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Abstract

Over the past few decades, considerable improvements have been made

in the approximation of high degree multivariable systems by low degree

reduced models. The resulting reduced models are used to simplify the

analysis and synthesis of complex systems as well as their modelling and

implementation.

This problem has been the subject matter of several research studies

and a variety of methods have been proposed [1,2,3,4,6,7,10,...etc]. The

present thesis is an attempt to further investigate this problem using new

tools

The main contribution of this thesis may be summarized in the

following:

(1) The elaboration of two model reduction procedures, the solvents

based model reduction procedure and the spectral factors based model

reduction procedure.

(2) Definition of a new truncation criterion, based on Hankel matrix

difference, for the measure of the potential closeness of the reduced model

to the original one.

(3) Application and promotion of the use of matrix polynomial theory

in model reduction problems.
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Chapter 1

Introduction

The analysis and synthesis of complex physical or engineering systems

always start by the building up of models which realistically describe their

behaviour. The reason is that once a physical phenomenon -has been

adequately modelled so as to be a faithful representation of reality, all

further analysis can be done on the model and experimentation on the

process is no longer required. The advent of the digital computer has meant

that relatively complex models can be built and manipulated. Often, this

analysis, synthesis and modelling of a large scale multivariable system

require the search for a reduced or approximated model to make an analog

or digital simulation possible.

Model approximation and model reduction of dynamic systems refer to

methods for simplification, approximation, and order reduction. Model

approximation is of importance for the extraction of dominant features of a

model, to reduce a high order time series model to a lower order structure

motivated by physical considerations or, for evaluation of the relative

importance of subsystems in some large scale systems. Model reduction and

approximation arise in many important applications such as control and

system engineering, electrical engineering, mechanical engineering, system

identification, management and economics problems.



The term model reduction may cover several aspects such as model

order reduction in a linear system, model approximation of non-linear

differential equations by a linear system or, approximation of non-linear

systems by ignoring higher order harmonics.

Because of the availability of the necessary mathematical tools in linear

systems analysis, the first aspect (model order reduction) has received the

most important consideration in control literature. It has been the focus of

several research works and a variety of methods have been proposed These

methods have grown from either the state-space representation or the

transfer function (frequency and time domain) representation

A state-space model consists of a matrix triple (A,B,C) parametrizing,

in discrete time case, a set of difference equations

[X(k + l) = AX(k) + BU(k)

I Y(k)=CX(k)
(1.1)

or, in continuous-time case, a set of differential equations

X(t)=AX(t) +BU(t)}
. Y(t) = CX(t)

where U,Y and X are, respectively, the input, output, and state vector

of the system. The dimension of matrix A is said to be the order of the state-

space model. The products CA'B, i = 0,1,2,... are called the Markov

parameters associated with the model (A,B,C).

The next class of methods are those developed from an input-output

realisation. The input-output representation often takes the form of a

transfer function (frequency domain characterisation) or an impulse response

function (time-domain characterisation). For finite order systems, the

1

(1.2)

transfer functions are rational: H(s)
a(s)

N(s) for continuous time case, or

1
H(z) = -S—N(z) for discrete time case, where a(.) and N(.) are polynomials

a(z)

and polynomial matrices, respectively. Transfer functions are related to

state-space representations by



H(s) = C(sl - Ay1 B (1.3)

or,

H(z) = C(zI-AylB (1.4)

The impulse response of a system can be obtained by actually measuring

its response to an impulse input or by estimating the correlation between the

system output and a white noise input

By denoting the impulse response of a discrete time system by H(n) and

that of a continuous-time system by H{t), we can relate the impulse response

to the state-space parameters (A,B,C) as

H{n) = CA^B (1.5)

and

H(t) = CeAtB (1.6)

The philosophy behind model reduction methods using the state-space

representation, is to split the modes of the model into a dominant set

(principal) and a dominated one (perturbational). Then by throwing away the
least significant portion of the model, a reasonable lower order

approximation is obtained Among these methods, we have the balanced
realisation method proposed by Moore [1], where he pointed out attention

to the use of principal component analysis to model reduction problems and
argued that the input-output behaviour of the model is not changed too
much if the least controllable and least observable part is deleted Latter,

Pernebo and Silverman [2] further investigated this method in terms of

stability, controllability and observability. Bamani [3], Rachid and Haskim
[4] developed aggregation methods based on the Shur decomposition form
while Kokotovic and Yackel [5] derived a singular perturbational analysis

method using the state-space representation. Traditionally, the "relative

dominance" is measured in terms of the eigenvalues of matrix A, or

equivalently, the system modes: modes with slower decay are considered to

be dominant.

However, recent progress in model reduction [64] shows that in order

to get a reasonable approximation, it may not be appropriate to simply drop



the "fast" modes. Apparently the problem can be better answered if some

error criterion that also takes into account the effect of matrices B and C on

the system behaviour is introduced

Clearly, the ultimate concern in model reduction is to approximate the

input-output behaviour of a system. Knowledge about the internal structure

(state-space model) of that system is only a convenience but not a necessity.

The next group of model reduction methods to be discussed are

developed from an input-output description form. Successive techniques are

derived from this representation. Among these, we mention the Pade

approximation methods, the continued fraction methods and the moments-

matching techniques. The moments of a system are defined to be the

coefficients of the power series expansion or Taylor series expansions of the

transfer function about certain points. A lower-order approximation, H{z), is

constructed by matching up a desired number of its moments with those of

H(z).

This class of techniques developed from the input-output representation

may be further divided into two major categories : the classical methods and

the modified or stable methods.

The former approach is represented by the works of Chen and Shieh

[6], Bosley, Kropholler and Lees [7], and Zakian [8], Qian and Meng [9].

But, they suffer from a serious drawback in that the approximations may be

unstable even though the original system is. Hence, stable methods were

proposed in order to remediate to this lack. The stable methods try to

overcome this problem by insuring beforehand the presence of some desired

modes in the reduced model. The characteristic equation is required to

satisfy some criteria of stability such as the Routh stability criterion,

Hurwitz polynomial, Mihailov criterion and the stability equation, while the

parameters in the numerator are adjusted as in the classical reduction

methods For illustration purposes, we mention the method proposed by Wan

[10] which uses the property of the Mihailov criterion to improve the Pade

approximation method The method developed by Hwang, Gou and Shieh



[11] uses the Routh approximation method to form the denominator and the

minimisation of the integral squared error criterion for the derivation of the

numerator. On the other hand, Xiheng [12] contributed to the performance

of the FF-Pade method through some new concepts, while in [13] Shieh and

Wei developed an elegant mixed model reduction method that combines

dominant eigenvalue concept and the matrix continued fraction approach

However, the absolute stability of the stable methods is achieved only at the

cost of a serious loss of accuracy, and compared to the classical approaches,

fewer moments can be matched with approximates of the same order

Furthermore, they exhibit bad performance when approximating certain

known classes of transfer functions [14].

Transfer functions based methods have intuitive and appealing

frequency domain interpretations [15, 16]. However, the drawback with the

majority of these techniques is the difficulty in extending them to

multivariate cases [17].

Beside state-space models and transfer functions, impulse responses can

also be a starting point for model reduction. The third group of model

reduction methods that may be seen as an extension of the two previous

groups, are the more recently developed Hankel approximation methods The
Hankel matrix associated with a linear system described by a transfer

function H(z) having a proper series expansion (in z~l) H{z)- Za.._,H,z ' 1S

defined as

\HX H2 H} -1
\H, H3 H+ ••-] (i -j)

T{H(z)}=\~ „ „ \ l }
\ tii Hi Ms l

Li i : --J
It has been a popular tool for system identification. The reason for its

popularity is the well known Kronecker's theorem [18, 19, 20], a result that
connect the degree (order) of a system with the rank of the corresponding

block Hankel matrix



Given a system transfer function H(z), the rank of T{H(z)} is equal to

the degree (order) of the system H(z), i.e the dimension of state vectors of

minimal state space realisations.

Consider a state-space triple (A,B,C). It is noted that Ht =CA' lB Hence

r c i

''• CA L- ,
2[B AB A'B •••}T{//(r)}

G4*
oftc0 (1.8)

where 0>, and C0, are respectively called the (extended) observability

and Controllability matrices Therefore, the rank of T{//(z)}is equal to that

of Ob and C0 when Ob andQ are of full rank (when the s.ate-space

realisation is observable and controllable, hence minimal ).

Let's denote by "?" and "<-"; respectively, the shift-up and the shift-left

operators. Then it is seen that

and

ObA

CA

CA2 = 0,

ac0 =[ab a2b ...] =c,

r ci

CA I rca2 \a[B AB A2B •ObACc = = r =r

(1.9a)

(1.9b)

(1.9c)

Hence, given a Hankel matrix T and a factorisation ObCa, a state

feedback matrix A can be computed by solving any of the following three

equations:

ObA = Ob
ac0=cr

ObAC0 =r

(1.10a)

(1.10b)
(1.10c)

where the matrices B and C are easily obtained from C0 and Ob

If only noisy measurements of Ht are available, then the Hankel matrix

formed from H, may have unreasonably high rank which does not represent a



true system order. One should not insist on obtaining a system realisation
which reproduces the noisy sequence of //,; Rather, a realisation which
produces some smoothed version of this sequence appears to be more
desirable. Zeiger, Mc Ewen, Jaaksoo and Nurges [21, 22] developed a
method in this order Their method first applies singular value
decomposition to the Hankel matrix, which decomposes the matrix into
orthogonal components ordered according to the magnitude of the singular
values The components associated with small singular values are then
treated as "perturbational" and removed by setting the corresponding
singular values to zero Aleast-square approximate solution for the state-
feedback matrix A is then obtained from an equation similar to (1.10c). In
the case where no "perturbation" is assumed, the procedure reduces to the
Ho and Kalman's algorithm [19] for exact realisation

Later and independently, Kung [23] arrived at a similar scheme for
approximate realisation in which the state-feedback matrix is solved from an
equation similar to (1.10a) or (1.10b). He also studied the stability of the
realisation and reported some error analysis results. Connection between this
method and the Moore's method of model reduction is mentioned in [23],
Further such connection is observed by Silverman [24],

The three closely related methods developed by Moore, Zeiger and Mc
Ewen, and Kung are supported by good approximation results. Nevertheless
they remain ad-hoc and heuristic approaches Hence it is natural to question
whether there is an optii.ial approximation in any sense, within this Hankel
approximation framework. The answer is affirmative

For the single input-output systems case, Adamjan, Arov and Krein
[25], following some work of Nehari [26], developed a closed form optimal
solution for model reduction problems with a Hankel norm error criterion,
where the Hankel norm error is defined to be the spectral norm of the
difference between the Hankel matrix associated with the original system
and that associated with the approximating system. It has been shown [27]
that the spectral norm of the Hankel matrix associated with a stable single



input-output system lies between the more conventional />, and Lx norms

Hence, the Hankel norm criterion can be viewed as a compromise between

these two more popular error measures Adamjan, Arov and Krein's work is

restricted to scalar systems (single-input-output systems) except for a

special multivariable extension problem [28] which in the context of linear

systems approximation, may be called "zeroth order approximation

problem" Their work is very mathematical and many investigators have

worked on exploiting its engineering implications.

A general theory and algorithm for optimal Hankel norm approximation

of multivariable systems was first proposed and developed by Kung and Lin

[29, 30]. In [29, 30] an "Extension theorem" is derived which assures that

with one block extension, any Hankel matrix can have certain desirable

singular value/vector structure. Then a solution for optimal Hankel norm

multivariable systems approximation problem is constructed.

In the present work two model reduction procedures are proposed The

first method belongs to the first group and it is developed from a block

state-space description, while the second method is developed from a matrix

transfer function and therefore may be categorised as belonging to the

second group of methods. The truncation criterion is derived from the third

class of methods through the use of the relative error between the singular

values of the block-Hankel matrix of the original model and the singular

values of the block-Hankel matrix of the neglected part of the model

The first procedure is based on the concept of dominance, between a

complete set of solvents of the characteristic matrix polynomial of a

multivariable system given in the form of a matrix fraction description A

block controller canonical form is formed from the coefficients of the matrix

fraction description and then block diagonalised via the Vandermande

similarity transformation The obtained reduced model is further tuned at the

eigenvalue level through the diagonalisation of the last block and the

extraction of its dominant part.



Chapter 2

Review on Matrix Polynomials

A linear time invariant single-input single-output system is often

described by a differential equation of the form

d(p)y{t) =n(p)u{t) (2.1)

where d(p) and n(p) are scalar polynomials.

The Laplace transformation description of such system results in a

transfer function with scalar polynomials in the numerator and denominator,

written as

where Ais a complex variable The multivariable analog of the scalar case is

a transfer function in the form of a matrix fraction description (MFD)

H(a) = Nr(a)Dr'(A) (2.3)

where Xr(a) and DR(/.) are respectively nxm and mxm complex matrices
known as matrix polynomials or lambda matrices (/.-matrices), A is a

complex variable and

H(?.)=L[H{t)] (2.4)

//(;.) is defined to be a RMFD (right matrix fraction description), the matrix

£>,(/,) in (2.3) is a right denominator /.-matrix [20],

10



An alternative factorisation of H(a) is the LMFD (left matrix fraction

description) defined as:

H(a) = Dl(a)Nl{a) (2.5)

where Dl(a) is a left denominator /.-matrix

The stability and dynamic behaviour of multivariable systems

formulated in (2.3) and (2 5) and related properties of A-matrices have been

investigated by Lancaster [31], Jury [32], Anderson and Bitmead [33],

Papaconstantinou [34], Miller and Michel [35], Shieh and Sacheti [36],

Shieh et al [38], and Shieh and Tajvari [37].

The denominator matrix polynomial or A- matrix called also the

characteristic matrix polynomial, characterises the properties of a system in

terms of the spectrums of the different spectral factors.

By a rih degree m:h order A-matrix, we understand a matrix valued

function of a complex variable of the form

A{a)= AQkn - Ax?r' +---An_,A~ An (2.6)

where A,,i =0,1,2,...,n, are mxm constant matrices and A is a complex

variable In addition:

Definition 2.1: Given A(a) as defined in (2.6) then:

ft) A(a) is monic if A0 - I.

(ii) A(X) is comonic if An =1.

(in) A(a) is regular if Det{A{A)) * 0.

fiv) A(a) is nonsingular if Det(A(/.)) is not identically zero.

(v) A(a) is ummodular if Det{A{A)) is nonzero constant.

Other definitions for regularity and nonsingularity may be encountered

in matrix polynomials literature. For example [39] defines a regular A-matrix
as one whose determinant is not identically zero and nonsingular A-matrix as

one whose determinant is a nonzero constant, thus making statements (iv)

and (v) of definition 2.1 equivalent. Note that, if A, is nonsingular, one can

always multiply by A~x to get a monic matrix polynomial.

11



Another alternative formulation of the A-matrix is:

fa.,(a.) a.JA) ••• a.jAf\
ia,,(A) a„(A) ••• a:„(A) | p 7x

^)=! ": ": -.. : [ l '

where a„(A) =arZ ~a:]lAn-]-•••~ai]n ,and a;J, =Ak{iJ) with a:ji and A belonging

to a field F(a)

Clearly, the two forms (2.6) and (2.7) are equivalent However, form
(2.6) outlines the polynomial character of the matrix polynomial while form
(2.7) stresses on the matrix one. In this thesis, we will be dealing only with
monic matrix polynomials of the form (2 6) because it is the one that suits

the present work.

There are also other forms such as the Smith normal form which is very

useful'in the study of A-matrices But, before introducing it, we have to
define what is an elementary transformation on a a-matrix

2.1 Elementary Transformations on a ^-matrix

The reduction of a matrix of general form to a canonical form, will

usually be achieved progressively by performing a sequence of simple
transformations known as elementary transformations. We call an elementary

transformation on a a-matrix A(a) over a field F(A), one of the following

operations:

(1) Interchange of 'wo rows.

(2) The multiplication of a row by a nonzero constant

(3) The addition to one row another row multiplied by a polynomial p(/.) of

F(K).

The elementary column operations are defined in an entirely analogous
fashion A row transformation on A(a) is obtained by multiplying A{>.) on

the left by a convenient matrix H and a column transformation is obtained
by multiplying A(a) on the right by a convenient matrix K. These

12



transformations can be seen as premultiplication and postmultiplication by

elementary matrices of the following forms:

An interchange of rows (columns) i and j in A(a) is equivalent to

multiplication on the left (right) by

1 •• 0 •• . 0 •• • 0

/ -> ;o •• 0 •• • 1 •• • 0

y-> o ••

i

0 ••

1 ••

0 ••

• 0 ••

• 0 ••

• 0

• 1

(2.8)

Adding to the i'h row of A(a) the j'h row multiplied by the polynomial

p(/S) is equivalent to multiplication on the left by

/-> !0

0

1

0

0 0

pW

(2.9)

1 0

0 ••• 0 ••• 0 ••• 0 ••• lj

The same operation for columns is equivalent to multiplication on the

right by the matrix

"1 ••• 0 ••• 0 ••• 0 ••• 01

0 1 0 0 0

/->'0 (2.10)

;->!0 p(A)

0 ••• 0

13



Finally multiplication of the i!h row (column) in A(A) by a nonzero

constant c is equivalent to the multiplication on the left (right) by

1 • • • o • • 0 • • 0 - oi

0 • •• l • • 0 • • 0 •• oj

/ ->' 0 •
j :

.. o • • c • • 0 •• ol

iO • .. o • • 0 • • 1 •• oi
: i

:o • • • 0 • • 0 • • 0 - lj

(2.11)

It is evident that the determinant of a matrix of type (2.8) is -1 and of type

(2.9) and (2 10) is -t-1 while that of matrix of type (2.11) is the constant c.

