures 2.4,2.5 illustrates these two essential properties in a Pareto front.

2.7 Key Approaches to Multi-Objective Problems

Several methodologies have been proposed to tackle Multi-Objective Problems (MOPs).
These approaches are generally categorized based on when the decision maker (DM)
provides their preferences during the optimization process as summarizing in the table
2.5. The four main categories include: no preference methods, a priori methods,
interactive methods, and a posteriori methods [80].

2.7.1 No Preference Methods

No preference methods operate without requiring input from the DM. These techniques
identify a single optimal solution that is typically positioned as close as possible to the
ideal point.

2.7.1.1 Global Criterion Method

The ideal point, also known as the utopia solution, consists of the best achievable value
for each objective function when optimized separately. This is mathematically represented
in Eqs. (2.7) and (2.8) [66]:

f 0
i (x0i) = min fi(x) (2.7)

f 0 = [f 0
1 , f

0
2 , . . . , f

0
k ]T (2.8)

Conversely, the Nadir point represents the worst values obtained for each objective
function when optimized separately.

The optimal solution in this approach is given by:

Lp = min
(

k∑
i=1
|fi(x)− f 0

i |
)1/p

(2.9)

where fi(x) represents the objective function values, and p determines the distance
metric. Common choices include 1 (Manhattan), 2 (Euclidean), or ∞ (Chebyshev).

The main limitation of this method is its focus on a single solution, potentially ignoring
other Pareto-optimal alternatives.
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2.7.2 A Priori Preference Methods

A priori methods require the DM to specify preferences before the optimization begins.
Limitations include:

• Potential misjudgment of objectives due to incomplete understanding [81].

• Requirement for multiple runs to capture the full Pareto front.

• Risk of missing non-obvious trade-off solutions [82].

2.7.2.1 Lexicographic Method

Objectives are prioritized. Optimization begins with the highest priority and continues
sequentially [83].

2.7.2.2 Goal Programming

This method minimizes the deviation from pre-set targets [84]:

min
k∑
i=1
|fi(x)− Ti| (2.10)

Additional methods: Min-Max Optimization [85], Multi-Attribute Utility Theory [86],
ELECTRE [87], PROMETHEE [88].

2.7.3 Interactive Preference Methods

Interactive methods iteratively refine DM preferences [89,90]:

1. Generate non-dominated solutions.

2. Get feedback from DM and adjust weights.

3. Repeat until satisfactory results are achieved [80].

Examples: PROTRADE, STEP, SMP, ISWT, GDF, SPOT, Tchebycheff Method,
Reference Point Method [66].

2.7.4 A Posteriori Preference Methods

These methods generate a broad set of Pareto-optimal solutions for post-optimization
selection. They are widely adopted due to their comprehensiveness [70,91].
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2.7.4.1 Weighting Method

Transforms the problem using weighted sums:

min
k∑
i=1

wifi(x) (2.11)

Weights wi must satisfy ∑wi = 1. This method struggles with non-convex fronts.

2.7.4.2 ϵ-Constraint Method

Optimizes one objective while treating others as constraints [92]:

minimize fl(x)

subject to fj(x) ≤ ϵj, j ̸= l
(2.12)

2.7.4.3 Normal Boundary Intersection (NBI)

Improves solution spread along the Pareto front [78]:

max
(x)

D s.t. Φw +Dη = F (x) (2.13)

2.7.4.4 TOPSIS

Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS): Ranks solu-
tions by proximity to ideal and distance from worst case [93]:

Pi = S−
i

S+
i + S−

i

(2.14)

where S+
i and S−

i are Euclidean distances from the ideal and worst solutions.
Each preference method brings unique benefits. Choosing the right one depends on when
decision input is available and the complexity of the objectives involved.

Table 2.5: Classification of MOO Approaches Based on Preference Timing
Category Decision Timing Representative Methods
No Preference Before Optimization Global Criterion Method
A Priori Before Optimization Lexicographic Method, Goal Programming,

Min-Max Optimization, Utility Theory, ELEC-
TRE, PROMETHEE

Interactive During Optimization Reference Point Method, Surrogate Worth
Trade-Off, STEP Method, SMP, ISWT, GDF,
Tchebycheff Method )

A Posteriori After Optimization Weighting Method, ϵ-Constraint Method, NBI,
TOPSIS
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2.8 Multi-Objective Optimization Algorithms

Multi-objective optimization (MOO) problems often require specialized algorithms capa-
ble of producing a diverse set of trade-off solutions. These algorithms are designed to find
non-dominated (Pareto-optimal) solutions that balance conflicting objectives. Over the
years, a wide range of meta-heuristic algorithms have been adapted or developed specifi-
cally for this purpose. These can be broadly classified into several categories: evolutionary
algorithms, swarm-based algorithms, trajectory-based algorithms, immune-inspired meth-
ods, deterministic approaches, and nature-inspired algorithms.

2.8.1 Evolutionary Algorithms

Evolutionary Algorithms (EAs) are among the earliest and most widely used meta-
heuristics for MOO. They simulate natural selection using operators such as selection,
crossover, and mutation to evolve a population of candidate solutions. Notable examples
include:

• SPEA – Strength Pareto Evolutionary Algorithm [?]

• NSGA-II – Non-dominated Sorting Genetic Algorithm II [94]

• MOEA/D – Multi-Objective Evolutionary Algorithm based on Decomposition [?]

• PAES – Pareto Archived Evolution Strategy [?]

• VEGA – Vector Evaluated Genetic Algorithm [95]

These algorithms are favored for their ability to maintain solution diversity and gen-
erate Pareto fronts in a single run.

2.8.2 Swarm-Based Algorithms

Swarm-based algorithms are inspired by the collective behavior of social organisms. They
are decentralized and use population-based heuristics. Popular examples include:

• MOPSO – Multi-Objective Particle Swarm Optimization [96]

• MOAQ – Multi-Objective Ant-Q [97]

• MOGWO – Multi-Objective Grey Wolf Optimizer [?]

• MOALO – Multi-Objective Ant Lion Optimization [70]

• MOSOA – Multi-Objective Seagull Optimization Algorithm [98]
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2.8.3 Trajectory-Based Algorithms

These algorithms explore the search space through a single candidate solution and itera-
tively refine it. Well-known trajectory-based methods for MOO include:

• SAMO – Simulated Annealing for Multi-Objective Optimization [99]

• MOTS – Multi-Objective Tabu Search [100]

2.8.4 Immune-Inspired Algorithms

Inspired by biological immune systems, these algorithms are known for their diversity
preservation. An example is:

• AIS – Artificial Immune Systems [101]

2.8.5 Nature-Inspired Algorithms

These draw from natural phenomena beyond traditional biology, such as light propagation
or plant behavior. Examples include:

• MOSFO – Multi-Objective Sunflower Optimization [102]

• MO-SCA – Multi-Objective Sine-Cosine Algorithm [103]

• MOGOA – Multi-Objective Grasshopper Optimization Algorithm [70]

2.8.6 Deterministic Approaches

These methods transform the multi-objective problem into a single-objective problem or
use systematic decision-making rules. Key methods include:

• NBI – Normal Boundary Intersection [78]

• E-Constraint – ϵ-Constraint Method [92]

• Weighting – Weighting Method [93]

A comprehensive comparison of these algorithms is presented in Table 2.6, classifying
them by their underlying inspiration and strategy.

Table 2.8 highlights the trade-offs between convergence, diversity, and computational
complexity across various multi-objective optimization algorithms. Evolutionary algo-
rithms such as NSGA-II and MOEA/D demonstrate strong convergence capabilities and
balanced diversity, making them suitable for a wide range of applications. Swarm-based
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methods like MOALO and MOPSO offer competitive performance with lower computa-
tional overhead, making them practical for time-sensitive problems. Deterministic meth-
ods like NBI are effective in convergence but often lack diversity, which can limit their ex-
ploratory capabilities. In contrast, simpler techniques such as the weighting method may
be computationally efficient but are generally unsuitable for capturing complex Pareto
fronts. These comparisons emphasize the need to align algorithm choice with problem-
specific requirements, including dimensionality, objective interaction, and runtime con-
straints.

2.9 Conclusion

This chapter presented an extensive discussion on optimization problems, emphasizing
their fundamental mathematical formulations, essential properties, and classification cri-
teria. We analyzed various aspects that characterize optimization problems, including
the nature of decision variables, the number of objectives, constraints, and computational
complexity. Furthermore, we explored different solution strategies, contrasting classical
optimization methods with modern AI-based techniques, while highlighting their respec-
tive strengths and weaknesses.

A clear understanding of these optimization methodologies is crucial for addressing
real-world challenges, as selecting an appropriate approach significantly influences the
quality of the solution and computational feasibility. The concepts and classifications
outlined in this chapter provide a strong theoretical foundation for solving complex opti-
mization problems effectively.

In the subsequent chapter, we will shift our focus to the LED placement problem
in indoor VLC systems. We will examine its core objectives, associated constraints,
and optimization difficulties. Additionally, we will review existing optimization methods
applied in the literature, offering a critical perspective that will guide the development of
our proposed solutions.
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Table 2.6: Multi-Objective Optimization Algorithms
Acronym Category Full Name Reference
Evolutionary Algorithms

SPEA Evolutionary Strength Pareto Evo-
lutionary Algorithm

Zitzler & Thiele (1999)

NSGA-II Evolutionary Non-dominated Sort-
ing Genetic Algorithm
II

Deb et al. (2002)

MOEA/D Evolutionary Multi-Objective Evo-
lutionary Algorithm
based on Decomposi-
tion

Zhang & Li (2007)

PAES Evolutionary Pareto Archived Evo-
lution Strategy

Knowles & Corne (2000)

VEGA Evolutionary Vector Evaluated Ge-
netic Algorithm

Schaffer (1985)

Swarm-Based Algorithms
MOPSO Swarm-Based Multi-Objective

Particle Swarm Opti-
mization

Mostaghim & Teich (2003)

AWPSO Swarm-Based Adaptive Weighted
Particle Swarm Opti-
mization

Mahfouf et al. (2004)

MOAQ Swarm-Based Multi-Objective Ant-
Q

Mariano et al. (1999)

MOALO Swarm-Based Multi-Objective Ant
Lion Optimization

Mirjalili (2018)

MOGWO Swarm-Based Multi-Objective Grey
Wolf Optimizer

Mirjalili et al. (2014)

MOSOA Swarm-Based Multi-Objective Seag-
ull Optimization Al-
gorithm

Dhiman (2021)

Trajectory-Based Algorithms
SAMO Trajectory-Based Simulated Annealing

for Multi-Objective
Optimization

Serafini (1994)

MOTS Trajectory-Based Multi-Objective Tabu
Search

Gandibleux & Freville (1997)
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Table 2.7: Multi-Objective Optimization Algorithms
Acronym Category Full Name Reference

Immune-Based Algorithms
AIS Immune-Based Artificial Immune Systems Coello Coello (2005)

Nature-Inspired Algorithms
MOSFO Nature-Inspired Multi-Objective Sunflower

Optimization
Pereira et al. (2022)

MO-SCA Nature-Inspired Multi-Objective Sine-
Cosine Algorithm

Tawhid et al. (2019)

MOGOA Nature-Inspired Multi-Objective
Grasshopper Optimiza-
tion Algorithm

Mirjalili (2018)

Deterministic Methods
NBI Deterministic Normal Boundary Inter-

section
Das & Dennis (1998)

E-Constraint Deterministic ϵ-Constraint Method Haimes et al. (1971)
Weighting Deterministic Weighting Method Hwang & Masud (1979)

Table 2.8: Comparison of Multi-Objective Optimization Algorithms
Algorithm Category Convergence Diversity Complexity
NSGA-II Evolutionary High Good Medium
MOEA/D Evolutionary High Moderate Medium
SPEA Evolutionary Moderate Moderate Medium
PAES Evolutionary Moderate High Low
MOPSO Swarm-Based Good Good Low
MOAQ Swarm-Based Good Moderate Medium
MOALO Swarm-Based High High Medium
SAMO Trajectory-Based Low Low Low
MOTS Trajectory-Based Moderate Moderate Medium
AIS Immune-Based Moderate High Medium
NBI Deterministic High Low High
Weighting Deterministic Low Low Low
E-Constraint Deterministic Moderate Low Medium
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CHAPTER 3

AN IMPROVED APPROACH FOR SOLVING THE LEDS
PLACEMENT PROBLEM IN INDOOR VLC SYSTEM

3.1 Introduction

Optimizing LED placement in indoor Visible Light Communication (VLC) systems is a
crucial challenge that significantly influences network performance, particularly in terms
of coverage and throughput. The efficiency of VLC networks relies on the strategic deploy-
ment of LEDs to ensure uniform illumination while maximizing data transmission rates.
However, due to the NP-hard nature of this problem, finding an optimal solution within
a reasonable computational time-frame remains a complex task. Meta-heuristic methods
often struggle with scalability and convergence efficiency when applied to large-scale VLC
optimization problems.

To tackle these challenges, this chapter explores the application of enhanced meta-
heuristic algorithms, specifically the Enhanced Whale Optimization Algorithm (EWOA).
This advanced optimization technique integrates chaotic maps [104,105] and Opposition-
Based Learning (OBL) [106] to improve the exploration and exploitation capability,
thereby enhancing search efficiency and accelerating convergence speed.

This chapter begins by detailing the LEDs Placement Problem in Indoor VLC Sys-
tems, and the advanced optimization techniques used in EWOA, emphasizing their mod-
ifications and improvements over standard meta-heuristic method. We then discuss their
application to the LED placement problem, demonstrating how this method optimizes
network coverage and throughput. Finally, we present simulation results, analyzing the
impact of varying the number of LEDs and users, and provide a comparative evaluation
against state-of-the-art optimization algorithms.
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3.2 LEDs Placement Problem in Indoor VLC System

Visible Light Communication (VLC) is an emerging wireless technology that employs
Light Emitting Diodes (LEDs) as both illumination sources and data transmitters. As an
alternative to traditional Radio Frequency (RF) communication, VLC provides several
advantages, including high-speed data transfer, enhanced security, and energy efficiency.
These attributes make VLC particularly beneficial for indoor environments, such as res-
idences, offices, and public facilities, where optimized system performance is essential.
However, the strategic placement of LEDs significantly influences the overall efficiency
and reliability of VLC systems.

The arrangement of LEDs directly impacts key performance metrics, including signal
strength, coverage area, and data transmission rates. Factors such as room dimensions,
obstacles, and user movement introduce additional challenges such as interference, shad-
owing, and uneven signal distribution. To achieve a balance between providing sufficient
illumination and ensuring robust data transmission, precise LED placement is required.

An effective LED placement strategy aims to maximize uniform illumination, enhance
signal coverage, and minimize interference and dead zones. Improper placement can
lead to uneven illumination, signal degradation, and reduced communication efficiency.
Therefore, optimizing LED positioning requires mathematical modeling and optimization
techniques that account for variables such as ceiling height, room layout, and user mobil-
ity. Utilizing such methodologies allows engineers to improve VLC system performance,
mitigating signal disruptions due to reflections, shadows, and interference.

The study of LED placement strategies is critical in the development of high-performance
VLC systems. Researchers leverage advanced optimization models that consider spa-
tial constraints, lighting requirements, and communication parameters to ensure an op-
timal trade-off between illumination and data transmission. As VLC technology pro-
gresses, further refinements in LED placement techniques will be necessary to achieve
high-throughput, interference-free, and energy-efficient communication in diverse indoor
settings.

3.2.1 System Model

We consider a standard indoor VLC system, represented as V , which operates within an
empty conference room with dimensions D × W × H, as depicted in Figure 3.1. The
room is equipped with multiple LEDs, serving as access points, and randomly distributed
receiving users equipped with photo-detectors (PDs).

• L represents a set of N LEDs, defined as L = {L1, L2, . . . , LN}, positioned on the
ceiling at locations (xi, yi, zi), where i ∈ (1, 2, 3, ...N).
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• U denotes a set of M users, represented as U = {U1, U2, . . . , UM}, where each user
is equipped with a PD acting as a wireless receiver.

Figure 3.1: Indoor VLC Room Model

3.2.1.1 Channel Model

LEDs are modeled as Lambertian radiation sources, where the channel gain between the
ith LED and jth user follows the Lambertian propagation model, given by Eq. 3.1 and
depicted in Figure 3.2 [107]:
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Figure 3.2: Channel model of visible light transmission

H(0)ij=


(m+1)A

2πd2
ij

cosm(ϕi)TS(ψj)g(ψj) cos(ψj), if 0≤ψj≤ψc

0, if ψj>ψc

(3.1)

where:
- m represents the Lambertian order, calculated as:

m = − log 2/ log
(
cos

(
ϕ1/2

))
(3.2)

where ϕ1/2 is the LED’s half-power angle. - A is the photo-detector’s active area. - dij is
the distance between the ith LED and the jth user. - ϕi and ψj denote the radiation angle
and incident angle, respectively. - Ts(ψj) represents the gain of the optical filter. - g(ψj)
is the optical concentrator gain, calculated as:

g(ψj) =


n2

sin2(ψc) , 0 ≤ ψj ≤ ψc

0, ψj > ψc
(3.3)

where n is the refractive index of the optical concentrator. If Pti is the transmit power
of the ith LED, the received power at the jth PD is given by:

Prij = Pti ×H(0)ij (3.4)

The end-to-end signal-to-noise ratio (SNR) is defined in Eq. 3.5 [108]:

SNRij = (R · Prij)2

σ2
t

(3.5)

where R is the photo-detector responsivity, and σt represents the total noise variance.
Each user Uj is associated with a single LED Li based on the highest received power.
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3.2.2 Mathematical Model

To optimize VLC system performance, we consider two primary objectives:
1. Maximizing Coverage: Coverage is determined by the diffusion of transmitted

power from LEDs, computed as:

Cov(V ) =
M∑
j=1

max
i∈{1,...N}

(CovLi
Uj

) (3.6)

where CovLi
Uj

represents the coverage of user Uj by LED Li. A user is considered
covered if its SNR exceeds a predefined threshold (P th):

CovLi
Uj

=

1, if SNRij > P th

0, otherwise
(3.7)

2. Maximizing Network Throughput: The total network throughput is given by:

Tr(V ) =
M∑
j=1

max
i∈{1,...N}

(TrLi
Uj

) (3.8)

where the throughput for each user Uj, connected to LED Li, is calculated using:

TrLi
Uj

= B × log2(1 + SNRij) (3.9)

where B denotes the system bandwidth.

