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ABSTRACT

The Method of Lines is a semianalytical technique for numerical simulation of Partial

Differential Equations. Although the various advantages of this method such as simplicity in

concept, efficiency, and reduced computer memory space and time requirements, its

application is still confined in the field of integrated microwave structures.

In this work, a mathematical extension based on this technique, in both equidistant and

nonequidistant discretization schemes, is described for two-dimensional solution of

Poisson's equation which governs the electrical potential distribution in a semiconductor

struture subject to boundary conditions. The developed analysis is then applied to provide

solutions for practical problems related to semiconductor devices, followed by a set of

illustrative examples and an actual case study.



Chapter 1

INTRODUCTION

The spectacular growth in semiconductor technology during the last few decades has

made possible the fabrication ofvery small size devices with high operating speed and

low power consumption. The continuous need to develop new types of semiconductor
components with better performances implies a detailed understanding of the physics
and an accurate prediction of the behavior and limitations of these devices before

fabrication.

Obviously, this can be achieved by providing physical models based on accurate

solutions of the set of semiconductor equations which govern the physical phenomenon

within these devices. This set consists of linear and nonlinear partial differential

equations which are solved subject to prescribed boundary conditions according to the

considered physical problem.

Generalized analytical solutions would obviously be optimal for this problem, but, because

of the complexity of semiconductor equations, this type of solutions are not available for all
devices. However, it is possible to obtain closed-form analytical solutions for some specific

device structures by making'suitable approximations. Awell known example of this type of
analysis is described by Shockley in his paper on one-dimensional analysis of unipolar field
effect transistors in 1952 [1]. This approach proceeds by dividing the device into regions in

which simplifying approximations are applied, joined by an appropriate choice of boundary
conditions [1,2]. The majority of closed-form analytical models are restricted to one-

dimensional approximation although two-dimensional effects have been considered for some
specific device structures and operating conditions [3]. These solutions are more suitable for
low frequencies and large geometry devices with predominantly one-dimensional field and



carrier profiles. Although this approach allows rapid analysis because of the straightforward
nature of the computer algorithms used to evaluate the closed-form expression and provides
a basic insight into the device physics, it is severely limited in the range of applications and
accuracy because of nonlinearity and multi-dimensional nature of most modern devices.

Hence, this approach is not suitable for modeling sub-micron and planar devices found in

discrete and integrated forms where the transport process is multi-dimensional and the

electric field varies rapidly throughout the device.

A more generalized approach to overcome these limitations is based on the use of

numerical techniques. This approach usually requires considerable computer time but

produces more accurate results and flexibility.

Interest in numerical simulation of semiconductor devices using physical device models

started in 1964 when Gummel successfully applied it to extract DC characteristics of a

silicon bipolar transistor using a one-dimensional steady-state model [4]. Four years

later, De Mari described one-dimensional numerical models for p-n. junctions [5].

Again, the limited computer resources available at that time restricted device

simulations to one-dimension with relatively better accuracy.

To obtain a more realistic representation of planar, three-terminal, and most monolithic

integrated circuit devices which are rather surface oriented, two-dimensional numerical

models were developed. These models allow important phenomena such as high level

injection in bipolar junction transistors, short and thin channel effects in FET's and

breakdown effects to be investigated. Kennedy and O'Brien reported a two-dimensional

simulation for silicon junction field effect transistors in 1970 [6]. A two-dimensional

BJT simulation was described by Slotboom in 1973 [7]. Earlier efforts concentrated on

the JFET's [6,8], while a very large number of more recent simulations concerned the

MOSFET's [9,10] and MESFET's [11,12] for their fundamental role in integrated circuit

technology and high frequency engineering.

Three-dimensional simulations have been recently developed to investigate three-

dimensional effects found in very small geometry devices. This type of models has been



used in very large scale of integration (VLSI) MOSFET's to investigate fringing field
effects as well as breakdown and threshold voltage variations [13,14].

The increasing effort developed in the field of semiconductor numerical simulation

using physical models motivated by the availability of powerful digital computers has led
to the development of a set of software packages. Some of these simulators are

MINTMOS [15] and CADDET [16] for two-dimensional and WATMOS [13] for three-
dimensional MOSFET modeling. However, bipolar simulators include BIPOLE [17] for
one-dimensional and BAMBI [18] for two-dimensional models.

The mostly applied numerical techniques to solve semiconductor device equations are

finite difference and finite element methods which constitute the basic tools for the

development of current packages, and in several numerical simulation top. s in a wide

variety of engineering fields. These techniques are based on the discretianfion of the

equations across the specified geometrical domain of the device into grids i.e nodes for

finite difference method and small geometry elements for finite element method, and

then the resulting algebraic equations are submitted to numerical algorithms which are

usually recursive. Although their popularity, these methods present some limitations

such as problem of convergence, large time consuming and wide memory space

requirement, reason for which packages based on these techniques require, for most

applications, work stations to be executed on.

A seminumerical approach based on a mathematical method known, as the Method of

Lines [19], is proposed in the present work for the analysis of semiconductor devices.

This method, first introduced in the field of microwave circuit By R. Pregla and W.

Schultz in 1980 [20] and applied by several authors in this field where Laplace's and

Helmotz's equations are considered for respectively quasi static and full wave analysis

[21-37] of these circuits, has not yet been extended, to the best of our knowledge, for

modeling semiconductor devices.

This approach is characterized by its mathematical efficiency and simplicity in concept;

for a given partial differential equation subject to appropriate boundary conditions, all



but one ofthe independent variables are discretized. This equation is then transformed
into a set of ordinary differential equations which are solved analytically versus the

nondiscretized variable, expressing the solution along lines parallel to this variable axis,
reason for which it is known as the Method ofLines (MoL).

This semianalytical scheme makes this technique powerful and efficient in the sense that

it provides accurate results with less numerical effort and doesn't face problems of

convergence. Moreover, this approach saves time and memory space and this makes it

possible to run on widely available AT Personal Computers with average RAM size

In order to take advantage from these features in the field of semiconductor device

modeling, a detailed mathematical extension based on this technique is presented in this

document for a two-dimensional simulation of Poisson's equation which governs the

electrical potential profile within these components. This can be used to. evaluate the

depletion capacitance which, when compared to its measured value, gives information

about defects in impurity concentrations in the material. Furthermore, an important

application of this work is the calculation of the breakdown voltage of devices in

reverse biased conditions and MOS structures and, hence, this allows to make optimum

designs to meet prescribed breakdown voltages.

After this introductory part, the second chapter of this document provides the basic

equations considered in most semiconductor physical modeling topics, with a special

interest directed towards Poisson's equation and related materials, since it is the main

subject of the remaining analysis. However, chapter three describes the common

methods used in this type of modeling. This covers a one-dimensional analytical solution

of Poisson's equation and a set of the mostly applied numerical techniques. Chapter four

constitutes the main part of this work since it shows in details the mathematical steps

involved in the extension of the Method of Lines for the solution of Poisson's equation.

A nonless important part of this document is the fifth chapter in the sense that it shows

an extension of the developed mathematical tool to provide solutions for practical

problems related to semiconductor device configurations. Chapter six is dedicated for

the application of the obtained technique for some suitably chosen examples, followed



by a real case study dealing with a potential profile simulation in a MOS capacitor.

Finally, the document ends up with a conclusion in which suggestions for further work

in this field are prrvided.



Chapter 2

BASIC SEMICONDUCTOR DEVICE EQUATIONS

This chapter reviews briefly the basic equations used in most semiconductor device

physical modeling topics. This concerns mainly current and carrier continuity equations as
well as Poisson's equation. Since the objective of the coming analysis is to provide a
solution to the latest equation, then all the related materials such as space charge density,
boundary and interface conditions are also discussed.

2. 1 Current transport equations:

Current flow in semiconductors can be caused by an applied electric field and agradient in

carrier concentration when maintained different from zero [38]. The first causes carrier

drift, and the second gives rise to carrier diffusion.

2.1.1 Drift current:

This current is due to carrier acceleration caused by an applied electric field. It is composed

ofelectron and hole drift currents . Their densities are respectively given by:

J. =-1rivX= +4"VeE (2.1.a)

^ =+qpMh =+<iP^E (2.i.b)

where q is the elementary charge, n (p), (vj)^ and u,(A) denote respectively the carrier

density, the drift velocity and mobility for electrons (holes), and E represents the electric
field.

The total drift current, being the sum ofthe two previous currents, is expressed by:

Jdnft =(J. +Jh) =?(»H. +PVh)E =qoE (2.2)
where a denotes the material electrical conductivity which depends strongly on the carrier
concentrations.



2.1.2 Diffusion current:

This type of current is created by carrier scattering caused by the gradient in carrier

concentrations, that is carriers diffuse from regions of higher to regions of lower densities

[39]. Like drift cunent, this current consists of electron and hole current components, and

their densities are respectively,

Je(dijf)=+qD,Vn (23a)

Jh(diff) = -qDhVp (23b)

where V« and V/? denote the gradients of electron and hole densities. Dt and Dh are the

electron and hole diffusion constants which are expressed by the Einstein relationships:

D=*— and D^^*— (2.4)
q q

where k is the Boltzmann's constant and T the lattice absolute temperature.

When both concentration gradients and electric field are present, the cunent carried by each

type of carriers has two components: drift and diffusion. From eqs. (2.1) and (2.3), their

densities are given respectively by;

J. = qn\itE +qD.Vn (2.5. a)

Jh = qp^hE-qDhVp (2.5b)

which are known as current-transport equations.

Finally the total conduction current density J, composed of the electron and hole current

density components, is given by:

J=J. + Jh (2.6)

2.2 Carrier continuity equations:

These equations govern the change in carrier concentrations in a semiconductor material

[40]. To derive a one-dimensional continuity equation for electrons, consider an infinitesimal

slice of thickness dx located at x as shown in fig.(2.1). The number of electrons in the slice

may increase (decrease) because of the flow into (out) the volume and carrier generation

(recombination) within the slab. The overall electron rate of change is the algebraic sum:

(1) The flow into the slab, minus (2) the flow out, plus (3) the rate at which electrons are

generated, minus (4) the rate at which they recombine.



x+dx

Fig. (2.1) Illustration for the derivation of carrier continuity equations.