In addition, we state without proofs the following theorems [40].

Theorem 2.1: Every elementary matrix in F(A) has an inverse, which

is itself an elementary matrix in F(A).

Theorem 2.2: // \A{X)\ =k* 0 where k e F, then A(A) is a product of

elementary matrices.

Theorem 2.3: The rank of a A-matrix is not changed by elementary

transformations.

2.2 Equivalent Transformations

Theorem 2.4: Two a-matrices A(A) and D(A) are equivalent if and only

if there are unimodular matrices P(A) = HS---H2H{ and Q(A) = K,K2---K, such

that

D(A) = P(A)A(A)Q(A) (2.12)

Proof: It is evident from what precedes

Theorem 2.5: Every A-matrix of rank r may be reduced by elementary

transformations to the "Smith normal form "given by:

14



d,{A)

D(A) =
d,(A)

(2.13)

L 0 0,

Proof: See Gohberg et al ref [40],

Note that the Smith form D(A) is a diagonal matrix with monic scalar

polynomials d,(A) such that dt(A) is divisible by <_,(A); P(A) and Q(A) are

respectively matrix polynomials of sizes mxm and nxn with constant

nonzero determinants

Theorem 2.6: Equivalent mxn A-matrices are of the same rank.

Proof: See Theorem 2.3.

2.3 Common Divisors

Theorem 2.7: Let A(A) and D(A) be two equivalent matrices of rank r,

then the greatest common divisor of all the minors of order s of A(A), s<r,
is also the greatest common divisor of all the minors of order s of D(A).

Proof: See ref. [40],

When a A-matrix of rank r is reduced to the form (2 13), the greatest

common divisor of all the minors of order 5 of /4(A), s<r, is the greatest

common divisor of all the minors of order s of D(A) From the above

theorem 2.7, since in D(A) every </,(/.) divide ^;(A), the greatest common

divisor of all the minors of order 5 of D{A) and also of A(A) is:

gs(A) =dx{A)d2(A)---ds{A) (s=l,2,...,r)

To prove the uniqueness of the transformation, suppose that A(A) is

reduced to

D.fA) =diag(d,(A),d2(A),...,dr(/-)A--,0)

and to

i s



D2(A) = diag(h(A),h2(A),...,hM)A---,0)

from (2.13), we have

gs{A) = d{A)d2{A)---d5{A) = h,{A)h2(A)---hs(A)

or g.{A) = d,(A) = /?. (A), g2{A) = d,(A)d.(A) = h.(A)h.(A)

in such away that

dz(A) = h2(A),...

In general, if we set g0(A) - 1, then

gM), (;) =ds(A) =hs(A) s =(l,2,...,r)
'.?.-•.(*)

and we have:

Theorem 2.8: The matrix D(A) of (2.13) obtained from A(A) through

elementary transformations is unique.

Hence, the normal smith matrices form a canonical set for the relation

of equivalence on F(A)

2.4 Invariant Polynomials

The polynomials d.(A),d2(A),...,dr(A) in the diagonal of the smith form of

A(A) are called invariant polynomials of A(A) The number r of invariant

polynomials is defined as

r = max{rank(L(A))} (2.14)

This is evident from the fact that, P(A) and Q(A) are invertible matrices for

every A, we have rank (/1(A)) = rank (D(A)) for every AeF(A). On the other

hand, it is clear that rank (D{A)) =r if Ais not a zero of one of the invariant

polynomials, otherwise rank D(A)<r.

if </,(/.) = 1, t<r,then d.(A) =dz(A) =•••= dk(A) = 1

As a consequence of theorem 2.8, we have:

Theorem 2.9: Two square A-matrices of order m on F(A) are

equivalent if and only if they have the same invariant polynomials.

16



2.5 Elementary Divisors

Representing each invariant polynomial as a product of linear factors

<(A) =(A-/ri)2"...(A-^)a'\ / = l,...,r, (2.15)

where A1.,...,Aln are different complex numbers and ai:,...,a:kJ, are positive

integers. The factors (A-Av)a,J, j = 1,2,...,£,, / = l,2,...,r, are called the

elementary divisors of A(A). An elementary divisor is said to be linear or

nonlinear depending on wether a:J = 1 or atJ > 1.

Theorem 2.10: // A(A), B(A) are matrix polynomials over F(A), then

the set of elementary divisors of the block diagonal matrix

^A(A) 0

is the union of the sets of elementary divisors of A(A) and B(A).

(2.16)

Proof: See Gohberg et al ref. [40].

2.6 Latent Structure and Existence of Solvents of Matrix Polynomials

Consider an rih degree m:h order A-matrix described by

A(A) = A0A" + A,An~]+---+An_.A^An (2.17)

where At e Cm'm and A is a complex variable. The above equality remains

unchanged if we replace A by another scalar from F(A) For example, let

A = k , we obtain

A{k) =A,kn~A,kn-{--^An_k^An (2.18)

While, if we replace A by a square matrix S, we may obtain different

results since in general two square matrices do not commute Then we define

two matrix polynomials

AR(S) = AJS"^AlSn'x^--An_,S +A (2.19)

where S is an mxm matrix, as the right matrix polynomial associated with

the A-matrix A(A) And

Ar{S) =SnA,+Sn-1A—-SAn_.-An (2.20)

17



as the left matrix polynomial associated with the A-matrix A(A). A right

solvent of A(A) is defined as a matrix R satisfying

AR(R) = A,R" ~ A,R-''~--An_,R- An=0m (2.21)

and a left solvent as a matrix L satisfying

A,{L)=LnA^ir'A,+~~LAn_,~An = Qm (2.22)

where 0m is the mxm null matrix

Let A be a complex number such that

det(^(A,)) = 0 (2.23)

then, A is a latent root of A(A). Also, let ps be an mxl vector such that

M)P,=°>~: (2-24)

then, p is a right latent vector of A(A) associated with A; . Similarly, q] is a

left latent vector if

q]AW = 0-.m (2-25)

where T in (2.25) designates transpose.

The relationship between latent roots, latent vectors, and the solvents

can be stated as follows [41].

Theorem 2.11: // A(A) has n linearly independent right latent vectors

p.,p,,...,pn (left latent vectors q-,q2,...,qj corresponding to latent roots

A.,A:,...,An, then PSP'{ (0~x SO) is a right (left) solvent, where

P = (p,,p2,...,pn) [Q = (ql,qz,...,qn)TJ and A=diag(A ,A:,...,AJ.

From the above theorem, we can determine the relationship between a

right solvent and the corresponding left solvent

Theorem 2.12: // A(A) has n latent roots A,,...,A„, and the

corresponding right latent vectors p.,...,pn as well as the left latent vectors

q,,...,qn are both linearly independent, then the associated right solvent R

and left solvent L are related by

R = WLW- (2.26)
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where W= PQ, P = (p,,...,pn) and Q= (q{,...,qn)T .

Proof: the proof follows from theorem 2.11.

2.7 Jordan Structure

It is well known that a constant matrix with multiple eigenvalues is not

necessarily diagonalisable If it is not, the most compact form into which a

matrix A may be reduced by means of a similarity transformation is the

Jordan form. In fact, let px,pz,...,pk be a chain of eigenvectors of A, and if

Ap,=A0p., Ap2=A0p2+plt .... Apk = A0pk+pk_. (2.27)

then p,,p,,...,pk is said to be a Jordan chain of the matrix polynomial

{/J- A). In the following, we wish to extend the notion of Jordan chain to

matrix polynomials of higher orders.

For so doing, let pt and ql be respectively the right and left latent

vectors of a A-matrix A(A), corresponding to latent root A, of algebraic

multiplicity mn satisfying:

A«)p;»=0 J=12,..J, (22g)
^r(4)<7/;)=o ; =i,2,...,/,

where /, represents the geometric multiplicity of /,. The set of vectors

defined above will be referred to as primary right [left] latent vectors In

case /, <m,, the set is to be completed by m,-l, generalised latent vectors

constructed from the so-called Jordan chain of A(A) associated with A, [42,

43]. Each of the Jordan chains has, as a leading vector, a primary latent

vector while the remaining vectors of the chain are obtained according to the

following definition:
'o

Definition 2.2: A set of vectors pm,p{2),...,p;k) is said to be a right

Jordan chain of length kfor /1(A), corresponding to ?v if the vectors p;",

j - 1,2,...,k satisfy the following set:
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A(A)p;} = 0

.„ 1 dA(A) .,

IdAW) .t..„

^^'"T!"^^ '""•+(*-l)! JA*"
Putting this in matrix form we have:

0

A(A,)

( AW
i \dA{A\)

1! dX

1 ^"M(/,) 1 rf*~2<4(4)

1 dk-'A(A)
p'r=o

0 >..

0 :0j
p;

p::

^WU^ vo;

(2.29)

(2.30)

vOt-1)! ^A"": (A:-2)! ^A"-2

For every primary latent vector pJ), j = 1,2,

chain of length k} where kj is the size of the corresponding Jordan cell as

shown by the following structure of a Jordan block:

...,/, will correspond a Jordan

T^/l-J,=Diag(J*>J*'-S;")
j'.kAwhere J) '' is the kJ xk} matrix

(k, 1 0
JO A, 1

/(*;) _i : : :j, j • • •
! 0 0 0

U 0 0
In an analogous manner, a left Jordan chain of length k for A(A) is a set

of k vectors ^,(1),^,(2),---,^,(*) where the leading vector is a primary vector. The

q;1' y = l,2,...,k satisfies the following set of equations:

0^

0

1

AT(A)q;])=0

q;" = 0
m 1 dAT(/,)

T , t 1 ^r(/T) ,t ,,
^U)* ~v.~dTq': '*-+(^i)> <*•,:

which can be also written in matrix form as:

10

1! dA

1 dk---ATW ,,
q," = 0

(2.31)

(2.32)

(2.33)



ATW
dATW

! dA

0

AT(A)

! 1 dk-'AT(A) 1 dklAT(?,)
K(k-\)\ dA*~ (k-2y. dAk-

^

(q?) (0)
(2.34)

Note that the vectors of Jordan chain of a matrix polynomial of degree

greater than one need not be linearly independent, in opposition to the linear

matrix polynomials of the type (AI-A).

2.8 Kronecker Product

In order to complete the derivations given in the rest of the thesis, we

review here the Kronecker product of two matrices The notion of

Kronecker product arises naturally in matrix equations, and plays a

prominent role in their resolution

D-efinition 2.3: Given two matrices AeFm'm and BeFn'\ the

Kronecker product of A and B, is defined to be a matrix W= A® B such

that

fauB a,2B ••• a,mB)

w=A®B=\a2\B ai:B :;• °2:B\ <2-35)
Un.5 am2B ••• ammB)

A vector-valued function closely related to the Kronecker product and

denoted by Vec is defined in the following as:

Definition 2.4: Given a matrix A ef""" whose columns are denoted by

{A,,A,,...,An}, the vector-valued function VecA is defined by

f/O

A,
VecA =

u„>

Observe that the Vec-function is linear:

Vec{aA - BB) = aVecA - BVecB,

for any A,B e Fm'n and a,BsF.
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The following proposition [18] shows the close relationship between

the Vec-function and the Kroneker product.

Proposition 2.1: // A eFm*m,B ef"", and X eF"", then

Vec(AXB) = (BT ® A)VecX

Proof: See Gantmacher ref. [18].

16.
Relying on the above proposition, we state in the following a theorem

without [39] proof that will prove useful in our work

Theorem 2.13: Consider the general matrix equation

A{XB.+A2XB2^-~ApXBp=W (2.3 7)

where A, e Cm'm, B e C" and X e C""m, then this equation has a solution X

if and only if X satisfies

GVecX = VecW (2.38)

where G= 2^,'® 4

The main importance of this theorem lies in the fact that the matrix

p

equation ^A.XB^W is transformed to the well-known matrix-vector
1=1

equation of the form Ax = b.

We shall now determine criteria for the existence and uniqueness of

solvents in light of the above theorem [43],

Let A(A) = A0An - AA""'1—/!„.

By definition, if R is a right solvent of A(A), then

AR(R)=A0Rn+A,Rn-'--^An=0 (2.39)

Let J be the Jordan form matrix of R and M its eigenvector matrix, i.e.

the matrix whose columns are the eigenvectors and generalised eigenvectors

of R.

Hence matrix R can be written as:

R= MJM- (2.40)
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using (2 38 ) we have

A0XUnM-1 ~AMJn' \i~x AnMJM'^An =0 (2.41)

multiplying equation (2 41) from the right by M, we get

A,W - A,Wn^---An_W-AnM =0 (2.42)

setting the mn vector VecM as:

r ka !M: (2-43)VecM =; . . v

where M. is the /"" column eigenvector of M. And the matrix G as:

G={jTy®AQ+{jTy-' ®A+---+jr®/}n_, */®/iB (2-44)
then from theorem 2 13 it is clear that P is a right solvent of A(A) if an only

if

GVecM =0 (2.45)
By denoting by N, the null space of G, the former result is summarised

in the following corollary.

Corollary 2.1: Under the above notation, R is a right solvent of A(A)

if and only if G is rank deficient or, equivalently, S is nonempty.

Proof: The proof follows directly from equation GVecM =Q.

In a similar fashion a similar result [43] can be obtained for left

solvents if we consider

L"4 +r-!A+---4 =o (246)
here L is a left solvent of A(A). Denoting by P the eigenvector matrix of

Land by J its associated Jordan form, we can write L=PJP' Hence,

Prp-A0^Pr-lP-'A^-~PJP~'An_l~An=0 (2.47)

and after multiplication on the left by P '

rp---A,-J-''P-iA^—JP-lAn_l^P-'-An=0 (2-48)

Using theorem (2 13), and after denoting P": by 0, we get

w
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AVecO = 0 (2.49)

where A=£"=, A] 8 7""

Corollary 2.2: Under the above notation, L is a left solvent of A(A) if

and only if A is rank deficient.

It is important to mention that, by definition, M (resp 0) must be

nonsingular Hence, only solutions VecM (resp. VecQ) leading to nonsingular

M (resp 0) lead to solvents R (resp. L).

2.9 Complete Set of Solvents and Complete Factorisation

Solvents play an important role in the analysis of a A-matrix [40]. A

special set of solvents of a matrix polynomial is the complete set of solvents

The complete set of regular solvents P,,/ = 1,2,...,«, is characterised by the

following properties

(p{Ri))^(p(RJ)) =0; i*j i,j =\,2,...,n (25°)

(}(AR.)) =PiAW) (2-51)
1=1

where p(R,) is the spectrum of P, and p(A(A)) is the spectrum of A{A). The

conditions for the existence and uniqueness of a complete set of solvents

have been investigated by Lancaster [3 1], Dennis et al [42], Gohberg et al

[44], and Markus and Mereuca [45].

The more general condition can be stated as follows [41].

Theorem 2.14: // the elementary divisors of A(A) are linear, then

A(A) has a complete set of right and left solvents.

Theorem 2.15: // the elementary divisors of A{A) are linear, then

A(A) can be factored into the product of n-linear monic A- matrices called

a complete set of linear spectral factors.

A(A) = (XIm- Qn)(AJm-0^)-(AIm - Qx) (2.52)
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where (XI -Qt),i = 1,2,...,n, are referred to as a complete set of linear spectral

factors. The mxm complex matrices Qt,i' = \,2,...,n, are called the spectral

factors of the A-matrix A(A).

Note that, in order to apply theorems 2.14 and 2.15, the elementary-

divisors of A(A) should be linear, which can be tested by transforming A(A)

into its Smith canonical form [40]

The right most spectral factor Qx is a right solvent of A(A) and the left

most spectral factor On is a left solvent of A(A), whereas the other spectral

factors may or may not be solvents of A(A). The relationships between

solvents and spectral factors are explored by Shieh and Tsay in [41], and

various transformations have been developed

2.10 Transformations of Solvents and Spectral Factors

Since the diagonal forms of a complete set of solvents and those of a

complete set of spectral factors are identical, then they are related by

similarity transformations.

2.10.1 Transformation of Right (Left) Solvents to Spectral Factors

Consider a complete set of right solvents R,R2,...,Rn of a monic

/^-matrix A(A), then A(A) can be factored as

A(A) = Nn(X) = (^m-Qn)(AIn-Qn_l)---(AIm-0.,) (2.53)

by using the following recursive scheme

a = N^l)R(Rk)RkN:k_VR(Rky\ k = 1,2 /i (2.54)

where

Nk{A) =^dm-Qk)Nk_x(A) (2 55)
=AV1(A)A-aAV:(A), k=l,2,...,n y ' J

NAPj)= X:k-vARj)Rj -Q>n«-vARj)> k = \,2,.-,n and any j

with N,(X) = Im rank[N,k_:.R(Rk)] = m, k = \,2,...,n

N:R(R]) = Im , for any j
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Proof: See Shieh and Yih ref [41].