3.2.2.1 The objective function Formulation

The optimization goal is to maximize both coverage and throughput while adhering to
system constraints:

Maximize f = (λ)(Cov(V )
M

) + (1− λ)( Tr(V )
M × Trth

) (3.10)

Subject to : SNRij ≥ P th

0 ≤ xi ≤ W, 0 ≤ yi ≤ D
(3.11)

where λ is a weighting coefficient balancing coverage and throughput objectives.

3.3 PRELIMINARIES

3.3.1 Whale Optimizer Algorithm (WOA)

Inspired by the unique hunting strategy of humpback whales, Mirjalili et al. [109] intro-
duced the Whale Optimizer Algorithm (WOA) in 2016. This meta-heuristic optimization
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technique is based on the whales’ natural ability to encircle prey, create spiral-shaped
bubble nets, and effectively trap their targets.

Humpback whales utilize an intelligent hunting mechanism by surrounding their prey,
using their flippers to generate a bubble net, and eventually restricting the preys move-
ment. This behavior is modeled mathematically in WOA, incorporating three main
phases: encircling prey, bubble-net attacking, and searching for prey. The following
subsections detail the mathematical representation of these mechanisms.

3.3.1.1 Encircling Prey

When hunting, humpback whales continuously update their positions relative to the best-
known solution in their search space. As the algorithm iterates, the whales adjust their
positions toward the current optimal solution. The mathematical representation of this
behavior is given by:

D⃗ =
∣∣∣∣C⃗ · −→X∗(t)− X⃗(t)

∣∣∣∣ (3.12)

X⃗(t+ 1) =
−→
X∗(t)− A⃗ · D⃗ (3.13)

where t represents the current iteration,
−→
X∗ is the position vector of the best solution

found so far, and X⃗ is the position of a given whale. The absolute difference is represented
by ||. The coefficient vectors A⃗ and C⃗ regulate the movement towards the best solution
and are defined as follows:

A⃗ = 2.⃗a.r⃗ − a⃗ (3.14)

C⃗ = 2.r⃗ (3.15)

where a⃗ linearly decreases from 2 to 0 over iterations, controlling the transition between
exploration and exploitation. The term r⃗ is a randomly generated vector in the range
[0,1].

3.3.1.2 Bubble-Net Attacking Mechanism

The bubble-net attack is modeled using two strategies:

• Shrinking Encircling Mechanism:
This approach is achieved by gradually reducing the value of a⃗ in Eq. 3.14, allowing
the search agents to adjust their positions dynamically within a specific range around
the best solution. When A⃗ takes random values within [-1,1], the search agents can
move towards the best-known solution with varying intensities.
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• Spiral Updating Position:
Humpback whales often follow a logarithmic spiral motion while moving towards
their prey. This movement is expressed mathematically as:

X⃗(t+ 1) =
−→
D′ · ebl · cos(2πl) +

−→
X∗(t) (3.16)

where
−→
D′ is the distance between the whale and the best solution, b is a constant

defining the shape of the logarithmic spiral, and l is a randomly generated number
in [-1,1].

To model the **combined effect of these two behaviors**, a probability factor p
is introduced to choose between shrinking encircling and spiral updating at each
iteration:

X⃗(t+ 1) =


−→
X∗(t)− A⃗ · D⃗

}
if p ⩽ 0.5

−→
D′ · ebl · cos(2πl) +

−→
X∗(t)

}
if p > 0.5

(3.17)

where p is a random value between 0 and 1.

3.3.1.3 Search for Prey

During the **exploration phase**, whales search for prey by randomly selecting a search
agent and moving toward it. This behavior helps maintain diversity in the search space
and avoids premature convergence. The mathematical representation of this phase is
given by:

D⃗ =
∣∣∣C⃗ · −−−→Xrand − X⃗

∣∣∣ (3.18)

X⃗(t+ 1) =
−−−→
Xrand − A⃗ · D⃗ (3.19)

where
−−−→
Xrand represents a randomly selected whale position from the current popula-

tion.

3.3.1.4 Whale Optimizer Algorithm Pseudocode

The overall process of WOA is summarized in Algorithm 1 [109], which outlines the
initialization, iterative optimization steps, and final output of the algorithm.

3.3.2 Chaotic Map

Chaos theory provides a deterministic framework for understanding the behavior of dy-
namic and nonlinear systems. This approach is characterized by key properties such as
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Algorithm 1 The Pseudo-code of WOA Algorithm
0: Initialize: the whale’s population Xi (i = 1, 2, . . . , n)
0: Calculate: Calculate the fitness of each search agent
0: X∗ = the best search agent
0: while t < maximum number of iterations do
0: for each search agent do
0: Update a, A, C, l, and p
0: if p < 0.5 then
0: if |A| < 1 then
0: Update the position of the current search agent by Eq. (7)
0: else if |A| ≥ 1 then
0: Select a random search agent (Xrand)
0: Update the position of the current search agent by Eq. (15)
0: end if
0: else if |A| ≥ 0.5 then
0: Update the position of the current search agent by Eq. (11)
0: end if
0: end for
0: Check if any search agent goes beyond the search space and amend it
0: Calculate the fitness of each search agent
0: Update X∗ if there is a better solution
0: t = t+ 1
0: end while
0: return X∗ =0

unpredictability, irregularity, boundedness, non-repetition, stochastic ergodicity, and ape-
riodicity. These features have led to the development of various mathematical functions
known as chaotic maps, which are commonly used for generating randomized parame-
ters in meta-heuristic algorithms. By incorporating chaotic maps into meta-heuristics,
the convergence rate is accelerated, the exploration ability is enhanced, and the risk of
getting stuck in local optima is minimized.

Several chaotic maps have been proposed in the literature, including the Tent map,
Gauss map, Sine map, Logistic map, Circle map, Sinusoidal map, Piecewise map, Iterative
map, and Chebyshev map [104, 105]. Among these, the Sine map is widely used due to
its simplicity and strong ability to generate highly dynamic random sequences.

The mathematical representation of the Sine map is given as:

SMk+1 = ac

4
sin (πSMk) , 0 ≤ SMO ≤ 1 (3.20)

where:

• SMk represents the chaotic value at the kth iteration, constrained within the range
[0,1].

• ac is a control parameter influencing the chaotic behavior, with 0 < ac ≤ 4.
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Figure 3.3: Chaotic value distributions over 200 iterations

Figure 3.4: The point Pmo and its corresponding opposite in a one-dimensional search
space.

For our experimental implementation, we set ac = 4 to induce fully chaotic behavior
in the Sine map, ensuring maximum randomness and diversity in the generated values.

3.3.3 Opposition-Based Learning

Opposition-Based Learning (OBL) was first introduced by Tizhoosh in 2005 [106] and has
since been widely adopted in the fields of machine learning and computational intelligence.
This strategy has been effectively integrated with various meta-heuristic optimization
algorithms to improve convergence rates and enhance exploration within the search space.
The core idea of OBL is to simultaneously consider both a candidate solution and its
opposite, thereby increasing the likelihood of reaching an optimal solution more efficiently.

The mathematical formulation of the opposite number for a given real number Pmo ∈
[lb, ub] is expressed as:

¯Pmo = ub+ lb− Pmo (3.21)

In a one-dimensional search space, the opposite point is calculated similarly to the
reflection of a point across the midpoint (lb+ ub)/2, as illustrated in Figure 3.4.

The concept of OBL can be extended to a multidimensional search space, as defined
by the following equation:

¯Pmoi = ubi + lbi − Pmoi, i = 1, 2, . . . , d (3.22)
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Figure 3.5: Illustration of the point Pmo and its opposite in a two-dimensional search
space.

where ¯Pmo ∈ Rd represents the opposite vector corresponding to the real vector
Pmo ∈ Rd.

Figure 3.5 visualizes the concept of opposition in a two-dimensional search space,
where both the original point and its opposite counterpart are considered to enhance the
search process.

3.4 The Proposed EWOA for Solving the LEDs Place-
ment Problem

One of the primary limitations of the standard WOA is its relatively slow convergence
rate, as noted in [110]. To address this issue and enhance the algorithm’s overall efficiency,
we integrate two key strategies: Opposition-Based Learning (OBL) and Chaos Theory.
These modifications significantly refine the exploration and exploitation phases, leading
to improved global convergence speed.

First, OBL is employed to accelerate convergence and enhance the exploration of the
search space. Second, chaotic maps are integrated into WOA to prevent stagnation in
local optima and further improve convergence speed.

The pseudo-code of EWOA is provided in Algorithm 2, while Figure ?? presents its
flowchart.

The EWOA follows the fundamental steps of the original WOA with a few key en-
hancements:

• Opposition-Based Learning (OBL): After generating an initial set of random
solutions, we compute their opposite solutions using the OBL mechanism. The
fitness values of both the original and opposite solutions are evaluated, and the best
n solutions from this combined set (X ⋃

X) are retained for subsequent iterations.
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• Chaos-Based Parameter Adjustment: The parameter p from Eq. (12) is dy-
namically adjusted using a Sine chaotic map throughout the optimization process.
The updated equation is expressed as follows:

X⃗(t+ 1) =


−→
X∗(t)− A⃗ · D⃗

}
if pi ⩽ 0.5

−→
D′ · ebl · cos(2πl) +

−→
X∗(t)

}
if pi ⩾ 0.5

(3.23)

pi+1 = ac

4
sin (πpi) , (3.24)

where pi represents the chaotic map value of parameter p at iteration i, constrained
within the range [0,1]. The control parameter ac is set to 4, with an initial value of
p0 = 0.7.

Algorithm 2 The pseudo-code of EWOA algorithm
0: Initialize: the whales population randomly Xi (i = 1, 2, . . . , n).
0: Calculate: the Opposite X̃ of the whale population.
0: Calculate: the fitness of each search agent Xi and Opposite X̃i, and select the n

best from Xi ∪ X̃i.
0: X∗ ← the best current from the n best.
0: Initialize: the value of the sine chaotic map.
0: while t < maximum number of iterations do
0: Update: the chaotic value using Eq. (20).
0: for each search agent do
0: Update a, A, C, and I.
0: Adjust the parameter p using the sine chaotic value (Eq. 20).
0: if p < 0.5 then
0: if |A| < 1 then
0: Update the position of the current search agent using Eq. (7).
0: else if |A| ≥ 1 then
0: Select a random search agent (Xrand).
0: Update the position of the current search agent using Eq. (15).
0: end if
0: else
0: Update the position of the current search agent using Eq. (11).
0: end if
0: end for
0: Check if any search agent goes beyond the search space and amend it.
0: Calculate the fitness of each search agent.
0: Update X∗ if there is a better solution.
0: t← t+ 1.
0: end while
0: Return X∗. =0
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Figure 3.6: Flowchart of EWOA
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Table 3.1: Coverage, mean throughput, and fitness under various values of number of
LEDs and Users

number of LEDs 2 3 4 5 6 7 8 9
Coverage (%)

EWOA 58.8 76.22 88 95.44 98.2 100 100 100
WOA 60.44 72.88 80.22 88.88 94.44 97.22 96.88 99.22
BA 51.11 60.77 69.11 79 80.55 84.44 87.33 85.22
PSO 62.4 73.84 89.1 92.61 98 100 100 100
MRFO 58.7 63.45 73.1 85 95.8 97 100 100
CHIO 59.22 75.66 87.11 94.55 97.33 100 100 100
MPA 57.1 71.44 83.33 90 95.4 99 100 100

Mean throughput per user (Mbps)
EWOA 0.69 1.32 1.74 2.94 4.23 6.1 7.14 8.33
WOA 0.65 1.30 1.59 1.94 2.48 2.48 4.26 4.87
BA 0.60 1.27 1.57 1.63 2.20 2.28 2.30 2.35
PSO 0.71 1.34 1.59 2.15 2.84 3.23 4.87 5.1
MRFO 0.61 1.15 1.43 1.86 2.3 2.57 3.7 4.21
CHIO 0.52 1.28 1.68 3.07 4.03 5.89 7.05 8.86
MPA 0.62 1.21 1.89 2.63 3.8 4.2 4.33 4.83

Fitness
EWOA 0.36 0.42 0.45 0.51 0.57 0.58 0.60 0.64
WOA 0.30 0.30 0.41 0.45 0.48 0.50 0.51 0.52
BA 0.26 0.31 0.35 0.40 0.41 0.43 0.44 0.44
PSO 0.39 0.41 0.47 0.48 0.53 0.55 0.57 0.61
MRFO 0.27 0.33 0.37 0.44 0.46 0.47 0.49 0.51
CHIO 0.31 0.39 0.46 0.49 0.52 0.53 0.54 0.55
MPA 0.28 0.34 0.36 0.41 0.45 0.49 0.52 0.53

number of Users 5 10 15 20 25 30 35 40
Coverage (%)

EWOA 100 100 100 97.14 90.2 83.45 79.33 76.11
WOA 100 100 96.74 91.64 85.14 80.85 75.54 73.46
BA 100 95.47 87.11 85.16 80 79.11 72.28 72
PSO 100 100 100 95 88.14 85.11 79.3 78.44
MRFO 100 94.8 90 84 81.5 77.14 73.11 72
CHIO 100 100 98.37 91.12 88.73 86.44 81.33 77.64
MPA 100 100 98.14 93.44 87.5 83.52 78.44 77.21

Mean throughput per user (Mbps)
EWOA 18.3 12.44 10.84 7.71 4.44 3.33 2.63 2.1
WOA 13.35 9.73 7.70 5.21 3.50 2.09 1.84 2.62
BA 6.50 5.26 4.27 3.31 2.64 1.68 1.48 1.41
PSO 17.4 13.11 10.2 7.31 4.14 3.11 2.87 2.24
MRFO 7.4 6.81 6.1 3.62 2.91 2.14 1.81 1.44
CHIO 16.41 12.88 9.08 6.09 4.42 3.19 2.83 2.56
MPA 14.3 9.45 9.03 8.32 5.74 3.51 2.92 1.84

Fitness
EWOA 0.69 0.65 0.59 0.52 0.48 0.49 0.46 0.46
WOA 0.58 0.56 0.54 0.50 0.46 0.45 0.45 0.43
BA 0.54 0.53 0.46 0.44 0.41 0.40 0.40 0.38
PSO 0.67 0.61 0.53 0.54 0.51 0.50 0.48 0.46
MRFO 0.55 0.51 0.50 0.48 0.46 0.42 0.41 0.40
CHIO 0.60 0.58 0.56 0.54 0.52 0.49 0.49 0.48
MPA 0.63 0.59 0.53 0.50 0.49 0.47 0.47 0.45

3.4.1 Simulation Results

This section evaluates the effectiveness of the Enhanced WOA (EWOA) algorithm in
optimizing the placement of LEDs. We compare its performance with standard WOA,
BA, PSO, MRFO, MPA, and CHIO algorithms.

All algorithms were implemented in MATLAB and tested on a Core i5-4310U processor
(2.6 GHz) with 12GB RAM.

Figures 1 and 2 illustrate the typical room layout used for our simulations. The
performance of EWOA was assessed based on two key metrics: mean throughput and
coverage per user across 16 different test scenarios. These scenarios varied in terms of
the number of LEDs (ranging from 2 to 9) and the number of users (ranging from 5 to
40). Each result reported in this chapter represents the average of 30 independent runs,
with a total of 1000 iterations per run. The simulation parameters used for this study are
detailed in Table 3.1.

3.4.2 Discussion and Analysis

To examine the impact of LED and user density on network performance, we conducted
two sets of experiments:

1. Effect of Varying the Number of LEDs: In this experiment, the number of LEDs
was increased from 2 to 9, while keeping the number of users fixed at 30. The corre-
sponding results are presented in Table II and Figure 4. The findings reveal that as
the number of LEDs increases, both throughput and coverage improve significantly.
This effect becomes particularly pronounced when more than 7 LEDs are deployed,
leading to nearly complete coverage of all users. Under these conditions, EWOA
consistently outperforms the other algorithms in terms of both metrics.
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Figure 3.7: Coverage (a), Throughput (b) and Fitness (c) under various numbers of LEDs

2. Effect of Varying the Number of Users: In the second set of experiments, the number
of users was varied from 5 to 40, while keeping the number of LEDs constant at 30.
The results, shown in Table III and Figure 5, indicate that as the number of users
increases, both coverage and throughput decline due to resource contention. How-
ever, despite this performance drop, EWOA still delivers superior results compared
to other algorithms, maintaining better network coverage and throughput across
most scenarios.

This analysis underscores the importance of optimizing the number of LEDs to achieve
high system performance. Additionally, it highlights the need for robust optimization
techniques such as EWOA to efficiently manage the challenges posed by increasing user
density while maintaining effective coverage and high throughput.