The first two components are found by dividing the electron current at each size of the slice

by the electron charge. If we symbolize the last two terms respectively by G rid R, then the

rate of change in the number of electrons in the slab is given by:

rJ.{x) Je(x +dx)^
dt

A+{Gt-Re)Adx (2.7)

where A is the cross sectional area of the slice and, Ge and Re are respectively the generation

and recombination rates of electrons per unit volume. Recombination and generation are

processes that happen in a semiconductor material which are defined as follows:

recombination it is the process in which an electron in the conduction band loses its energy

and falls into an empty space in the valence band, resulting in a loss of an electron-hole pair,

that is R=Rh.
e n

generation, it is the opposite process to recombination, that is an electron in the valence

band receives enough energy to move into the conduction band creating an electron-hole

pair, that is Ge-Gh.

If dx in eq. (2.7) is let small, then the basic one-dimensional continuity equation for

electrons is expressed as:

dn 1 Je{x)
dt q dx

- + (G.-K) (2.8)



In more than one dimension this equation takes the form:

- =-V.y.+(G.-^) (2.9.a)

A similar continuity equation can be derived for holes, except that the sign of the first term

on the right-hand side is changed because of the charge associated with a hole, that is

f =-^.Jh+(Gh-Rh) (2.9.b)
2.3 Poisson's equation:

In this section, the remaining basic equation which is mostly used in physical modeling of

semiconductor devices is derived [41]. This equation governs the potential profile in a

semiconductor material and constitutes the starting point for several analyses in this field.

According to Gauss's law which belong to the set of Maxwell's equations, the electric field

flux vector D is related to the electric space charge density p, by:

V.D = p (2.10)

D is expressed in terms of the electric field E as:

D = ee0 E (2.11)

where e0 and s denote respectively the dielectric permittivity of vacuum and the relative

dielectric constant of the considered material.

In this analysis, the medium is assumed to be homogeneous and isotropic. A homogeneous

medium is the one for which the quantity £ is constant throughout the medium. It is

isotropic if £ is a scalar constant, so that D and E have everywhere the same direction.

Combining eqs. (2.10) and (2.11) yields:

V.E = — (2.12)
ee0

which describes the divergence of the electric field at any point in space in terms of the space

charge density existing at that point.

Since the electric field is related to the scalar potential function by:

E= -V<{> (2.13)
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then eq. (2.12) may be rewritten as,

n- -~ (2.14)

This differential equation, known as Poisson 's equation, relates the potential variation at

any point to the charge density at that point, and it is written explicitly in two dimensions as:

§+§ - -- (215>ox by ee0

The solution of this equation in the field of semiconductor modeling requires information

about the space charge profile and the boundary conditions of the considered structure

which are discussed in the following subsections.

2.3.1 Space charge in a semiconductor:

In a semiconductor material, four types of charged particles may be present:

Positively chargedparticles:

1. Mobile holes, p.

2. Ionized donor atoms, Nj.

Negatively charged particles

1. Mobile electrons, n.

2. Ionized acceptor atoms, Na.

where the symbolsp, n, Nj and Na represent the volume concentration of the corresponding

particle types. The total space charge density is therefore written as:

P=q(Nd-Na+p-n) (2.16)

The depletion approximation is usually used in the solution of Poisson's equation for

reverse biased devices at equilibrium [42]. This approximation divides the semiconductor

into distinct regions that are either neutral or fully depleted (empty) of mobile carriers, and

they are defined as follows:

a) Neutral region:

In this part of the device, the ionized impurities are neutralized by the corresponding

mobile carriers Therefore, the space charge density in this region, is
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p=q(Nd-Na+p-n) =0 (2.17)

and eq. (2.14) reduces to the Laplace's equation:

V2<j> =0 (2.18)

Since, the considered region is neutral and in equilibrium, then the previous equation should

give the solution $=cste, equal to the electrode voltage in contact with this region,

otherwise, any drop of potential in this layer will result in an electric field that will cause a

charge displacement violating the equilibrium condition and the space charge neutrality in

there .

b) Depletion region:

This region is considered to be empty of mobile carriers, that is p =n= 0. Therefore, eq.

(2.14) takes the form:

V^ =̂ L(Nd-Na) (2.i9)

whereA^ =0 for P-type and Na = 0 for iV-type materials respectively.

As a consequence for the two previous subsections (a & b), at equilibrium condition, the

boundary between the neutral and the depletion layers is located in such away the potential

drop in the depletion layer is equal to the applied difference of potential as illustrated in

section (3.1).

2.3.2 Boundary conditions:

In addition to the fact that <}) satisfies eq. (2.14) which accepts an infinite number of

solutions, it must also satisfy the prescribed conditions on the external boundaries of the

considered device. These boundaries are of the Dirichlet and/or Neumann types, which are

described as follows:

a) Dirichlet condition:

Dirichlet condition is applied at the boundaries (usually electrodes) where the potential

takes the value of a known voltage V, that is,

<j> = V (2.20)
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b) Neumann condition:

This type of boundaries is applied on free external surfaces. It assumes zero external

electric field component since there is no electronic emission, i.e.,

- = 0 (2.21)

where the operator d/n denotes the gradient component along the unit vector n normal to
that surface.

2.3.3 Interface conditions:

In a semiconductor structure, Poisson's equation takes different forms in mediums of

different dielectric permittivities or charge densities. Interface conditions which are

considered in the analysis state that, at the interface of two adjacent media 1 and 2, the

potential is continuous and the normal component of the electric field verifies Gauss's law

[38], so that:

4>i =4>2 (2.22)

and aj) aj>,

*'t-^'e- (223>
where e1(2) are the dielectric permittivities of the corresponding media, and the unit vector

n normal to that interface is pointed to layer 2, and Qs denotes the interface charge density.

2.4 Conclusion:

The basic equations considered in most physical modeling of semiconductor devices are

described throughout this chapter. However, in many analyses dealing with reverse biased

devices for the extraction of parameters such as breakdown voltage, the problem reduces to

the solution of Poisson's equation.

In order to perform semiconductor device modeling, solutions should be provided for the

described equations to fit the specified boundary conditions. For this purpose, several

analytical and numerical techniques have been developed, and the next chapter is entirely

devoted for the description of the most popular ones among them.



SEMICONDUCTOR DEVICE MODELING

TECHNIQUES
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chapter 3

The purpose of this chapter is to present some of the mostly used methods for the solution

of semiconductor device equations. This includes a detailed one-dimensicnal analytical

solution of Poisson's equation for a potential simulation in ap-njunction dioc' followed by

a briefdescription of a set of numerical methods which are widely used in mujit dimensional

device modeling where analytical solutions can not be obtained. A particular attention is

however directed towards finite difference and finite element methods for their popularity in

this field.

3.1 Analytical method:

Closed-form methods, widely used prior to the advent of digital computers, are usually

restricted to one-dimensional analysis by assuming unidirectional field distribution and

homogeneous structures. Analytical solutions for semiconductor equations are generally

obtained by solving these equations subject to simplifying approximations.

In order to illustrate this approach, a one-dimensional potential profile is derived for ap-n

junction diode [42]. This example shows a one-dimensional solution of Poisson's equation

for which a two-dimensional semianalytical solution is provided in the next chapter.

The physical model of the diode under consideration is shown in fig. (3.1.a). This consists

of an interface where the impurity concentration changes from Na in P-type to Nj inN-type

materials, respectively. Depletion approximation assumes that the depletion region which lies

between the positions -xp and x„, for now unknown, is completely empty of free carriers.

This assumes constant space charge densities in the two layers constituting this region as
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illustrated in fig. (3. lb). However, elsewhere in the bulk, the space charge density is zero
since the ionized impurity atoms are neutralized by the conesponding free carriers.

We recall that in the depletion region Poisson's equation takes the form:

5M> q

and, in the neutral regions, it is written as

a2* =o
dx2

Integrating eq. (3.1.a), we obtain the expression for the electric field intensity E,

where C denotes the integration constant.

In the P-side ofthe junction Nd is zero, and on the A^-side Na is zero. Hence, two separate

equations for the electric field, one for each side ofthe depletion area, can be written as:

d§n q
E" =~~dx~ =~^TN*x +C^ 0 < x < xn (3.3.a)

and <#„ q
Er =~^~ =-~N<X+C2> --*, <x<0 (3.3.b)

Since the depletion approximation assumes zero electric field at the edges of the charged
region, then

£„ = 0 at x = xn (3.4.a)

^ E> =° * *="*, (3.4.b)
Introducing the above conditions in eqs. (3.3) yields:

d§n q , v
£' ="A" =̂ lX-XJ' 0<x<xn (35.a)

and d$p q , *
Er =-~ax~ =-^~QN<>\x +xr)' -xp<x<0 (3.5.b)

At the junction (x=0), the electric field satisfies the interface condition in eq. (2.23). Hence,

Nd xn = Na xp (36)

(3.1.b)
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This equation verifies the expected result which states that the developed space charge is the

same but of opposite sign on the junction sides.

Integrating eqs. (3 J) for the potential, we obtain

.2 >

+Q ; 0 < x <xn (3.7.a)

and

q \ x

'x2 >q<bp =—Xa\— +xpx +Q ; -xp < x < 0 (3.7b)
c.c.0 v ^ /

with Ci = C4, resulting from the application of the potential interface condition at the

junction (eq. (2.22)).

Since the voltage drop in the neutral layers is approximated to zero, then the difference of

potential across the depletion layer is:

V=*.(*,J -<•,(-*,) =̂ K xn> +Na */) • (3.8)
Solving simultaneously eqs. (3.6-8) for the depletion layer widths in each side of the junction

yields:

and

2se0NaV
x. = ' —-

«w„(w. +*J (39a)
2se0Nd V

Like eq. (3.6), these equations indicate that the space charge layer penetrates deeper into the

region with the lower doping concentration. If, for example Nd » Na, then x » xn and

the total depletion width simplifies to

<i = x«+xp<*xp (3.10)

and the total voltage Vacross the depletion region is:

r = y.+r» (3.H)

where Vb, denotes the built-in potential at the junction [42], and Va is the applied external

voltage as shown in fig. (3. l.a).



(a)
junction

P-type N-type

Va>0

j Kp(x)

qNd

(b)

<p
>

x„ X

-qNa

♦ E{x)

16

Fig. (3.1) Abrupt reverse biasedp-n junction diode, (a) Physical model representation, (b)
space charge density, (c) electric field and, (d) electric potential profiles.
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3.2 Numerical methods:

Although one-dimensional analysis provides information about the device behavior, this

type of modeling is inadequate for most modern devices in which the field distribution is

rather multi-dimensional. Since analytical solutions are generally impossible to obtain for

multi-dimensional analyses, several numerical techniques have been developed for this

purpose. Among these methods, we list the finite difference, finite element and Monte Carlo

methods which are described briefly in the following sections.