In a similar manner, the spectral factors can be obtained from' the

known left solvents L, of A(X), as follows:

Qk=Qn_k = Mk_]}L(LkrLkM^jL(Lk), k = \,2,...,n (2.56)

where Mk(X) = Mk_.,(A)(AIm -Qk)

= AMk_:XX)-Mk_ii(X)Qk , * = 1,2,...,A2

MkL(LJ) = LJMk_,)L(L])-M(k_])L(LJ)Qk , * = l,2,...,/i and any j

with

Mo(J-) = L > rank [M k_l)L(Lk)] = m , * = l,2,...,/i

M)L(L]) = Im for any y

M k_.L(L) is a left matrix polynomial of M,k_u(X) having A replaced by a

left solvent Lj. The spectral factorisation of A(A) becomes

A(A) = Mn{X) = {XIm-Q,)(XIm-Q2)-Vdm-Qn) (2.57)

2.10.2 Transformation of Spectral Factors to Right (Left) Solvents

Given a complete set of spectral factors of a X-matrix A(X), then a

corresponding complete set of right (left) solvents can be obtained

Before deriving the transformation we first state a lemma to show the

existence of the transformations.

Lemma 2.1. Let A(X) = ImXm -+• A^Xm~x+• •~r An_xX * An and any mxm matrix

R with eigenvalues A,,...,Am. The eigenvalues of the matrix

GA(R) = (R")T ®/m - (Rn~])T ®A,+---+RT ®An_, ~Im®An (2.58)

are the union of the eigenvalues of A{Xl), i = \,...,m, where ® designates

the Kronecker product [39].

Clearly, from the above lemma we have the following results

26



Corollary 2.3: The matrix function GA(R) defined in the above lemma

is nonsingular if and only if A(At), i = \,2,...,m, are nonsingular, where the

A, are the eigenvalues of the mxm matrix P.

The Transformation of spectral factors to right (left) solvents of a

A-matrix can be derived as follows.

Theorem 2.1 >: Given a monic A-matrix with all elementary divisors

being linear

A(X) = (XIm-Q1)(XIm-Q2)-(XIm-Qn) (2.59)

where 0, (A On^_s), i = \,2,...,n, are a complete set of spectral factors of

A(X), and Q,r^Q,=0.

Define A-matrices Nt(A), i = \,2,...,n, as follows:

Ni.{A) ={AI-QyN^(A) (2 60)
= ImA"~' +AuA"-^...+A,n_,_V)lA+A!n_:)1 ,1 = 1,2....,»

with

N0(A) = A(A) (2.61)

Then, the transformation matrix Pt which transforms the spectral factor 0,

(^ Qn-\-,) t0 tne right solvent P, (A /?„,,_,) of A(A) can be constructed from

the new algorithm as follows

R, =*„-.-, =P,Q,P:' , if ^nk P, = m, i = \,...,m

where the mxm matrix Pt can be solved from the following matrix equation:

Vec(Pi) = Gs,(Q:yVec(Im), rank GVl(fi) = «2, i = l,...,« (2.62)

where GSl(Q,) is defined by

g.v, (e)A<gr)r ®l - (Q""'"1 )r ®4, +• •-+q, ®^-,-u, +/„ ®4-.;. (2•63)

Proof: See Shieh and Yih ref [41].

In the same fashion the complete set of spectral factors Ql , i = \,2,...,n,

can be converted into the left solvents /,, , i = \,2,...,n, using the following

algorithm.
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M,(X) = M:_l(A)(XIm-Qiyl

=/^"",+4^"""I*-+4-.-i^ +4-o. • ' =12,...,n (2.64)

f*sf,(Q,) =L ®Q;-' -A^®Qr;~-~A^:i ®Q +Al_ril ®/m (2.65)

^c(5,) = //w,(Q)-;^c(/J i = l,2,...,/i

l,=s;1q,s, (2.66)

2.11 Block Companion Form

In analogy with scalar polynomials a useful tool for the analysis of

matrix polynomials is the block companion form matrix.

Given a A -matrix

A(X) = IX"+AlXH-'+".+ AH, (2.67)

where At e Cm'm and agC , the associated bottom block companion form

matrix is:

0 ^

0
1 0 I 0

0 0 I

-

R ~
• •

0 0 0

v-4 -4-, -A„_? ~AJ

And the associated left block companion form matrix is:

AL

fo 0 •••

I 0 •••

0 I •••

vo 0 •••

0 ~A")
0 -4-1
0 -4-2

/ -A,

(2.68)

(2.69)

Note that AL is the block transpose of AR. If the matrix polynomial A(X) has

a complete set of sohents, these companion matrices can be respectively

block diagonalised via the right block Vandermande matrix defined by
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f I I ••• I ^

i p, Pi ••• p,F(P,P:,...,P^) =! .' .- . I" (2.70)

and the left block Vandermande matrix defined by

ri l ••• LrA

I L ••• Ln~'V(L.,L2,...,LJ= . .: ._ ] (2.71)

V/ L„ ••• 17J

where R.,R2,...,Rn, ( L ,L2,...,Ln) represent the complete set of right (left)

solvents. Since the Vandermande matrices are nonsingular [42], we can write

[*'(/?,,/?,,...,/?„)] :/lfi[F(P1,P2,...,PJ]=D/ag(PI,P:,...,Pn) '(2.72)

and

[V{L,L2,...,Ln)]AL[V{L„L2,...,LX' = Diag(L,,L,...,Ln) (2.73)

These similarity transformations do a block decoupling of the spectrum of

A(X) which is very useful in the analysis and design of large order systems

2.12 Linearisation of X-matrices

Given an n'h degree and mth order X-matrix

A(X) = A0Xn + A.Xn-'~-^An (2.74)

with A0 *Im and Det(A0)*0. Hence, A(X) is nonmonic.

Multiplying both sides of this equation by A'1, the above equation will

look as follows:

A(X) = a:x A(X) = ixn -r a:1 a.A"1 -• -+I;'1 An
(2.75)

=IX'+AlXn-l^~+An K '
The associated block companion form matrix is the mnxmn matrix Ac

of the form
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Ac

( 0 I 0
l

j 0 0 I

loo 0

v-4 -An_x -4,-2

0>

0

I

-AJ

(2.76)

The associated linear A - matrix is an mn x mn A-matrix defined by

AC(A) - Al - Ac .

Theorem 2.17: Given 1(A) and 4(A) as defined above, then the

A-matrix AC(A) and

(J(A) 0 ••• 0^
o /„ ••• 0
: : •. : (2.77)

v 0 0 -. ImJ

are equivalent.

Proof: first we define the nmxnm matrix polynomials E(A) and F(A)

w

E(A)

Bn.M) B^M)
-I. o

0 -/.

B,(A) B0(AS
0

0

0

0

i, o o ••• -/„ o ;

here B,(A) = XB,_l(X) + A, , B0(A) = A0 for / = l,2,...,/i-1 and

P(A) =

r l 0 0 .. 0^

um L 0 •• 0

*K um /. ... 0

i ;"-'/ r~li A""3/ ... / ;

(2.78)

(2.79)

It can be verified that Det(E(A)) = rl and Det(F(A)) = \, in other terms, E(A)

and P(A) are unimodular, hence P(A)"1 exists and is also a matrix

polynomial. It can also be verified that:
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f

E(X)AC(X)F(X) =\ . ; . . ; (2.80)

I 0 0 - IJ
Particular Case: In case A(A) is monic, then A0 = I and A(A) will

reduce to A(A) The unimodular matrices E(A) and F(A) will remain the

same except that 50(A) is now equal to identity. The reader can verify that

E(A)AC(A)F(?.)JAW °) (2-81)
The importance of the above result lies in the fact that it shows that AC(A)

and A(A) have exactly the same Jordan form matrix. Thus analysing A(?J) is

equivalent to analysing AC(A) from the spectral point of view. Another

linearisation defined when A(A) has a complete factorisation is:

A(A) 0

0 /_ o !

A(X) = (?dm-Qx)(XTm-Q2)-(XIm-Qn)

Let's define the nmxnm constant matrix U of the form:

U =

fa 0 0 • •• 0 o^

i a 0 • •• 0 0

0 / 0, ••• 0 0

0 0 0 • •• 0-, 0

lo 0 0 • •• I Qj

(2.82)

(2.83)

The associated linear X-matrix is an nmxnm X - matrix defined by XI-U,

then according to theorem (2.17) XI-U is a linearisation of A(X) if and

only if there exists P(X) and Q(X) such that:

'A(X) 0)
P-1 (X)(XI - U)Q(X) *

o /;
(2.84)

This is satisfied by:
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and

(I -(XI-Q.) 0
0 / -(XI-Q2)
0

P(X) = \ .

0

\0

Q(X)

0

0

0

/

0

0

X_.(A) -/ 0
Bn.z(X) 0 -/

Bn^(X) 0 0

0

0

0

0

0

0

' -W-Qn-->
o / j

0 0^

o o I
0 0

(2.85)

(2.86)

B,(X) 0 0 ••• 0 -/j

V B0(X) 0 0 ••• 0 0y

with 53=/and B:(X) = (XI-Qn_i_])B,_l(X) i = \,2,...,n-1

It can .also be verified that Det(Q(X)) = ±1 and Det(P(X)) = 1. So 0(A) and

P(A) are unimodular matrix polynomials

2.13 Operations on Matrix Polynomials

Consider two matrix polynomials on F(X).

A(X) = A,Xn +A,X"-]+---+A ,X^A (2.87)

and

B(X) = B0Xk + P. A*"1 +• •-5t ,A- 5, (2.88)

We will say that matrices (2 87) and (2.88) are equal, A(X) = B(X), if /? = £

and 4=5, , / = 0,1,2,...,/?.

The sum /1(A)+ P(A) is a X-matrix C(X) obtained by adding the two

corresponding elements of the two A- matrices. The product, when

meaningful, A(X)B(X) is a X- matrix or matrix polynomial of degree at most

equal to n-k. If A(X) or 5(A) is nonsingular, the degree of A(X)B(X) as

well as that of B(X)A(X) is exactly n-rk.
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If the leading coefficient 5, is nonsingular, then there exists two

unique couples of matrix polynomials [0(A), R(X)] and [0(A)), L(X)} such

that:

A(X) = Q(X)B(X) +R(X) Right Division (2.89)
and

A(A) = B(A)Q(A) + L(A) Left Division (2.90)

where degree of R(X) (L(X)) less than degree of B(X) In case, R(X) = 0

(Z(A) = 0) then B(X) is said to be right (left) divisor of A(X).

Remark: A matrix polynomial of the form

B(X) =b,XkIn~bxXk~-In+...-bk_xXIn~bkIn (2.91)

is called "a scalar polynomial".

A scalar matrix polynomial B(X) = b(A)In commute with every matrix

polynomial whose coefficients are square matrices of order n. If

B(X) = b(X)In in (2.89) and (2.90), then:

A(X) = Q(A)B(A) + R(A) = B(A)Q(a) - L(A) (2.92)

Remainder Theorem. Let A(A) be a A-matrix and let B = [b ] be a

square matrix of order n on F. Since (Al-B) is linear, we can write:

A(A) = Q(A)(AI - B) + P (2.93)

and

A(A) = (Al-B)Q(A)-L (2.94)

where P and L are independent of A.

Theorem 2.18: If a matrix polynomial A(A) is divided by (Al-B),

where B-[btJ] is square of order n, and if the obtained remainders are R

and L, then

R = AR(B)=. ACJB" + A.B"-: +~^An_.B -r An (2.95)

and

L= 4(5) = 5"4 - 5""'A,---BAn_. - An (2.96)

•^ *>
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Proof: The proof follows from equations (2 93) and (2.94) upon

identification.

The above theorem can be used to prove the following corollary

Corollary 2.4: A matrix B is a solvent of A(A) if and only if (Al - B)

divides exactly A(A).

Proof: See Hariche ref. [43],

In case A(A) is a scalar matrix polynomial, the remainders in (2.95) and

(2 96) are identical

Theorem 2.19: // a scalar matrix polynomial p(A)In is uivided by

(Al-B) and if the obtained remainder is R, then R-p(B).

As a consequence, we have:

Theorem 2.20: A scalar matrix polynomial p(A)In is divisible by

(XI - B) if and only if p(B) = 0.

2.14 Spectral Divisors

In this section, we consider a special case of division of matrix

polynomial A(X), in which R(X) (L(X)) is equal to the zero matrix

Definition 2.5: If A(X) = AX(X)A2(X) is a particular factorisation of the

monic matrix polynomial A(A), with p(A.(A))n p(A2(A)) = 0, then the monic

matrix polynomial Ax(A)and A2(A) are called spectral divisors of A(A).

The following result relates the latent roots and latent vectors of A(A)

to those of its divisors.

Theorem 2.21: Let A(A) be a A-matrix as in (2.87 j and B(A) be a

right divisor of A(X), then

- Every latent root of B(X) is a latent root of A(X).

- Every Jordan chain of B(X) corresponding to latent root A, is also a

Jordan chain of A(X) corresponding to the same latent root.

Proof: See Hariche ref [43].
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By a set of divisors completely describing the spectral data of A(A), we

mean a set of divisors {B](A),B2(A),...,BS(A)} satisfying

(ja(Bl(A)) =a(A(A))
a(5,(A))flcj(5,(A)) = 0 for i*j

2.15 Methods For Computation of a Complete Set of Solvents And

Spectral Factors of Matrix Polynomials

Numerous methods [46, 47, 48] are available for computing the

solvents and spectral factors of a matrix polynomial A(A). Simple

approaches [46, 47] use the eigenvalues and the eigenvectors of a matrix

polynomial to construct the solvents of the X-matrix A(X) using equation

(2 26). However, it is often inefficient to explicitly determine the

eigenvalues and eigenvectors of a matrix, which could be ill conditioned

[49], On the other hand, other methods with no prior knowledge of the

eigenvalues and eigenvectors of the matrix are available [39, 46, 50, 51, 52]

For example in [50] the generalised Newton's method has been successfully

used for determining the solvents of a A- matrix But, before dealing with

this method, we have first to define what is a gradient of a matrix

polynomial as well as the contraction operation.

2.15.1 Notion of Gradient of a Matrix Polynomial

The gradient of a matrix polynomial is defined [50] as:

(W)|1Jtl=^-W, : ',;.*,'= U,...,* (2.98)
CAk.i

where Xkl denotes the (*,/) element of X, {A(X)}tJ designates the (i,j)

element of A(X), and {VA(X)}ijkl denotes the (i,j,k,l) element of VA(X).

It is also shown in [50] that a contraction operation on VAR(X) with

respect to an arbitrary mxm square matrix Y is given by:
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VAR(X)Y =̂ -{AR(X,r,Y)j
drj ' ,

(2.99)

=±j-(MX+r,r)r\
And each term of the summation (2 99) can be computed as

£(4(^ry)j =a£x<yx'-<-'- (2.100)
UTI 7=0 9=0

Substituting (2.100) into (2.99) and rearranging indexes gives

VAR(X)Y =fdA:nfx^YX^'' (2.101)

Performing index transformations or letting k = i~q^\ and j-i, (2.101)

becomes

VAR(X)Y =YdBkR(X)YXn~k (2.102)
k = \

where BkR(X) is the right matrix polynomial of the following A - matrix

Bk(X):

Bk(X) =̂ AjXk-J~1 (2.103)
;=0

In a similar manner, for the left matrix polynomial AL(X), we have

n

VAL(X)Y=y£JX"-kYBkL(X) (2.104)
<=i

where BkL(X) is the left matrix polynomial of the X-matrix defined in

(2.103).

2.15.2 Generalized Newton Method

Given a right matrix polynomial

AR(X) = A.X" ~A.X"-x+-~An (2.105)

It can be expanded around an mxm matrix X^ as

AR(X) = AR(X,)-VAR(X,)(X-X,)-0((X-X:)) (2.106)
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where 0(X - X.) is a matrix polynomial with high degree terms of (X-Xq),

and VAR(X.)(X- X.) is a contracted gradient [50] of dimension mxm

The first degree approximation of (2.106) with ]&X'\ < 1 becomes

AR(X) = AR(X:)-VAR(X:)SX (2.107)

where SX-X-X:. We define a recursive formula

Af,,, = A> AAV (2.108)

so, (2. 107) becomes

^(A-,.1) = ^(A'1) + V^(A'I)AA'1..i (2.109)

If X,_, is the right solvent of A(X), or AR(X,^) = Qm, then

4,(A",)-r V4,(*, )**,_, =0m (2.110)

Solving for AA^, in (2.110) and substituting it into (2.108) gives the

recursive formula for solving the right solvent of A(X).