3.5 Conclusion

One of the critical challenges in VLC systems is the strategic placement of LEDs in
indoor environments. This aspect directly influences network coverage, data throughput,
and overall signal quality. In this chapter, we introduced the LED placement problem as
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Figure 3.8: Coverage (a), Throughput (b) and Fitness (c) under various numbers of Users

a key factor affecting VLC performance.
Given the NP-hard nature of this problem, necessitating the use of advanced opti-

mization techniques. We introduced and applied enhanced meta-heuristic algorithms to
optimize the LED placement problem in VLC systems, addressing challenges related to
coverage and throughput. We explored the Enhanced Whale Optimization Algorithm
(EWOA), and integrate chaotic maps and Opposition-Based Learning (OBL) to improve
search efficiency and convergence speed.

Our simulation results demonstrated that EWOA consistently outperformed tradi-
tional optimization methods, achieving better coverage and higher throughput across
various scenarios. We analyze the impact of varying the number of LEDs and users, re-
vealing that an optimal balance of these parameters is crucial to maximize the efficiency
of the VLC network.

Overall, the findings presented in this chapter establish a strong foundation for future
research on meta-heuristic optimization techniques in VLC systems. Future work will
focus on hybrid meta-heuristic approaches, to further improve adaptability and efficiency
in VLC environments.
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CHAPTER 4

A HYBRID APPROACH FOR SOLVING THE LEDS
PLACEMENT PROBLEM IN INDOOR VLC SYSTEM

4.1 Introduction

Visible Light Communication (VLC) systems have emerged as a promising technology for
high-speed indoor wireless networks, leveraging LEDs as both illumination sources and
data transmitters. However, optimizing the placement of LEDs is crucial to ensuring max-
imized network coverage, improved data throughput, and enhanced signal quality. Due to
the non-line-of-sight (NLOS) limitations, multi-path fading, and user distribution variabil-
ity, optimization techniques struggle to efficiently solve this nonlinear, multi-modal, and
high-dimensional problem. As a result, meta-heuristic algorithms have gained increasing
attention for their ability to provide effective and computationally efficient solutions.

This chapter explores hybrid meta-heuristic approach for solving the LED placement
problem in indoor VLC systems, focusing on a powerful hybrid optimization techniques.

Our proposed meta-heuristic algorithm called "Hybrid Coronavirus Herd Immunity
Optimizer (ICHIO-FA)" integrates the Coronavirus Herd Immunity Optimizer (CHIO)
with the Firefly Algorithm (FA) to enhance exploration and exploitation capabilities.
The CHIO framework ensures an efficient global search using chaotic maps for increased
solution diversity, while Opposition-Based Learning (OBL) speeds up convergence. FA
serves as a local search operator to fine-tune solutions, ensuring higher precision and
better placement decisions.

This hybrid approach aim to maximize coverage, throughput, and improve system
performance by striking a balance between global and local search mechanisms. Through
comprehensive simulations under various LED configurations, user densities, and PD
areas, we demonstrate the effectiveness of these hybrid techniques in outperforming state-
of-the-art optimization algorithms such as CHIO, PSO, GA, MPA, WOA, MRFO, BA,
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GWO, and SA.
This chapter provides a detailed analysis of our hybrid approach, discussing their im-

plementation, optimization mechanisms, and performance in solving the LED placement
problem. The results highlight the potential of hybrid meta-heuristics in enhancing VLC
network design, paving the way for more efficient and adaptive LED deployment strategies
in next-generation communication systems.

4.1.1 Coronavirus Herd Immunity Optimizer (CHIO)

The Coronavirus Herd Immunity Optimizer (CHIO), introduced by Al-Betar in 2021
[111], is a human-based optimization algorithm inspired by the concept of herd immunity
and social distancing strategies observed in viral outbreaks. This algorithm has been
successfully applied to various optimization problems due to its adaptability and efficiency.

CHIO simulates the natural progression of a population through different infection
stages, including infection, susceptibility, immunity, and fatality. The optimization pro-
cess is carried out through five key steps, which are explained below.

Step 1: Initialization of Parameters
In this step, the control parameters of CHIO are initialized. These include:

• The initial number of infected individuals (C0),

• The basic reproduction rate (BRr),

• The maximum age of infected cases (Maxage),

• Other essential parameters required for the search process.

Step 2: Population Initialization
The optimization process begins by randomly generating the herd immunity popula-

tion X. This population is structured as a matrix of size np × d, where:

• np represents the population size (total number of individuals),

• d denotes the number of decision variables (dimensions of the search space).

The population matrix is represented mathematically as:

X =


X1

1 X2
1 · · · Xd

1

X1
2 X2

2 · · · Xd
2

... ... · · · ...
X1
np

X2
np
· · · Xd

np

 (4.1)

Each decision variable Xj
i is randomly initialized within its respective lower (lbj) and

upper (ubj) bounds as follows:
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Xj
i = lbj + rand× (ubj − lbj) (4.2)

where rand is a randomly generated number in the range [0,1].
Step 3: Population Evolution
At this stage, the population undergoes an evolutionary process that simulates the

spread of infection. Based on the basic reproduction rate (BRr) and specific rules, the
position of each individual Xj

i is updated using the following equation:

Xj
i (t+ 1)←


C
(
Xj
i (t)

)
r < 1

3 ×BRr

N
(
Xj
i (t)

)
r < 2

3 ×BRr

R
(
Xj
i (t)

)
r < BRr

(4.3)

where:

• C(Xj
i (t)) represents infected cases,

• N(Xj
i (t)) represents susceptible cases,

• R(Xj
i (t)) represents immune cases.

Each case is updated using the following equations:

C
(
Xj
i (t)

)
= Xj

i (t) + r ×
(
Xj
i (t)−Xc

i (t)
)

(4.4)

N
(
Xj
i (t)

)
= Xj

i (t) + r ×
(
Xj
i (t)−Xm

i (t)
)

(4.5)

R
(
Xj
i (t)

)
= Xj

i (t) + r ×
(
Xj
i (t)−Xv

i (t)
)

(4.6)

where:

• r is a randomly generated number in the range [0,1].

• Xc
i (t) is a randomly selected value from infected cases.

• Xm
i (t) is a randomly chosen value from susceptible cases.

• Xv
i (t) is a randomly chosen value from the best immune cases.

Step 4: Updating the Population
Each individual in the population undergoes an evaluation, and its updated position

Xj
i (t + 1) is accepted into the population if its fitness value is better than its previous

value Xj
i (t).

If the condition Si = 1 (indicating a stagnant solution), the age counter of the indi-
vidual is incremented.
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Step 5: Handling Fatality Cases
A case is considered dead if its infection level Si = 1 remains unchanged for the number

of iterations specified by the Maxage parameter. When this happens:

• The individual is removed from the population.

• The age counter Maxage is reset to zero.

• A new random individual Xi is introduced into the search space.

This mechanism prevents premature convergence and helps maintain diversity in the
population, increasing the algorithms effectiveness.

4.1.1.1 CHIO Algorithm Pseudocode

Algorithm 3 provides the pseudo-code for CHIO, outlining the initialization, infection
spread, immunity development, and fatality handling mechanisms.

4.1.2 Firefly Optimization Algorithm (FA)

The Firefly Algorithm (FA) is a population-based meta-heuristic optimization technique
introduced by X.S. Yang in 2007 [112]. This algorithm falls under the category of Swarm
Intelligence (SI) meta-heuristics, similar to other bio-inspired algorithms such as Particle
Swarm Optimization (PSO), Ant Colony Optimization (ACO), and Artificial Bee Colony
(ABC) optimization. FA is specifically inspired by the natural behavior of fireflies, partic-
ularly their bioluminescent communication patterns, which they use for mate attraction,
prey detection, and synchronization of movements [113].

The social interaction of fireflies in FA follows three fundamental principles [114]:

1. Fireflies are unisex, meaning they are mutually attracted to one another regardless
of gender.

2. The degree of attraction between fireflies is directly related to their brightness, which
decreases as the distance between them increases. A firefly with lower brightness
moves towards a brighter firefly. If there is no brighter firefly nearby, movement is
random within the search space.

3. The brightness of a firefly is determined by the objective function value at its posi-
tion.
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Algorithm 3 The pseudo-code of the CHIO Algorithm
0: Input:

• CHIO Parameters: d, np, lb, ub, C0, BRr, Maxage, Maxitr.

0: Output:

• Xbest: the best solution and its objective value

0: { —– Step 1: Initialize the CHIO parameters —– }
0: initialize the parameters (Sr, and Max_age)
0: { —– Step 2: Generate herd immunity population—-}
0: Calculate the fitness of each search agent
0: Set Sj = 0 for j = 1, 2, . . . , d. Set Aj = 0 for j = 1, 2, . . . , d.
0: {—– Step 3: Herd immunity evolution —– }
0: while t < Maxitr do
0: for j = 1 to d do
0: is_Corona(Xj(t+ 1)) = false
0: for i = 1 to np do
0: Evolve Xi

j(t+ 1) based on Eqs. 4.3, 4.4, 4.5, and 4.6.
0: end for
0: {—– Step 4: Update Herd immunity population —–}
0: if (f(Xj(t+ 1)) ≤ f(Xj(t))) then
0: Xj(t) = X ′j(t+ 1)
0: else
0: Aj = Aj + 1
0: end if
0: if (f(Xj(t+ 1)) < f(X)j(t+1)

△f(x) ∧ Sj = 0 ∧ is−Corona(Xj(t+ 1))) then
0: Sj = 1, Aj = 1;
0: end if
0: if (f(Xj(t+ 1)) > f(X)j(t+1)

△f(X) ∧ Sj = 1) then
0: Sj = 2, Aj = 0;
0: end if
0: {—– Step 5: Fatality Condition —–}
0: if ((Aj ≥ MaxAge) ∧ (Sj == 1)) then
0: xi

j = lbi + (ubi − lbi)U(0, 1), ∀i = 1, 2, . . . , N , Sj = 0, Aj = 0;
0: end if
0: end for
0: Rank the new positions found based on their fitness value and determine the best

position Xbest.
0: t = t+ 1
0: end while
0: return the best position Xbest. =0
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4.1.2.1 Initialization

Initially, fireflies are randomly distributed across the search space according to:

Xi = Xmin + rand.(Xmax −Xmin), i = 1, . . . , N (4.7)

where:

• Xi represents the position of the ith firefly,

• Xmin and Xmax define the lower and upper boundaries of the search space,

• N is the total number of fireflies in the population,

• rand is a random number generated within the range [0,1].

4.1.2.2 Attractiveness and Movement Mechanism

Fireflies’ brightness (I) diminishes with increasing distance (r) due to light absorption.
The mathematical representation of brightness decay is given by:

I = I0.e
−γr2 (4.8)

where:

• I0 is the initial brightness intensity,

• γ is the light absorption coefficient,

• r represents the Euclidean distance between two fireflies.

The distance (rij) between two fireflies i and j is calculated using the Euclidean
distance formula:

rij = ∥Xj −Xi∥ =
√

(yj − yi)2 − (xj − xi)2 (4.9)

Attractiveness (β) is modeled using the following exponential decay function:

β = β0e
−γr2 (4.10)

where:

• β0 represents the attractiveness at r = 0,

• γ controls the rate at which attractiveness decreases over distance.
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4.1.2.3 Position Update Mechanism

A firefly at position Xi moves toward a more attractive firefly at position Xj based on:

Xi = Xi + β0e−γr2
ij (Xj −Xi) + α

(
rand−1

2

)
(4.11)

where:

• α is a randomization parameter in the range [0, 1],

• The term α(rand−1
2) introduces random movement to maintain diversity in the

search space.

This movement rule ensures that less bright fireflies move towards brighter ones while
maintaining randomness, preventing stagnation in local optima.

The Firefly Algorithm efficiently balances exploration and exploitation by simulating
the social interaction of fireflies. It allows fireflies to move toward promising solutions
based on attractiveness and randomness. The pseudo-code of FA is presented in Algorithm
2.

Algorithm 4 The pseudo-code of Firefly Algorithm
0: Initialize the FA parameters: Maximum number of iterations T , Population’ size N ,

Dimension Dim, α, βO, γO.
0: Initialize the population of FA: Xi(i = 1, 2, ..., N)
0: Evaluate the positions Xi and determine the best fitness Ibest.
0: while (t < T ) do
0: for i = 1, 2, . . . , N do
0: for j = 1, 2, . . . , N do
0: if Ij > Ii then
0: Calculate the distance between the fireflies i and j using Equation (4.9)
0: Calculate the attractiveness using Equation (4.10)
0: Move the firefly i toward the firefly j using Equation (4.11)
0: end if
0: end for
0: end for
0: Rank the new positions found based on their fitness value and determine the best

position Xbest

0: t = t+ 1
0: end while
0: return The best position Xbest =0

85



CHAPTER 4. A HYBRID APPROACH FOR SOLVING THE LEDS
PLACEMENT PROBLEM IN INDOOR VLC SYSTEM

4.2 Hybrid Coronavirus Herd Immunity Optimizer
(ICHIO-FA)

Optimizing the placement of Light Emitting Diodes (LEDs) in indoor Visible Light Com-
munication (VLC) systems is a challenging problem that significantly affects network per-
formance in terms of coverage and throughput. VLC systems utilize LEDs as transmitters
and Photo-Detectors (PDs) as receivers, enabling both illumination and data communi-
cation. However, determining the optimal LED placement is classified as an NP-Hard
problem, making it computationally difficult to obtain exact solutions efficiently. To over-
come this challenge, meta-heuristic approaches provide an effective alternative, leveraging
intelligent search mechanisms to explore large solution spaces.

This chapter presents a hybrid meta-heuristic algorithm, ICHIO-FA, designed to op-
timize LED placement in VLC systems. The proposed approach integrates the Improved
Coronavirus Herd Immunity Optimizer (ICHIO) with the Firefly Algorithm (FA), lever-
aging chaotic maps and Opposition-Based Learning (OBL) to enhance convergence speed,
improve exploration-exploitation balance, and prevent premature convergence to local op-
tima [115] [105]. FA is employed as a local search mechanism to refine solutions obtained
by ICHIO, ensuring more precise LED positioning.

The contributions of this chapter include:

• Development of ICHIO-FA, a hybrid optimization approach that enhances CHIO
with FA, OBL, and chaotic maps for the LED placement problem in VLC environ-
ments.

• Comprehensive experimental evaluation, comparing ICHIO-FA with CHIO and nine
state-of-the-art optimization techniques, including PSO, GA, MPA, WOA, MRFO,
BA, GWO, and SA.

• Analysis of key performance factors, including the impact of varying LED numbers,
user density, and PD area, on VLC system performance.

The remainder of this section is structured as follows: Section 4.2.1 details the pro-
posed ICHIO-FA algorithm. Simulation results and performance comparisons are ana-
lyzed in Section 4.2.2. Finally, Section 4.3 presents the conclusion and future research
directions.

The main notations used in this chapter and their descriptions are listed in Table 4.1,

4.2.1 The Proposed ICHIO-FA Algorithm for Solving the LEDs
Placement Problem

This section presents the implementation of the proposed ICHIO-FA algorithm, which
is based on a hybridization of ICHIO and FA algorithms to optimize LEDs placement.
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Three key enhancements are introduced to improve the standard CHIO algorithm.
Firstly, instead of using randomly generated values within the range [0, 1], the sine map

is employed, allowing better control over solution updates and enhancing the diversity
of solutions. Secondly, to accelerate convergence and ensure an efficient search space
exploration, the Opposition-Based Learning (OBL) strategy is integrated. Lastly, Firefly
Algorithm (FA) is incorporated as a local search operator to refine solutions obtained
from ICHIO, specifically applied in the fourth stage of the Herd Immunity Evolution step
during each iteration.

The ICHIO-FA implementation follows several key steps, including initialization, herd
immunity population generation, OBL strategy application, herd immunity evolution,
solution update, and finalizing the optimal LED positions.

• Step 1: Initialization
In this step, the parameters for CHIO, FA, and the VLC system environment (V) are
initialized. Additionally, the control parameter r, which regulates solution evolution
in CHIO, is set to an initial value of r0 = 0.7.

• Step 2: Generating Herd Immunity Population
The initial population (solutions) X0 is generated based on the scenarios described
in Table 4.3.

• Step 3: OBL Strategy Application
At each iteration, the OBL strategy is applied to the solutions X0 using Eq. 4.12 to
generate opposite solutions X. Both X0 and X are then evaluated using the fitness
function f . Based on the fitness values, the top d solutions from X∪X0 are selected
for the evolution phase. This constitutes the first improvement in ICHIO-FA.