3.2.1 Finite difference method:

Finite difference method has been widely used to solve discretized semiconductor

equations, and continues to be a popular choice in device simulations [4,18]. The reason for

this is the availability of considerable information about this method [38,43], and the

additional complexity introduced into simulation algorithms by alternative techniques.

The principle of this method consists in subdividing the simulation domain into rectangular

meshes, called grids, as shown in fig. (3.2) below:

V

-»

Ax
<

l*y

T

>

Fig. (3.2) Uniform finite difference mesh.

At the nodes of these grids, called grid points, the continuous derivatives in the equations

are replaced by discretized finite difference approximations, and solutions for physical

variables are produced
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The finite difference equations are derived from truncated Taylor series. For example, for

the following Poisson's equation:

, / v d2$(x,y) 52<J)(x,v) p(x,y)V2d>x^= ^2 + 2,,=-^^L (3.12)
ox by e

the second order difference approximation of §{x,y) with respect to x is obtained when

truncating the series after the second term by proceeding as follows:

*(* +̂ )=*M+Ia*%^+1a*>^ (3.13,)
^-tej)=»M-lAx%i+Ito^ (3.13b)

Adding (3.13 a) and (3.13b) yields

&b(x,y) <\>(x-Ax,y)-2<b(x,y)+<b(x +Ax,y)
bx2 Ax2

Similarly, the second order difference approximation of <j>(x,_y) with respect to vis

&$(x,y) <b(*,y - Ay) - 2<\>(x,y) +̂ >(x,y +Ay) ,, ^m
-o7- = A? (314b)

where Ax and Ay are the discretizing step intervals respectively along x and.y directions.

Substituting the expressions (3.14) in eq.(3.12), then Poisson's equation is approximated at

agrid point (x,y) by:

<j)(y - Ax,y) - 2$(x,y) +4>(x +Ax,y) <$>(x,y - Ay) - 2<k(x,y) +$>(x,y +Ay) __ (jx,y)
Ax2 + Ay2 s '

It follows that the potential (^(x,^) at a node \x,y) can be expressed in terms of the

potentials at the surrounding nodes. Consequently, if we let <J>A, <J>B , <J>C and <J>D to be the

potential values at the four neighboring points to the point P shown in fig. (3.3), then the

potential at P can be written as,

<Pp =Ol<l>A+a2<l>B+a3<t>C+fl4<t>D+ajPp (3.16)

(3.14.a)
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where Pp denotes the space charge density at P, and the coefficients a,'5 are identified when

extracting (^(x,^) from eq. (3.15).

A

D P B

C

Fig. (3 3) Illustration of the points used in the expression of ij»p in eq. (3.16).

An approach to solve the finite difference equation is based on the relaxation method. In

this technique, assumed potential values are first assigned to the grid points and modified

iteratively as

<j>p+1=<t)p-a/?p (3.17)

where /' is the iteration number, a the chosen relaxation parameter and R^ the residual which

represents thedifference between <J>P and thevalue given by eq. (3.16).

The iterative process is carried out until a specified accuracy is reached, that is when the

difference between the values obtained from the last two iterations is less than the allowed

error.

Finally, finite difference method suffers from some disadvantages such as large time and

memory space requirements in addition to problems of convergence which is not always

assured

3.2.2 Finite element method:

Finite element method is developed in the early 1940's for use in civil and mechanical

engineering. The application of this method in semiconductor device modeling was first

reported in literature in the 1970's [44, 45]. This technique provides a flexible means for

solving semiconductor equations over devices with complex geometry [38].
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The first step of this method consists in approximating the solution for the differential

equation by simple functions over small geometry elements of the total simulation domain.

The total solution is then built up by matching together the solutions in individual elements.

In two dimensions, the domain may be subdivided into triangles as shown in fig. (3.4).

Fig. (3.4) Finite element subdivision of the simulation
domain into nonuniform triangular elements.

The solution in an element is usually approximated by a low order polynomial. For example,

for Poisson's equation, the potential may be approximated by a function such as:

§element = Oq +Q.X +Q^ (3.18)

When using finite element method, a special significance is attached to the solution at certain

points on the elements called nodes. For triangular elements, it is adequate to take the nodes

at the corners of the triangle as illustrated in fig. (3.5) below:

Fig. (3.5) A triangular element
with three nodes.
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If the values of <\> at the nodes are respectively (f>p <\>2 and <t>3 then eq. (3.18) can be

rewritten as:

3

<f>^, = I>,(x,>H (3.19)
1=1

The functions N,(x,y) are called shape Junctions and have an equivalent form to the

expression in eq. (3.18). Their coefficients are evaluated when assigning to A^ the property

of taking the value 1 at the i'h node and zero at the others, and therefore we will be left with

only <j), 's as unknowns.

Substituting the trial function {§eUmenl in eq (3.19)) into Poisson's equation (3.12) yields:

P
ZhV2N,+~ = R

6
(3.20)

The residual R would be zero if the approximation in eq. (3.18) were exact solution, but in

general it will not be, giving rise to an error. The aim is, now, to find the nodal potential

values that minimize R and verify the expression of the solutions in all the surrounding

elements For this purpose, several techniques such as the Rayleigh Ritz and Galerkin

methods were developed [46].

Although finite element method can be applied for modeling devices with complex

geometry, its principle disadvantages are great density of the matrix equations, programming

complexity and problems of convergence.

3.2.3 Monte Carlo technique:

Monte Carlo method is a statistical numerical technique for solving mathematical and

physical problems. This method has been applied to solve a wide variety of problems before

being introduced in the field of semiconductor device modeling by Kurosawa in 1966 [47 ].

This method solves semiconductor equations using a statistical approach by following the

transport history of one or more carriers subject to forces due to applied electric and

magnetic fields [38]. Because of this particular scheme, this approach is sometimes

considered to be similar to experimental techniques.

The principle of this method consists in following the motion of electrons in the material

where random numbers control the scattering process. The motion of each electron is
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modeled as a sequence offree flights between successive events (collisions) during which it

is accelerated by the existing fields, and obeys the classical laws of motion. The information

obtained from these flights is then used to determine the required parameters from

simulation In the case of steady-state modeling, a single particle is considered and the time

history must be long enough so that the choice of initial conditions does not influence the

final outcome, whereas transient simulation requires the motion of a large number of

particles.

This method which is suitable when hot electron effect is considered, requires large

execution time and needs detailed knowledge about the system in terms of material

parameters as well as the different physical phenomenon involved in the process.

3.3 Conclusion:

Numerical methods constitute the unique alternative for the solution of the most

semiconductor device problems. However, they present some limitations such as large

memory space requirements, time consuming and problems of convergence. For these

reasons, efforts are carried out to develop algorithms that solve all or some of these

problems For the same purpose, a semianalytical technique is provided in the next chapter

for the solution of Poisson's equation.
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Chapter 4

The semianalytical method of lines is developed by W. Fadeeva for the solution of partial
differential equations (PDE's) [19]. This technique was first introduced in the field of

engineering for the analysis of microwave circuits where Laplace's and Helmotz's equations
given by:

V:4> =0 (4.1)
and

V:<t> +£:(j) =0 (4 2)

where kis ascalar, are solved respectively for quasi-static and full-wave analyses [20-37].

Although the various advantages of this technique, its application is still confined in this

field. To take advantage from its features in the field of semiconductor device modeling, a
detailed mathematical extension based on this technique is provided in this chapter for a
two-dimensional solution ofthe Poisson's equation:

V2<t> = -p e (4.3)

which controls the potential distribution within these devices.

This operation is achieved by the extension of the scheme already applied for the solution of

the Laplace's equation (4.1) in two dimensions, to solve the Poisson's equation (4.3) by a
suitable handling of the right hand side ofthis equation which is no more identical to zero

[48]. Moreover, this chapter describes in details all the steps involved in the application of
this technique
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4.1 Qualitative description:

The method of lines, very well suited for the analysis of planar structures is characterized
by its mathematical efficiency and simplicity in concept, for a given partial differential
equation subject to boundary conditions, all but one of the independent variables are
discretized [21,24,29], The discrete variables should be well chosen to benefit from the
efficiency of this method. This seminumerical approach transforms a PDE into a set of
decoupled ordinary differential equations. The solution is then expressed analytically versus
the non-discretized variable, along lines parallel to this variable axis. As expected, the
semianalytical scheme of this approach saves considerable amount of time and memory
space compared to other purely numerical techniques.

In the following, the analysis is first carried out by letting equidistant discretization, and
then the general case of nonuniform discretization is assumed.

4.2 Equidistant discretization:

Let's use the Method of Lines with uniform discretization to solve the two-dimension
Poisson's equation:

c2b{x,y) d2<b(x,y) f{x,y)
cx by ••f(x,y) (44)

in the domain shown in fig. (4.1) and subject to boundary conditions that will be discussed

latter on. The different steps involved in the analysis are as follows:

4.2.1 Discretization:

If we discretize the variable x and keep y continuous then the functions $(x,y) and

f(x,y) are transformed to the sets of functions <t>(x, ,y) and f(x,,y) along the lines:

x = ih ; / = 1, 2, .... N.

where Ar is the total number of lines crossing the structure and h the discretizing interval
size, as illustrated in fig. (4.1).

This operation transforms eq. (4.4) into a system of N differential equation ofthe form.

^>M| . ^x„y) < ,cx2 \ ^—dyT~- =A^y) (4.5)



If we let

b{x,.y) =b,(y) =b,
and

A*,.y)=f,{y)=f,
then, the /th difference approximation with respect to x is expressed as:

8'$

~dxr

5(f)

dx

<i>,-i £i
dx

+ 0 (h) ; i = 0 N

cfyj
cx~

h/2

« •:

4>, f*
dx

ex2

• • •

*,-i ^
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(4.6.a)

(4.6.b)

(4.7)

Fig. (4.1) Considered domain and equidistant discretization pattern for the method of lines.