To solve for AAV, we use the contracted gradient developed

previously, as follows:

VAR(Xl)AXl.l=£BM)AX,_.Xri (2 U1)
k = \

Substituting (2.111) into (2.110) yields

t^B^X^SX^Xr'' =-AR(X.) (2 112)
*=i

using theorem (2.13), we have:

Vec(SXt,.) =-G(XyVec{AR(X.)} (2 113)

where

G(X1) =T(XrkY®BkR(X!) (2 II4)

In a similar fashion, the recursive formula for solving the left solvents of

A(X) is:

X,., =X,+AX,.l (2.115)

where AAV is the solution of the following linear matrix equation.

VA,{X,)SX,_. =fjXr<SX,..B.KL(Xl) =-A.(Xs) (2 116)
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or

Vec{SX^} =-H(XiyVec{AL(Xi)} (2.117)

where

#(X) =iX(A-,r®A7 (2.118)

The convergence criterion is [SX^.\< s where s is an assigned small

value It should be also noted that the above procedure gives only one

solvent at a time, hence this solvent must be simplified from the matrix

polynomial A(X) through long division, then set the new obtained matrix

polynomial as being the new A(X), and redo again the above process for the

computation of the next solvent. But as it can be seen, this method depends

largely on the initial guess, the reason for which most researchers [53] use it

as a local method In contrast other methods known as global methods are

available among which we mention the Bernoulli's method and the QD

algorithm.

2.15.3 Bernoulli's Method

The Bernoulli's iterative matrix method is a generalization of the scalar

Bernoulli's method for the computation of the zero of a scalar polynomial

with largest absolute value Bernoulli's method is based on the solution of a
difference equation [40]. From now on, a solvent S is said to be dominant
solvent if every eigenvalue of S exceeds in modulus every eigenvalue of the

quotient A(X)(IX - S)"1 [40].

Theorem 2.22: Let A(X) = IX" - A,Xn-''^-^An be a monic matrix

polynomial of degree n. Assume that A(X) has a dominant solvent S, and

the transposed matrix polynomial AT(A) also has a dominant solvent. Let

{Ur}x be the solution of the system

A,Ur-A.U,_,^All_.U._n_:-U,_H=Q r =l,2,... (2.119)

where {U',}* is a sequence of mxm matrices to be found and is determined

by the initial conditions
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£/0=£/.=-=£/ ,=0,

then Ur_.,U~[ exists for large r and

U=I

Ur..Ur->S as r->x (2.120)

Proof: See Gohberg et al ref [40].

For the case of a complete set of solvents the convergence is stated in terms

of block Vandermande matrices [40],

Theorem 2.24: // A(X) is a matrix polynomial of degree n such that:

(i) it has a complete set of solvents S ,S2,...,Sn.

(u) S. is a dominant solvent.

(in) V(S.,S2,...,Sn) and V(S2,S-,...,Sn) are nonsingular, then

lim Uk.xU-kl =S. =P,

limt/;1^ = <,,.=!,

(2.121)

2.15.4 The QD Algorithm

The matrix quotient-difference algorithm is a generalisation of the QD

algorithm for the determination of the zero's of a scalar polynomial [54],

Given a matrix polynomial with nonsingular coefficients as

/KA) = /A"+4Ar+.-4_:A+4 (2.122)
The objective is to find the spectral factors of A(X), that will allow us to

write A(X) as a product of n linear spectral factors:

A(X) = (xi-ol)(xi-o2y--(xi-on)

Writing A(X) in block left companion form, we have

C,

-4 / o • • 0

-4 0 / • • 0

"4-: 0 0 • • /

-4 0 0 • • 0

(2.123)

(2.124)

The required transformation is a seruence of LR decompositions such that
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_ C. C,: J / 0 A 5

C D

where

C

-4 / 0

•4 0 /

,-4-2 o o

_-4_, o o
c:. =[-4 0 ••• 0 0] C22 =[0]

It is required to have C = 0, then let

X = [Xx, X2, X.,..., A" .J

we obtain the following set of equations:

-X.iA,-X2A2 — -Xn_lAn_l=-An

X. = X2 = X3 =-=Xn_2 =0

AV,+D = 0

leading to the following decomposition of C3:

0! 0

0 0

; c.: = ;

I\ .0

/ 0

|o /
c3=|; ;

0 0

0 0

0 0

0 0

/ 0

AA-\ I

-4 /
-A, 0

0 0

0 0

Hence, C, can be written as

•4-, o

0 0

C, = I.1>.:)/?.>.:)

o -44

(2 125)

(2 126)

(2.127)

(2.128)

(2.129)

(2.130)

(2.131)

Continuing this process of the block C, up when C3 is equivalent to a

matrix P0

C3 = L_.n_Z)L..H_-i)--L0R0 (2.132)

where

&

4 / 0 0

0 -aza:x •• 0 0

0 0 -A ,--A~:: /

0 0 0 -4,/i

/i n

(2.133)



L =

/ 0 0 0

A :4"'' / 0 0

L, =
'

0 0 / 0

0 0 0 /

I 0 0 0 o7

0 / 0 0 0

o a.a:'' / 0 ol

0 0 0 / 0!

0 0 0 0 /

etc.

.,£_•„_- are equal to identity

11 be similar to the following

0 0 ~

0 0

0 0

(2.134)

(2.135)

matrices,

matrix

It is clear that if the matrices L,,L_.,..

then the block companion matrix C3 w

_2; / 0
0 Q, I

•" =:? • &
OOO

0 0 0

(2.136)

a.. /
o o.

The following theorem shows that under certain conditions, the sequence of

L,i - -(n- 2),...,0 converge to identities

Theorem 2.25: Let M = XSX~] where

A =

/?! 0

0 P.

o

0 i

(2.137)

_0 0 ••• Rn.

If the following conditions are satisfied:

(a) There is a dominance relation between the Rs Rx > P- >•••> P„ > 0

(b) AT =Y has a block LR factorisation L.Ry.

(c) X has a block LR factorisation IXRX

then the block LR algorithm just defined converges ( Lt ->/).

Proof: See Dahimane ref. [53],

This means that we can start the QD algorithm by considering
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Ef = aza;'-;E2'] = a,a;[-...,e;_"-: = AnA;\

and we deduce that

(2.138)

Or =-A.,Q2v =0;...,O;^: =0 (2.139)
Equations (2.138) and (2 139) provide us with the first two rows of the QD

tableau Hence, we can solve for the rhombus rules and get the row-

generation of the QD algorithm

Q;J- =Q;J 'E;'-E,:

E.r =Q;i:Er[or\

Writing this in tabular form yields:

-A. 0

0 44"'

or Q?
0 E,'"

Or 02}
o p::)

a31 oiZ)

44"'

u

or

44"; ••

£;0)

a:

E{ ••

£i;)

Q\-

e;

(2.140)

(2.141)

where the 0\:' are the spectral factors of A(X). In addition, note that the

QD algorithm gives all the spectral factors simultaneously and in dominance

order. We have chosen, in the above, the row generation algorithm because

it is more stable numerically The interested reader may refer to Dahimane

thesis [53] for further informations about the row generation algorithm and

the column generation algorithm
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Overview of the Existing
Model Reduction Methods

Chapter 3

In this chapter, an overview of the existing model reduction methods is

presented However, before doing so some familiar model approximation

techniques that turn to be basic in system analysis are considered

3.1 Basics

3.1.1 Linearization

Let g(x,y,z,...) be a function of many independent variables with

continuous derivatives Then the expansion of g(x,y,z,...) around a

linearization point (x0,y,,z,,...) using the Taylor series expansion, yields:

g(x,y,z,...) = g(x3,y0,z,,... )^ - - U *J
cx

czdy (y-y,)~ -(---,)-

(3.1)

and by truncating the obtained expansion at some order k, a k' order

approximate equation will be obtained

3.1.2 Discretization

When sample and hold devices are added to a system, it is said to be a
discretized system The discretization of system dynamics is a form of
approximation where the original model and its approximate mode! are equal
or close at the time instants as defined by the discretization or measurement
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Piecewise-constant functions are often generated by a sample and a

hold, called zero-order hold. These functions m: (/),/ = 1,2,...,/?, are described

by

u,(t) = ui(kF) kT<t<(k-l)T (3.2)
k = 0,1,2,... /' = 1,2,...,/?

where T is a positive constant, called the sampling period

A linear svstem in the form

x(t) = Ax(t) + Bu(t) (3.3)
[y(t) = Cx(t)

with constant input u(t) between two sampling instants can be descretized in

time as follows:

rx(k + 1) = <&x(k) + Tu(k)
\ y(k) =Cx(k)

or

r**-i =®xk+ IX

(3.4)

(3.5)
i yk = Cxk

where x(k) = xk = x(tk) at time instant tk. For equidistant time instants

tk -kT, the matrices O and V are given by:

After application of the Laplace transform to equation (3.3), we get:

x(t) =r {(si - Ay1 }x(t0) +U' {(si - A)~] BU(s)}

=eA'\'tx(t0)^teAl,-T)Bu(T)dT
'0 '0

Since the inputs are constant during the sampling period T, the vector u(z)

can be placed outside the integral sign, thus

w

r - -

x(t) =eA'\ x(td)~ ]'eA("rBdT v(kT)

ith t-kT, t - (k - 1)7" and by making a change of variable s-(k-\)T-z.

the above equation reduces to:

-Ifx((k-l)T) =eA'x(kT)-\} eASBds u(kT)
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hence,

<&=e
AT

f
(3.6)

r=l eASBds

3.1.3 Heuristic Model Reduction Methods

In this section, we are going to introduce some of the classical methods

of model order reduction and point attention to their limitations The most

popular of them are the polynomial truncation, the method of dominating

poles and pole-zero cancellations, which are all applicable to linear systems

only. Hence, a nonlinear system requires to be linearized beforehand

Let's start by considering a linear system with a transfer function

0.35z~'' 0.35r"!
H(z)

and for

so

1- 0.86z"' - 0.0855r •- (1 - 0.95r" )(1 - O.Q9z~-)
From the factored denominator of H(z), it is clear that there is a large

difference in the two time constants. A spontaneous but poor method of

model reduction is simply to truncate the numerator and denominator

polynomials with a static gain compensation (i.e. at z=l).

H(z) = H. (z)

H,(z)

0.899:

1 - 0.86* ~

This is obtained by seeking H(z) of the form

kz''

(1- 0.862"')

0.35
//(l) =//;(!)«

1 - 0 86- 0.0855 1-0.86

(3.7)

(3.8)

* = 0.899

It can be verified by impulse response and step response signals that

even if the truncation is supported by static gain compensation, H(z) is still
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a poor approximation of H(z) The reason is that the pole-zero location is
very sensitive to the higher order coefficients

It often makes more sense to keep the dominating poles and to
eliminate the dominated ones while preserving the static gain Applying this
method to equation (3 7) yields

and

0.321:H(z)*H2(z) =
(1-0.95*)

this is also obtained seeking H.(z) of the form

(3.9)

H, (:) =
(1-0.95j":)

0.35Hz(\) = H(\)o
1 - 0.95 0.0545

A- = 0.321

In a similar manner if we want to preserve the other pole, the computations
vield:

so,

H3(z) =
1-0.09*"1 (3.10)

Clearly, it is easy to show serious shortcomings of the above heuristic
methods according to criteria of preserved static gain, step responses,
impulse responses, or least squares fitting. It is therefore desirable to derive

methods for model approximation based on some sensitivity analysis of the
input-output properties. According to the work of Kalman [56], a natural
way to decrease the order of a model is to delete everythin.- except the
controllable and observable part. The reason is that this part of the model is
structurally unstable, hence one should measure the sensitivities of the input
output map in different directions of state space. The most controllable and

observable part could then be used as a low order approximation for the
model This is exactly what is done in Moore [1], where the controllability
Gramian and the observability Gramian are used to define measures of

controllability and observability in certain directions of the state space
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In the following sections we present different methods which have been

developed to derive reduced-order models starting from a higher-order ones

In general these methods are either based on the state space description or

on the frequency domain description

3.2 State Space Reduction Techniques

The class of methods that use the state space description is considered

in this section, while methods depending on the transfer function description

are treated in the next section.

3.2.1 Balanced Realisation and model reduction

For the sake of clarity, the development of the balanced realisation

method is done in the discrete time domain, then the obtained results are

extended to the continuous time case

3.2.1.1 Balanced Realisation For Discrete-Time systems

Consider a linear time-invariant system in state space form

'xk_. = Oxk - Yuk
ePn

, y'k =Cxk

The idea is to develop a quantitative measure on the observability and

controllability of the states.

Direct calculation of the state xv from an input sequence {m, }<"=;' via

equation (3.11), assuming x =0, yields

x - Ox. ~Yu - rw.

x^ = Ox. - Yu. = OH/-. - Yu.

*,.=j>v-4ix

[ov T ov t ••• r]j u.

T.X\
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In fact, there is an infinite number of control sequences Us that result

in the state xs for N>n, however it is suitable to choose the one with

smallest 2-norm The minimum energy control sequence WJ'̂ o tnat results

in the desired state x, , is obtained by means of the pseudo-inverse of "¥s

as.

I\

u,

u. =^C¥^y x, (3.13)

A special matrix called the controllability Gramian Pv is defined as:

Y-i

P., =VFV4/; =2>Trr(Or)* ^0 (3.14)
< = 0

As Pv>0 is positive semidefinite, it can be concluded that the above

equation provides a quadratic form with a bound on the controllable states
at time .V. It is obvious from (3.14) that the controllability Gramian Pv

satisfies the recursive equation

So

Ps--: ^OTI^O7)*
k =0

=^o^-rr^o7)^1
M=-\

=rrr -^ou"rrr(or)Vf"''
M=0

=rr-o(]To'Tr(0~)u)o:
A/=D

= rrr ~opvo7

M = k-\

pv . =opvor -rrr

And the solution Pv for a stable matrix O approaches the solution to the

following Lyapunov equation

opot-rrr-P =0. (3.17)

The asymptotic controllability Gramian P=UmP, satisfies the above

Lyapunov equation (3 17).
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Likewise, the observability Gramian is defined as the infinite sum
x

Q, =^(Or)<CrCO' (3.18)
k- 0

which satisfies similarly the Lyapunov equation

<t>TQ<S>-O-CTC = 0 (3.19)
and

x

0... = £(<Dr)i-1CrC<I>*-1

=crc-X(orr'crco'-
*=c_ , (3.20)

=crc-or *£(&ycTc®* o
,_<=0

= crc-oro,o

Here also, the solution Qk for a stable matrix O approaches the solution to

the Lyapunov equation

Or0O-0 +CrC = O (3.21)

And the asymptotic observability Gramian Q-\\mQk satisfies the above
k —*x

Lyapunov equation (3.21).

It is clear that the controllability and observability Gramian matrices P

and O define quantitative measures of reachability and observability of the

different subspaces of the state space. It is also well known that the

Gramians are varying under state space transformations [1], In order to

clarify this, consider a state space transformation *. = Txk with its state

space equations.

:*,... =<Prt -Yuk = TOT-zk-TYuk

•jk=czk=cr'-zk

The corresponding Gramians for the system in equation (3.22) are

with p=^orrr(or)'

(3.22)



P ^(T^T'-ydTXTTydTOT-'ry

v-:

=£ ro< 7/"; 7Tr'" Tr (tt y'- (Ory TT

=T^o^rr^o')' tt
_ k - 0 __

= tpt

Similarly for the observability Gramian, we have

then

Q=£(Or)'CrCO*
k-'j

x

o. =£ ((Tor yy (cr- y (cr- )(t<pt- y

X

=£ rT (<$>' )T TT T~T CT CT'T& T~
k-'j

x

=rr ^(tf y cT c<j>" r:

= 7"rg7"":

At this point, the question that rises is whether there is an

transformation T such that P. = 0. In fact, this property is achieved b

choosing a state space representation * with equal and diagon;

controllability and observability Gramians such that

p =Q: =l =diag(o- ,a2,...), with o, = JX:(PQ) (3.25)

where X:(PQ) denotes the i:h eigenvalue of the matrix PQ and I is

diagonal matrix with elements a.. Hence the problem reduces to th

derivation of the transformation T One way is to use the Cholesky factor

Q-,U,! , of the matrices P,0,I as intermediate results, and determines th

state space transformation matrix T as follows:

Q = 0:0.

OPO: =U1:UT

UrU = I

I = I:I

T=Z:UrO.
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This transformation results in a state-space realization with similar

("balanced") properties of controllability and observability Gramians, and

the magnitude of the elements a, of the Gramian I expresses the relative

importance of each state (zk). for the input-output behaviour

Let us now limit the discussion to asymptotically stable and balanced

systems Hence

P = Q= I2 =Diag(o:,a\ a;.) (3.27)

with large a, corresponding to essential states *, while small a. correspond

to states *. that are less important for the input-output behaviour. We may

view this as two interconnected systems and it seems reasonable to assume

that the subsystem with small singular values does not affect the input-

output behaviour of the system very much Hence, its elimination is without

significance

Let O = 7*07""' and Y = TY denote the transformed system matrices of

equation (3.22) and let the state vector *. = 7x. be decomposed as

-k '3.28'

where *.' is the vector of components with small singular values The state

space equation (3.22) can be written as:

O., O 3

--'-'V:r0-"'"ru'=*: *

yk=Czk={C: C,)S'\
w/

r

r.
u.