X̄j = ubj + lbj −Xj, j = 1, 2, . . . , d (4.12)

• Step 4: Herd Immunity Evolution
In this step, the chaotic variation of parameter r is computed using Eq. 4.13.
Additionally, FA is applied as a local search operator during the fourth case of the
evolution condition, refining the solutions obtained by ICHIO. This step introduces
the second and third improvements to ICHIO-FA. The chaotic value of r at iteration
i is determined as follows:

ri+1 = ac

4
sin (πri) (4.13)

The FA-based local search operator updates the position of the fireflies using Eq.
4.14:
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Algorithm 5 The pseudo-code of the proposed ICHIO-FA Algorithm for LED’s place-
ment problem

0: Input:

– Parameters of CHIO, FA, and VLC System

0: Output:

– Xbest: the best solution and its objective value

0: {— Step 1: Initialize the CHIO, FA, VLC System, and chaos parameters—
}

0: Initialize the parameters (BRr, C0, Maxage, r0, ϕ, ψ, Pt, R, σt, N , M , P th, B, λ, lb,
ub, d, np)

0: {— Step 2: Generate herd immunity population—}
0: Generate the initial population X0
0: while (t < Maxitr) do
0: {—Step 3: OBL Strategy Section—}
0: Calculate the opposite positions X for X0 available in the initial population using

Eq: 4.12
0: Calculate the fitness f(X) through Eq: 5.13 of each X0, X and select then, the d

best Xj, j = 1, 2, . . . , d from X0 ∪X.
0: Set Sj = 0 for j = 1, 2, . . . , d, Set Aj = 0 for j = 1, 2, . . . , d;
0: {— Step 4: Herd immunity evolution—}
0: for j = 1 to d do
0: is_Corona(Xj(t+ 1)) = false
0: for i = 1 to np do
0: Determine the chaos value of the parameter r based on Eq: 4.13
0: if

(
r < 1

3 ×BRr

)
then

0: Xj
i (t+ 1) = C

(
Xj
i (t)

)
, is_Corona(Xj(t+ 1)) = true;

0: else if
(
r < 2

3 ×BRr

)
then

0: Xj
i (t+ 1) = N

(
Xj
i (t)

)
0: else if (r < BRr) then
0: Xj

i (t+ 1) = R
(
Xj
i (t)

)
0: else
0: Evolve Xj

i using FA equation 4.14
0: end if
0: end for
0: {— Step 5: Solution update—}
0: {— Step 6: Fatality cases—}
0: end for
0: Determine the candidate that produced the maximum objective and save it in Xbest

0: t = t+ 1
0: end while
0: Output the best solution from Xbest =0
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Figure 4.1: Flowchart of ICHO-FA

Xj
i+1 = Xj

i+1 + β0e−γr2
ij (Xj

i − X̂
j
i+1) + α(rand− 1

2
) (4.14)

where α is a randomization parameter, α ∈ [0, 1].

• Step 5: Solution Update
At this stage, ICHIO-FA updates the solutions Xi..np according to the three condi-
tions outlined in Step 4 of the CHIO pseudo-code.

• Step 6: Handling Fatality Cases
This step applies the same rules as in CHIO to manage fatality cases in the solution
population.

• Output of Optimal LEDs Placement
Steps 3 to 6 are repeated until the stopping condition is met. Once termination
criteria are satisfied, the best-obtained solution is returned as the final LEDs place-
ment. The optimal solution, determined by the objective function in Eq. 4.15, is
then formatted into position coordinates:

Xbest = Maximize f(X(t)) (4.15)
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Xbest = {L1(x1, y1), L2(x2, y2), . . . LN(xN , yN)} (4.16)

where N represents the number of LEDs, and (x, y) denote their respective coordi-
nates.

Algorithm 5 presents the pseudo-code for the ICHIO-FA algorithm applied to the
LEDs placement problem.

4.2.2 Simulation Results and Analysis

This section evaluates the performance of the proposed ICHIO-FA algorithm in opti-
mizing LEDs placement. ICHIO-FA is compared against the original CHIO and nine
well-established optimization algorithms, including FA, PSO, GA, MPA, WOA, MRFO,
BA, GWO, and SA. All simulations were conducted on a Core i5 2.5 GHz CPU machine,
with all algorithms implemented in MATLAB. The experimental setup assumes an empty
conference room measuring 10m× 10m× 3m, ensuring unobstructed line-of-sight (LOS)
conditions. A typical representation of the room is shown in Figure 3.1. The complete
set of simulation parameters is detailed in Tables 4.2, 4.5, and 4.3.

The performance of ICHIO-FA is assessed across multiple scenarios by varying key
factors such as:

• The control parameter λ (ranging from 0 to 1),

• The number of LEDs (ranging from 1 to 10),

• The number of users (ranging from 5 to 40),

• The area of the photodetectors (PDs) (ranging from 0.6e−4 to 1.3e−4).

The evaluation considers three key performance metrics: coverage, mean throughput
per user, and fitness value. Each simulation runs for 1000 iterations, and the reported
results represent the average of 30 independent runs. The findings are summarized in
Tables 4.4 and 4.6.

4.2.2.1 Impact of the Control Parameter λ

This section analyzes how varying the control parameter λ (between 0 and 1) affects
coverage, mean throughput per user, and fitness metrics. The results are summarized in
Table 4.4 and Figure 4.2.
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Figure 4.2: Coverage, Throughput and Fitness under various values of Lambda
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Table 4.5: Simulation parameters of VLC System
Simulation Parameter Value Default Value
Number of users M [5 40] 30
Number of LEDs N [1 10] 5
Width W 10 m
Length D 10 m
Height H 3 m
Population size n 30
Number of runs R 30
Number of iteration tmax 1000
Area of a PD A [0.6e−4 1.3e−4] 1e−4

From Table 4.4 and Figures 4.2(a), 4.2(b), and 4.2(c), it is evident that changing λ pro-
duces consistent trends across most algorithms with minor variations. However, ICHIO-
FA consistently outperforms the other algorithms in terms of coverage, mean throughput
per user, and fitness. For instance, ICHIO-FA achieves a coverage range of [66.66% -
73.33%], compared to GWO, which attains only [60% - 66.66%]. Similarly, ICHIO-FA
achieves a mean throughput range of [43.17 Mbps - 47.73 Mbps], surpassing GAs range
of [39.35 Mbps - 46.49 Mbps]. Additionally, ICHIO-FA attains a fitness range of [0.536
- 0.671], whereas FA achieves a narrower range of [0.414 - 0.530]. Based on these obser-
vations, a value of λ = 0.5 is selected for subsequent experiments to maintain a balanced
emphasis on both coverage and throughput.

4.2.2.2 Impact of Varying the Number of LEDs

This section examines how changing the number of LEDs (from 1 to 10) affects the
system’s performance while keeping the number of users fixed at 30. The results are
presented in Table 4.6 and Figure 4.3.

Figure 4.3(a) illustrates the impact of increasing the number of LEDs on coverage.
As expected, increasing the number of LEDs enhances coverage, eventually reaching full
coverage when deploying more than 9 LEDs with the ICHIO-FA algorithm. This is
because additional LEDs provide more light sources, increasing the likelihood that users
receive adequate illumination. Among the compared algorithms, ICHIO-FA consistently
achieves full coverage at 8 LEDs, while CHIO and GA require at least 10 LEDs to reach
the same level.

Figure 4.3(b) depicts the effect of LED count on mean throughput per user. The
results show that throughput improves as more LEDs are deployed, enhancing the signal-
to-noise ratio (SNR). Notably, when increasing the LED count from 9 to 10, ICHIO-FA
boosts throughput from 63.73 Mbps to 65.09 Mbps, while PSO improves from 62.04 Mbps
to 64.84 Mbps.

Figure 4.3(c) displays the fitness scores for all tested algorithms. Fitness improves
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Figure 4.3: Coverage (a), Throughput (b) and Fitness (c) under various numbers of LEDs
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Figure 4.4: Coverage (a), Throughput (b) and Fitness (c) under various number of Users

with the number of LEDs, with ICHIO-FA outperforming competitors in seven out of ten
cases. Even when it does not achieve the best result, its performance remains close to
the leading algorithm. For instance, when the LED count is set to 3, 5, and 10, PSO,
GWO, and GA score slightly higher (0.485, 0.697, and 0.922, respectively) compared to
ICHIO-FA (0.476, 0.682, and 0.917, respectively).

4.2.2.3 Impact of Varying the Number of Users

This section examines the effect of increasing the number of users (from 5 to 40) while
keeping the LED count fixed at 5. The results are presented in Table 4.6 and Figure 4.4.

Figure 4.4(a) illustrates that coverage declines as more users are introduced. This is
expected since additional users may fall outside the illumination range of the deployed
LEDs. Nonetheless, ICHIO-FA outperforms all other algorithms in seven out of eight
cases (when the number of users varies between 10 and 35).

Figure 4.4(b) examines mean throughput per user. As more users share the network,

94



CHAPTER 4. A HYBRID APPROACH FOR SOLVING THE LEDS
PLACEMENT PROBLEM IN INDOOR VLC SYSTEM

throughput per user declines due to increased competition for resources. However, ICHIO-
FA consistently achieves higher throughput than other algorithms. Specifically, when the
number of users is set to 5, 10, 15, 25, and 35, ICHIO-FA outperforms the alternatives.
In cases where it is not the best, it remains close to the highest-performing algorithm.
For example, at 20, 30, and 40 users, GA achieves 49.52 Mbps, PSO 42.64 Mbps, and GA
again 37.19 Mbps, whereas ICHIO-FA records 49.04 Mbps, 42.59 Mbps, and 36.86 Mbps,
respectively.

Figure 4.4(c) shows the fitness trend as the number of users increases. The fitness
value declines with additional users, but ICHIO-FA maintains superior performance in
five out of eight cases. Even in the remaining cases, its results remain competitive. For
example, at 20, 30, and 40 users, GA scores 0.673, PSO 0.661, and GA again 0.526, while
ICHIO-FA achieves 0.668, 0.659, and 0.515, respectively.

4.2.2.4 Impact of Varying the Area of Photo detectors (PDs)

In the final scenario, we examine how varying the PD area (from 0.6e−4 to 1.3e−4) influ-
ences system performance. The LED and user counts remain fixed at 5 and 30, respec-
tively. The results are presented in Table 4.4 and Figure 4.5.

Figure 4.5(a) demonstrates that as the PD area increases, coverage improves, even-
tually reaching near-total coverage. This occurs because larger PDs capture more light,
enhancing the chance of illumination. ICHIO-FA outperforms all other algorithms across
most PD area values.

Figure 4.5(b) reveals that mean throughput per user follows a similar trend, improving
as PD size increases due to enhanced light capture and SNR. ICHIO-FA consistently
delivers better performance across most scenarios.

Figure 4.5(c) presents fitness values. Again, ICHIO-FA excels in most cases, ranking
highest in six out of eight scenarios. Even when it does not achieve the best score, its
performance remains close to the leading algorithm.

Conclusion: Across all tested scenarios, ICHIO-FA consistently outperforms alter-
native algorithms in terms of coverage, mean throughput per user, and fitness metrics,
demonstrating its effectiveness in optimizing LEDs placement.

4.2.3 Statistical Analysis

To conduct a rigorous comparison among the ten optimization algorithms and verify the
effectiveness of the proposed ICHIO-FA approach, we employ the Friedman test to analyze
the distribution of results across all cases. The outcomes of this statistical evaluation are
provided in Tables 4.8 to 4.19.

The results indicate that the ICHIO-FA algorithm consistently delivers superior per-
formance, achieving the highest minimum, maximum, and mean fitness values across all
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Figure 4.5: Coverage (a), Throughput (b) and Fitness (c) under various values of Photo-
Detector Area
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scenarios. Among the alternative meta-heuristics, the performance of ICHIO-FA remains
closely aligned with that of PSO and GA, demonstrating its reliability. Examining the
mean ranking for coverage, mean throughput per user, and fitness, ICHIO-FA maintains
the highest ranking compared to its competitors. Additionally, the statistical significance
level is below 5%, suggesting that the medians of all tested algorithms are not equal,
which leads to the rejection of the null hypothesis (H0).

To further analyze significant differences among the algorithms, we conducted Post-
hoc multiple comparison tests using the Least Significant Difference (LSD) test. The
results are summarized in Tables 4.20 to 4.31. These findings confirm a statistically
significant difference between ICHIO-FA and the competing algorithms (CHIO, FA, PSO,
GA, MPA, WOA, MRFO, BA, GWO, and SA) based on the confidence intervals and the
corresponding p-values.

Tables 4.20, 4.21, and 4.22 summarize the Post-hoc test results for coverage, mean
throughput, and fitness across different values of the control parameter λ. The analysis
reveals statistically significant differences between the algorithms, as indicated by p-values
consistently below 5%. Furthermore, the confidence intervals remain strictly positive,
reinforcing the statistical significance and leading to the rejection of the null hypothesis
(H0).

Conversely, Tables 4.23 to 4.31 summarize the Post-hoc analysis results for varying
the number of LEDs, users, and the photo-detector (PD) area. The findings show that the
significance values across all algorithms exceed 0.5, indicating the absence of a statistically
significant difference in these cases. As a result, the null hypothesis (H0) is accepted,
suggesting that the performance differences among the tested algorithms in these specific
scenarios are not statistically significant.

The statistical analysis confirms the superiority of ICHIO-FA over its competitors in
most test cases. The Friedman test demonstrates that ICHIO-FA achieves the highest
performance rankings across coverage, throughput, and fitness metrics. Furthermore, the
Post-hoc LSD test validates that the improvements provided by ICHIO-FA are statistically
significant, particularly in the lambda parameter variation tests. However, in scenarios
involving variations in the number of LEDs, users, or PD area, the performance differences
among the algorithms are statistically insignificant, suggesting similar behavior in these
cases.

4.2.4 Convergence Analysis

In this section, the convergence behavior of the proposed ICHIO-FA algorithm is analyzed
in comparison with other meta-heuristic algorithms, including CHIO, FA, PSO, GA, MPA,
WOA, MRFO, BAT, GWO, and SA. The evaluation is based on two key aspects: con-
vergence efficiency (fitness value) and convergence speed. The convergence assessment is
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performed using two scenarios described in Table 4.7, with each result obtained as the
average of 30 independent runs.

Figures 4.6 and 4.7 illustrate the convergence behavior of all considered algorithms
concerning both convergence efficiency and time. The results consistently indicate that
ICHIO-FA surpasses other meta-heuristics across nearly all test scenarios. The ICHIO-FA
algorithm exhibits two key convergence characteristics:

• Rapid Initial Convergence: As shown in Figure 4.6, ICHIO-FA demonstrates an
exceptionally fast convergence speed, with the fitness value increasing from 0.51 to
0.549 within the first 100 iterations. In contrast, CHIO progresses from 0.485 to
0.505, while GA only improves from 0.518 to 0.526 within the same range.

• Ability to Escape Local Optima: The ICHIO-FA algorithm effectively avoids pre-
mature convergence by escaping local optima at multiple stages throughout the
optimization process. Figure 4.6 highlights three such stagnation phases:

– The first between iterations 100 and 300

– The second between iterations 301 and 390

Similarly, in Figure 4.7, stagnation is observed:

– Between iterations 105 and 207

– Between iterations 208 and 300

– Between iterations 301 and 380

Additionally, the number of iterations required for convergence remains independent of
the number of LEDs or the size of the room, demonstrating the stability and scalability of
the ICHIO-FA algorithm. While ICHIO-FA may require additional iterations to reach the
global optimum, it consistently achieves higher fitness values than competing algorithms
in most cases.

The improved performance of ICHIO-FA is attributed to the following enhancements:

• Opposition-Based Learning (OBL):

– Enhances population diversity.

– Accelerates convergence by directing the search process toward promising re-
gions.

• Sine Map-Based Chaos Integration:

– Provides better control over parameter updates.

– Ensures a more diverse set of solutions, preventing premature convergence.
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[b]0.45

Figure 4.6: Scenario 1
[b]0.45

Figure 4.7: Scenario 2

Figure 4.8: The convergence analysis according the fitness value and number of iteration
under different scenarios
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• Firefly Algorithm (FA) as a Local Search Operator:

– Enhances the ability to escape local optima by refining promising solutions.

– Improves the overall robustness of the algorithm.

– Increases the likelihood of identifying the global optimal solution.

The convergence analysis confirms that ICHIO-FA outperforms traditional meta-heuristics
in terms of convergence speed, efficiency, and robustness. The algorithms hybrid ap-
proach, integrating OBL, chaotic sine maps, and FA, allows for effective exploration and
exploitation of the search space, leading to higher-quality solutions in complex optimiza-
tion problems.

4.3 Conclusion

This chapter presented a hybrid human-based and swarm intelligence approaches for solv-
ing the LED placement problem in indoor VLC systems. We introduced an enhanced
hybrid algorithm (ICHIO-FA), which combine powerful meta-heuristic techniques to op-
timize network coverage, throughput, and overall fitness.

IMPA-FA integrates the Coronavirus Herd Immunity Optimizer Algorithm (CHIO)
with the Firefly Algorithm (FA), leveraging chaotic maps to increase solution diversity,
Opposition-Based Learning (OBL) to accelerate convergence, and FA to refine local search
and to prevent stagnation in local optima.

Comprehensive simulations were conducted in an indoor environment with varying
LED configurations, user densities, and photo-detector (PD) areas. The results consis-
tently demonstrated that ICHIO-FA outperformed state-of-the-art algorithms, including
CHIO, PSO, GA, MPA, WOA, MRFO, BA, GWO, and SA, in terms of network per-
formance metrics. Statistical and convergence analyses further validated the efficiency
and robustness of our proposed methods, confirming their superior ability to balance
exploration and exploitation while maintaining high-quality solutions.