On the same basis, the second partial derivative is approximated by:

c2^
dx2

bty

ex ~dx
i-i

+ 0(h2) ;/ =!,..., TV (4.8)

In the previous equations 0{h) and 0(h2) denote the error terms. Combining eqs (4.7) and

(4.8), and neglecting these terms yields:

c2§
ex

<t>,-,-2<t>,+<{>,- (4.9)



For different i's, eq (4.9) is written as:

dx2

c2^
dx2

ex2

c2^

cx~

<t>0"-2(1), +<t>2
h2

*,--2<t>2 +*3
h2

*2"-2<p3 + <j>4

/r

<t>.v-: -2<t>.y -4> v.!

, i = l

, i = 2

i = 3

, i = tf

26

(4.10.a)

(4.10.b)

(4.10c)

(4.10.d)

which represents a system of A7, coupled differential equations with (N-2) unknowns (<}>c,

4>„..., <!>,•_.,).

4.2.2 Lateral boundaries:

The unknowns (}>0 and <J)V^;, appearing in the above system respectively for /-l and i=N,

are eliminated when considering the lateral boundary conditions. The left boundary is

considered in what follows, and the same approach applies for the right hand side These

conditions are of the Dirichlet and Neumann types;

a) Dirichlet condition:

Dirichlet boundary (fig. (4.2 a)) requires <J>0 = 0. Inserting this condition into eq. (4.10.a)

yields:

b) Neumann condition:

exj)
This condition assumes —

ex

(4.10.a) takes the form:

d2^
ex'

-2(j>;+<j>2
h2

(4.11.a)

0 which implies <J)0 =<J>, from eq.(4.7). Accordingly, eq

c <t>| _ -<j), +<J>2
ex2' h2

(4.1 l.b)
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Consequently, in both boundary types <J>0 is eliminated from eq. (4.10.a). Similarly, the
condition on the right lateral side of the domain in fig (4.1) eliminates ^ from eq
(4. lO.d).

*o = 0
*o 4»,

left boundap. left boundarv

image line

1=0 1 1=0 1

(a) Dirichlet boundary
(b) Neumann boundarv

Fig. (4.2) Illustration of Lateral boundary condition types.

If, now, we let the vectors <j>, /and <$>a to be respectively:

<j) =((j)1> <|>21 ..., <t>v)'

and

M i C^
.2.1C"(J) d2<$>

cx bx2\: -' bx2

then the system (4.10) takes the matrix form:

1

K-^Pi

Y
I

J

(4.12 a)

(4.12.b)

(4.12 c)

(4.13)

with P being the second order difference operator which is an NxN real-symmetric and
tridiagonal matrix of the form:
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A 1 1
1 -2 1

P= 1 '•. '•. j (4.14)
'•. -2 1

where p. and p2 depend on the lateral boundaries. Accordingly, from eqs (4.11) we get:

a) Dirichlet condition: <j>0 and / or <j) w = 0 => p, and /or p^ = -2.

= 0 => p. and /or p2 - -I.
ctj)i cxt>

b) Neumann condition: —j and /or —
cxi ex

Inserting (4.13) in eq. (4.5), then this one takes the matrix form:

d2§ \
dy2+ h2+7TP<\> = f (4.15)

4.2.3 Domain transformation:

Up to this stage, eq (4.4) is transformed to the system of A^ coupled differential equations

(4.15). For this purpose, the matrix P must be diagonalized by a suitable transformation

This is performed using the linear algebra theorem [49] which states that any real symmetric

matrix P is similar to a diagonal matrix X, i.e., there exist a matrix 7" such that

T'PT=X (416)

where the elements Xt are the eigenvalues of P, T is an orthogonal matrix whose columns

are the eigenvectors of P, and V its transpose which satisfy the relationship:

TT=I (417)

where / is the identity matrix of the same size. Moreover, for the particular tridiagonal

matrix P in eq (4.14), the elements of X and T can be expressed analytically [29], and their

respective forms are shown in appendix A.

The above result allows the system (4.15) to be decoupled by premultiplying its both sides

by T', and obtain

\,+-7TT'P(TT')b =T'f (4.18 a)
ay' h" -—v—'

/
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which is equivalent to

d2[T'<b) 1 / w \
,2 +-r2-{T,PT){T,<b) =Tlf (4.18.b)

or simply,

d2V 1
-T^ + -rrXV = F (4.18c)
ay' «'

where Fis the transformed vector of potentials and F the transform of / given respectively

by:

V = T'<\> (4.19.a)

and
F=T'f (4.19.b)

4.2.4 General solution:

Now that the system is decoupled and takes the form (4.18.c) in the transformed domain, it

can be solved by proceeding as follows:

If we let

X,=-l2 (4-20)

then eq (4.18 c) is expressed as a set of independent equations of the form:

d2V fy V

^-ItJ".^ "l2 N ,421)
The general solution of each of these equations includes a homogeneous part and a

particular one, and they are obtained as follows:

a) Homogeneous solution:

The homogeneous solution is obtained when letting the right side of the equation to be

zero. For this type of ordinary differential equations, this solution takes the form:

FH,^,coshf^)y^,sinl(^)y (4.22)
where At and B1 are arbitrary constants.
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b) Particular solution:

Among the available procedures to determine the particular solution we suggest the

method of undetermined coefficients in which the general form of this solution is expressed

as a linear combination of/7, and its linearly independent derivatives, that is,

VPl =ahFl+alF;^aliF;2\-+almFr+- (4.23)

where Ft'"" denotes the mth derivative of Ft , and the coefficients a.'s are determined when

substituting \\ in eq (4.21) by the expression of Vp [49],

Furthermore, since F, depends on the doping profile which is usually constant, linear or an

exponential function ofy, then its expression involves at most the first two term in eq (4.23)

which can be evaluated easily

Consequently, the general solution in the transformed domain takes the form:

K=VHi +VPi =A, cosh|̂ Jy +B, sinh^y +V, (4.24)

where the coefficients A, and B, are determined when considering the transformed boundary

conditions on the horizontal top and bottom surfaces of the device

At last, to get the vector of potentials (j>, the vector V must be transformed back to the

original domain by the inverse transformation:

4> = TV (4.25)

expressing the solutions along the discretization lines in terms of y.

Finally, It has to be noted that in the case of Neumann-Neumann lateral boundaries, one

eigenvalue is zero {Xx in appendix A), and the solution of the corresponding equation in

(4.21) results from a double integration.

4.3 Nonequidistant discretization:

In any numerical modeling of physical phenomenon, there may be regions of the device

where the investigated parameter changes strongly and others where it is quiet constant For

accurate results with less numerical efforts, in finite element and finite difference methods,
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small size elements and meshes are assumed in the first regions, and let larger in the second

ones Similarly, improved accuracy may be obtained with the method of lines by performing

nonequidistant discretization and proceed as follows:

4.3.1 Discretization:

Nonuniform discretization is applied for the structure in fig. (4.3) in which Poisson's

equation is solved In this example, arbitrary disposition ofthe lines is considered, but in a

practical case, the distance between them is selected according to the expected field

concentration

Fig. (4.3.a) Nonequidistant discretization partem for the method oflines.

*,-! 4>, *,

-*«-
e,-i

/>,/;
-*«-

cx\ cx\

5<t>

ex

Fig. (4.3.b) Detail A in fig (4.3.a).



32

Similarly to uniform discretization, eq. (4.4) is transformed into a set of Ar equations' such

as,

c*b{x,y) c'^x^y
ex' cy-

f(*,y) (4.26)

With the same abbreviations in eqs. (4.6), the i'h finite difference approximation is now

expressed as,

ex

<t>,-i-4>,
; / = 0, 1, ...,N.

and the second derivative evaluated on the potential line is:

cxp

c:(J)! ex
ex2

C<J)

ex*
, / = 1, 2, ...,N.

(4.27)

(4.28)

where et - (ht -rh^,) / 2 denotes the /'th interval size between dotted lines in fig. (4.3b).

4.3.2 Normalization:

To obtain a symmetric operator like in the case of equidistant discretization (P), eq. (4.27)

is first normalized by multiplying its both sides by h^ht jh and obtain:

Nil* :'̂ (-<t>, +4>,J ; i- =o, i, ...,n. (4.29)

where h is the assumed normalized discretization interval.

With Dirichlet-Dirichlet lateral conditions, i.e., <j)0 = 4>.v-i = 0. tne above equations take the

matrix form:

hrh-lbx=rhD$ (4.30)

where

and

^={cx~

; / = 0,1 N.

<j> =(<|>;, <|):, ..., <!>• )

,' dx

cxb i

cxiv

V

(4.31)

(4.32)

(4.33)



whereas the (A' -f ljxA' matrix D is the first order difference operator given by:

r i i
!

I -1 1 i
D=\ -1 '•.

-U
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(434)

Similarly, the second order difference equation (4.28) is normalized by premultiplying it by

hJei Ih and get

\et j c2<J) | j | h| cxp a\>
'Vh^\f ^\bx\~~dx

which takes the matrix form:

,-iJ
, i = l, 2,..., N.

where ( fh~)
i = 1, 2 N.r. = diag

We,

and
-;2cz4> C2(J) Y

' ax2 dr*

whereas the matrix D' is the transpose of D.

If we extract <j)x from eq. (4.30) and insert it into eq. (4.36) we obtain:

h2r;XK=-{reDtrh)(rkDre)(re-^)

If we let

and

then eq (4.39) can be written as

Dx = rhDre

D =-D'D
XX X X

*V>»=^(v1*)

(4.35)

(4.36)

(4.37)

(4.38)

(4.39)

(4.40)

(441)

(4.42)
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Extracting ip^ from the abo\e equality and inserting it into the discretized Poisson's

equation (4.26 ) yields:

where / is avector which results from the discretization of f\x,y).

Premultiplying both sides ofthe previous equation by r~\ then this one takes the form:

$4^=C (4-44)
dy' hr

where v|/=r/'<|) (4-45)

and G=relf (446)

being the normalized vectors.

4.3.3 Domain transformation:

Again, D^ is a tridiagonal matrix and the system (4.44) needs to be decoupled before being

solved. However, since it is a real-symmetric matrix, then this can be achieved by the

orthogonal transformation:

T'DT=X (447)
XX

where the elements a., of the diagonal matrix X are the eigenvalues of Da and T is the

matrix of eigenvectors which satisfies the relation T'T= I [49].