(3.29)

By neglecting the dynamics of zk in front of those of zk and m< , and

consequently eliminating z] from the following system, we get:

-*-•. =®rr< ~$:c-< ' YJ<<

The reduced-order model will reduce to
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zk_,=4>.,zk-r.uk

yk=Czk-rouk

A model reduction guided by the magnitude of the singular values in the

Gramian matrix I is called a balanced model reduction.

As an application of the above method, consider the following transfer

fu nc t io n [57]

0 22*"
H(z) = r

1-0.7-— -0.08*--

with the controllable canonical realization

'0.7 0.08^ T
x(k-\)= x(k)~ u(k)

\ 1 0 / v0/

>•(*) = (0.22 0)x(k)

Using the Cholesky factors, a balanced realization is produced as

'0.7869 0.1079 > ' 0.4579 ^
x(k-l)= x(k)~ _,„ u(k)

with

v01079 -0.0869/

y(k) = (0.4579 -0.1018)x(/t)

'0.5510 0

(3.31)

-0.1018/

V 0 0.0169/

And the state space transformation matrix

'0.4579 0.0288^
T =

V-0.1018 0.1295y

The elements of the diagonalized Gramian I are of different

magnitudes, which indicates that a first order model would be sufficient

According to the previous development, the elimination of the second state

vector component of the balanced system results in a balanced first order

model

x(k - 1) = 0.7869x(£) - 0A579u(k)

y(k) = 0A579x(k)



3.2.1.2 Balanced Model Reduction For Continuous-Time Systems

The continuous time analogs of the results presented in the previous

section will be considered here. The system is assumed to be controllable,

observable, asymptotically stable with a state space representation

x = Ax - Bu

y = Cx-Du

The controllability and observability Gramians are defined as

W: = YeA:BB:e':dt

wo =j,vr;crcyrd/

(3.32)

(3.3 3)

As in the discrete time case, it can be shown that it is possible to find an

equivalence tranformation which makes the two gramians equal to some

diagonal positive definite matrix I The corresponding state space is said to

be balanced and looks as follows:

/ A

o . o
\ r ,\ / r- ^

r.

vfV<D,. O./v: -/

/- A

v=(C C,)i "'• -Wu
\Z,J

3.34)

then by eliminating the least controllable and observable part, a reasonable

approximation is obtained as:

*. =o * -r>

y=Cz. -Wu

For illustrative purposes, consider the following third order linear system

[57]

G(s) = "
(5-1) (r -305-229)

The balanced state space model of this transfer function is

/ -06683 -1.6355 -0.6166 x ' 1.2136

x= 1.6355 -8.2111 -7 4027 x- -13380//

v-0.6165 7 4027 -22 1206; v 0 5634,

v = (1.2136 13380 05634)x

5"!

j.j5



with Gramian and its singular values

'1.1018 0 0 ^

I = 0 0.1090 0

v 0 0 0.0072/

and the transformation matrix T between x and * = Tx

' 1.2136 36.6514 345419T

7= -1.3380 -326780 268176

v 0.5634 -56501 51795 ,

The second-order reduced model is

•'-0.6683 -1.6355" ' 1.2136"

X~ K1.6355 -8.2111/X~v-1.3380/
y =(1.2136 1.3380)*

and the corresponding transfer function is

-0.31745^16.208
G2(s)

s- -8.277935-8162338

And finally a first order reduced model can be derived as

<x = -0.6683x-1.2136w

y= 1.2136*

3.2.2 Model Reduction Based on Aggregation

Historically, the concepts and techniques of aggregation were

developed at first in areas other than control systems It has been the subject

matter of extensive research studies in the economics literature However,

interaction between the economics and the control fields gave rise to a great

interest in aggregation in this latter, because of the possibility that it offers

in providing simplified models which could be more easily used in the

analysis and synthesis of large scale controllers.

Consider a multivariable system described by the following state-space

equations

<X(t) = Ax(t)-Bu(t)
y(t) = Cx(t)

(3.36'



The triple (.4,5,(7) of dimensions respectively n "n, n<m and p<n is

assumed to be completely controllable and observable The objective is to

approximate the original model (3.36) with a satisfactory reduced model

<z(t) = Fz(t)-Gu(t)
v(t) = 7/2(0

(3.37)

A reduced model is said to be "satisfactory" if the error between responses

to a given class of inputs \u(t)} of the original model output y(t) and the

aggregated model output v(t) is negligible

Note that the aggregated model order r is such that m<r<n The

relationship between the linear dynamic models (3 36) and (3.37) could be

established by a linear transformation such as:

z(t) = Lx(t) (3.38)

where '7 is an r<n constant aggregation matrix of rank r Using equation

(3 38) the equivalence between the models (3.36) and (3 37) is achieved

provided that the conditions [58]:

FL = LA

G = LB (3.39)

2(0)= 7x(0)

are satisfied Since the r xn aggregation matrix L is assumed to be of full

rank, it will possess a pseudo-inverse (an inverse in case of a square matrix)

and therefore a least square solution for (3.39) of the form

F =LAL[LLTY- (340)
We shall emphasize here that the least square solution matrix F obtained
above could be an exact or an approximate solution to (3.39), depending

respectively on whether or not the aggregation matrix L is square

Clearly, the basic step in models construction is the formation of the
aggregation matrix L. Denoting the n-dimensional row vectors of I. by

{L7 }.i = 1.2 r , we can write I as

L=[L\, ... ,L; .. .7' .41

then

'ti



-(0 t . ... .7;, ... ,7;]'x(0 (3.42)
This means that *. (/) is a linear combination of some components of x(0

With the help of the eigenspectrum of the original system, we select the

elements of 7 such that 7 has at most one entry in each column, then n

components of x can be grouped into at most r separate clusters In this

way. the vectors \L:},/ = 1.2,... ,r . are mutually orthogonal which ensures the

maximum rank of I This procedure constitutes a method for determining

the aggregation matrix

An automatic method to compute the matrix 7 can be developed by-

considering the controllability matrices of systems (3 36) and (3 37).

Define

WA=[B .AB ••• An- B]
Wf=[G FG ••• f"-'-g]

then from (3.39) we have:

LW. = WF

Thus using the pseudo-inverse, 7 can be obtained as

7 = wFw;

L= WFWr[WAWTY'-

It is understood that WA is of full rank n, since the original system is

controllable Thus, by specifying F =Diag{X ,...,Xr} and choosing G so as

to have a completely controllable reduced model. rank(WF) =r, then 7 can

be computed by equation (3 45).

In order to illustrate the agg gation procedure, let us consider the

following fifth order system [5 5]:

-1 0 0.01 005 0.25" "1 0.5"
0-4 0 0.45 01 0 1

x(0= -0.088 0.2 -10 0 0.22 x(0- 0.5 09 u(t)

(3.43)

(3.44,

.45'

1 0 0.075 -4 005

0 11 0 2 0 999 0.44 -3

0

S6



The eigenvalues of this system are {-10.03-0.952-0 2996,-4.073,-3.95} A study

of this eigenspectrum shows that an aggregate model of order three can be

derived by retaining an average of the first and fourth modes, the second

mode and an average of the third and fifth modes. This gives the following

aggregation matrix 7 of the form

"0.5 0 0 0.5 0 "

L= 0 1 0 0 0

0 0 0.5 0 0.5_

Accordingly, the matrices of the aggregated model are given by:

"-1.975 0 0.1925"

F= 0.45 -4 0.1

0.231 0.2 -5.9 __

" 1.5 0.626"

G = ! 0 1

0.75 0.95 ^

and H-CL' for any given C

3.2.3 Modal Analysis Approach

Modal analysis approach can be seen as a particular case of the

aggregation method. Given a n'M order linear, time-invariant system in state

space form

x(t)=Ax(t)-Bu(t) (3.46)

v(0 = Cx(t)

the intent is to approximate the behaviour of this model by a reduced model
of order r. The starting point for modal analysis approach, is the derivation

of a modal matrix whose eigenvalues are the same as those of the system

matrix. For so doing, we determine a transformation T that will order the
eigenvalues of the original model in order of decreasing dominance such that

they will be grouped into r and (n - r) sets

x(t)=Tz(t) (3.47)

hence.
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and

z(t)=(T' AT)z(t)-T Bu(t)

~j. o"Y(o" "r "
0 J. z(t) Y

u(t)
3.48)

y(t) = CTz(t) (3.49)

where * (/) corresponds to the dominant components and 2 (0 corresponds

to the dominated components Expanding the above system, yields

<z,(t) =J.z,(t)-Y,u(t) (3.50)
z.(t) = Jz.(t)-Y u(t)

The methods using the modal analysis approach seek a reduced order model

described bv:

<xr(t) = Arxr(t)'Bru(0
yM) = c,x,(t)

(3.51

where xr(t)GRr is a subset of x(t) containing the effective state variables In

the following three basic approaches will be considered All of them retain

the r dominant eigenvalues in the reduced order model

Expanding equation (3.47), yields

'^:T T~^~ (3.52)
_x..(o_ t, i,^:cy

The first method makes use of the fact that J. contains only non-dominant

eigenvalues resulting in small time constants Thus, 2 (0 can approximately

be replaced by linear combinations of the various inputs Mathematically, the

approximation is equivalent to putting 2.(0=0 into (3 50) yielding

y.2.(O-r.;/(O = 0 c=>

from (3 5 2). we have

x,(t)=T:.j(t)-Lz.(t)

or equivalently

z.(t)=r'[xr(t)-LzU)]

<«

(t) = -J:T.u(t) j>.3 J )

(3.54)

(3.55'



replacing (3.55) in (3 .50) yields

{t) =Jz{r-[xr(t)-T:z.(t)]}-r.u(') 3,56)

replacing also (3.53) in (3.56) leads to:

2- (0 = J: r [x,(t) - TJ: Y u(t)} -Y-u(t) (3.57)

By defining an r-dimensional auxiliary vector w(t) = xr(t) - TJ. Yu{t) anc

differentiating both sides of equation (3 52), we get

x,(t) = T.z,(t)-T2z,(t) = T,z,(t)

and after some minor manipulations

x,(t)=TJJ; [xr(t)-TzJ:Y u(t)]-TY:u(t)

At this level, several remarks need to be mentioned

(358

(3.59;

(i) The retained (dominant) modes are excited in the same manner in botr

the original and the reduced systems.

(ii) The above method gives a correct steady-state error (w(0-x,(0)

However, this is not always the case for the transient response because ol

the second term T.J.Yu(t) To ensure the correct initial state vf(0) = xr(0)

we let

w(0) = xr(0)-T2Jr Y.u(O) (3.60)

Hence

u(0 = xr(0

and equation (3.59) reduces to:

k(0= TJJr w(t)-TY.u(t)

Then the comparison of (3.51) with (3.62) gives

A, = T.Jjr

B=TY,

3.61)

3.62)

(3.63)

On the other hand, the expression for the unretained states can be

derived from equation (3 52)

x,(t) = L3z,(t)-Lz,(t) (3.64
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replacing (3.53) and (3 55) in (3.64) yields

x.{t)=TJr[xr(t)-Tz.(t)]-T(-JrYu(t))
= T,j:- xr(t)-(T,T' T -T)jrYu(t)

A second development of the modal analysis method may be as follows

Given a system in partitioned state space form

then

xAt)

_x(0.

A, Az\x,(t) B-

.4 -4-UvO- -B-.l
u(t)

xr(t) = Axr(t) - Azx. (t) ~ B-u(t)

x (0 = A,xr (t) - A,x. (0 - B.u(t)

and from (3 52) we get

x.(0 = 7-32:(0-7-42..(0

2;(o = r:xr(/)-7;-:7:2.(f)

By setting 2.(0 = 0. and replacing it in equation (3 53) yields

z(t) = -J;Yu(t)

The substitution of (3.69) and (3.68) into (3.67a) lead to

(3.65)

(3.66)

(3.67)

(3.68;

3.69)

xr(t) =A.xr(t)-Az[Tiz:(t)-Tz.(t)]-B-M(t)
=A. xr(t)~ AzT}[r'xr(t)- r Tzft)}- AzTz.(t)- Bu(t) ?()
= (4 - AJJ.y )xr(0 ~ (AZT - AJ.r- T)z(t) - B,u(t)

=(4 -AJj:')x,(0-[B-, -Az(T - Tj: T)J: Y.}u(t)
In a similar manner, the comparison of (3 51) with (3.70) produces

Ar = 4 - AzT,rl

Br =5, - AZ[T -TjrLJJ.T.

It can be shown that, by setting xr(0) = w(0) in the previous method, the

present method gives the correct transient and steady state responses The

retained modes are excited in the same manner as in the original system.

except if A. =0 The expression for the unretained modes is also given by-

equation (3 65).

(3.71)



A third choice is to completely neglect the effects of the nondominant

variables 2.(0 in the reduced model. In other terms the given system is seen

as two independent subsystems described by

xr(t)=Tzrj(t)

x1(0=7-320(0 (372)

substituting these equations in (3.48) with 20(r) = T~l xr(t), yields

xr(0 = W07r'xr(0 + roW(0}

= 7;j07TIxr(o + 7:roW(o
Hence by identification with equation (3.51), we have

A, = TJjr

Br = 7;r0

and the unretained variable x.(t) is expressed as:

(3.73)

(3.74)

xi(o = r3'u(0 = 7;7;-Ixr(o (3.75)

To demonstrate the use of the three reduced order methods, a fourth

order single input single output system is chosen [55]:

x(0

-1 -1 6 -2

0-220

0 0-31

0 0 0-4

y(t) =[\ 1 0 0]x(0

The system eigenvalues are (-1,-2,-3,-4} with a unit step response of

y{t)=\-e~' -e~2' + 2e'2t - e"4'

A second order reduced model may be derived by retaining the state

variables x, and x2 using (3.62) we have:

x(t) u(t)

l-i -l!

wv0= o -2lW(0 +
0.5833^

HO

xr(t) = w(t)- )M(0
V0.4167J

>V(0 =(l l)xr(0

Setting w(0) = 0, the unit step response of the reduced model is given by

yr(t)=l-e-t-e-2'
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As it can be seen, the initial state response is not the same for both models

To overcome this, equation (3.60) is used with xr(0) =0 and u(0) = 1 to yield

'0.5833^
1,0.4167,

w(0) =

with an output step response of y,(t)= 10833<?"' -0.1667e":'

Application of the second method leads to:

f-\ -Y] f 1
xr(t) = \ \xr(t) +

rw ' 0 -2 \0.\661)
u(t)

>V(0 =(1 l>r(0

with a unit step response ( xr(0) = x0(0) = 0)

^r(/)=l-0.8333e"' - 0.1667<?"2'

which is identical to the result of the previous method.

Other methods using the state space description are available, such as

subspace projection methods, optimal order reduction methods, etc... The

interested reader may consult references[55, 57],

3.3 Frequency Domain Techniques

In the previous section we have seen model reduction techniques using
the state space representation. In this section we will switch to those

reduction techniques developed directly from a transfer function form.

The analysis and synthesis of large scale dynamical systems is usually
done using models in the state space description form. However, the original
model is often identified in the frequency domain and it is subsequently

converted to the state space form. It is therefore natural to seek model

simplification in the frequency domain itself

With this goal, we start the analysis in this section by looking at the
inter-relationship between state space and frequency domain concepts, then
we will tackle the frequency domain techniques. For so doing, consider a

linear time-invariant, asymptotically-stable dynamic system with n state

variables, m input and q output variables described by the following state

space equations:
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<X(t) = Ax(t) +Bu(t) (3.76)
\y(t)=Cx(t)

The corresponding transfer function matrix of this system is

G(s) =C(sI-AYlB (3.77)
where 5 is a complex variable. Expansion of the transfer function matrix

(3.77) in a Maclaurin series about infinity (5=x) yields:

>Dr.-0-DG(5) =^C^'55 (3.78)

where the quantities

M,=CA'B /=0,1,... (3.79)
are termed the Markov parameters. On the other hand, expanding equation

(3.77) in a Maclaurin series around the origin (5=0) and assuming the
system matrix to be nonsingular, yields

G(s) =Y.CA~("V'Bs (3.80)

where the coefficient matrices CA~("l)B are related to time moments Ht by:

77, =(-l)'/!C4"(,*1)5, / = 0,1,2,..

dsl

= (-1)'/!C4"(,*°fi
For a single input single output system (m=q =\), the transfer function

is usually represented by

s=0

..k-l , U „*-!mj^h^^iz^^ (382)
W D(s) ak+ak_,s+---+a/-x +sk v ;

The mutivariable analog is a nxm matrix transfer function of the form

G(5) = N(s)D-] (s) =C(sl - Ay1 B
=[Bk +Bk^s+-^B2sk-2 +B,sk-]][Ak+Ak^s+-+Alsk-1 +sk]~

5* +a.5M +a,5,"2+..-+a/.15 + a/

(3.81)

(3.83)

where l=mxk and 0,,i =1,...,/, are constant matrices each of dimension

nxm They are related to the triple {A,B,C} as follows:
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G(s) = C(sI-Ay''B

c.̂
Adj[sl-A]l QlS'-] +02s'~2+~.+Q1_]s+Q,
det(sl -A)} ~5' -ra.s' l+---+a1_ls +al

(3.84)

By identification of the coefficients of the same degree, we end up with the
following relations:

Qr = CB

02 =C[A+a,I]B

0, =C[A2 +a,A +a2I]B

Qn=C[A'-1 +a.A'-2+-..+a1_lI]B

(3.85)

A number of simplification techniques have been developed to construct

lower order transfer functions based on different ideas. Among these

techniques, we discuss the continued fraction approximation, the time-

moments matching method and the Pade-type approximation method.