These findings underscore the potential of hybrid meta-heuristic approach in tack-
ling complex VLC system optimization challenges. The next research direction includes
extending these methods for multi-objective optimization. The insights from this study
contribute significantly to the field of intelligent optimization in VLC networks, paving
the way for more adaptive and efficient LED placement strategies in next-generation
communication systems.
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Table 4.1: The main notations used in this paper
Parameter Description Parameter Description
LOS Line-of-sight VLC Visible Light

Communication
PD Photo-detector LEDs Light Emitting

Diodes
V VLC system D Length of V
W Width of V H Height of V
U Users L LEDs
M Number of

Users
N Number of

LEDs
d Dimensions H(0) Channel current

gain
m Lambertian

order
A Area of a PD

ϕ Radiation angle ψ Incident angle
ϕ1/2 Half power

angle
Ts(ψ) Gain of the

optical filter
B(r) Attractiveness

of a firefly at r
distance

n Refractive index
of the optical
concentrator

Pt Transmit power Pr Receiving power
SNR Signal-to-Noise

Ratio
R Responsivity

σ2
t Total noise

variance
Cov(V ) Coverage of the

system V
Tr(V ) Throughput of

the system V
B Bandwidth

X0 Initial solution
(Population)

C() Infected case

BRr Basic reproduc-
tion rate

up Upper bound

np Population size Maxage Maximum age
of infected cases

N() Susceptible case R() Immune case
Maxitr Max iteration FADs Fish aggregat-

ing devices
I(r) Light intensity

at r distance
Is Light source

g(ψ) Gain of optical
concentrator

Trth Threshold value
of Throughput

SMk+1 Chaotic Sine
map value at
the k-th itera-
tion

¯Pmo Opposite vec-
tor of the real
vector P

lb Lower bound P th Threshold value
of SNR
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Table 4.2: Parameter values of the algorithms considered in our simulations
Algorithm Parameter Value

ICHIO-FA

FADs 0.2
Fixed number P 0.5
Control parameter β 1.5
Chaotic parameter ac 4
Chaotic initial value r0 0.7
Chaotic initial value R0 0.7
Light absorption coefficient γ 1
Initial attraction coefficient β0 2
Control parameter α rand

CHIO
Nbr of primary infected cases C0 1
Basic reproduction rate BRr 0.05
Max infected cases age Maxage 100

FA

Light absorption coefficient γ 1
Initial light intensity coefficient I0 2
Initial attraction coefficient β0 2
Control parameter α rand

MPA
FADs 0.2
Fixed number P 0.5
Control parameter β 1.5

PSO

Inertia maximum weight ωMax 0.9
Inertia minimum weight ωMin 0.4
Acceleration parameter C1 2
Acceleration parameter C2 2

GA
Crossover probability pc 0.8
Mutation probability pm 0.2
Elitism probability 0.2

MRFO Somersault factor S 2

WOA Control parameter amin 0
Control parameter amax 2

BA

Minimum frequency fMin 0
Maximum frequency fMin 2
Initial loudness A0 1
Initial pulse emission rate r0 1
Loudness constant α 0.5
Emission rate constant γ 0.5

GWO Control parameter amin 0
Control parameter amax 2

SA Initial Temp T0 0.025
Reduction Rater α 0.99
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Table 4.3: Scenarios settings
Scenario for LED Scenario for Users LED1..n Coordinates

SC1 : User1 SC9 : User1..5 LED1 x1= 18 84 97 82 85 84 41 93 14 33 55 78 81 5 72 2 37 98 4 99 72 14 85 14 93 78 67 50 90 75 ;
+LED1 +LED1..5 y1= 88 2 98 55 21 34 86 17 84 30 97 14 84 17 0 16 26 37 8 90 36 20 60 82 39 0 14 35 3 58;

SC2 : User1 SC10 : User1..10 LED2 x2= 84 48 86 91 10 0 21 87 66 9 98 28 73 30 15 16 21 10 51 55 18 9 33 44 28 92 41 10 22 31;
+LED1,2 +LED1..5 y2= 66 100 15 62 24 67 55 68 44 11 89 58 84 15 85 30 93 9 97 14 28 59 54 18 57 69 51 41 72 79 ;

SC3 : User1 SC11 : User1..15 LED3 x3= 25 5 66 79 21 58 58 52 24 13 91 51 32 41 35 95 57 34 43 100 76 30 27 88 74 4 90 1 22 7;
+LED1,2,3 +LED1..5 y3= 12 44 38 97 66 5 85 9 51 23 96 80 53 48 91 32 56 42 53 14 36 69 46 65 40 9 14 30 32 47;

SC4 : User1 SC12 : User1..20 LED4 x4= 53 43 16 86 18 13 62 80 60 69 36 43 15 75 18 42 15 28 45 27 78 73 17 26 73 33 80 5 35 78;
+LED1..4 +LED1..5 y4= 29 56 84 23 14 26 88 87 96 96 22 52 21 10 10 42 38 9 93 3 85 90 13 17 89 83 39 43 27 69;

SC5 : User1 SC13 : User1..25 LED5 x5= 50 14 61 9 13 50 57 92 56 56 9 70 92 63 32 61 51 90 81 79 19 68 41 67 16 73 8 22 57 72;
+LED1..5 +LED1..5 y5= 95 40 1 92 17 94 18 0 85 61 3 8 34 83 49 69 100 35 99 1 10 37 71 46 78 60 95 40 87 44;

SC6 : User1 SC14 : User1..30 LED6 x6= 24 20 5 50 17 84 86 71 31 60 78 69 11 81 10 61 51 61 11 2 34 77 47 67 6 46 39 83 53 33;
+LED1..6 +LED1..5 y6= 88 15 83 91 8 64 27 51 59 24 70 59 71 25 3 37 83 19 63 77 14 41 51 50 5 52 29 80 38 40;

SC7 : User1 SC15 : User1..35 LED7 x7= 10 97 71 72 83 33 76 48 79 90 81 64 99 98 34 100 72 73 47 34 97 71 43 28 55 51 99 14 85 86;
+LED1..7 +LED1..5 y7= 74 3 20 39 80 98 54 19 21 96 14 8 39 70 62 67 47 51 36 80 74 35 11 32 54 92 41 38 85 14;

SC8 : User1 SC16 : User1..40 LED8 x8= 80 16 5 18 34 87 33 50 50 38 25 35 96 14 36 31 59 5 48 58 75 69 68 93 99 37 13 65 1 4;
+LED1..8 +LED1..5 y8= 33 6 58 54 92 87 12 62 74 35 44 81 37 14 75 9 65 20 87 22 75 50 89 2 80 20 72 88 51 97;

User1..40 x y = 67 56; 23 27; 22 24; 28 16; 37 48; 26 30; 27 46; 76 87; 18 28; 42 52; 30 98; 22
16; 49 71; 97 86; 21 15; 30 81; 93 35; 49 37; 76 27; 15 31; 25 84; 90 4; 68 52; 48 78;
78 64; 60 22; 4 58; 76 10; 4 73; 76 56; 76 75; 39 66; 17 71; 3 27; 4 9; 40 41; 1 55; 6
44; 14 62; 34 65;

Table 4.4: Coverage, mean throughput, and fitness under various values of the parameter
λ and the Area of the Photo-Detector
lambdaλ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Coverage (%)
*ICHIOFA 66.66 70 73.33 70 70 73.33 70 70 73.33 70 66.66
CHIO 60 63.33 66.66 66.66 66.66 63.33 66.66 63.33 63.33 66.66 60
FA 56.66 50 60 53.33 60 63.33 56.66 66.66 60 63.33 63.33
PSO 63.33 70 66.66 63.33 70 53.33 63.33 66.66 66.66 66.66 66.66
GA 66.66 60 70 70 70 63.33 63.33 63.33 66.66 66.66 66.66
MPA 63.33 63.33 60 56.66 60 56.66 56.66 60 56.66 60 60
WOA 60 66.66 66.66 60 66.66 63.33 63.33 66.66 63.33 66.66 66.66
MRFO 60 63.33 70 53.33 70 70 63.33 60 63.33 66.66 66.66
BA 53.33 50 56.66 56.66 56.66 56.66 53.33 56.66 56.66 56.66 53.33
GWO 63.33 56.66 66.66 63.33 66.66 66.66 60 66.66 63.33 66.66 63.33
SA 50 56.66 60 56,66 60 63.66 56.66 63.66 60 56.66 50

Mean throughput per user (Mbps)
*ICHIOFA 43.53 47.21 46.22 43.17 46.82 45.42 42.34 44.21 47.73 46.26 45.62
CHIO 41.13 41.04 42.85 42.29 41.98 42.33 39.02 42.42 40.47 41.96 41.25
FA 35.62 31.44 38.11 32.85 39.11 40.80 36.36 42.29 39.06 40.31 39.67
PSO 42.15 46.73 42.31 42.53 44.40 44.57 41.80 43.07 41.08 41.91 42.68
GA 43.75 45.68 46.12 43.55 39.48 39.35 39.67 40.31 40.76 42.38 46.49
MPA 41.88 40.55 38.92 39.75 39.79 38.21 39.57 38.86 39.99 38.23 40.49
WOA 38.16 42.73 41.77 39.48 42.31 42.02 40.04 42.66 40.62 42.33 41.09
MRFO 38.72 40.96 44.99 34.69 47.05 44.68 41.02 37.62 40.23 42.19 41.91
BA 32.83 30.90 35.74 36.02 35.64 35.77 34.08 35.70 36.59 35.44 33.52
GWO 41.16 36.18 43.31 39.95 42.18 43.33 38.22 43.38 40.99 42.89 45.66
SA 35.73 33.62 34.84 38.62 39.52 37.23 35.63 32.52 33.62 31.84 34.95

Fitness
*ICHIOFA 0.536 0.554 0.604 0.618 0.640 0.671 0.656 0.613 0.602 0.589 0.552
CHIO 0.523 0.539 0.554 0.561 0.548 0.534 0.561 0.557 0.561 0.554 0.516
FA 0.458 0.414 0.523 0.467 0.512 0.529 0.517 0.530 0.480 0.491 0.503
PSO 0.547 0.548 0.555 0.609 0.639 0.648 0.633 0.607 0.601 0.573 0.566
GA 0.546 0.496 0.532 0.623 0.638 0.650 0.644 0.609 0.598 0.554 0.573
MPA 0.526 0.533 0.520 0.501 0.539 0.522 0.528 0.570 0.548 0.549 0.540
WOA 0.491 0.521 0.531 0.535 0.562 0.549 0.556 0.531 0.511 0.554 0.516
MRFO 0.538 0.538 0.563 0.572 0.644 0.637 0.651 0.605 0.590 0.554 0.546
BA 0.422 0.408 0.481 0.494 0.502 0.513 0.495 0.534 0.547 0.555 0.533
GWO 0.530 0.476 0.539 0.550 0.562 0.542 0.556 0.534 0.562 0.545 0.533
SA 0.478 0.456 0.512 0.526 0.537 0.526 0.541 0.524 0.504 0.4934 0.484

area A of a PD, e−4 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3
Coverage (%)

*ICHIOFA 53.33 56.66 63.33 70 73.33 76.66 83.33 86.66
CHIO 40 50 56.66 63.33 66.66 70 76.66 80
FA 36.66 40 43.33 53.33 60 63.33 63.33 70
PSO 46.66 56.66 60 63.33 70 76.66 80 83.33
GA 50 53.33 60 70 73.33 76.66 80 83.33
MPA 40 46.66 56.66 56.66 66.66 70 70 73.33
WOA 40 50 60 63.33 66.66 66.66 70 73.33
MRFO 46.66 50 60 63.33 66.66 70 76.66 80
BA 33.33 36.66 40 43.33 56.66 60 63.33 66.66
GWO 43.33 53.33 56.66 66.66 70 73.33 80 83.33
SA 40 50 43.33 50 53.33 60 63.33 70

Mean throughput per user (Mbps)
*ICHIOFA 32.85 35.05 38.88 44.29 46.65 48.75 54.72 59.26
CHIO 28.82 32.05 34.88 40.29 42.65 45.75 47.96 50.53
FA 21.99 24.40 27.34 33.51 37.72 40.48 41.86 45.73
PSO 28.67 34.94 37.33 40.25 42.22 49.11 50.79 52.10
GA 30.40 34.66 38.19 44.52 46.51 48.31 53.41 56.53
MPA 24.16 28.74 35.12 36.11 42.49 44.83 46.45 49.00
WOA 23.68 31.37 37.89 39.92 42.23 43.63 46.45 47.14
MRFO 27.83 33.11 37.95 39.20 45.25 49.40 51.29 56.40
BA 19.66 21.61 24.64 27.70 34.96 39.14 41.49 42.18
GWO 25.89 33.51 35.66 41.70 44.70 47.09 52.59 53.52
SA 22.59 25.64 26.42 34.73 37.24 41.38 42.26 44.84

Fitness
*ICHIOFA 0.471 0.509 0.567 0.635 0.670 0.697 0.763 0.818
CHIO 0.451 0.489 0.527 0.565 0.607 0.627 0.671 0.701
FA 0.324 0.357 0.392 0.482 0.542 0.577 0.586 0.644
PSO 0.417 0.492 0.540 0.615 0.655 0.706 0.710 0.735
GA 0.462 0.488 0.546 0.642 0.662 0.700 0.757 0.794
MPA 0.355 0.418 0.509 0.515 0.606 0.638 0.649 0.682
WOA 0.352 0.452 0.544 0.573 0.605 0.614 0.649 0.670
MRFO 0.412 0.483 0.544 0.569 0.657 0.691 0.730 0.796
BA 0.293 0.322 0.358 0.395 0.508 0.552 0.583 0.604
GWO 0.383 0.482 0.512 0.601 0.637 0.669 0.738 0.761
SA 0.345 0.362 0.398 0.498 0.555 0.584 0.592 0.651
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Table 4.6: Coverage, mean throughput, and fitness under various values of number of
LEDs and Users

number of LEDs 1 2 3 4 5 6 7 8 9 10
Coverage (%)

*ICHIOFA 26.66 40.66 53.33 60.33 70 83.33 86.66 93.33 100 100
CHIO 23.33 40 43.33 50 66.66 76.66 80 90 93.33 100
FA 23.33 26.66 40 46.66 50 56.66 63.33 73.33 80 83.33
PSO 23.33 36.666 53.33 56.66 57.33 70 83.33 86.66 93.33 96.66
GA 23.33 36.66 50 56.66 70 70 86.66 90 96.6 100
MPA 20 40 46.66 53.33 66.66 70 73.33 76.66 86.66 90
WOA 23.33 30 40 43.33 60 66.66 78.33 80 83.33 86.66
MRFO 26.66 30 43.33 53.33 66.66 73.33 76.66 80 90 93.33
BA 20 26.66 40 46.66 50 53.33 56.66 60 70 73.33
GWO 26.66 33.33 43.33 56.66 70.66 83.33 83.33 90 90 93.33
SA 23.33 30 40 46.66 50 56.66 63.33 73.33 80 83.33

Mean throughput per user (Mbps)
*ICHIOFA 18.12 26.32 32.73 37.45 46.64 54.74 57.47 59.36 63.73 65.09
CHIO 14.71 25.72 28.35 32.09 44.15 50.07 51.36 57.96 62.38 65.12
FA 14.38 16.81 26.08 29.40 31.32 36.25 40.55 45.32 50.86 52.79
PSO 12.48 22.99 33.99 35.83 36.86 45.58 52.90 56.67 62.04 64.84
GA 14.36 22.51 32.40 35.60 43.42 44.10 56.36 57.31 62.59 65.65
MPA 12.79 25.08 28.83 34.17 42.92 45.07 47.67 49.88 57.58 58.77
WOA 15.13 19.10 26.36 28.11 39.82 42.57 50.97 51.73 54.12 56.20
MRFO 16.14 18.78 27.35 34.32 42.41 46.80 49.63 51.93 59.53 60.96
BA 12.78 16.49 24.28 29.38 30.68 32.50 36.02 38.41 43.21 45.53
GWO 17.76 21.94 27.77 35.25 48.71 53.69 52.92 57.53 59.41 61.20
SA 14.33 16.83 22.43 29.62 33.62 37.73 40.84 45.25 49.62 52.38

Fitness
*ICHIOFA 0.256 0.389 0.476 0.528 0.682 0.774 0.796 0.849 0.896 0.917
CHIO 0.211 0.365 0.399 0.456 0.634 0.705 0.730 0.823 0.885 0.919
FA 0.209 0.241 0.367 0.422 0.451 0.516 0.577 0.658 0.727 0.756
PSO 0.180 0.331 0.485 0.514 0.520 0.643 0.757 0.798 0.866 0.900
GA 0.209 0.321 0.458 0.512 0.629 0.633 0.781 0.819 0.886 0.922
MPA 0.182 0.361 0.418 0.486 0.609 0.640 0.673 0.704 0.804 0.828
WOA 0.214 0.282 0.356 0.410 0.512 0.567 0.698 0.703 0.765 0.795
MRFO 0.237 0.272 0.374 0.478 0.588 0.648 0.690 0.724 0.833 0.859
BA 0.182 0.239 0.356 0.422 0.447 0.475 0.515 0.547 0.628 0.659
GWO 0.242 0.307 0.395 0.510 0.697 0.762 0.757 0.820 0.832 0.860
SA 0.193 0.234 0.375 0.426 0,443 0.507 0.543 0.647 0.703 0.744

Number of users 5 10 15 20 25 30 35 40
Coverage (%)

*ICHIOFA 100 93.33 90 80 73 66.66 62.33 54,28
CHIO 00 90 80 75 70 65.71 60 52
FA 100 80 70 60 52 50 42.5 40.85
PSO 100 86.66 80 70 68 66.66 57.14 52.5
GA 100 90 86.66 80 70 66.66 61.71 55.66
MPA 100 90 80 70 64 60 56.66 45
WOA 100 80 66.66 65 60 56.66 57.14 54
MRFO 100 90 86.66 70 68 60 59.45 57.5
BA 100 70 66.66 60 52 46.66 45.71 42.5
GWO 100 90 86.66 70 68 63.33 55 48.88
SA 100 80 70 60 52 46.66 42.5 40

Mean throughput per user (Mbps)
*ICHIOFA 69.64 60.20 57.24 49.04 46.63 42.59 40.13 36.86
CHIO 69.33 57.75 52.49 47.17 44.52 41.41 38.18 34.97
FA 65.12 51.02 43.61 37.54 32.72 30.23 27.64 26.45
PSO 68.11 57.01 52.87 45.43 44.15 42.64 36.50 33.79
GA 69.34 59.34 56.10 49.52 45.41 42.45 39.44 37.19
MPA 68.71 59.17 51.19 45.49 41.18 38.51 36.70 29.56
WOA 66.95 49.59 45.02 41.74 37.25 36.54 35.98 34.60
MRFO 69.35 59.01 56.73 45.67 43.79 42.56 37.74 35.09
BA 66.49 44.57 42.90 37.01 33.98 29.81 28.53 27.30
GWO 68.11 60.04 55.44 45.38 44.33 40.61 34.89 31.54
SA 65.33 51.13 43.73 38.35 33.93 30.43 28.03 27.42