Premulitiplying the system (4.44) by V yields:

d2{T'm\ i
__V 1+±(rPtVt'V) = T'G (4.48)

dy- h-K A ;

or simplv,

*Z-XXV =F (4-49)
dy h-

where
F = T'G (4.50)
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whereas the vector

V=T!xi> (4.51)

denotes the transform of the normalized vector of potentials

Assuming X, - -%2 then eq (4.42) is further transformed into the set of N ordinary

differential equations

£L-Jh?V-F (4.52)
dy2 \hj ' '

4.3.4 General solution:

The previous set of equations is similar to the set in eq. (4.21) obtained \:r uniform

discretization. Therefore, the general solution involve homogeneous and particular parts, and

it is given by:

(t } (-L AF^/fcoshlyjy +̂ sinh^jj'+Fp (4.53)
i i

where At and B: are constants depending on the horizontal sides boundaries, and FP_ can be

found as shown in section (4.2 4b).

At last, the vector of potentials <t> is obtained by the denormalized inverse transform of V,

ie.,

* = rJ = rJF (4.54)

expressing the solutions analytically along the discretization lines in terms ofy.

Finally, the following remarks need to be noted:

1. The matrix Din eq. (4.34) applies for Dirichlet-Dirichlet lateral boundaries. However, for

the remaining lateral boundary configurations, its form is shown in appendix B

2. For the case of nonuniform discretization, the eigenvalues and the eigenvectors of the

matrix D^ are determined numerically by a suitable procedure such as the "implicit QL-

algorithm" [50],
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3. It is for the user to select the convenient discretization pattern for his application.

However, for uniform error distribution, successive interval sizes should not differ

considerably.

4. For ht=et=h, re and rh reduce to identity matrices and the analysis simplifies to the one

developed for equidistant discretization.

4.4 Conclusion:

Throughout this chapter, it has been shown that the method of lines may be applied for the

solution of Poisson's equation for both uniform and nonuniform discretization schemes. It

has been also observed that this technique presents interesting features such as simple

mathematical formulation, and no primary solution assumption. Furthermore, the analytical

form ofthe solution along the discretization lines, and nonuniform discretization, are aspects

that allow to obtain accurate results with less numerical efforts.

To take advantage from these features in semiconductor device modeling, the developed

tool is used in the next chapter to provide solutions for practical problems encountered in

the determination of the potential distribution within these devices.
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Chapter 5

PRACTICAL CONSIDERATIONS

The waveguides that have been investigated using the method of lines consist ofmulti-layer

dielectric materials at the interface of which metallic strips are deposited, and the whole

structure is enclosed in a rectangular metallic shielding. However, semiconductor devices

may present mixed boundaries due to the external electrode configuration, and special

geometry such as MOS structures and curved regions. In this chapter, the previously

developed analysis is adapted to these situations

5.1 Lateral boundaries:

In section (4.2.2), the lateral boundaries are assumed to present zero potential (<J>) and zero

external field component >_E!t) for respectively Dirichlet and Neumann lateral conditions. In
V ex)

this section, general forms of these boundaries are considered.

5.1.1 Generalized Dirichlet condition:

Suppose that there is an electrode on the left side of the structure in fig (5.1) of a known

voltage that we assume to be expressed by:

<t>o=vM (5.0

Inserting this equation in eq. (4.10.a) then the discretized Poisson's equation corresponding

to the first line is written as

d%_ v(y)-2<\>, +(t>2
dy2 + h2 ~U

Ay)Transposing —^- to the right side, we get:

d% -2f^2_ j>i (53)
dy2 h2 ~A h2 ~Jx
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In this equation we note that the second difference operator is identical to the one in eq.

(4.1 la). Hence, the same procedure, described in the previous chapter, is carried out with

the exception that the element /, of the vector/ defined in eq. (4.12 b), is modified as

shown in eq. (5.3).

5.1.2 Generalized Neumann condition:

If the external electric field component at the left side of the device takes the form e(y),

then this can be approximated by:

«W=±^ (5-4)
Combining this equation and eq. (4.10.a), then the discretized Poisson's equation

corresponding to the first line becomes:

d2$x -he(y)-bx+b2 (5 5)
dy2 " h2 ~h

or equivalently,

dy2 h2 ' h

Again, in this case we observe that the second order difference operator is the one in eq.

(4.1 lb), and the same analysis applies for the remaining steps with the modification, shown

in eq. (5.6), concerning the first element of the vector/

5.2 Horizontal boundaries:

A same semiconductor device surface may include electrodes of known voltages, and free

parts on which Neumann condition is assumed. Because of this mixed boundary

configuration, special analysis should be carried out. In this example, the voltage profile

within the arbitrary two-layer planar structure shown in fig. (5.1) is investigated To consider

the eauations describing the conditions at the interface between the- layers and to observe the

potential behavior at the singularity on the right side of the electrode, the x variable is

discretized.



va (.Applied voltage)

Fig. (5.1) Cross sectional view of the considered structure.

For this purpose, the following equation is considered in both layers

c2b(x,y) 52<\>(x,y) . >
—n— +——2— = -(\x,y) s

ex cy
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(5.7)

If h is the discretizing interval size, then the total number of lines is given by N = L h

among which m-l h cross the electrode.

Applying the analysis in section (4.2), it can be shown that the transformed solution on the

i'h line takes the form:

V. (v) = A, cosh -rh'-B. sinh -7- y (5.8a)

in layer 1. However, in layer 2, it is written as:

l2\y) =A2icosh{Jjy +B2iKnrXJjy,--l (5.8.b)

where the last term represents the particular solution, with P.. being the transform of the

discretized space charge density vector expressed by:

PZ = T'[\, 1,..., l]'p: (5.9)
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For each line, the four constants A. , 3: , A2i and BZi should be calculated. For this purpose,

a system of four equations describing the potential and displacement vector conditions at the

interface between these layers, and the transformed horizontal surface boundaries, must be

written by proceeding as follows.

1) Interface conditions:

Interface conditions relate the continuity of the transformed potential and the normal

component of the displacement vector (-zdV/dy) at the interface y = H\, and they are

expressed as

vu(m) =v2l(m) (5.io)

dV dVs,-^(m) =s2--^(m)^Qs, (5ii)
dy ay

where Os denotes the transform of the eventual surface charge density vector at the

considered interface

2) Surface boundary equations:

These equations are considered on the surfaces y = 0 and y = //ItH2, and they are

formulated as follows:

a) >' = 0,

Since the vector ofpotentials (j)(0) at this surface is zero, then its transform V{0) = r'<J>(0) is

also a zero vector, hence

^,(0) = 0 (5.12)

Consequently, the constants A,/s in eq. (5.8.a) (/'=/ A') are zero, and the number of

unknowns to find for each line reduces to three

b)y = H\ + H2;

This surface involves an electrode of a length / intersected by m lines on which the

condition concerns the potential which takes the value va, and a free surface with a length

(/.-/) crossed by (N-m) lines where the normal component of the electric field is zero

Accordingly, the boundary condition on this surface meets one of the following three cases:
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case 1: / = L ( m - N'), i.e., Dirichlet condition.

The electrode covers the whole surface and this boundary is described by the (Nxl) vector

ofpotentials <\> = [l, 1, ..., l]'va. Ifwe let Va = T'fy to be its transform then we have,

V2l(Hl + H2) = Va, ; i^l N. (5.13 a)

case 2: I = 0 ( m = 0>, i.e., Neumann condition.

There is no electrode and the Neumann condition is assumed on this free surface. Hence,

the normal component ofthe electric field is zero as well as the elements ofthe transformed

electric field vector (-dV/dy). Therefore, we get

^-M//1t//2) =0, i=l,...,N. (513b)
dy

case 3: 0 < / < L ( 0<m<N), i.e., mixed boundaries.

The boundary condition concerns the potential on m lines and the electric field on the

remaining (N-m) ones Because of the presence of boundaries of different types, neither the

transformed vector of potentials nor of electric field can be written on this surface Hence,

this condition can not be formulated in the transformed domain, but it should be considered

in the original one, and the procedure to solve the complete problem is summarized as

follows:

1. For the / '* line, consider the system of three equations (5.10-12) and four unknowns

A A, B, , and B-, . in the transformed domain.

2. Solve this system by expressing three unknowns, say AXi, A and A in terms ofBZi.

3. Rewrite the solutions Vu(y) and V2i(y) in eq. (5.8) in terms of B:r

4. When achieving the previous steps for / =1, 2....N, perform the inverse transformation

<j,,(_y) = TV\(y) to express in the original domain the vector of potentials in layer 2.

5. Solve for B2i's the system ofNequations ofthe form:

f<j>, {H\ +H2) =va ;/ = l m.
U, (513c)
' ——(#l + //2) = 0 ;i = m-\,...,N.

dy
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Remarks:

At this point, the following remarks need to be made:

1. A particular advantage of having a zero potential applied on a given surface (which is

usually the case), is that all the elements ofthe transformed vector ofpotentials take the

same value zero for this surface Consequently, the number of unknowns involved in the

analytical form ofthe solution can be reduced by one for all the lines. This is achieved by

applying this surface condition just for one line, and the resulting analytical form applies

for all the others, as described previously in section (5.2.2 a).

2. It is useful to solve the equations describing the interface and surface conditions in the

transformed domain. The reason of this is that N systems of few equations (three in the

previous example) are solved separately. However, if the condition concerns the potential
for a part of a given surface and the electric field for the other part, then a system of iV

equations must be considered for this boundary in the original domain, as summarized in

case 3 above.

3. In the case where more layers are present then other interface conditions are considered

on the additional interfaces.

4. Ifthere are many separate electrodes at y =H\ +H2, say two with the voltages va and

vb, then the system (5 13 c) is modified accordingly to match the applied voltage on the

corresponding lines.

5.3 Geometrical considerations:

5.3.1 Devices having layers of different widths:

Semiconductor structures such as MOS devices may consist of layers of different widths,

as illustrated in fig. (5.2).

Ifh is the discretizing interval size, then N=L h and M=I h are the number of lines

crossing respectively the lavers (1-2) and 3 {N * M). As a result, the difference operator

sizes and, hence, the eigenvalues and the transformation matrices that apply for layers (1-2)

are different from those defined for layer 3. Accordingly, assume 7/ and Vd to be the



corresponding transformation matrices, and V.., r., and

vectors for respectively layer 1, 2 and 3.
*'•;; the transform;
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v potential

Fig. (5-2) Illustration ofastructure with layers having different widths (1< L).