3.3.1 Continued Fraction Approximation

The expansion of transfer function matrices into a matrix continued

fraction and the inversion of a matrix fraction to a transfer function matrix

represent two basic operations in multivariable system analysis and

synthesis. Before we outline the simplification approach using continued

fraction expansion, we will first present some introductory material on

matrix continued fraction expansions.

3.3.1.1 The Three Cauer Forms

Consider an asymptotically stable system with a transfer function

a2ns"~'-\ \-a2 352 + a22s+ a2X
G(s)

ai,„-l5 +-"+tf,,35' + <*\,ZS + a\.\

where at] are constants In principle, equation (3.86) can be expanded into

several continued fraction forms, however, there are three basic forms of

particular interest to systems engineering. These are called Cauer forms [61-

63].

The first Cauer form obtained by long synthetic division of the above

polynomials, or, alternatively by using the Routh's algorithm [13, 62] is:
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G(s)

h,s
(3.87)

h2s
h4 + R(s)

where R(s) is a residual transfer function.

We can use the same algorithm to derive the second Cauer form by
arranging the polynomials of G(s) in ascending order and then perform a
long division

G(s) =
k. +

^ +-k—
(3.88)

^ ^R(s)

A third Cauer form can also be developed using the same algorithm by-
combining the features of the first and second cauer forms, in such away
that:

G(s) =

d: +./>+-,
d.

+/2+-
i/3+/35 +

(3.89)

f^R(s)

The multivarable analogs of the three Cauer forms are also available

The first matrix Cauer form is:

G(s)= HlS-\Hz +,7735^ 774-[...]";
J J

(3.90)

which has 2a? matrices 77, and it represents a Maclaurin series expansion
about 5= x.

The second matrix Cauer form is:

I 5 1 [ 5 J .
(3.91)
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which has also 2n quotient matrices AT, and represents a Maclaurin series

expansion about 5=0. Whereas, the third Cauer form is:

G(s) =\D. +F.s +lD:- +F2+\Di+Fis +\D^+FA +[•-]' (3.92)

which has n matrices 7), and FI and is equal to a Maclaurin series expansion

about both 5=0 and 5=x.

Note that HI,K1,DI and Ft are constant mxm quotient matrices, and

any algorithm that computes the quotients 7), and F, is capable of computing

the 77 quotients (by setting all the Dis equal to zero), whereas the

computation of the Kis quotients can be achieved by suppressing the

quotients Ft throughout the implementation

As the matrix quotients descend lower and lower in position, or

equivalently the block develop to more and more inner loops, they have less

significance as far as the overall system is concerned. Thus, a reduced order

model can be obtained by retaining the first several dominant coefficients

and discarding others

A m' order continued fraction approximation is obtained by means of

the approximation Pm(s) = 0. In other words by truncating the sequence of

coefficients after 2m. The coefficients 7) and Ft of (3.92) are computed

using the generalised Routh algorithm.

3.3.1.2 Generalized Routh Algorithm:

The computation of the matrix quotients in the third (mixed) matrix

Cauer form is carried out using an algorithmic procedure based on a matrix

Routh array. The structure of the Routh algorithm for a multivariable system

is defined in such away that is similar to that of a single variable system

Given

G(s) -[4 „• A, A2,2s- A2A\A:_s^ A,y-^---,Al2s^ A,]
(3.93)
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D.

7). =

A,. =

-0.4 -0.4]

0.4 -0.6

-1.152 0.364

-0.667 -0.667

-2 -2 ' - l_l lj

"0 Ol

-J L° 0J'
Using the Routh algorithm, we obtain:

"2 o" To o"

2 0

0 2

A,,

4, =

L0 2j

j-3 2 J

L-2 -2j

2.7 -0.6

0.3 3.6

2 0

_0 Oj

2 0

1 1

A.,. =

1 0

0 1

0 1

F =
0.5 0

-0.5 1.0

0.727 0.121 !
> F, = !

" 10.333 0.333!

The most important features of the continued fraction expansion can be

summarized in the following points:

1. It converges faster than other series expansions

2. It contains most of the essential characteristics of the original model in

the first few terms.

3. It does not require any knowledge of the model eigenspectrum

The only disadvantage with the continued fraction is that the reduced model

may be unstable even though the original model is stable [55].

Next, we present model approximation methods in which we identify a

set of functions which are characteristic of the original full model and which

can be calculated directly without computation of the time or frequency

responses. We then match these functions for the simplified transfer function

model by a suitable choice of parameters in the latter. The most popular

methods of this type are the matching of time-moments of the impulse

response [7, 8, 59] and the Pade approximation.

3.3.2 Time-Moments Matching

Consider the n'h order transfer function, given by
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G(s) =̂ +ti^-^^-V":
an +ctn_ls+---a,s

(3.99)

Using long division, we can expand G(s) in power series as follows:

G(s) = C0+Cls+C2s2^- (3.100)

where the constants Cls are related to the time moments by the relation

c,=(-iy-H, (3.101)

Instead of computing the time moments, His, it is better to calculate the

coefficients Cis using either of the following methods [55]:

(i) Set C0 = y and for /'> 0 use

C. =
a_

K, -Han-JC,-j (3.102)

(ii) Construct the array

4,; 4,2 4.3 4,4

4.1 4,2 (3.103)

4,;

where the subsequent elements are evaluated using the following recursive

equation:

then use

4,; =«„.!-;, 4.,=^;-,

Ak.m - -4-l,l4,m-! ^4-I.m-l

* = 3,4,...,2n+l

/n = 1,2,...,«

(3.104)

(3.105)

C>(-1); 4-2, 7=1,2,...,«

As it can be observed, the number of matched time moments determines the

order of the reduced model It can also be observed that the more matching

of time moments, the more accurate will be the simplified transfer function.

69



However, this latter approach is not without defects: the simplified model

order will be increased so the usefulness of simplification will be lost.

The inverse problem to the one just solved above, is the derivation of

the simplified transfer function with its order and form fixed a priori. Given

the simplified transfer function

Gr(5)
5„ ^5^5-5^5" -5,

l-5,25-5;352-.~5;r../
(3.106)

where r > m and the 2r time-moments H0,...,H2r_., determine the unknown

constant parameters B.2,...,B.r^,B2X,...,B2m^x.

The above procedure may be summarised in the following steps:

1. Calculate the coefficients CIS from the time moments His using (3.101).

2 Put every thing in matrix form:

Co i

cm I

cm, I

0

-c

0

0

-c_, -cm_?

-c„ -c.

-C • -C^" m~r- l m-r-

0

o !

— +

-C,

-c.

0

..

0 " B-2 ' l" Bzl
BZz

0 0 B,r^ ~BZm

0 ... 0 0 o

-Q 0 0 0 i 0

-C; -Q o , 0 L °

which can be written in compact form as:

where

\V,

i w wI "11 "12

[w2l WZ2 0 i 0

v,=[c0 c ... rm]r
V2=[Cm-l Cm,: ••• C^,]
f,=[Bl2 5, - 51-r.1]r
/:=[521 BZ2 ••• 5:m,;]r

70

(3.107)

(3.108)



w.,

w,.

W,.

0 0 Oi

-Co 0 .

0

-c, -Co • 0\(m + l)xr

_-C -Cm_: • • -Co OJ

-cm -cm., •- -C0 ... 0 "]
-c_; -c ••• -c, ... 0 !

r x r

-c -C.

0 0

-C0 0

-C0 0 0

L -c, -c0 o

^,2 =[0](m+l)x(w-l)

Then the unknown parameters are given by

r x (m-\)

5,2

/.= = tfv,:r

5.

5.,

/: = v\-w}}w;X

5,

(3.109)

(3.110)

(3.111)

(3.112)

(3.113)

(3.114)

It is assumed that the matrix W2X is nonsingular. However, if it happens to be

singular then this means that the given set of moments can be matched with

a simpler transfer function.

As an illustration, consider the fifth order transfer function [55]:

2 + 35 f 52 + 253 +54
G(5) =

1+ 5+252 +53 +254 +355

It is required to derive a simplified transfer function that matches the first

six time-moments This means that we are seeking a third order transfer

function of the form:
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so that

5,^

G,(5):
5„ +B„s + B„s2

l + 5125 + 5,35- ^5.453

with r =3 and w=2 Using the second method of calculating the time-
moments from the array

112 12 3

2 3 12 10

-13 0 3 6

-4 -2 -4 -8

-2 -4 4

2 -8

10

the coefficients Cis are obtained as:

C0 =2 C, = 1 C2 = -4

C3=2 C4=2 C5=-10

The unknown parameters are computed from the following equations:

\bu

L514.

r5 '

4 -1 -2"
-i

2

-2 4 -1 2 =

-2 -2 4 _"10j

-2.0909

-1.6364 j
-4.3636^

-l -2^":r 2 1 r 2

1

5..
-J J L j

| 0 0 0

2 0 0

-1 -2 0

-2 4 -1

-2 -2 4

2

-10

-31818

-9.3636

G3(s)
2-3.18185-9 363652

1- 2.09095 -1.636452 -5.81853

3.3.3 Pade-Type Approximants

A Pade approximant [55], if it exists, is a unique rational function

[Am(s)]/[Bn(s)], where Am(s) and Bn(s) are polynomials in s of degrees m

and n respectively. It is denoted symbolically by Pm,„(G\5). The rational

function Pmn(G,s) is said to be a Pade approximant of the function G(s) if

and only if the power series expansion of Pm,„(G,5) is identical to that of
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G(s) up to and including terms of order sm'\ To put this formal definition

into a mathematical framework, let

G(s) Pk + Pk-\s+-"+Pis

dk +dk_.s+---+d0sk (3.115)

This transfer function can be expanded into the power series polynomial

(3.116)

Let

G(s) =y£CJsJ
; = 0

PmAG,s) =A^S/BAs)
a, + a,s + a^s +---+as (3.117)

b„ + b.s + b,s~ h \-b sn
J 1 i n

be the Pmn(G,s) Pade approximant of G(s). Then it follows from the above

discussion that when the transfer function G(s) and the Pmn(G,s) are

expanded in their Maclaurin series,

G(s)-Pmn(G,s)= 2>/
j-m^n- 1

substitution of (3.117) in equation (3.118) yields:

Am(s)
G(s) = XvJ

and rearranging the equations results in

Bn(s)G(s)-Am(s) = j^r]S'

(3.118)

(3.119)

(3.120)

Using (3.116) and (3.117) in (3.120) and carrying out the algebraic

manipulations, we arrive at:

b0C0 +(baC +blC,)s+ (b0C2 +bxC, ^b2C0)s2+-
••-(aa -a{s^--+amsm)

= rm „ ,5m"n"; +r ,5^'-2+...

(3.121)

Identification of terms of equal powers up to and including (m+ ri) of both

sides of the power series (3.121), leads to the following equations [59, 60],
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w here

a. " C
a, -C\

b0 = 1 , a0 = C0

v = Vy

Wx = w

(3.122)

v = (3.123)

w-

a
m m

C

C,

V =
c. cn

0

0
(m x m)

(3.124)

_cm -. cm_: Cm_3
1

... f !

\b.~

*2
y =

A.

cm cm^ ••• c0 0 •••

cr1 cm ••• c. Co -

_Cm.„_i r •• c„ C-, -

ki |-cm.;
ki k: :

0

0

c_

(« x n)

(3.125)

(3.126)

x=j . j w=j . j (3.127)

kJ L-C_j
The computation of Pmjl(G,s) can now be done by the numerical

solution of the linear equations (3.122), (3.123), (3.124), (3.125), (3.126),

and (3.127).

Given

„ ' b +b.s+bn ,52+-.-+6i5'"1
G(s) = -? ^ *-^—2 >—

a. +a_ ,s + a„_,s +•••+«,,$
(3.128)

where a and b, are real numbers, we expand G(s) into a Maclaurin series
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with

G(s) =±C-^s'=C0^C:s +Czs2+.
i=0 l '•

;-i

C; =*,-;- Z C^-;-t , 7=1,2,.

a=\. C0=bn

(3.129)

Multiplying both sides of equations (3.128) and (3.129) by

an +an-\s^ an-zsl^'" and equating coefficients of like powers, leads to:

(3.130)

Equations (3.130) constitute a simple means for the computation of the

coefficients CIS from the parameters of the transfer function. Next, consider

the simplified transfer function Gr(s) of the form:

^ , •. dm + dm ,5-f- d„ ,52
Gr (s) = — "^ ===-^

m-\•+dxs

er + er^s+ er_2s-+---+e0s

which is the Pmr(G,s) Pade approximant.

m<r + 1 (3.131)

To compute the unknown parameters, dis and /.s, the set of equations

developed previously may be used.

In the following we examine the important features of Pade-type

approximants:

(i) The above procedure is simple and easily programmed on a digital

computer.

(ii) The degrees of the numerator and denominator of the approximate

model Pmr(G,s) are not restricted

(iii) The Pade-type approximants are more accurate approximations than

the time-moments-matching approximants since it fits the initial (m+ r) time

moments of the original transfer function G(s).

The weak point with the frequency domain model reduction methods

presented above, is the fact that even if the original model is stable they

produce unstable simplified models [55]. To overcome this problem many

methodologies ensuring the stability of the simplified model beforehand have

75



been proposed and the interested reader may consult references [10, 11, 12,
13, ...etc].

The Extension of the single input single output systems Pade-type
approximation results to the simplification of high order systems of equal
inputs and outputs is relatively simple. To illustrate that, consider the
following MIMO system described by:

G(5) = C[57„-/!]-''5
x

=ZC,5'
1= 0

where the CIS are constant (p xp) matrices.

Let the reduced order transfer function be of the form:

Gr(s) =Drl(s)Nr(s) (3.133)
where

Dr(s) =[D0 +D]s+--^Dr_.yl +Irsr]
Nr(s) =[N0 +N]S+---+Nqsq]

and the DIS and Nrs are constant (r xr) matrices. In order for Gr(s) to be

Pqr(G,s) matrix Pade type approximant, its power series expansion, about

5=0, must agree with that of G(s) up to and including the term in sr'q.

By equating coefficients of the same power, we have:

N0=D0C0

N,=D0C,+D,C0

Nq=D0Cq+D]Cq^...^DqC0
0 =D0Ct,.i+DxCq^-+Dq,lC0 (3.135)

0 =A,C,+AC,_:-H"+A-iC1+C0

o =z)0c,.,+ACr.,.I+-+cr

The numerical solution of (3.135) gives the DIS and .V^ uniquely.
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Finally, we consider the following example to show the use of the Pade

approximation in model simplification [55].

Let

[ 25+10 5+4 "

G(5): 5" -r lls-r 10 5" -75+ 10
5+10 5-6

is' + 215 + 20 5- -55+ 6 ^

It is required to derive a Pade approximant that fits the first four time

moments. Expanding G(s) in power series about 5=0, produces

G(s) = C0 + C,s+ Czs2 + C353+-..

where the coefficient matrices, rounded to three decimals are:

C

C

1 0.4

0.5 1 j'

0.89 0.086

_0.474 0.389_

Since we need to match only four time-moments, the reduced model will

look as follows:

G,(5) =[733 ^P>15 +7252]~'[Ar0 +Nls]
and the application of (3.135) yields:

7V0 = D0C0

NX=DQCX+DXC,

0 =7J0C:+ac,+c3

0 = 7)0 C3 + 7). C2 + C

The resolution of the la.: two equations, lead to

C, =
0.9 -0.18 |

L-0.475 -0.667j'

-0.889 -0.042"

-0.474 -0.213!'C =

[ 6,845 5.489 ;
D =i '

0 ! -0.708 7.197 /

9.666 2.074

1 ! 0.917 5.648

Using D0,D.,C0 and C., the first two equations yield:

"9.59 8.227" f 1.935 1.049"

0 L2 893 6.915

Hence, the reduced model is:

Gz(s)

N,
0.958 1.345

\Mn(s) Ml2(sy
[M2,(s) Mzz(s)\

~~a7(7)
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where

and

M,(5) = 1.93553 +18.53352 +56.8355-53.137

M.z (s) = 1.04953 + 11.36352 + 32.2985 + 21.255

Mz. (s) = 0.95853 - 10.37952 - 27.0895 - 26.568

M::(5) = 1.34553 ^18.94852 -69.2335-53.137

A2(s) = s* -15.31553 ^67.72352 -104.6585-53.137

This ends up the presentation of the selected model reduction methods

Other methods and modified techniques are also available [10, 11, 12, 13,

21, 15, 16, ...etc]. Each method has its own features, merits and drawbacks.

In the next chapter we will tackle the heart of this thesis, represented

by our contribution to model reduction of large scale systems.
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Chapter 4

Proposed Methods

We have seen in the previous chapter some of the most popular model

reduction procedures and pointed out some of their advantages and

disadvantages. In the following, we try to bring attention to the potential of
using matrix polynomials in the resolution of model reduction and
approximation problems To this end, this chapter is devoted to our
contribution in model reduction and approximation. This contribution

consists of the elaboration of two model reduction procedures.