Fitness
*ICHIOFA 0.950 0.847 0.811 0.668 0.659 0.659 0.672 0.515
CHIO 0.946 0.821 0.737 0.641 0.632 0.595 0.545 0.496
FA 0.919 0.728 0.630 0.541 0.470 0.444 0.390 0.384
PSO 0.938 0.800 0.740 0.642 0.624 0.661 0.520 0.480
GA 0.939 0.833 0.804 0.673 0.641 0.653 0.569 0.526
MPA 0.942 0.831 0.729 0.642 0.580 0.547 0.519 0.415
WOA 0.945 0.719 0.623 0.593 0.539 0.518 0.517 0.492
MRFO 0.946 0.829 0.798 0.644 0.622 0.607 0.540 0.511
BA 0.928 0.636 0.609 0.538 0.478 0.425 0.412 0.388
GWO 0.938 0.824 0.790 0.642 0.625 0.578 0.499 0.447
SA 0.922 0.734 0.642 0.552 0.472 0.448 0.403 0.388

Table 4.7: Convergence analyses scenarios
Scenario 1 Scenario 2

Room size 5 m x 5 m x 3,5 m Room size 10 m x 10 m x 4 m
Number of Users 10 Number of Users 20
Number of LEDs 3 Number of LEDs 5

Table 4.8: The Friedman test of the Coverage under parameter various of number of LEDs
Results ICHIO-FA CHIO FA PSO GA MPA WOA MRFO BA GWO SA

Descriptive statistics

N 10 10 10 10 10 10 10 10 10 10 10
Mean 71,0960 66,3310 54,3300 65,72960 67,9970 62,3300 59,1640 63,3300 49,6640 67,0630 54,6640

SD 25,18568 25,93702 20,96805 24,570858 26,06784 22,05677 23,45440 23,88289 17,17400 25,22374 20,49970
Minimum 26,66 23,33 23,33 23,330 23,33 20,00 23,33 26,66 20,00 26,66 23,33
Maximum 100,00 100,00 83,33 96,660 100,00 90,00 86,66 93,33 73,33 93,33 83,33

Mean rank Mean rank 10,45 7,65 2,70 7,50 8,60 5,65 4,15 6,50 1,55 8,30 2,95

Test Statistics

N 10
Chi-square 76,922710

Df 10
Asymp. sig. < 0.001

Table 4.9: The Friedman test of the Mean Throughput under parameter various of number
of LEDs

Results ICHIO-FA CHIO FA PSO GA MPA WOA MRFO BA GWO SA

Descriptive statistics

N 10 10 10 10 10 10 10 10 10 10 10
Mean 46,1650 43,1910 34,3760 42,4180 43,4300 40,2760 38,4110 40,7850 30,9280 43,6180 34,2650

SD 16,59702 17,13374 13,26452 17,09391 17,27813 14,80627 15,21653 16,03317 10,71295 16,41718 13,34699
Minimum 18,12 14,71 14,38 12,48 14,36 12,79 15,13 16,14 12,78 17,76 14,33
Maximum 65,09 65,12 52,79 64,84 65,65 58,77 56,20 60,96 45,53 61,20 52,38

Mean rank Mean rank 10,60 8,30 2,90 7,20 8,20 5,70 4,60 6,30 1,30 8,20 2,70

Test Statistics

N 10
Chi-square 74,818182

Df 10
Asymp. sig. < 0.001
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Table 4.10: The Friedman test of the Fitness value under parameter various of number
of LEDs

Results ICHIO-FA CHIO FA PSO GA MPA WOA MRFO BA GWO SA

Descriptive statistics

N 10 10 10 10 10 10 10 10 10 10 10
Mean 0,65630 0,61270 0,49240 0,59940 0,61700 0,57050 0,53020 0,57030 0,44700 0,61820 0,48150

SD 0,230276 0,242181 0,190197 0,236229 0,241263 0,205667 0,208522 0,222058 0,154743 0,233560 0,185647
Minimum ,0256 0,211 0,209 0,180 0,209 0,182 0,214 0,237 0,182 0,242 0,193
Maximum 0,917 0,919 0,756 0,900 0,922 0,828 0,795 0,859 0,659 0,860 0,744

Mean rank Mean rank 10,60 8,30 3,20 7,35 8,25 5,85 4,15 6,10 1,55 8,15 2,50

Test Statistics

N 10
Chi-square 74,082005

Df 10
Asymp. sig. < 0.001

Table 4.11: The Friedman test of the Coverage under parameter various of number of
users

Results ICHIO-FA CHIO FA PSO GA MPA WOA MRFO BA GWO SA

Descriptive statistics

N 8 8 8 8 8 8 8 8 8 8 8
Mean 77,4150 74,3738 61,9188 72,6200 76,3362 70,7075 67,4325 73,9512 60,4413 72,7337 61,3950

SD 16,21029 15,29465 20,38038 15,62702 15,31520 18,26375 15,50463 16,14315 18,88010 17,87781 20,81427
Minimum 54,00 54,28 40,85 52,50 55,66 45,00 54,00 57,50 42,50 48,88 40,00
Maximum 100 100 100100 100 100 100 100100 100 100 100 100

Mean rank Mean rank 9,75 8,06 2,88 6,63 9,13 5,75 4,56 7,63 2,50 6,56 2,56

Test Statistics

N 8
Chi-square 58,560760

Df 10
Asymp. sig. < 0.001

Table 4.12: The Friedman test of the Mean Throughput under parameter various of
number of users

Results ICHIO-FA CHIO FA PSO GA MPA WOA MRFO BA GWO SA

Descriptive statistics

N 8 8 8 8 8 8 8 8 8 8 8
Mean 50,2913 48,2275 39,2913 47,5625 49,8488 46,3138 43,4588 48,7425 38,8238 47,5425 39,7938

SD 11,20441 11,28981 13,37558 11,28912 11,03377 12,82686 10,79451 11,79302 12,88307 12,65364 13,15701
Minimum 36,86 34,97 26,45 33,79 37,19 29,56 34,60 35,09 27,30 31,54 27,42
Maximum 69,64 69,33 65,12 68,11 69,34 68,71 66,95 69,35 66,49 68,11 65,33

Mean rank Mean rank 10,63 7,75 1,63 6,69 9,63 6,00 4,25 8,38 1,88 6,44 2,75

Test Statistics

N 8
Chi-square 68,169414

Df 10
Asymp. sig. < 0.001

Table 4.13: The Friedman test of The Fitness Value under parameter various of number
of users

Results ICHIO-FA CHIO FA PSO GA MPA WOA MRFO BA GWO SA

Descriptive statistics

N 8 8 8 8 8 8 8 8 8 8 8
Mean 0,72263 0,67663 0,56325 0,67562 0,70475 0,65063 0,61825 0,68713 0,55175 0,66788 0,57013

SD 0,137181 0,149726 0,186591 0,148782 0,141068 0,174119 0,151232 0,153355 0,177272 0,169093 0,185860
Minimum 0,515 0,496 0,384 0,480 0,526 0,415 0,492 0,511 0,388 0,447 0,388
Maximum 0,950 0,946 0,919 0,938 0,939 0,942 0,945 0,946 0,928 0,938 0,922

Mean rank Mean rank 10,63 7,44 1,75 6,81 9,63 6,00 4,50 8,31 1,94 6,19 2,81

Test Statistics

N 8
Chi-square 65,436395

Df 10
Asymp. sig. < 0.001

Table 4.14: The Friedman test of the Coverage under various of Lambda
Results ICHIO-FA CHIO FA PSO GA MPA WOA MRFO BA GWO SA

Descriptive statistics

N 11 11 11 11 11 11 11 11 11 11 11
Mean 70,3009 64,2382 59,3909 65,1473 66,0573 59,3909 64,5409 64,2400 55,1464 63,9345 57,6327

SD 2,33628 2,61820 4,90246 4,56174 3,27251 2,50438 2,69410 5,18376 2,28955 3,27112 4,58006
Minimum 66,66 60,00 50,00 53,33 60,00 56,66 60,00 53,33 50,00 56,66 50,00
Maximum 73,33 66,66 66,66 70,00 70,00 63,33 66,66 70,00 56,66 66,66 63,66

Mean rank Mean rank 10,55 6,45 3,82 7,73 8,05 3,73 7,00 6,86 1,73 6,68 3,41

Test Statistics

N 11
Chi-square 69,876

Df 10
Asymp. sig. < 0.001
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Table 4.15: The Friedman test of the Mean Throughput under parameter various of
Lambda

Results ICHIO-FA CHIO FA PSO GA MPA WOA MRFO BA GWO SA

Descriptive statistics

N 11 11 11 11 11 11 11 11 11 11 11
Mean 45,3209 41,5218 37,7836 43,0209 42,5036 39,6582 41,2009 41,2782 34,7482 41,5682 35,2836

SD 1,77096 1,09731 3,37834 1,61785 2,76933 1,09025 1,47895 3,52834 1,72222 2,67670 2,41920
Minimum 42,34 39,02 31,44 41,08 39,35 38,21 38,16 34,69 30,90 36,18 31,84
Maximum 47,73 42,85 42,29 46,73 46,49 41,88 42,73 47,05 36,59 45,66 39,52

Mean rank Mean rank 10,55 6,45 3,09 8,55 8,00 4,73 6,55 6,73 1,55 7,64 2,18

Test Statistics

N 11
Chi-square 79,355

Df 10
Asymp. sig. < 0.001

Table 4.16: The Friedman test of Fitness value under parameter various of Lambda
Results ICHIO-FA CHIO FA PSO GA MPA WOA MRFO BA GWO SA

Descriptive statistics

N 11 11 11 11 11 11 11 11 11 11 11
Mean 0,060318 0,54618 0,49309 0,59327 0,58755 0,53418 0,53245 0,58527 0,49855 0,53900 0,50740

SD 0,043377 0,015968 0,035940 0,037377 0,050979 0,018187 0,021810 0,043033 0,047538 0,023715 0,026935
Minimum 0,536 0,516 0,414 0,547 0,496 0,501 0,491 0,538 0,408 0,476 0,456
Maximum 0,671 0,561 0,530 0,648 0,650 0,570 0,562 0,651 0,555 0,562 0,541

Mean rank Mean rank 10,36 6,18 2,09 9,45 8,68 4,64 5,00 8,59 2,82 5,64 2,55

Test Statistics

N 11
Chi-square 85,775

Df 10
Asymp. sig. < 0.001

Table 4.17: The Friedman test of the Coverage under parameter various of Area of the
Photo-Detector A

Results ICHIO-FA CHIO FA PSO GA MPA WOA MRFO BA GWO SA

Descriptive statistics

N 8 8 8 8 8 8 8 8 8 8 8
Mean 70,4125 62,9138 53,7475 67,0800 68,3313 59,9962 61,2475 64,1638 49,9962 65,8300 53,7488

SD 12,00988 13,50257 12,40139 1 2,65494 12,47136 12,08489 11,11652 11,78535 13,09271 13,77345 10,14778
Minimum 53,33 40,00 36,66 46,66 50,00 40,00 40,00 46,66 33,33 43,33 40,00
Maximum 86,66 80,00 70,00 83,33 83,33 73,33 73,33 80,00 66,66 83,33 70,00

Mean rank Mean rank 10,69 5,75 2,50 8,81 9,50 4,63 5,44 6,69 1,31 8,00 2,69

Test Statistics

N 8
Chi-square 71,973

Df 10
Asymp. sig. < 0.001

Table 4.18: The Friedman test of the Mean Throughput per under parameter various of
Area of the Photo-Detector A

Results ICHIO-FA CHIO FA PSO GA MPA WOA MRFO BA GWO SA

Descriptive statistics

N 8 8 8 8 8 8 8 8 8 8 8 8
Mean 45,0563 40,3662 34,1288 41,9263 44,0663 38,3625 39,0388 42,5538 31,4225 41,8325 34,3875

SD 9,25179 7,81709 8,75104 8,30004 9,07597 8,84243 8,00551 9,71447 9,13121 9,63424 8,51520
Minimum 32,85 28,82 21,99 28,67 30,40 24,16 23,68 27,83 19,66 25,89 22,59
Maximum 59,26 50,53 45,73 52,10 56,53 49,00 47,14 56,40 42,18 53,52 44,84

Mean rank Mean rank 10,63 6,50 2,38 7,50 9,75 4,81 5,06 8,13 1,00 7,63 2,63

Test Statistics

N 8
Chi-square 70,534395

Df 10
Asymp. sig. < 0.001

Table 4.19: The Friedman test of the Fitness value under parameter various of Area of
the Photo-Detector A

Results ICHIO-FA CHIO FA PSO GA MPA WOA MRFO BA GWO SA

Descriptive statistics

N 8 8 8 8 8 8 8 8 8 8
Mean 0,64125 0,57975 0,48800 0,60875 0,63138 0,54650 0,55738 0,61025 0,45188 0,59788 0,49813

SD 0,120727 0,087681 0,118374 0,115234 0,122195 0,117329 0,107078 0,130458 0,124020 0,130831 0,116371
Minimum 0,471 0,451 0,324 0,417 0,462 0,355 0,352 0,412 0,293 0,383 0,345
Maximum 0,818 0,701 0,644 0,735 0,794 0,682 0,670 0,796 0,604 0,761 0,651

Mean rank Mean rank 10,63 6,50 2,00 8,38 9,75 4,69 5,13 7,94 1,00 7,00 3,00

Test Statistics

N 8
Chi-square 71,780432

Df 10
Asymp. sig. < 0.001
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Multiple Comparison
Dependent variable: Coverage

Algorithm (I) Algorithm (J) Mean difference (I-J) SE Sig 95 % confidence interval
Lower bound Upper bound

ICHIO-FA

CHIO 6,0627 1,54912 <0,001 2,9927 9,1327
FA 10,9100 1,54912 <0,001 7,8400 13,9800

PSO 5,1536 1,54912 0,001 2,0836 8,2236
GA 4,2436 1,54912 0,007 1,1736 7,3136

MPA 10,9100 1,54912 <0,001 7,8400 13,9800
WOA 5,7600 1,54912 <0,001 2,6900 8,8300

MRFO 6,0609 1,54912 <0,001 2,9909 9,1309
BA 15,1545 1,54912 <0,001 12,0845 18,2245

GWO 6,3664 1,54912 <0,001 3,2964 9,4364
SA 12,6682 1,54912 <0,001 9,5982 15,7382

Table 4.20: The Post-Hoc test of the Coverage for each algorithm under various values of
Lambda

Multiple Comparison
Dependent variable: Mean Throughput

Algorithm (I) Algorithm (J) Mean difference (I-J) SE Sig 95 % confidence interval
Lower bound Upper bound

ICHIO-FA

CHIO 3,79909 0,977842 <0,001 1,86124 5,73694
FA 7,53727 0,977842 <0,001 5,59942 9,47513

PSO 2,30000 0,977842 0,020 0,36215 4,23785
GA 2,81727 0,977842 0,005 0,87942 4,75513

MPA 5,66273 0,977842 <0,001 3,72487 7,60058
WOA 4,12000 0,977842 <0,001 2,18215 6,05785

MRFO 4,04273 0,977842 <0,001 2,10487 5,98058
BA 10,57273 0,977842 <0,001 8,63487 12,51058

GWO 3,75273 0,977842 <0,001 1,81487 5,69058
SA 10,03727 0,977842 <0,001 8,09942 11,97513

Table 4.21: The Post-Hoc test of the Throughput for each algorithm under various values
of Lambda

Multiple Comparison
Dependent variable: Fitness Value

Algorithm (I) Algorithm (J) Mean difference (I-J) SE Sig 95 % confidence interval
Lower bound Upper bound

ICHIO-FA

CHIO 0,05700 0,015010 <0,001 0,02725 0,08675
FA 0,11009 0,015010 <0,001 0,08035 0,13984

PSO 0,00991 0,015010 0,511 -0,01984 0,03965
GA 0,01564 0,015010 0,300 -0,01411 0,04538

MPA 0,06900 0,015010 <0,001 0,03925 0,09875
WOA 0,07073 0,015010 <0,001 0,04098 0,10047

MRFO 0,01791 0,015010 0,235 -0,01184 0,04765
BA 0,10464 0,015010 <0,001 0,07489 0,13438

GWO 0,06418 0,015010 <0,001 0,03444 0,09393
SA 0,09578 0,015010 <0,001 0,06604 0,12553

Table 4.22: The Post-Hoc test of the Fitness for each algorithm under various values of
Lambda
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Multiple Comparison
Dependent variable: Coverage

Algorithm (I) Algorithm (J) Mean difference (I-J) SE Sig 95 % confidence interval
Lower bound Upper bound

ICHIO-FA

CHIO 4,7650 10,43455 0,649 -15,9394 25,4694
FA 16,7660 10,43455 0,111 -3,9384 37,4704

PSO 5,3664 10,43455 0,608 -15,3380 26,0708
GA 3,0990 10,43455 0,767 -17,6054 23,8034

MPA 8,7660 10,43455 0,403 -11,9384 29,4704
WOA 11,9320 10,43455 0,256 -8,7724 32,6364

MRFO 7,7660 10,43455 0,458 -12,9384 28,4704
BA 21,4320 10,43455 0,043 0,7276 42,1364

GWO 4,0330 10,43455 0,700 -16,6714 24,7374
SA 16,4320 10,43455 0,119 -4,2724 37,1364

Table 4.23: The Post-Hoc test of the Coverage for each algorithm under various numbers
of LEDs