Like in the third case of the previous example, equations describing boundary and interface
conditions similar to those in (5.10-12) are first solved separately for layers (1-2) at the
surface 1and interface 2, and for layer 3at the surface 4. After this step, we will be left with
A'unknown coefficients related to layers (1-2), and Mcoefficients related to layer 1, with the
condition on the interface 3 not yet considered. After this stage, perform the back
transformations:

+> =T'V'2 (5.14.a)
and

^3 =Tuvin (5.14.b)

where <j>2(3) denotes the vector of potentials in layer 2(3), and then solve in the original
domain the system of(N-M) equations consisting of:

• 2M equations describing the potential and the displacement vector conditions at the
interface between layers 2 and 3, and

• (N-M) equations describing the conditions at the right and left sides of the interface 3.
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5.3.2 Curved depletion regions:

It is seen in section (2 3 lb) that when a semiconductor device is reverse biased, a space

charged (depletion) region builds up, with the position of the limits being such that the

potential drop within this region is equal to the applied difference of potential This border

may present curved parts and results in curved regions as shown in fig. (5.3) below:

va

?

depletion region

insulator

neutral region 6

5

4

3"

T

1

Fig. (5.3) Stair-steps approximation of a curved boundary.

As observed previously, the method of lines is suitable for planar boundaries. A suggestion

to overcome the problem of curved limits in semiconductor device modeling is to

approximate this border by stair-steps as illustrated in fig. (5.3). As shown in this figure, this

is achieved by first subdividing the curved layer into a set of sub-layers (2-6).

We recall that the transformed potential on the i'h line and k ,h layer (/' = 1 N; k = 1 7)

is:

A. j n t I hivk,(y) =KcoshM-jy +5ti im\{-^^Vp k> (5.15)
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where the particular solution Vp k is zero for k - 1and 7, and Jepends on the . 'h element

of the transformed space charge density vector obtained for each of the remaining layers

(k = 2, ...,6). Accordingly, if p(_y) denotes the space charge profile, then this vector in the

original domain is expressed as:

Pt=[l-...l, 0 0]'pM (5.16)

where the number of non-zero elements is mk, and this is the number of lines crossing the

charged part of the k:h layer. Moreover, it can be seen in fig (5.3) that,

m, <m3 <...<m6 (517)

Finally, to find the unknown coefficients ,4^'s and 5^'s, the previously described procedure

is carried out with a total number of 7 layers.

5.3.3 Symmetrical structures:

If the geometry and the boundary conditions of a given structure are symmetrical with

respect to an axis as illustrated in fig. (5.4), then the potential profile is also symmetrical.

Hence, at any two symmetrical points close to that axis, the potential is the same and,

therefore, the horizontal electric field component vanishes in there Consequently, the

numerical effort can be reduced significantly by investigating only half of this device, with

Neumann lateral condition assumed on the resulting surface

(b)
va

(N)

Fig. (5.4) (a) Example of a symmetrical structure, (b) investigated part.
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5.4 Conclusion

In this chapter, it has been shown how the developed mathematical tool based on the

method of lines can be applied to solve problems related to planar semiconductor devices.

Also, it has been proved that the proposed analysis can be extended to include curved

boundaries, which makes it s suitable for the analysis of nonplanar structures such as

beveled power devices. Furthermore, the presented analysis is flexible to take into

consideration the oxide charge and interface state densities that may exit in a MOS structure

In order to demonstrate the computational power of this technique, some numerical

examples are considered in the next chapter and the results are plotted as well.
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Chapter 6

NUMERICAL EXAMPLES

A set of computer programs is implemented to demonstrate the efficiency of the analysis

described in the two previous chapters. This includes some illustrative examples, which span

various possible geometrical and boundary configurations, followed by two practical

examples dealing with a p-n junction diode and a MOS capacitor in which the depletion

layer is delimited and the resulting potential distribution is computed as well.

6.1 Software description:

The programs are written using the MATLAB software package dedicated for scientific and

engineering numerical calculations, and can be executed on any of the widely available

Personal Computers.

The detailed coding steps involved in the algorithm when using a nonuniform discretization

scheme are as follows:

1. - Enter the geometry of the structure and the dimension of each layer as well as the

boundary conditions, the charge profile and the discretization scheme.

2. - Perform the discretization by constructing the normalization matrices rh and rt, defined

earlier in eqs. (4.31) and (4.37).

- Build the difference operators Dx and D^ , referring successively to eqs. (4.34),

(4.40) and (4.41).

3. - Find the eigenvalues of Dn, and build the matrix of eigenvectors, T.

4. - Find the transformed space charge density and surface potential vectors.

5. At this stage the solution can be expressed in the transformed domain by eq. (4.50). To
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find the unknown constants A/s and B/s for the different layers, proceed as follows:

- Solve the system consisting of the interface conditions (eqs. (5.10-11)) and those

describing homogeneous surface boundaries

- Repeat this operation for all the discretization lines.

- If a surface involves mixed conditions, solve the system (5.13c) for the remaining

unknowns Similarly, if the device includes layers of different widths, solve the system

describing the condition at the interface between these layers, as summarized in section

(5.3.1). This case assumes additional discretization scheme and transformation matrix

that must be considered in steps (1-3) above.

6. - Perform the inverse transformation (4.54).

If it is desired to evaluate the potential in a given horizontal section or layer, it requires

less effort when computing first the solution in the transformed domain and then doing the

back transformation, than starting first by transforming the analytical form of the solution to

the original domain.

It is important to note that this algorithm applies also for the particular case of uniform

discretization However, for this type of discretization, a much simpler algorithm based on

the analysis developed in section (4.2) has been implemented. Besides the specification of

the number N of lines in the input stage, the major difference with the previous algorithm

concerns mainly steps 2 and 3, which are modified as follows:

2. - Find the discretization interval and build the second order operator P expressed in

eq. (4.14).

3. - Find the eigenvalues of the matrix P and form the matrix of the corresponding

eigenvectors T, which are expressed analytically in appendix A. Moreover, the back

transformation performed in step 6 is the one shown in eq. (* 25).
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6.2 Illustrative examples:

The purpose of this part is to verify the applicability of the developed tool, and see how the

obtained results fit the prescribed conditions. This consists in finding the potential

distribution within arbitrary structures covering a variety of geometrical configurations and

boundary conditions.

6.2.1 Boundary condition effects:

In this investigation, a special interest is directed towards the boundary conditions. For this

purpose, we propose to find the potential profile in the double layer structure shown in fig.

(6.1). This device, having an electrical permittivity constant £ and a constant space charge

density p, is connected to an electrode on which is applied a dc voltage Va. This

investigation is carried out through the following four examples.

Va (Applied voltage)

0

Fig. (6.1) Cross sectional view of the considered structure.
(Refer to dimensions in text)
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a) In this example, the potential distribution in the structure is found for different lateral

boundary configurations. Accordingly, we let,:

p, = 10":1 C/cm3; p, =-2xl0-;i C/cm3,

Fa =20 V,z, =e, =11.9 e0; (e0 =8.85xlOi: F/m).

L = 30 urn, 1, =8 urn, 1, = 10 urn, H. = 10 urn, H: =5 p/w.

Applying uniform discretization with a discretizing interval size h= 1\xm, resulting on a

total number of 30 intervals, and assuming successively the lateral conditions:

a) Neumann-Dirichlet, b) Dirichlet-Neumann, c) Dirichlet-Dirichlet, and c> Neumann-

Neumann, we obtain the potential contours shown in fig. (6.2).

In these figures (a-d) which represent the device, the curves show equipotential lines with a

definition that an equipotential line is a curve joining points ofthe structure having the same

potential. The 7 lines in each of them correspond to potent' :1s varying from 19 Volts near to

the electrode, to 1Volt near to the ground with a step of3 Volts. Furthermore, the potential

at the electrode is found to be Va (20 Volts) and decreases gradually to meet the value zero

at the bottom, as fixed by the applied voltages

Looking separately at these figures, we observe that, near to the lateral boundaries with

Dirichlet condition, the potential approaches the value zero. However, at surfaces with

Neumann condition, the equipotential lines are normal to these surfaces indicating a zero

external field component as specified by this boundary type.
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y (,um)

a)N-D

;o is 20 :5 30
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10 15
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30

Fig. (6.2) Potential Profiles in the structure in fig. (6.1) with a) Neumann-Dinchlet, b) Dirichlet-
Neumann, c) Dinchlet-Dinchlet and, d) Neumann-Neumann lateral boundary conditions
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b) In this example, the previous structure, with the same physical parameters, is considered

with Neumann-Dirichlet lateral conditions. However, in this case, the external electric field

component strength on the surface with Neumann condition is no more zero, but it is equal
to 0 5 V/um.

Introducing the modification expressed in eq. (5.5), we obtain the potential distribution

shown in fig (6.3). Compared to the profile in fig (6.2.a), we observe in this figure that the

lines are bent near the surface with Neumann condition, resulting in a horizontal gradient

component which correspond to the electric field intensity specified in this direction.

v (,um)

Fig. (6.3) Potential profile in the device in fig. (6.1) with Neumann-Dinchlet
boundaries and a left external electnc field component different from zero.
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c) In this case, the structure in example (a) is still considered with the same physical

parameters and dimensions, except that the electrode length is 1, = 12 urn and it is distant

from the left corner by 1, = 2 pm.

The purpose of this example is to observe the effect of putting an electrode with a voltage

Va{^0 Volt) near a surface with Dirichlet condition (0 Volt). Accordingly, we assume

Dirichlet-Neumann lateral boundaries, and the resulting potential profile illustrated in fig.

(6.4) shows an abrupt potential change on the top left corner ofthe device, indicating a huge

electric field intensity in this area as expected by this boundary configuration.

15

_y (urn)

10 v

1 V

10 15

x(um)
20 25 30

Fig. (6. 4)Potential profile in the structure in fig. (6.1) with h =2 pm
and Dinchlet-Neumann lateral boundaries.



54

d) In this example, Neumann-Neumann lateral boundary set up is assumed for the device in

example (a) with 1, =0pm. Four different voltages (5, 10, 15, and 20 Volts) are

successively applied at the electrode, and the resulting potential distributions at the top

surface (>' = H. -H,j, shown in fig. (6.4), indicate an important potential variation around

the electrode edge. Consequently, a nonuniform discretization scheme, with discretizing

intervals smaller around the electrode edge and greater elsewhere, is convenient for better

accuracy with no extra numerical effort as demonstrated in the next section.