The first procedure is developed from a block state-space description,

based on the concept of dominance between a complete set of solvents of the
haracteristic matrix polynomial of a multivariable system in the form of a

atrix fraction description Whereas the second method, is based on the

dominant spectral factors of this same characteristic matrix polynomial, and
it is developed directly from the matrix transfer function description.

When dealing with high dimensional systems, the simplification problem

becomes more complex and the coefficient matrices are much more difficult
to handle The usual SISO methods are no more applicable, but still a rule of

thumb when searching for reduced models, is to take care of the following

three tasks: selection of suitable coordinates, selection of the truncation

criterion, and the model reduction approach.

c

m
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4.1 Selection of Suitable Coordinates

The first task in any component truncation process is the selection of the

coordinates in which coordinate truncation will be performed Labelling

these coordinates as X,,i = \,2,...,n, the complete system can be described by

a set of differential equations such as:

X,=A,XI+B,U

Y=CX,~D,U
i i i

(4.1)
i = \,2,...,n

where U is an m vector of control inputs, the vector Xt represents the

block state of the i'h block component, and the output vector Y is defined as

the /j>-vector whose norm is of interest in the modelling of control problems.

The system components Xx might be chosen such that the component

model (4.1) describes a physical component or a mathematical component

The choice depends upon whether one wishes to analyse the effect of the

deletion of a physical component as in failure mode analysis or the deletion

of a mathematical component as in model reduction.

In problems where knowledge of the internal behaviour of the model is

not needed, it is possible, as we have seen in the previous chapter, to

develop model reduction methods directly from the input output relations.

For SISO linear time-invariant systems, this corresponds to the well known

transfer function representation, relating the Laplace transforms of the

input and the output by an expression such as:

n(s)Y(s) =h(s)U(s) =^ U(s)
d(s)

where n(s) and d(s) are scalar polynomials.

(4.2)

In case of MIMO systems, this corresponds to the transfer matrix fraction

description form (MFD)

Y(s) = 77(5)7/(5) = NR(s)DKl(s)U(s)

= DL\s)NL(s)U(s)

where NR(s),NL(s),DR(s), and DL (s) are matrix polynomials.

(4.3)
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4.2 Selection of a Truncation Criterion

The second task of importance in model reduction and approximation is

the truncation criterion. It is used to measure the potential closeness of the

reduced model to the original one.

Up to now, no general results are yet available on the issue of 'best'

component truncation. However, and in opposition to results from singular

perturbation or classical dominant pole methods, it is well known that in

order to get a satisfactory approximation of a model, it may not be

appropriate to simply drop the fast modes. Robert E Skelton [64], using

cost decomposition analysis, has shown that retaining the 'fast' mc ies in the

reduced model construction yields better models than retaining the 'slow'

modes.

On the other hand, recent work has shown that the problem of

component choice can be better solved with some criterion that also takes

into account the effect of the state space description matrices 5 and C on

the system behaviour. In this respect, Zeiger and Mc Ewen [21] developed a

method that applies singular value decomposition to the Hankel matrix,

which decomposes the matrix into orthogonal components ordered according

to the singular values magnitude. The components associated with small

singular values are then treated as 'perturbational' and removed by setting

the corresponding singular values to zero.

However, the best achieved result is the one published by Moore [1], based

on Kalman's canonical form [20]. Moore ( see chapter 3 section 3.2.1)

introduced the notion of 'principal component analysis' on the so called

controllability and observability Gramians. It was shown that there exists an

internally k:h dominant subsystem if and only if:

f* V2 f n V
Z4 I X"1 4 (4,4)

where a^ ,i - \,2,...,n, are the second order modes of the original model
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In the present work the idea of second order modes dominance is kept,

but expressed differently using Hankel matrices

Let the original model transfer function be described by:

H(s) = nR(s)dR(s)

=[nlS1' +n2s,-2+---nl][djs' ^c/,5'1-•-</,] '' (4.5)
=h(\)s] +h(2)s2 -h(3)s3 +h{4)s^ +h(5)s' -h(6)s6+---

where «,,/' = 1,2,...,/; and di ,i = 0,1,...,/, are constants, while the

h(i),i = 1,2,3,... are the markov parameters of the transfer function 77(5) The

corresponding Hankel matrix is given by

by

r{77(5)}

"/»(D
h(2)

h(3)

h(2)

h(3)

h(4)

h(3)

h(4)

h(5)

hit)
h(U\)

[h(l) /?(/ +!) h(l~2) ••• h(2l-\)}

(4.6)

The singular value decomposition of the above Hankel matrix is given

Sl7J{Y{H(s)}} =U*Diag{o; ,i = \,2,...,1}*V (4.7)

where U and V are orthogonal matrices and a2,/= 1,2,...,/ are the

second order modes of the original model.

Assume that a reduced model H(s) of order k (k < I) is required, and

let it be of the form

77(5) =[h.skl ^«25*-2^.-.+^]p05* ^<?./"''+•••+</*] '
=h(\)s] +h(2)s2 ^h(3)s~3 +/5(4)5"4 -rh(5)si +h(6)s~

The corresponding Hankel matrix is then given by

Ml) M2) M3)

M2) M3) M4)

r{^co}-JM3) M4) M5)
s

: h(l) M/-1) M/-2)
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A reduced model will be considered to be 'good', if the sum of the

Hankel principal components of the neglected part of the system, is "small"

compared to the sum of the Hankel principal components of the whole

system.

The principal components of the neglected part of the system are the

singular values of the Hankel matrix difference {Y{H(s)} - Y{H(s)}} given by

SVD{Y{H(s)} - Y{H(s)}} = U*Diag{a;,i = 1,2,...,/} *V (4.10)

where U and V are orthogonal matrices.

Therefore, we shall say that a k'h order reduced model is the dominant

subsystem of an /"" order system if and only if:

vi =l

»

V; =, J
(4.11)

or

1 2\

( ' }
<RE (4.12)

where a;,/= 1,2,...,/, and a2,j = 1,2,...,/, are respectively the Hankel matrix

singular values of the original model and the Hankel matrix singular values

of the least significant subsystem with some zero's added, while RF, is the

allowed relative error.

4.3 Solvents Based Model Reduction Approach

In this section, we consider the first proposed model reduction

procedure. The method retains the advantages of the concept of dominance

between a complete set of solvents of the characteristic matrix polynomial,

and the block decoupling of matrix polynomia' using the Vandermonde

similarity transformation.
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4.3.1 Problem Formulation

Consider a stable, proper, and linear time-invariant multivariable
system

H(s) =C(sI-AylB (4.13)

which can be represented in block state space form as:

X(t) = AX(t) + 57/(0

Y(t) = CX(t)

where X(t) is the block state vector of the high order system,

7/(0 is the input vector,

Y(t) is the output vector of the high order system.

The matrices (A,B,Q are constant matrices with appropriate

dimensions. For the same class of inputs, we seek a reduced order model

H(s)=C(sI-AyB whose state space representation is given by:

X(t) = AX(t) + 57/(0

Y(t) = CX(t)

where X(t) is the block state vector of the reduced order system,

Y(t) is the output vector of the reduced order system

The objective is to compute the triple (A,B,C) such that the impulse

response error [H(t)-H(ty] is minimum.

4.3.2 Theoretical Development

Consider a strictly proper nxm transfer function matrix in the form of

a matrix fraction description

77(5) =A"''(s)N,(s) [LMFD: Left Matrix Fraction Description] (4.16)
or,

(4.14)

(4.15)

77(5) =NR(s)DRl(s) [RMFD: Right Matrix Fraction Description] (4.17)

=[N,s'"' +N2s'->+.:+Nl][D0s' +As'-+-+A]" (4.18)
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where JV,,/'= 1,2,...,/; and D: ,i = 0,\,...,l, are respectively nxm and mxm

constant matrices, with D- being the identity matrix

Assume that DR(s) has a complete set of solvents {P,,/' = 1,2,...,/}, meaning

that they have disjoined spectra, while covering all the spectra of DR(s).

(a(P,))n(<r(P ))=0 , i*j
i = \,2,...,l

.7 = 1,2,...,/

\Ja(R,) =o{DR(s)}

(4.19)

Let us assume that the solvents P,,/= 1,2,...,/, are mxm real matrices

satisfying

R.>Rz>Ri>--->Rl_l>Rl (4.20)

where > expresses dominance

The following definition specifies the concept of dominance among

matrices

Definition 4.1: A square matrix A is said to dominate another square

matrix B if all the eigenvalues of A are greater, in modulus, than those of

B.

Writting the above system in block companion form yields:

5,

0 7 o 0

0 0 7 0

4 =
* \ j (Ixm)x(lxm)

0 0 0 7

.-A -A-, -A-2 -• -A.

r°l
! 0

: (Ixm)xm ce =[n, tfM N,_2 ...

0

k
The above system, may be written in compact form as:
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XC = ACXC + BCU

Y = CJ,
(4.22)

The idea, is to transform this system into a block diagonal form with

the solvents in the main diagonal in order of decreasing dominance. One way

of doing this is through the use of the Vandermande similarity-

transformation defined in chapter 2 as:

III

P, P2 P3

P2 P2 P2

Rr Ri~'- R

I \

*,
Rf \(mxl)x(mxl)

/-i

Ri
This transformation changes the coordinates system as follows

Xc ~ Vr XRo XR - VR Xc

Differentiating both sides of the above equation produces

Xr - VR Xc

and replacing (4.24) in (4.25) yields

and

XR=V-\AeXe+BcU)

XR=(VRlAcVR)XR+(VRlBc)U

Y= CcXc = (CcVR)XR

Hence, the new coordinate system matrices are:

Ar - Vr AcVr

Br =VrBc

^R = ^c*R

so that, the system may be written in expanded block form as:
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(4.25)

(4.26)
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X.

X, '_

X,

P, 0

0 P,

0 0

o

o I

x2

X,

Y=[C] C2 ••• C;]

xr{ T5,-
X, ' i5,

if/

*/J L5»J (4.29)

As it can be seen, this is a block decoupled system. Thus, it can be

decomposed into / independent subsystems

X, = P,X, + 5,7/ => X, (5) = (57 - P.)"' 5,7/(0

X2 =R2X2 + B2U ^ X2(s) =(si - R2ylB2U(s)
(4.30)

X, =R,Xl -rBlU^>Xl(s) = (sI-R,):BlU(s)

and the output can be written as a sum of / independent subsystems as

follows:

Y(s) = [C,X, (s) + C2 X2 (s)+- •-+C, X; (s)]U(s)

=[C, (57 - P,)"' 5, + C2 (si - R2) ;52 ••-rC, (57 - 7?,) '5, ]7/(5)

Clearly, the problem of approximating the Ith order model 77(5) with a

reduced k'h order model H(s) satisfying the truncation criterion, reduces to

truncate the system at the k!h subsystem as shown below:

Y(s) =[C (57 - P, )I5, +C2 (si - R2 )'5: +---Q (si - Rk )'Bk ]U(s)

= CA(sI-AA)BAU(s)

and the triple {AA,BA,CA} will have the following form:

*. 0 • •• 0

AA =
0 ^2 ••• 0

(mxk)x(mxk)

0 0 • •• Rk

f\ = [c. cz •- ck]nx(mxk)
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." (mxk)xm

5,

(4.31)
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At this stage, we have obtained a reduced model at the subsystem level

satisfying the following truncation criterion:

From the above analysis, the triple (AR,BR,CR) can be split into two

subsystems, a dominant one (AA,BA,CA) and a dominated one (AE,BE,CE).

\A_, 0] _ ffl.,1
Ba =

hence.

where

0 A e] B<

cR=[cA q]

H(s) = CR(sI-AR)lBR =77.5 ' + 7725 2 -H.s^ ^H4s V-

#. -GrBr
772 - GRARBR

"3 - GRARBR

(4.34)

(4.35)

(4.36)

and the corresponding Hankel matrix is given by

r{77(.v)}

r{77(5)}

CrBr GR ar Br • • CRAlRlBR
GrArBr GrArBr ^rArbr

LCRAR BR tRARBR • CR AR BR j

r caba caaaba •- CAA'/BA] CEBE CEAEBE ••• CEA[E'h

CAAABA CAAABA •- CAA'ABA \+ CEAEBE tEAEBE - GEA'EB

[CAAA-lBA CAA'ABA ••• caa2;-2ba_ _CEAlElBE CEA'EBE •- CEAil:l

r{77(5)} = r{77(5)} + r{77£(5)}.

The relative error is measured by

(4.37)

f nU \

\£ff'J
1 2

<RF
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where a] ,i -\,2,...,ml and a] ,i = 1,2,...,ml are respectively the singular

values of T{77(5)} and Y{Hs(s)}.

If it is required to tune the obtained approximation to the eigenvalue

level, the diagonalisation of the last added subsystem Ck(sl- Rk)Bk seems

to be well suited

After diagonalisation, the triple {Ci,Ai,Bi) will take the following

form:

0 R,

AAD=\0m 0m

0 0

0 0

ora o

om o

/?._, o

0 0

c =\c c ••• c*- .4D \y\ *- 2 W "*1

' Bx

B2

Bt_B.4D =

0 1

o I

0 \(m xk)(m x k)
0

i

0

xL

ck2](n)(m xk)

(m x k)(m)

(4.39)

where Xh,i = \,2,...,m, are the eigenvalues of the k'h solvent Rk and

bh,ch,i = \,2,...,m, are respectively the transformed rows and columns of the

matrices Bk and Ck where 0m stands for the mxm zero matrix.

Again, at this stage, the relative error criterion satisfaction is tested for

reduced models of order ((k - 1) x m+ p) x ((k - 1) x m±p), p-\,2,...,m. In

case the relative error is satisfied for p<m, the system is truncated one

more time at the ((k - 1) x m + p) component, Otherwise if, p = m, the

subsystem Ck(sl - Rk) 'Bk is kept as it is.
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The obtained tuned reduced model is then of the following for m:

*i om

om R2

AT = 0
m om

0 0

0 0

om o

om o

R^. o

0 xk]

0 0

0

0

0 ;((* - 1) xm- /?)((* - 1) x w - p)
0

0

••• s]("X(*-Ox/"-/>) (4-4°)cT ='r=[C C2 ^-t-1 C<rl

5,

5,

((£ - 1) x m + /?)(/«)

Finally, this triple {^r,5r,Cr} is converted back to a transfer function

description form using the Sauriau-Leverrier-Faddeev algorithm

H(s)=CT(sI-ArylBT (4.41)

The Sauriau-Leverrier-Faddeev algorithm give rise to an analytical

expression for (si - AT)'\ which is summarised in the following steps:

R(s)
(sI-ATr

A(5)

with

R(s) = s"-1I + sn-2Rl^--+sRn_, ^Pn~1 n-\

and

A(s) = s" -t- a^^""1 +• •-+01,5 + a0

where the coefficients a, and P, are computed from the following relations:

90



Then

A, =A,

A2 =ATRl

ATR„-z

4 =ATR
n In-

77(5)

an_x =-trace(Al)

1
a trace(A2)

R,=A,-ra ,7

P, = /L +aK_J

a. =

(n-\)
trace(An_.i) Rn_x = An_x + a,I

a, = - - trace(An)
n

\G(s)\
A(5)L ^ 'J A(5)L,=0

In this correspondence, an efficient and simple algorithm is developed.

4.3.3 Algorithm

Step 1 : Choose the relative error RE.

Step 2 : Given H(s)= NR(s)DR(s), determine the solvents of 7J^(5) and

classify them in order of decreasing dominance

Step 3 : Construct the block controller form (CC,AC,BC) and the

corresponding Hankel matrix of the original model, then compute the

singular values of this Hankel matrix.

SVD{Y{H(s)}} = U *Diag{a;,i = \,2,...,ml}*V

with U, V being orthogonal matrices and a2 ,i = \,2,...,Im, are the singular

values of r{77(5)}.

Step 4 : Form the Vandermande matrix VR of the original model.

Step 5 : Transform the controller form to a block diagonal form using the

block Vandermande similarity transformation.

Step 6 : With this decoupled system, start adding the block subsystems

Step 7 : Form the Hankel matrix of the neglected subsystem as

{Y{H(s)}-Y{H(s)}} and determine its singular values.

SVD{Y{H(s)} - Y{H(s)}} = U *{a,2,/ = 1,2,...,w/} *V

where II, Fare orthogonal matrices and o] ,i = \,2,...,lm, are the singular

values of the difference {Y{H(s)} -Y{H(s)}}.

1
ZCrR,BTSn
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Step 8 : Test for the relative error RE satisfaction

RE

If the relative error is not satisfied, add another subsystem to the previous

reduced model and go to step 7. Otherwise if the relative error is satisfied,

the obtained approximation is tuned through the following steps to the

eigenvalue level.

Step 9 : Diagonalise the last added subsystem and start truncating

eigenvalues.

Step 10 : Again test for the relative error satisfaction. In case it is satisfied

for p<m , reduce again the model by including only p eigenvalues of the

k' subsystem Otherwise, if p =m keep the subsystem as it is.