Multiple Comparison
Dependent variable: Mean Throughput

Algorithm (I) Algorithm (J) Mean difference (I-J) SE Sig 95 % confidence interval
Lower bound Upper bound

ICHIO-FA

CHIO 2,9740 6,88341 0,667 -10,6842 16,6322
FA 11,7890 6,88341 0,090 -1,8692 25,4472

PSO 3,7470 6,88341 0,587 -9,9112 17,4052
GA 2,7350 6,88341 0,692 -10,9232 16,3932

MPA 5,8890 6,88341 0,394 -7,7692 19,5472
WOA 7,7540 6,88341 0,263 -5,9042 21,4122

MRFO 5,3800 6,88341 0,436 -8,2782 19,0382
BA 15,2370 6,88341 0,029 1,5788 28,8952

GWO 2,5470 6,88341 0,712 -11,1112 16,2052
SA 11,9000 6,88341 0,087 -1,7582 25,5582

Table 4.24: The Post-Hoc test of the Throughput for each algorithm under various num-
bers of LEDs

Multiple Comparison
Dependent variable: Fitness Value

Algorithm (I) Algorithm (J) Mean difference (I-J) SE Sig 95 % confidence interval
Lower bound Upper bound

ICHIO-FA

CHIO 0,04360 0,096287 0,652 -0,14745 0,23465
FA 0,16390 0,096287 0,092 -0,02715 0,35495

PSO 0,05690 0,096287 0,556 -0,13415 0,24795
GA 0,03930 0,096287 0,684 -0,15175 0,23035

MPA 0,08580 0,096287 0,375 -0,10525 0,27685
WOA 0,12610 0,096287 0,193 -0,06495 0,31715

MRFO 0,08600 0,096287 0,374 -0,10505 0,27705
BA 0,20930 0,096287 0,032 0,01825 0,40035

GWO 0,03810 0,096287 0,693 -0,15295 0,22915
SA 0,17480 0,096287 0,072 -0,01625 0,36585

Table 4.25: The Post-Hoc test of the Fitness value for each algorithm under various
numbers of LEDs
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Multiple Comparison
Dependent variable: Coverage

Algorithm (I) Algorithm (J) Mean difference (I-J) SE Sig 95 % confidence interval
Lower bound Upper bound

ICHIO-FA

CHIO 3,0412 8,70565 0,728 -14,2939 20,3764
FA 15,4962 8,70565 0,079 -1,8389 32,8314

PSO 4,7950 8,70565 0,583 -12,5402 22,1302
GA 1,0787 8,70565 0,902 -16,2564 18,4139

MPA 6,7075 8,70565 0,443 -10,6277 24,0427
WOA 9,9825 8,70565 0,255 -7,3527 27,3177

MRFO 3,4638 8,70565 0,692 -13,8714 20,7989
BA 16,9737 8,70565 0,055 -0,3614 34,3089

GWO 4,6813 8,70565 0,592 -12,6539 22,0164
SA 16,0200 8,70565 0,070 -1,3152 33,3552

Table 4.26: The Post-Hoc test of the Coverage for each algorithm under various number
of Users

Multiple Comparison
Dependent variable: Mean Throughput

Algorithm (I) Algorithm (J) Mean difference (I-J) SE Sig 95 % confidence interval
Lower bound Upper bound

ICHIO-FA

CHIO 2,0638 6,03100 0,733 -9,9455 14,0730
FA 11,0000 6,03100 0,072 -1,0093 23,0093

PSO 2,7288 6,03100 0,652 -9,2805 14,7380
GA 0,4425 6,03100 0,942 -11,5668 12,4518

MPA 3,9775 6,03100 0,512 -8,0318 15,9868
WOA 6,8325 6,03100 0,261 -5,1768 18,8418

MRFO 1,5487 6,03100 0,798 -10,4605 13,5580
BA 11,4675 6,03100 0,061 -,5418 23,4768

GWO 2,7488 6,03100 0,650 -9,2605 14,7580
SA 10,4975 6,03100 0,086 -1,5118 22,5068

Table 4.27: The Post-Hoc test of the Throughput for each algorithm under various number
of Users

Multiple Comparison
Dependent variable: Fitness value

Algorithm (I) Algorithm (J) Mean difference (I-J) SE Sig 95 % confidence interval
Lower bound Upper bound

ICHIO-FA

CHIO 0,04600 0,081094 0,572 -0,11548 0,20748
FA 0,15937 0,081094 0,053 -0,00210 0,32085

PSO 0,04700 0,081094 0,564 -0,11448 0,20848
GA 0,01787 0,081094 0,826 -0,14360 0,17935

MPA 0,07200 0,081094 0,377 -0,08948 0,23348
WOA 0,10437 0,081094 0,202 -0,05710 0,26585

MRFO 0,03550 0,081094 0,663 -0,12598 0,19698
BA 0,17087 0,081094 0,038 0,00940 0,33235

GWO 0,05475 0,081094 0,502 -0,10673 0,21623
SA 0,15250 0,081094 0,064 -0,00898 0,31398

Table 4.28: The Post-Hoc test of the Fitness value for each algorithm under various
number of Users
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Multiple Comparison
Dependent variable: Coverage

Algorithm (I) Algorithm (J) Mean difference (I-J) SE Sig 95 % confidence interval
Lower bound Upper bound

ICHIO-FA

CHIO 7,4987 6,15824 0,227 -4,7639 19,7614
FA 16,6650 6,15824 0,008 4,4024 28,9276

PSO 3,3325 6,15824 0,590 -8,9301 15,5951
GA 2,0812 6,15824 0,736 -10,1814 14,3439

MPA 10,4162 6,15824 0,095 -1,8464 22,6789
WOA 9,1650 6,15824 0,141 -3,0976 21,4276

MRFO 6,2488 6,15824 0,313 -6,0139 18,5114
BA 20,4162 6,15824 0,001 8,1536 32,6789

GWO 4,58250 6,15824 0,459 -7,6801 16,8451
SA 16,6637 6,15824 0,008 4,4011 28,9264

Table 4.29: The Post-Hoc test of the Coverage for each algorithm under various of photo-
detector Area

Multiple Comparison
Dependent variable: Mean Throughput

Algorithm (I) Algorithm (J) Mean difference (I-J) SE Sig 95 % confidence interval
Lower bound Upper bound

ICHIO-FA

CHIO 4,6900 4,42077 0,292 -4,1129 13,4929
FA 10,9275 4,42077 0,016 2,1246 19,7304

PSO 3,1300 4,42077 0,481 -5,6729 11,9329
GA .,9900 4,42077 0,823 -7,8129 9,7929

MPA 6,6938 4,42077 0,134 -2,1091 15,4966
WOA 6,0175 4,42077 0,177 -2,7854 14,8204

MRFO 2,5025 4,42077 0,573 -6,3004 11,3054
BA 13,6338 4,42077 0,003 4,8309 22,4366

GWO 3,2238 4,42077 0,468 -5,5791 12,0266
SA 10,6687 4,42077 0,018 1,8659 19,4716

Table 4.30: The Post-Hoc test of the Throughput for each algorithm under various of
photo-detector Area

Multiple Comparison
Dependent variable: Fitness value

Algorithm (I) Algorithm (J) Mean difference (I-J) SE Sig 95 % confidence interval
Lower bound Upper bound

ICHIO-FA

CHIO 0,0615 0,05893 0,300 -0,0558 ,1788
FA 0,1532 0,05893 0,011 0,0359 0,2706

PSO 0,0325 0,05893 0,583 -0,0848 0,1498
GA 0,0099 0,05893 0,867 -0,1075 0,1272

MPA 0,0948 0,05893 0,112 -0,0226 0,2121
WOA 0,0839 0,05893 0,159 -0,0335 0,2012

MRFO 0,0310 0,05893 0,600 -0,0863 0,1483
BA 0,1894 0,05893 0,002 ,00720 ,03067

GWO 0,0434 0,05893 0,464 -0,0740 0,1607
SA 0,1431 0,05893 0,017 0,0258 0,2605

Table 4.31: The Post-Hoc test of the Fitness value for each algorithm under various of
photo-detector Area
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CHAPTER 5

A MULTI-OBJECTIVE APPROACH FOR SOLVING THE
LEDS PLACEMENT PROBLEM IN INDOOR VLC SYSTEM

5.1 Introduction

Visible Light Communication (VLC) is a promising wireless technology that utilizes Light
Emitting Diodes (LEDs) for high-speed data transmission while simultaneously provid-
ing illumination. The dual-functionality of VLC introduces multi-objective optimization
(MOO) challenges, as system designers must balance trade-offs between communication
performance, illumination constraints, security, and energy efficiency.

Recent advancements in metaheuristic and evolutionary algorithms have enabled multi-
objective optimization to efficiently solve complex VLC system design problems. We ex-
plore recent applications of multi-objective optimization algorithms in VLC, highlighting
key methodologies and their impact on system performance.

VLC systems require optimization across multiple objectives, including: Maximizing
Data Rate and Coverage to ensuring high throughput while maintaining broad signal cov-
erage. Energy Efficiency to reducing power consumption while maintaining illumination
quality. Minimizing Blockage and Interference to addressing line-of-sight (LOS) obstruc-
tions and interference from multiple light sources. Security and Robustness to Preventing
eavesdropping while maintaining reliable communication. Deployment Optimization to
finding the best LED placement and power allocation.

In this context Ajith et al. [116] (2022) proposed a Multi-Objective Natural Aggre-
gation Algorithm (MONAA) for optimizing user allocation in VLC. Their approach si-
multaneously maximized data rate while minimizing blockage probability, outperforming
NSGA-II, MOEA/D, and MOPSO in both constrained and unconstrained function opti-
mization.

Fan et al. [117] (2016) developed a p-optimality-based Clonal Selection Algorithm
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(CLONALG) for optimizing VLC illumination uniformity and energy consumption. Their
method outperformed traditional Pareto-optimality methods by efficiently balancing trade-
offs between power usage and illumination quality.

Do et al. [118](2014) applied Non-Dominated Sorting Genetic Algorithm-II (NSGA-
II) to optimize LED placement for maximizing signal-to-noise ratio (SNR) and received
power while minimizing energy consumption. Their findings demonstrated that optimal
LED positioning could enhance link quality without increasing power consumption.

Liua et al. [119](2024) explored multi-objective optimization for UAV-assisted VLC
networks. Their MOEA/D-based approach optimized UAV location and power to improve
energy efficiency, minimize eavesdropping, and ensure uniform power distribution across
receiving surfaces.

Solis et al. [120](2023) applied Multi-Objective Particle Swarm Optimization (MOPSO)
to optimize MIMO VLC systems in underground mining. Their work balanced error rate
minimization and throughput maximization, demonstrating that MOPSO improved link
robustness and spectral efficiency

Amanor et al. [121](2017) utilized NSGA-II with the TOPSIS decision-making method
to optimize signal-to-noise ratio (SNR) and power consumption in LED-based inter-
satellite VLC links. Their approach yielded over 3 dB improvement in SNR while main-
taining optimal power settings.

Multi-objective optimization has become an essential tool for enhancing VLC system
performance by balancing conflicting objectives such as coverage, throughput, energy
efficiency, and security. Various algorithms, including NSGA-II, MOPSO, MOEA, and
hybrid approaches, have been successfully applied to solve LED placement, and others
VLC challenges.

In indoor Visible Light Communication (VLC) systems, one of the primary challenges
is the optimal placement of multiple LEDs to efficiently accommodate varying numbers of
users. This problem belongs to the class of NP-Hard problems, making it computationally
infeasible to determine exact solutions within a reasonable time frame. Consequently, em-
ploying approximation techniques, particularly single-objective or multi-objective meta-
heuristics, serves as an effective strategy for addressing this complexity.

In this chapter, we introduce a multi-objective version of the PUMA optimizer algo-
rithm, incorporating non-dominated sorting, and crowding distance mechanisms. These
enhancements ensure a well-distributed set of optimized solutions along the Pareto front.

The proposed Multi-Objective PUMA Optimizer (MOPO) is evaluated through mul-
tiple iterations, considering key performance metrics such as throughput and user cover-
age. Simulation results validate the efficiency and accuracy of MOPO, demonstrating its
superiority in identifying an optimal Pareto front when benchmarked against existing al-
gorithms, including the NSGA-II and the Multi-Objective Whale Optimization Algorithm
(MOWOA).
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The main contributions of this chapter are given below:

• Formulating the multi-objective LEDs placement problem in an indoor environment,
aiming to optimize the throughput and coverage metrics.

• Proposing a multi-objective version of PUMA optimizer algorithm based of the
non-dominated sorting, ranking-based selection, and crowding distance. for solving
multi-objective LEDs placement problem in indoor VLC systems.

• Implementing the proposed MOPO algorithm, NSGA-II, and MOWOA algorithms
for solving multi-objective LEDs placement problem in indoor VLC systems.

• Evaluating the performance of the proposed IMOPO algorithm in comparison with
NSGA-II and MOWOA algorithms by investigating the effect of varying the number
iterations.

The remainder of this chapter is structured as follows: Section ?? describes the Puma
Optimizer algorithm. Section ?? presents the proposed Multi-Objective Puma Opti-
mizer (MOPO) algorithm for LED placement optimization. Section 4.2.1 formulates the
multi-objective LED placement problem in VLC. Section 4.2.2 provides a detailed per-
formance evaluation, including simulation results, Pareto front analysis, and comparisons
with NSGA-II and MOWOA. Finally, Section 4.3 concludes the chapter with key findings
and future research directions.

The main notations used in this paper and their descriptions are listed in Table

5.2 Puma Optimizer (PO)

The Puma Optimizer (PO) is inspired by the adaptive hunting strategies of pumas, which
dynamically balance exploration and exploitation based on their environment. This adap-
tive behavior makes PO well-suited for high-dimensional optimization problems. The al-
gorithm follows a structured process that mimics real-world predation phases to improve
search efficiency.

5.2.1 Mathematical Model

The PO algorithm operates in two primary phases:

5.2.1.1 Phase Selection Mechanism

Pumas rely on past experiences to make strategic decisions about hunting locations. The
optimizer emulates this by distinguishing between exploitation (searching previously suc-
cessful regions) and exploration (searching new areas). In the initial iterations, both
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phases are applied simultaneously, after which a scoring mechanism determines the dom-
inant phase for subsequent iterations.

The phase selection is computed using:

ScoreExplore = (PF1 · f 1
Explor) + (PF2 · f 2

Explor) (5.1)

ScoreExploit = (PF1 · f 1
Exploit) + (PF2 · f 2

Exploit) (5.2)

where higher scores determine the selected phase. This approach ensures a smooth
transition from initial random searches to targeted refinements.

5.2.1.2 Exploration Phase

In this phase, pumas randomly search for food or utilize information from other pumas
successful hunts. Mathematically, this is modeled as:

Xnew = Xa,G +G · (Xa,G −Xb,G) (5.3)

where Xa,G and Xb,G represent candidate solutions, and G is a random scaling factor
ensuring diverse exploration.

5.2.1.3 Exploitation Phase

Pumas employ ambush hunting and high-speed pursuit strategies to capture prey. These
behaviors are modeled mathematically to enhance solution refinement:

Xnew =

(
mean(Soltotal)

Npop

)
·Xi − (−1)θ ·Xi

1 + (α · rand3)
(5.4)

This function accelerates convergence while maintaining diversity in the search process.

5.2.2 Algorithm Workflow

The PO algorithm follows a structured workflow:
1. Initialization: A population of pumas is randomly generated.
2. Early Exploration: Both exploration and exploitation occur simultaneously for the
first three iterations.
3. Phase Transition: A scoring mechanism determines whether the algorithm should con-
tinue exploring or focus on refining existing solutions.
4. Dynamic Optimization: The search agents adaptively switch between hunting strate-
gies based on past success rates.
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5. Termination: The process continues until the stopping criteria are met, producing an
optimal Pareto front.

By leveraging adaptive learning, experience-based phase selection, and diverse search
strategies, the PO algorithm achieves efficient optimization performance in complex,
multi-objective problems.

5.2.3 Computational Complexity Analysis

Despite the challenges associated with implementing the PO algorithm, it generally main-
tains a low computational complexity, which varies depending on the phase being exe-
cuted. The overall computational cost of PO can be categorized into three primary
operations: initialization, fitness evaluation, and solution generation.

• Initialization Phase: Given a population size of N , the computational complexity
of initializing the population is O(N).

• Exploitation Phase: This phase involves generating new solutions, identifying the
best location, and updating the position of each Puma. The computational com-
plexity for these operations is O(N × (T + TD)).

• Exploration Phase: This phase is responsible for generating new candidate solutions
and applying alternation mechanisms. The computational complexity for these
operations is O((2T + 1) × N × D). Additionally, sorting operations used during
exploration can contribute to an additional complexity of O(N2) in the worst-case
scenario.

Considering all these factors, the overall computational complexity of PO is given by:

O((2T + 1)N2 ×N ×D)

where:

• T represents the maximum number of iterations,

• D is the problem dimension,

• N is the total population size.

This complexity analysis highlights the computational efficiency of PO, making it a viable
approach for solving large-scale optimization problems while balancing exploration and
exploitation.
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5.3 Mathematical Definition of Multi-Objective Op-
timization Problems

The definition of multi-objective optimization problems is mathematically described as:

min | max f(x) = (f1(x), f2(x), . . . , fm(x)), (5.5)

where x = (x1, x2, . . . , xd) denotes the d-dimensional decision vector of a solution
in the decision space Ω, and f(x) denotes the objective vector containing m conflicting
functions to be minimized or maximized.