25

20-
(a)

(b)

Volts

10-

Fig. (6.5) Surface potential distribution on the structure in fig. (6.1) with: li-0, 12=10 pm,
Neumann-Neumann lateral boundaries, and the electrode voltages: (a) 20, (b) 15, (c) 10
and, (d) 5 Volts.

6.2.2 Nonuniform discretization:

In this section, nonuniform discretization is introduced and applied for the structure of the

previous example, with: H, = 5.0 pm, H: = 2.5 pm, Va = l0V and Neumann-Dirichlet

lateral conditions In this investigation, we are interested by the potential distribution at the

interface between the two layers (v=H>).

First, uniform discretization is performed and the obtained results shown in fig. (6.6)

indicate that, with increasing number of discretization lines N, there is a rapid convergence

towards a given potential distribution. Similarly, it has been seen in microwave device
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analysis that, when a specific parameter is investigated using 'his method, tne solution

converges always smoothly, and the 'exact' value can be determined by means of

extrapolation when the discretizing interval approaches zero [29],

Furthermore, we observe in this figure a rapid potential variation around the electrode edge

(x = 10 \xm), and it is almost constant and linear respectively on the left and the right parts

of the devices where accurate results are already obtained with 12 lines, and no substantial

improvement is provided by extra lines as predicted by eq. (4.7) in which the error terms

vanish for constant and linear profiles.

Volts

Fig. (6.6) Convergence behavior of the method of lines seen on the potential distribution at
the horizontal surface>-=Hl, with Hl=5 pm, H2= 2.5 pm and Va=\0 Volts.

Accordingly, a nonuniform discretization pattern produced by 13 lines with small intervals

around the electrode edge and greater elsewhere, as illustrated by the horizontal dot spacing

in fig. (6.7), is performed. We observe in this figure that these dots, which show also the

results obtained from this pattern, lie on the continuous curve corresponding to the

distribution resulting from 30 uniformly spaced lines, providing similar accuracy with

significantly small number of lines.
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In addition to accuracy improvement, this type of discretization reduces significantly the

computational effort, since the size of matrices that are put into use by the algorithm and the

required computation time depend strongly on the total number of lines.

4

Volts

3

2

— N=30 (equidistant)

, ~^~~\ 3 N =13 (nonequidistant)

10 15

x (urn)

Fig (6.7) Illustration of the convergence behavior of nonequidistant
discretization applied for the structure of the previous example.

6.2.3 Symmetrical structures:

In this example, the two-layer symmetrical structures shown in fig. (6.8) are considered,

and the results compared with those obtained when halves of these devices are investigated.

In both structures, the layer near to the ground has a constant charge density p,, whereas the

charge profile in the second layer is linear ofthe form p2 =A[y-Hl) +B.

• The common dimensions and physical parameters for both structures are:

p, =3 . 5 x lfr* Clem1, ^ = -10"'3 Clem"; B = -10"" C/cm3, e = 11.9 s0 ;

L = 30 urn : H, = 2 . 5 urn, H: = 15 .urn; Va = 20 V.

• Specific parameters for the structure in (a):

1, = 1, =10 pm; Lateral conditions: Dirichlet-Dirichlet.
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• Specific parameters for the device in (b):

1, = 1, = 6 pm; Lateral conditions: Neumann-Neumann.

The analysis is carried out with a total number of 63 uniform intervals for the device in (a)

and 65 for the device in (b). It can be seen from fig. (6.9) that the obtained potential profiles

are similar when the complete structures and the right parts, with Neumann condition at the

symmetry axes, are investigated separately Moreover, it is verified that the 'analytical'

results are identical for symmetrical lines when the whole device is investigated, and they are

equal to those obtained when only half of the structure is investigated Consequently, for

such devices the numerical effort can be reduced significantly by reducing the total number

of lines bv a factor of two.

Fig. (6.8) Cross sectional view of the assumed symmetrical structures.
(Refer to dimensions in text).
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Fig. (6.9) Potential Profiles throughout the whole and nght parts ofthe symmetrical
structures in fig. (6.8), when investigated separately.

6.2.4 Structures with layers of different widths:

It is shown in section (5.3.1) that devices including layers having widths of different size

such as MOS devices, need a special mathematical handling of the interface conditions

between these layers which should be expressed in the original domain.

A typical shape of such devices is the three-layer structure shown in fig. (6.10) for which

we propose to find the potential distribution For this purpose, we assume the charge density
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profiles to be a constant P_ in layer 1, exponential of the form p.

2, and zero in layer 3. Accordingly, we let

p, =10-H C cm'

A= -\0-'] C cm', B= -5 x 10~:4 C/cm', a = 10s cm

Vax =4 1', Va2 =14 V, Ia3 =8 V.

e, =6, = 119 e0, e3 = 3.9e0, 1, =1: = 13 = 10 pm.

H, = 10 pm, H, = H3 = 5 \m.

Lateral boundaries: Neumann-Neumann for the layers (1-2) and 3.

Ae* - B in layer

Va,

-=><-

Va2

Va,

o

H,

v

^

H2

H,

Fig. (6.10) Considered structure of width sizes h+ 12 + 13 for layers (1 and 2 ),
and 12 for layer (3).

A uniform discretization with a total number of 36 lines in layers 1 and 2 and 12 in layer 3

has been performed, and the obtained profile is shown in the three-dimensional plot in fig.

(6.11). In this figure, the horizontal plane represents the device geometry and the heights

where the mesh nodes are located indicate the potential strength at the corresponding points.

As set by the boundary condition, we observe in this figure that the potential increases from

the grounded surface on the bottom of the structure to the applied voltages at the respective

electrodes Further, near to the lateral surface of the device there is no lateral potential

variation and this agrees with the Neumann condition assumed on these edges. Moreover,
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we observe that the potential rate of change in the y direction, which reflects the vertical

electric field component, presents a discontinuity at the interface between layers 2and 3,
caused by the difference in electrical permittivity between the two media as predicted by the
interface condition in eq. (2.23).

<j> (Volt)

Fig (6.11) Three-dimensional potential representation in the structure of fig. (6.10).

6.3 Semiconductor devices analysis:

In this section, semiconductor device analysis is carried out. This involves one dimensional

investigation ofap-n junction and a two-dimensional analysis ofaMOS capacitor

6.3.1 One-dimensional p-n junction analysis:

In section (2.1), a closed form analytical solution is obtained for the one-dimensional

Poisson's equation, and materials related to reverse biased p-n junction are provided. In this

section, the developed semianalytical tool is applied to a similar device, shown in fig. (6.12),

with boundary- assumptions producing a one-dimensional profile.
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Indeed, a one dimensional analytical solution can be easily obtained for this example,

however, the objective of this analysis is to test how the results obtained with this

seminumerical scheme fit the analytical ones

Fig. (6 12) Reverse-biased p-n junction physical model.

One dimensional profile assumption for this example supposes infinite device width and no

field component along _y-direction, and this is translated by Neumann-Neumann lateral

boundaries when using a two-dimensional tool.

The investigation is carried out under these conditions with the depletion layer widths

expressed by eqs. (3.9), and it can be seen in fig. (6.13) that the obtained profile is in fact

one dimensional since the contour lines are horizontal, verifies the equilibrium conditions

and is similar to the one obtained analytically in section (3.1).

Mathematically, the agreement between these results and the analytical ones is explained by

the fact that, with Neumann-Neumann lateral boundaries, one eigenvalue of the second

order operator is zero, and the solution of the corresponding ordinary differential equation in

(4.21) is a second degree polynomial. Furthermore, it has been observed that the

contribution of the other eigenvalues (terms in sinh and cosh) is zero. Accordingly, the

profile in the original domain is also parabolic and, consequently, the one-dimensional
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possible analytical solution for this problem is revealed and provided by this semianalytical

technique

(a) (b)
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Fig. (6.13) Potential profile in the silicon diode of fig (6.12) with AV=2Afa= 1.7 1014/cw3,

H, = H: =15 pm and Va =10 V. (a) Two dimensional representation and , (b) one-dimensional
distribution along y direction.

6.3.2 MOS structure description:

A MOS structure which is the basis of MOS devices consists of a metallic gate, a f or TV-

type silicon substrate and an oxide film as shown in fig. (6.14) [51]. Because of the presence

of a dielectric material (Si02) between the gate and the substrate, this device exhibits the

properties of a capacitor which constitutes the basic element of a charge coupled device

(CCD's) [52]. The analysis of this device under various conditions is a powerful tool to

investigate the quality of the oxide and the oxide-silicon interface [53].
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Substrate

Fig. (6.14) Cross-sectional view of a MOS structure

In this analysis, it is assumed that the metal and the semiconductor work functions are

equal, and there is no charge in the oxide and at the oxide-silicon interface. Under these

conditions, the electric field is zero everywhere at zero applied bias [54].

6.3.3 MOS device operating modes:

Under varying gate voltage, a MOS device shows four different modes which are:

1) accumulation, 2) depletion, 3) inversion and, 4) deep depletion.

6.3.3.1 Accumulation mode:

In this mode, the device is biased in such a way the majority carriers are attracted towards

the gate Thus, for a P-type silicon when a negative gate voltage is applied, the negative

charges on the gate attract holes to the oxide-silicon interface to build up an accumulation

layer. The condition of neutrality is satisfied when the charge generated in the metal is equal

but of opposite sign to that present in the silicon.

6.3.3.2 Depletion mode:

In the depletion mode, the MOS device is biased in such a way the majority carriers are

repelled away from the Si02-Si interface towards the bulk. Therefore, for a P-type silicon, a

positive gate voltage generates a negatively charged layer in the silicon near the Si02-Si
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interface because the noies repeiied by the electric field leave behind :ne fixed negatively
ionized acceptor atoms. The electric equilibrium requires that the potential drop across the
oxide and the depletion layer is equal to the gate voltage.

6.3.3.3 Inversion mode:

With increasingly positive applied voltage, the depletion layers continues to widen until
electrons (minority carriers) attracted from the substrate appear at the silicon surface in great
number an build up a thin inversion layer. The formation of this layer is a threshold
phenomenon and occurs when the minority carriers concentration is equal to the doping
concentration.