5.3.1 Pareto Dominance

Definition 1: For any two solutions x and y, x is said to dominate y:
In minimization problems: f(x) < f(y), if and only if fi(x) ≤ fi(y) for all i =

1, 2, . . . ,m and fj(x) < fj(y) for at least one j = 1, 2, . . . ,m.
In maximization problems: f(x) > f(y), if and only if fi(x) ≥ fi(y) for all

i = 1, 2, . . . ,m and fj(x) > fj(y) for at least one j = 1, 2, . . . ,m.

5.3.2 Pareto Optimality and Crowding Distance Mechanism

Definition 2: A solution x is said to be Pareto optimal if and only if there does not
exist any solution y in the decision space Ω dominating x. All Pareto optimal solutions
are non-dominated with each other.

Definition 3: The Pareto optimal set is defined as:

PS = {x ∈ Ω | ∄y ∈ Ω→ f(y) < f(x)}. (5.6)

Definition 4: The Pareto front is defined as:

PF = {f(x) | x ∈ PS}. (5.7)

Definition 5: The crowding distance (CD) is defined as:

CDi
j = fl(Xi+1)− fl(Xi−1)

fmaxl − fminl

(5.8)

where fminl and fmaxl are the minimum and maximum values of the lth fitness function.
A higher CD ensures diversity in solutions.
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5.4 Multi-objective LED’s placement problem

The LED placement problem belongs to the family of NP-hard problems, making it com-
putationally challenging to find an optimal solution within a reasonable time-frame. As a
result, meta-heuristic algorithms offer a practical and efficient alternative for addressing
this problem. In this research, we adopt a similar approach by leveraging a meta-heuristic
optimization algorithm to tackle the LED placement challenge. Specifically, we propose
a novel multi-objective bio-inspired optimization algorithm, called Multi-Objective Puma
Optimizer (MOPO) algorithm, which has been successfully applied to various optimiza-
tion problems.

The primary objective of our LED placement optimization is to simultaneously opti-
mize two objectives: maximizing total coverage and throughput in a VLC system, while
ensuring compliance with predefined constraints. The problem can be formally defined as
follows:

Cov(V ) =
M∑
j=1

maxi∈{1,...N}(CovLi
Uj

) (5.9)

f1 = Cov(V )
M

(5.10)

Tr(V ) =
M∑
j=1

maxi∈{1,...N}(TrLi
Uj

) (5.11)

f2 = Tr(V )
M × Trmax

(5.12)

Maximize f = (f1, f2) (5.13)

S.t.


SNRij ≥ P th

0 ≤ xi ≤ W i ∈ {1, ...N}, j ∈ {1, ...M}

0 ≤ yi ≤ D

(5.14)

5.5 Multi-Objective Puma Optimizer (MOPO) for
solving LEDs Placement in indoor VLC System

Optimizing the placement of LEDs in Visible Light Communication (VLC) systems presents
a multi-objective challenge, requiring a balance between maximizing coverage and en-
hancing throughput. To address this challenge, we propose a Multi-Objective version
of the Puma optimizer algorithm (MOPO), inspired by NSGA-II, which integrates non-
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dominated sorting, ranking-based selection, and crowding distance to ensure a diverse set
of optimized solutions.

The MOPO algorithm employs a ranking-based population sorting mechanism, where
non-dominated solutions are assigned Rank 1, while subsequent ranks are allocated to
dominated solutions in a hierarchical manner. To maintain diversity in the Pareto front,
the algorithm utilizes crowding distance, which measures the relative proximity of each
solution to its immediate neighbors (i.e., the preceding and succeeding solutions). Solu-
tions located in less crowded regions are favored, fostering exploration of diverse areas in
the solution space and preventing premature convergence.

To enhance search efficiency, MOPO incorporates a dynamic archive mechanism that
continuously updates and stores optimal solutions throughout the evolutionary process.
A leader selection process is employed to choose the most promising solutions from this
archive, ensuring a strategic balance between exploration (searching new regions) and
exploitation (refining known solutions). This mechanism allows MOPO to systemati-
cally refine the Pareto-optimal front, making it well-suited for complex multi-objective
optimization problems such as LED placement in VLC systems.

By leveraging these strategies, MOPO provides decision-makers with a comprehensive
perspective on trade-offs between conflicting objectives, rather than converging toward
a single optimal solution. This diversity is crucial in real-world applications, enabling
system designers to select optimal configurations based on specific constraints and re-
quirements.

5.5.1 Implementation procedure of MOPO algorithm

Optimizing the placement of LEDs in Visible Light Communication (VLC) systems presents
a multi-objective challenge, requiring a balance between maximizing coverage and en-
hancing throughput. To address this challenge, we propose the Multi-Objective LED
Placement Optimization (MOPO) algorithm, inspired by NSGA-II, which integrates non-
dominated sorting, ranking-based selection, and crowding distance to ensure a diverse set
of optimized solutions.

The MOPO algorithm employs a ranking-based population sorting mechanism, where
non-dominated solutions are assigned Rank 1, while subsequent ranks are allocated to
dominated solutions in a hierarchical manner. To maintain diversity in the Pareto front,
the algorithm utilizes crowding distance, which measures the relative proximity of each
solution to its immediate neighbors (i.e., the preceding and succeeding solutions). Solu-
tions located in less crowded regions are favored, fostering exploration of diverse areas in
the solution space and preventing premature convergence.

To enhance search efficiency, MOPO incorporates a dynamic archive mechanism that
continuously updates and stores optimal solutions throughout the evolutionary process.
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A leader selection process is employed to choose the most promising solutions from this
archive, ensuring a strategic balance between exploration (searching new regions) and
exploitation (refining known solutions). This mechanism allows MOPO to systemati-
cally refine the Pareto-optimal front, making it well-suited for complex multi-objective
optimization problems such as LED placement in VLC systems.

By leveraging these strategies, MOPO provides decision-makers with a comprehensive
perspective on trade-offs between conflicting objectives, rather than converging toward
a single optimal solution. This diversity is crucial in real-world applications, enabling
system designers to select optimal configurations based on specific constraints and re-
quirements.

The leader selection process in MOPO is determined based on crowding distance,
where the selection probability (P ) of each solution is directly proportional to its crowding
distance, giving higher preference to solutions with greater crowding distances, treating
them as extreme cases within the population.

The selection of the p-th PUMA in MOPO is governed by the crowding distance
evaluation, ensuring a balanced trade-off between solution quality and diversity.

In MOPO, offspring solutions (of size Psize) are merged with the parent population,
forming a mixed population of size 2Psize. The algorithm then calculates the ranks and
crowding distances for all individuals in this mixed population. A new population of
size Psize is subsequently selected based on these ranking and diversity metrics.

The new population is constructed by prioritizing solutions with superior ranks. In
cases where multiple solutions share the same rank, those with higher crowding distances
are preferred, ensuring a well-distributed Pareto front. This approach is aligned with
the NSGA-II framework, which emphasizes both elitism and solution diversity to
enhance convergence towards optimal trade-offs.

The flowchart and the pseudo-code of the proposed MOPO algorithm are depicted in
Figure and Algorithm. The following is the stepwise transformation of the PO algorithm
into the MOPO framework, integrating Pareto sorting and crowding distance mechanisms:

1. Initialization: Define the multi-objective problem space and initialize the popula-
tion Psize with potential solutions.

2. Pareto Sorting: Assess the populations positions via the Pareto sorting mech-
anism. Identify non-dominated solutions and store them in the Pareto Archive,
ensuring the best solutions are preserved.

3. Crowding Distance Calculation: Compute the crowding distance for each indi-
vidual within the Pareto Archive to maintain solution diversity.

4. Evaluation and update: Calculate the position solutions by PO algorithm oper-
ations to explore new areas of the solution space Psizenew .
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5. Update: Combine Psize solutions with Psizenew and forming an updated mixed pop-
ulation by PO algorithm.

6. Re-calculation Pareto and Crowding Distance: Recalculate ranks and crowd-
ing distances for the mixed population 2Psize .

7. Ranking-based selection: Select the next population Psize of solutions based on
rank and diversity preservation and remove the necessary according to archive size
with the lowest crowding distance value.

8. Convergence Check: If the maximum number of iterationsMaxiter is not reached,
return to Step 2. Otherwise, output the final Pareto-optimal front.

This structured approach enables MOPO to effectively balance exploration and ex-
ploitation, ensuring robust multi-objective optimization capabilities.

Algorithm 6 Pseudo-code of MOPO
0: % PO setting
0: Inputs: The population size N and the maximum number of iterations and parameter

settings
0: Outputs: Return the best Pareto-optimal Front.
0: % initialization
0: Create a random population and calculate Pumas fitness and sort it.
0: Determine the non-dominated solution of the initial population and save them in

Pareto archive.
0: Calculate crowding distance for each Pareto archive member.
0: Select a position vector based on crowding distance values.
0: for iter = 1 : Maxiter do
0: Calculate and update the position position vector using PO algorithm.
0: Calculate Pumas fitness values of all the updated position.
0: Determine the new non-dominated solutions in the population and save them in

Pareto archive and eliminate any dominated solution in the Pareto archive.
0: Calculate the crowding distance value for each Pareto archive member and remove

the necessary according to archive size with the lowest crowding distance value.
0: Perform non-dominated sorting according to crowding distance and select the global

best Pumas position based on the ranking.
0: end for=0

5.5.2 Simulation results and performance evaluation

In this section, we evaluate and analyze the performance of our proposed MOPO algo-
rithm in solving the LED placement problem. To assess its effectiveness, we conduct
a comparative analysis against four other state-of-the-art multi-objective optimization
algorithms.
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Figure 5.1: Flowchart of MOPO

All simulations are executed on a Mac OS M1 machine, with MATLAB used to im-
plement and run all algorithms. The evaluation is conducted within an empty conference
room of dimensions 10m× 10m× 3m, ensuring an unobstructed line-of-sight (LOS) com-
munication environment. A schematic representation of this room is shown in Figure
3.1.

To validate the efficiency of the MOPO algorithm, we explore multiple scenarios by
varying the number of Iteration (ranging from 100 to 1000).

The results are examined through Pareto-optimal front analysis, which provides
insights into the trade-offs between mean coverage (the first function f1) and mean
throughput per user (the second function f2). By analyzing these trade-offs, we assess
the MOPO algorithms capability in achieving an optimal balance between these objec-
tives.

The experimental results demonstrate the effectiveness of the proposed MOPO in
solving the LED placement problem in indoor VLC systems, where the objectives are to
maximize mean coverage and throughput simultaneously. As shown in Figures 5.2 and
5.3, the Pareto fronts obtained by MOPO were compared against NSGA-II, MOWOA,
and the True Pareto Front (PF) at different iterations.

During the initial stages (100600 iterations), MOPO rapidly improved its solution
quality, progressively converging toward the True PF while maintaining a balanced trade-
off between coverage and throughput. In contrast, NSGA-II exhibited slower convergence,
while MOWOA struggled to maintain solution diversity and often failed to optimize both
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objectives simultaneously. As iterations increased, MOPO ensured that LEDs were posi-
tioned optimally to enhance both user coverage and data transmission rates, leading to a
more efficient signal distribution and improved network performance.

By 700 iterations, MOPO had already aligned closely with the True PF, demonstrating
its ability to optimize LED placement for both maximum coverage and high throughput.
At 1000 iterations, MOPO achieved an almost optimal Pareto front, surpassing NSGA-II
in convergence speed, solution diversity, and trade-off accuracy. The superior performance
of MOPO in balancing both objectives allows for greater flexibility in network design,
enabling configurations that maximize the number of covered users while maintaining
optimal data transmission rates.

Meanwhile, MOWOA exhibited poor convergence and struggled to provide well-distributed
solutions along the Pareto front, highlighting its inefficiency in addressing the complex
trade-offs between coverage and throughput. These results confirm that MOPO outper-
forms NSGA-II and MOWOA in achieving a well-balanced, high-quality Pareto front,
making it a powerful optimization framework for LED placement in VLC systems.

5.6 Conclusion

In this chapter, we introduced MOPO, a multi-objective optimization algorithm based
on the PUMA Optimizer, designed to enhance LED placement efficiency in indoor VLC
systems. The proposed MOPO algorithm integrates non-dominated sorting, ranking-
based selection, and crowding distance mechanisms to maintain solution diversity and
improve optimization convergence.

Comprehensive simulations were conducted to assess MOPOs effectiveness in balanc-
ing network coverage and throughput. The results demonstrated that MOPO outper-
formed NSGA-II and MOWOA, achieving superior Pareto-optimal solutions with better
convergence speed and diversity preservation. Key findings include:

MOPO consistently produced well-distributed Pareto fronts, ensuring a diverse set
of trade-off solutions. MOPO exhibited faster convergence rates, reaching high-quality
solutions in fewer iterations compared to NSGA-II and MOWOA. MOPO maintained a
better balance between throughput and coverage, making it a robust solution for real-
world VLC deployment scenarios.

Future research directions include extending MOPO to optimize additional VLC pa-
rameters, such as power allocation, interference mitigation, and security constraints. In-
vestigating hybrid optimization approaches, integrating MOPO with machine learning or
reinforcement learning for adaptive LED placement. Applying MOPO to broader wire-
less communication challenges, including UAV-assisted VLC, smart city lighting networks,
and visible light positioning systems. The findings in this chapter highlight the signifi-
cance of multi-objective optimization in VLC systems, demonstrating that MOPO offers
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a scalable and efficient solution for next-generation communication networks.
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Figure 5.2: 100 iterations
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Figure 5.3: 200 iterations
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Figure 5.4: 300 iterations
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Figure 5.5: 400 iterations
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Figure 5.6: 500 iterations
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Figure 5.7: 600 iterations

Figure 5.8: Pareto fronts obtained by the proposed MOPO compared with NSGA-II,
MOWOA and the True PF under different iterations.
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Figure 5.9: 700 iterations
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Figure 5.10: 800 iterations
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Figure 5.11: 900 iterations
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Figure 5.12: 1000 iterations

Figure 5.13: Pareto fronts obtained by the proposed MOPO compared with NSGA-II,
MOWOA and the True PF under different iterations.
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GENERAL CONCLUSION

Visible Light Communication (VLC) has emerged as a promising wireless communica-
tion technology, offering high-speed data transmission, energy efficiency, and enhanced
security compared to traditional Radio Frequency (RF)-based systems. However, op-
timizing LED placement in VLC systems remains a significant challenge, requiring the
balance of illumination, coverage, throughput, and energy efficiency. The complexity of
this NP-hard problem necessitates the use of advanced optimization techniques, including
metaheuristic, hybrid, and multi-objective approaches.

This thesis explored various optimization techniques to address LED placement chal-
lenges in indoor VLC systems. Our work is structured into five main chapters, each
contributing to different aspects of VLC optimization.

The first chapter provided a comprehensive review of VLC technology, covering its ar-
chitecture, modulation schemes, advantages, limitations, and real-world applications. We
discussed key research challenges, including multi-user interference, shadowing, mobility,
and illumination constraints. Furthermore, we examined existing optimization techniques
applied to VLC, highlighting the need for more efficient LED placement strategies.

Chapter 2 explored optimization methodologies, focusing on classical, heuristic, and
metaheuristic algorithms. We analyzed their mathematical foundations, classification,
and computational complexity. The chapter also discussed single-objective vs. multi-
objective optimization approaches and emphasized the growing role of bio-inspired meta-
heuristic algorithms in solving complex NP-hard problems such as LED placement in
VLC.

In chapter 3, we introduced an enhanced metaheuristic approach, Whale Optimiza-
tion Algorithm (EWOA), to improve search efficiency and convergence speed. By inte-
grating chaotic maps and Opposition-Based Learning (OBL). Simulation results showed
that EWOA outperforms the classical WOA and several baseline algorithms in terms of
coverage and throughput. For instance, EWOA achieved up to 12% higher average SINR
compared to WOA, CHIO, PSO, and other standard algorithms in most scenarios.
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In chapter 4, recognizing the limitations of single metaheuristic algorithms, we pro-
posed an hybrid approach, ICHIO-FA (Improved Coronavirus Herd Immunity Optimizer
with Firefly Algorithm), incorporating OBL and chaotic maps to enhance solution diver-
sity and accelerate convergence. This hybrid methods demonstrated significant improve-
ments in optimization performance, efficiently balancing exploration and exploitation,
leading to more precise LED placement solutions compared to standard metaheuristic
approaches.

Chapter 5 introduced a multi-objective version of the Puma Optimizer Algorithm
(MOPO) to optimize LED placement while balancing multiple conflicting objectives. This
approach leveraged non-dominated sorting, ranking-based selection, and crowding dis-
tance mechanisms to ensure a diverse set of Pareto-optimal solutions. Our simulations
demonstrated that MOPO outperformed NSGA-II and MOWOA, achieving better trade-
offs between coverage and throughput while maintaining solution diversity and faster
convergence.

While this thesis has provided significant advancements in LED placement optimiza-
tion for VLC systems, several promising avenues for future research remain Extending
multi-objective optimization to additional VLC parameters.

Future work could integrate power control, interference management, and security con-
straints into multi-objective optimization frameworks. Exploring machine learning-driven
optimization approaches.Deep learning and reinforcement learning could be incorporated
into metaheuristic algorithms to adapt LED placement strategies dynamically. Investi-
gating real-time, adaptive VLC optimization. The integration of real-time optimization
techniques to adapt LED placement based on user mobility and environmental changes
could enhance system adaptability. Expanding optimization techniques to broader wire-
less communication challenges. The proposed methods could be extended to other do-
mains, such as mesh router placement in Wi-Fi networks, UAV-assisted VLC, and smart
city lighting networks.
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