6.3.3.4 Deep depletion mode:

If the gate voltage is increased rapidly starting from acondition of accumulation, there
may be not enough time for the inversion layer to form, which is rather aslow process. In
this case, the depletion region is set up immediately with athickness much greater than in
inversion mode [54]. This mode, which is acontinuation of the normal depletion mode, is
considered in the investigation of breakdown phenomenon since it is in this condition that
this effect occurs usually [55],

6.3.4 MOS capacitor analysis:

The following analysis consists in finding the space charge limits and the potential profile in
aP-type MOS capacitor in deep depletion mode, which are major steps in finding the
breakdown voltage [55, 56] and the depletion capacitance of such devices [53].
The two-dimensional model of the considered device is assumed to be symmetrical and

hence the investigation can be limited to the left part illustrated in fig. (6.15). When a
positive voltage is applied at the electrode, free majority carriers (holes) are repelled by the
induced electric field. Equilibrium condition requires that the potential is zero at the self
adjusting boundaries of the resulting fully depleted layer and elsewhere in the neutral region
as explained in section (2.3. lb).
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Fig. (6.15) Two-dimensional model of the MOS capacitor used in the present analysis.

We recall that that electric potential distribution is calculated by solving the Laplace'
equation:

V2(J) = 0 (6.1)

in the oxide and the neutral regions, and the Poisson's equation:

W*
M̂o

(6.2)

in the depletion region, where e, and NA denote respectively the relative permittivity of

silicon and the substrate majority carriers density. The lateral boundary conditions of the

silicon and oxide layers are ofNeumann type.

A similar structure has been considered by Rusu et al in [56] for breakdown voltage

investigation. They used finite difference method for the potential profile, and they assumed

a rectangular geometry of the space charge region at the central area of the device with a

thickness Xd given by the one-dimensional solution ofPoisson equation which is

/.e. ._ •! e. V 2e e F

x'-t.x'+i£x'l+ *A (6.3)

and the curved border is supposed to be circular with a radius of the same value AV
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The discretization pattern involves 10 concentrated equidistant lines crossing the curved
area and 31 largely spaced elsewhere. The space charge layer is subdivided into 10 sub

layers to perform stair-steps approximation on the curved boundary as shown in fig. (5 3).

The main steps involved in the algorithm are:

1. - Enter the geometrical and physical parameters as well as the discretization scheme

2. - Find the eigenvalues and eigenvectors of the second order difference operator.
- Assume initial depletion layer thickness (> Xd in eq. (6.3))

3. - Find the transformed space charge density vectors for the sub-layers.

4. - Find the potential semianalytical expression under this condition.

5. - Check whether the potential satisfies the previously stated condition on the assumed

border and neutral region. Ifit is not fulfilled, readjust the depletion layer border

position, and redo step 4 Since the electrode voltage is positive, then the depletion layer

width should be increased ifthe potential on the assumed limit is positive, and

decreased if it is negative, until the required condition is satisfied.

The space charge region geometry, assumed in [56] with initial thickness given by eq. (6.3),
has been reconsidered in this analysis, besides the following parameters:

L= 35 \xm; I= 17 \xm, 0.1 <Xo< 5.0 pm; 30 < Xs < 50 pm .

1014 < AA, < 1018 cm3, 10 < Va <100 V( Va< V^^ reported in [56]).

After executing the program for different X0 and NA, the following features have been

observed:

1) At low oxide thickness and high doping concentration (X0 < 3 \m and

NA > 1015 cm3), the potential drop in the assumed curved part of the space charge

region is excessive, and gets largely negative in this area and in the assumed neutral

region, violating the equilibrium condition. Hence, the circular contour assumption ofthe

depletion region is inadequate.

2) At high oxide thickness and low doping concentration, the lateral depletion region border

approximation by a circular geometry is convenient. However, in the central area of the
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device the initial width Xd needs to be slightly readjusted by a correction factor cf within

the range [0.988 - 0.999].

The former remarks are explained by the fact that, for high doping concentrations and low-

oxide thickness, the depletion region is thin and located closer to the gate Hence, the

electric field becomes predominantly one-dimensional with a small deviation, in the curved

area of the depletion region, which is not sufficient to result in a circular border of this layer.

However, in case (2), the space charge layer is thicker and located far from the gate

Consequently, the electric field lines deviation in these regions is sufficiently large to induce

a circular geometry of the left depletion region border.

Finally, the obtained results for NA = 10" cm3, X0 =5.0 \xm (case 2), Xs- 30 \xm and

VG = 100 V , are illustrated in fig (6.16).

In figure (a) which shows the potential distribution on the right side of the device along the

y direction, it can be seen that the profile is linear in the oxide region, parabolic in the

depletion layer and zero in the neutral region, as it would be given by the one-dimensional

analytical solution. An overview of the profile is illustrated by the three-dimensional plot of

the figure in (b). This figure shows a good agreement with the previously stated boundaries

and physical requirements with an acceptable error range (0.4 V ) corresponding to the

maximum potential deviation from zero recorded at the assumed depletion layer border, and

this error is smaller elsewhere in the neutral region as s shown by the flat potential profile in

there. The former deviation results mainly from the stair-steps approximation of the space

charge border, and depends on the discretization pattern, the number of sub-layers defined in

this region, and the curved border contour assumption which is not exactly circular but still

needs some readjustments. Also, it is important to note that, for these figures, only a part of

the sufficiently large neutral region is shown in the_y direction.

An important observation is that much numerical effort can still be saved by considering

only a part of the neutral region since the potential therein is zero. This last point is

particularly important when the left lateral side is far from the space charge region, and

consequently, the number of discretization lines can also be reduced.
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Fig. (6.16). Potential distnbution in the device of fig. (6.14), (a) one dimensional profile on
the nght edge, and (b) three-dimensional representation.
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6.4 Conclusion:

In this chapter, it has been observed that the results obtained with the method of lines map

with those predicted by the boundary conditions Further, some important features of this

technique which help to save execution time and memory space have been verified. Among

these features we note those relative to symmetrical structures and nonequidistant

discretization which improve significantly the convergence behavior of this technique

However, it is observed that, as the ratio between the largest layer thickness and the

smallest discretization interval gets high, the systems which should be solved for the

coefficients involved in the transformed semianalytical solution might be ill-conditioned. This

is due to the fact that terms in tanhfx), where x depends on this ratio, are set to unity as x

becomes high. This problem can be overcome by reducing the software precision number

and/or subdividing thick layers into sub-layers. Actually, in the analysis of a MOS devices,

this problem might be already eliminated when considering only a part the neutral region

which is usually the largest one, and when subdividing the space charge layer into thin sub

layers to approximate curved boundaries by stair-steps.
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Chapter 7

CONCLUSION

In this work, a semianalytical solution for the two-dimensional Poisson's equation is

obtained using the Method of Lines for both equidistant and nonequidistant discretization

schemes The developed mathematical tool is then adapted for practical set: '.conductor

device configurations to provide solutions for space charge limits and potential profiles
within these devices This concerns mainly:

Structures with generalized Dirichlet and Neumann lateral boundaries with respectively

non-zero potential and non-zero external field component.

Devices with mixed surface boundaries, where the potential is specified only on some

parts of the surface, whereas the remaining parts are left free and Neumann conditions

have been assumed.

Structures involving layers of different widths where the continuity conditions at the

interface between these layers require special handling.

• Devices with curved boundaries approximated in this work by stair-steps to extend the

application of the Method ofLines for nonplanar structures.

Based on these considerations, software programs have been implemented and tested on

various configurations. Also, a case study for an actual MOS capacitor has been carried out,

and the results map with the expected data.

In addition to the advantages that characterize other techniques used for semiconductor

device modeling such as finite difference and finite element methods, this technique is

characterized by a set of other features, such as:

• Simplicity in concept and coding

•

•

1
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• High accuiacy with less numerical effort.

• No problems ofrelative convergence In contrast, there is a monotonous convergence to

the exact value when decreasing the discretization step.

• No need for initial guess, and no physically meaningless solutions.

Furthermore, compared to other purely numerical techniques, this method saves

considerable amount of time and memory space. Also, once the solution is obtained for a

given structure, it can be saved in its analytical form, and its evaluation can be limited to the

area of interest within the device.

The application field ofthe proposed scheme covers the evaluation ofdepletion capacitance

and breakdown voltages for semiconductor devices. This allows mainly, to make optimum

designs for specified breakdown voltages, in particular for power devices.

We believe that this work opens a wide research field, and may be subject to more

improvements such as:

• Implementation of a compact software package dedicated for the previously indicated

applications.

• Extension of the analysis to solve the three-dimensional Poisson's equation to meet

current trends in micro electronics technology.

• Consider the complete set of semiconductor device equations, and solve them using this

method in conjunction with a variational technique for low and high injection levels.

Finally, we hope that this method which is introduced among the numerical techniques used

for semiconductor device analysis provides useful material and constitutes an adequate

choice for the stated applications.
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For equidistant discretization, the second order difference operator is the tridiagonal NxN

matrix P of the form:

1 -2 1

1 ••• ••• (A.1)
'•. -2 1

1 P2J

in which p, and p2 depend respectively on the left (right) boundaries, i.e.,

J-2 for Dirichlet condition
U2' [-1 for Neumann condition

If Xk is the kth eigenvalue and tk the corresponding eigenvector, then

(P-\)tk=0 (A.3)
For the matrix P above, this system can be solved analytically [29], and the resulting

eigenvalues and the elements Tlk of the matrix of eigenvectors are shown below:

Left-Right boundaries

Dirichlet-Dirichlet

Dirichlet-Neumann

Neumann-Dirichlet

Neumann-Neumann

-X.

m
4 sin1

2{N + \)

Asm
2N + \
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2N + \

4 sin

4 sin'
d-ih

2N

2 ikK
sin

.V +1 N + l

i(k - l/2)7t
sin
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The form ofthe first order difference operator D introduced in section (4.3.2) depends on

the lateral boundaries Accordingly, for Dirichlet-Dirichlet it is given by the (N-1)xN matrix:

DDD =

1 I

-i i !
i

-i ••.

••. i

i

and for Dirichlet-Neumann, it is expressed by theNxN matrix:

1

•1 1

Dm = •1

1

•1 1J

(B.l)

(B2)

For the remaining Neumann-Dirichlet and Neumann-Neumann configurations, this

opearator is identified to be respectively,

Dsv=-D'DN (B.3)

and.

Z).,. = -DL
DD (B4)
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