Step 11 : Use the Sauriau-Leverier-Faddeev algorithm in order to get a

transfer function form.

A(s) J

4.3.4 Comments on the solvents based method

First of all note that the same development can be done for the left

matrix fraction description form and similar results will be obtained

As it will be seen in the coming chapter, the application of the above

algorithm shows some very interesting results. The only drawback of this

procedure is the numerical cost due to the inversion of the Vandermande

matrix.

Procedures of bypassing this obstacle may be developed to increase the

efficiency and stability of the algorithm. In this order a second procedure

that avoids the inversion of huge Vandermande matrices is proposed in the

next section.
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4.4 Spectral Factors Based Model Reduction Approach

The second proposed model reduction method is developed directly

from the matrix transfer function form. This method as well retains both the

advantages of the concept of matrix polynomial division, and the dominant

spectral factors of the characteristic matrix polynomial of the multi-input

multi-output system written in the form of a matrix fraction description. In

addition, if the reduced model is required to be tuned to the eigenvalue

level, block decoupling is suggested.

4.4.1 Problem Formulation

Given a stable linear time-invariant multivariable system described by a

matrix transfer function 77(5), the objective is to derive an approximation

H(s) of 77(5) such that the impulse response error [H(t)-H(t)] is minimum.

In other words, the problem reduces to eliminate any least significant

subsystems which contribute little to the impulse response

4.4.2 Theoretical Development

Consider a strictly proper nxm transfer function in the form of a

matrix fraction description:

77(5) =A ' (s)N, (*) IMPD (4•4 3)

or,

H(s) = NR(s)DR(s) RMFD

=[N,s'-' +N2sl2+---N,][D0s' +Dls'-'-r-^Diy (4.44)
where TV,,/'= 1,2,...,/; and D,,;' = 0,1,2,...,/, are respectively nxm and mxm

constant matrices, with D0 being the identity.

Our main contribution lies in the derivation of an approximation H(s)

from H(s) based on the dominant spectral factors ( that may be computed

using any matrix polynomial method such as the ones seen in chapter 2 ) of
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the characteristic matrix polynomial DR (s) such that the impulse response

error between 77(0 and 77(0 is minimum

This problem is solved through the use of the notion of matrix

polynomial division.

Let the reduced model be of the form:

H(s) = NR(s)DR(s) (4.45)

Then the error function in the frequency domain may be written as follows:

77,(5) = [77(5) -77(5)]

= NR (s)DR(s)-NR(s)bR(s)

where DR(s) is the dominant part of DR (s) containing the first k dominant

spectral factors. Hence, it can be written as a product of k linear spectral

factors

DR(s) =((57 - Qx)(sl - Qz)-(sl - Qk)) (4.47)

where Qx,Q,,...,Ok, represent a complete set of spectral factors of DR(s)

satisfying the following relation:

Qi>Qz>Qi> ••• >Qk (4.48)

where > specifies dominance between the set of spectral factors (see

definition 4.1).

Note that DR(s) may or may not be able to be expressed as a product of

/ linear spectral factors, but it is evident that the dominant ones are within

DR(s). Hence, DR(s) can be written as a product of a dominant factorisable

polynomial DR (s) by a dominated polynomial D(s) such that:

DR(s) =DR(s)D(s) (4.49)

where

DR(s) =D,sl ^Dxslx +D2s'-2^--+Di_xs +D1 (4.50)

DR (s) = (5/ - 0. )(sl -Qzy--(sI-Qr) \<r<l

and
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D(s) =C0s,-'-rC.s,-> +C:5'-'-2+-+C,.r.;i +C,.,

Justification:

Let

D(s) =^C,s'

= C0s'-r + Cx s'-r-] + Czs,r'2 + C35'-r"3^

from (4.49), we have

DR(s) = DR(s)D(s)

or equivalently:

Dr:s' ^Dxs!l +D2s'-z+--^D,_ls +Dl

=[D,sr ^D.y~l +D2sr-2+---+Dr_lS +Dr][C0s'-r ~C,s'-r-' +C2s'-'-2+-
Combining terms of the same power yields

D,s' +Dxs!] ~D2s'-2 +D3s'-3+-+D,_is^D,
=(D0c0)sl^(D0cx +4c0)sM +(4c2 -Ac -Ac0)5;-2--.

And identifying coefficients of the same power, leads to

A=AC0

a-Aq-Aq
A =Ac2 +Ac, +Ac0
A =Ac3 +Ac2 +Ac +A c0

D
i-\ D0Cl_]+D.Cl_2+D2Cl_i^-+Dl_]C0

(452)

(4.53)

(4.54)

(4.55)

(4.56)

A =AC +AcM +Ac,., -D3Cl.i+-^D,C0

Note that since DR(s) is 'divisible' by DR(s) then D(s) is a finite series In

other words, Di ,i' = (/+ 1),(/ + 2),... are equal to zero matrices Hence, the

C,,,/'= 0,1,2,... coefficients can be determined sequentially using
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C-^DSD,

C =A"[A -DC,]
C =£>;''[Dz -D.C, -DZC0]

cM =A_:[A-i - AQ-2 -4Q-3—--A-iQ]

(4.57)

c, =4''[A - Ac,--, -4C_; - AQ-3—-AQ]
Note also that (4.57) is a recursion relation that can always be solved since

A'' is nonsingular (it is in fact equal to identity since DR(s) is monic).

and

Writting the above result in compact form yields:

For i = 0

C0=D0lD,

For /' = 1 to i~ I

C, = D- A-IAC,-;!

(4.58)

(4.59)

Carrying out the above development and inverting both sides of equation

(4.53), yields:

DR\s) =Dl(s)DR(s) (4.60)

hence equation (4.46) can be rewritten as:

Hs (s) =NR (s)D] (5)A! (s) - NR (s)DR (s)
=[NR(s)D-'(s)-NR(s)]DR'-(s) (4.61)

where DR(s) is the dominant factor of DR{s) and D(s) is the dominated

factor of DR(s).

By doing the 'long division' of NR(s) by D(s), we get:

NR(s) = Q(s)D(s) +R(s) (4.62)

which represents a long division from the right.

Theorem 4.1:

Let

NR(s) =N0sk +Nlsk-] +N2sk-2+-+Nk_1s +Nk (4.63)
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c=A"'[A-Ac3]
c, =d:'i[d, -Ac -Ac,]
': ' ' * ' (4-57)

C^ =A [A-, - AQ-2 " AQ-3--A-:Q]
c, =A1 [A -AcM - Ac,.: - Ac.3—-AQ]

Note also that (4.57) is a recursion relation that can always be solved since

A'' is nonsingular (it is in fact equal to identity since DR(s) is monic).

Writting the above result in compact form yields:

For i = 0

Q=AA

For / = 1 to i = I

(4.58)

and

C = D: A-IAc,,
(4.59)

; = i

Carrying out the above development and inverting both sides of equation

(4.53), yields:

DR\s) =D-\s)DR-(s) (4.60)

hence equation (4.46) can be rewritten as:

H£ (s)= NR (s)D] (s)DR (5) - NR (s)DR (s)

=[NR (s)D[ (5) - NR (5)] A'' (5) (4.61)
where DR(s) is the dominant factor of DR(s) and D(s) is the dominated

factor of DR(s).

By doing the 'long division' of NR (s) by D(s), we get:

NR(s)=Q(s)D(s) +R(s) (4.62)

which represents a long division from the right.

Theorem 4.1:

Let

NR(s)=N0sk +Nls"-1 •rN2sk-2+--~rNk_ls^Nk (4.63)
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and

D(s) =Djsp +D.sp-^D2sp-z---+Dp_.s +Dp with k>p (4.64)

Then there exists a unique matrix polynomial 0(s) of degree (k - p) and a

unique matrix polynomial R{s) of degree not exceeding (p - \) such that the

equation

NR(s) = Q(s)D(s) + R(s) (4.65)

is satisfied.

Proof:

Let

0(s)=0:/p +Q,/P->+Q2sk-"-2+—rQk-p_ls+Qk_p (4.66)

equating coefficients of (4.65), the coefficients of 0(s) and R(s) can be

successively and uniquely determined from the obtained k equations

The coefficients matrices of 0(s) are supplied recursively as:

0o =tfoA"1
QX={NX-Q,D,)D:;

Q^p-{Nk.p-Qk_2pDp-Qk_2^Pp_,-----Ok_p_A)D}1
Replacing (k - p) by /', the above equations will look as follows:

0o =AW"
0 =(#.,-& A)A1

Q1={Nl-Ol_pDp-Ol_p.xDp.,r--Q,_2D2-Ol_.Dx)D-;

this can be written in a programmable form as:

0o = N,D?
For n=\ to p

0.=(^-l0nJA)A!
;=i

For n = prl to (k - p)

;=i
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and the remainder R(s) is given by

R(s) - R0sp~l -t- R}sp~2t-• -Rp.2s +RP-\

with the corresponding coefficients supplied by:

*,=tf*-,-.-0*-:,-.A--&-,A
R, = Nt QwDp--Ok_p_D,-Ok_pD2

R,.,_, -Nk-Qk_pDp

here also replacing (k - p) by /, the above equations reduce to

Ro = n,.i-Q,-p-A~-QA

*..=#,_,-fi_,.:A- -Q.-A-QA

R^={Nk-Q,Df)

writting this in a programmable form yields

RJ=N,.J.,-tQ,.J.t.A
t=j-\

with i-k-p and _/' varying between 0 and (p - 1), /? being the

D(s) and £ the order of NR(s) III.

Next, multiplying both sides of equation (4.62) by D ''(s) produces:

NR(s)D l{s) = Q(s) +R(s)D-:(s)

replacing equation (4.74) in equation (4.61), leads to:

He (5) =[0(5) - R(*)D-' (s) - $R (s)]A'' (s)
=[Q(s) - NR (s)pR] (s) ~R(s)D-1 (s)D-R (5)

The key idea is to take

NR(s)=Q(s)

then, equation (4.75) reduces to

H£(s)={H(s)-H(s)}

=R(s)D] (5)4* (s)
= R{s)DR(s)
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which is also a transfer function in the form of a matrix fraction description

(RMFD), required to be negligible in terms of impulse response with respect

to the original model.

At this stage a reduced model at the spectral factor level satisfying the

error criterion is obtained In order to tune it at the eigenvalue level, the

decoupling of the obtained reduced model and the diagonalisation of the last

subsystem of the reduced model is done.

Let the reduced model be described by

H(s) k-2N,s"1 +N,s KVjA^-A/~;-"Ap (4.78)
The decoupling is achieved through the use of the Vandermande similarity-

transformation matrix. The Vandermande matrix is constructed using the

dominant solvents derived from the corresponding dominant spectral factors

using the transformation developed by Shieh and Tsay [41] (see also chapter

2). Hence

i l ! 7
R} R2 Ri

V(R,,R2,...,Rk) = R2 R22 R2

/?*-'' Rkl Rk~l

I

R>

Rl

Rt]

Writing the obtained reduced model in companion from, yields:

io|
Bc=\ \\k>

0:

0 / 0 o

0 0 / 0

: (k x m)(k x n

0 0 0 I \

A -A-. - A-: -A

ce = A A- Nk_2 - A (n)(k x m)

J

The above reduced system can be writen in compact form as:

Xe=AeXe+BeU
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and making a change of coordinates using the Vandermande similarity-

transformation produces:

Ar =Vr'AcVr

br=vr-'-bc
cR = cyR

(4.82)

so that the above system may be written as a decoupled system

i xz

1A\

Rx 0

0 R2

0 0

0

0

R k J

x2

X,

~" r D "i

#1
B2

B„

\U

F=[C, C2 - Ck]

*i

^2

X,

(4.83)

At this level, the diagonalisation of the last subsystem corresponding to the

last added linear spectral factor is done in the same manner as for the

previous procedure. The above system will then look as follows:

0. R,

AAD = 0~ 0"
0 0

0 0

om 0

om 0

**-. 0

0
1

0 0

0

0

0 (m x k){m >' k) B^

0

B2 \
: \

BK_, \m>< k){m)
K !

(4.84)

r =\c C ••• C^RD L ' 2 'k-\ Ck\ c^nXmxk)

And then we start truncating the eigenvalues up when the relative error

criterion is again satisfied

The relative error criterion satisfaction is tested for reduced models of

order ((* - l)xm^)x((i - 1) xm~p), p=\,2,...,m. In case, the relative error

is satisfied for p<m, the system is truncated one more time at the
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((k - 1) xm-r p) component. Otherwise if, p =m, the subsystem

Ck(sl -Rk)"xBk is kept as a block without the diagonalisation.

The obtained tuned reduced model is then the following:

R> om

0 Rz

AT = \om om

1 o 0

0 0

Om 0m

0m 0

0 Atl

0 0

0

0

0 \((k - 1) x m- p)((k - 1) x m- p)
0

0

A kp J

cr =[c, c2 Lji-I C*rl c4#-i)x'"-/')

57

BT=,Bk.x ((k-\)xm-p)(m)
! z>fc'k\

J*v

(4.85)

Finally, the above triple {AT,BT,CT} is converted back to a transfer

function description form using the Sauriau-Leverrier-Faddeev algorithm

which is very useful for the computation of the resolvent matrix

H(s)=CT(sI-ATylBT (4-86)

The corresponding resolvent matrix (si - AT)~l is denoted as follows:

adj{sl -AT)_ R(s)

where

and

(SI At) tei{sI-AT) A(s)

R(s) = Is"'' + Rxs"-2 +-+RH.2s + Rn_

A(s) = sn +an_,sn ' ~--<-als~a0

The Sauriau-Leverrier-Fadeev indices that the coefficients a, and

R ,/ =0,1,...,«-!, can be obtained by the following recurrence formulae:
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Rn =1

an_,=--tr(R,_lAT)
n-i

= --tr(ATR,.l)
i

R, = R,_,AT +anJ = ATRt_x ^ Ian_„ i = (n - 1),(« - 2),...,1

a0=--tr(ATRn.,) = --tr(Rll_lAT), or 0= /?„.. ^r -a,/

where the tr stands for the trace of a matrix. The last equation can be used

as a check. Then

^-^AG^]-^ntCrR^sn"' \ (4.87)A(5)L A(s)Lf^

In this order an algorithm is developed and summarised in the following

steps:

4.4.3 Algorithm

Step 1: Input the allowed relative error RE.

Step 2: Given H(s) =NR (s)DRl (s), form its controller form and the

corresponding Hankel matrix, then compute its singular values as

SW{r{H(s)}} =U*Diag{a2,i = \,2,-,ml}*V

where U and V are orthogonal matrices and o2l,i =\,2,-~M are the Hankel

matrix singular values of the original model

Step 3: Determine the first spectral factor of DR(s) and form the

corresponding linear spectral factor to be DR (s) = (si - 0]).

Step 4: Divide DR(s) by the DR(s) such that

D(s) = DR\s)DR(s)

which represents a long division from the left.

Step 5: Divide the given NR(s) by D(s) to yield

NR(s)=Nlt(s)D(s) + R(s)

Step 6: Form the Hankel matrix difference {T{H(s)} - T{H(s)}} and then

compute its singular values.
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SVD{r{H(s)}-T{H(s)}} = U *Diag{a;,i= 1,2....,ml}*F

where U and V are orthogonal matrices and a2,i = \,2,...,ml are the Hankel

matrix singular values of the neglected part of the model

Step 7: Test for the relative error, RE, satisfaction using

ff mi _ y2>

RE =

Step 8: In case the relative error criterion is not satisfied, determine the

next dominant spectral factor and form the new DR(s) then go to step 4.

Otherwise if it is satisfied, form the spectral factors level reduced model as:

H(s) = NR(s)DR'(s)

Then tune it at the eigenvalue level through the following steps.

Step 9: Determine the solvents of A(5) ^rorn tne corresponding spectral

factors

Step 10: Form the Vandermande matrix and transform the reduced model to

a block diagonal form.

Step 11: Diagonalise the last block and form the new H(s) by truncating the

eigenvalues.

Step 12: Determine the singular values of the Hankel matrix difference as

SlV{T{H(s)} - T{H(s)}} = U*Diag{v;,i = \,2,...,ml}*V

Step 13: Test again for the relative error RE satisfaction In case it is

satisfied for p<m, the model is reduced to include only p eigenvalues of

the last block subsystem Otherwise if p = m, the spectral factor level

reduced model is kept as it is.

Step 14: Use the Sauriau-Leverier-Fadeev algorithm in order to get a

transfer function form.

4.4.4 Comments on the spectral factors based method

The major ac' antage offered by this approach over the previous one, is

the fact that the inversion of huge Vandermande matrices is avoided, since
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the original model is first reduced using the polynomial division then it is

block decoupled using the Vandermande similarity transformation. In

addition, it does not require the determination of the complete set of

spectral factors.

The application of the later algorithm shows also very interesting

results The only weak point that may be mentioned about this procedure, is

the need for a matrix polynomial method that produces a complete set of

spectral factors in a specific order of dominance

This completes the presentation of the two proposed model reduction

methods In the next chapter, we provide selected examples to illustrate the

developed procedures
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Numerical Results

And Analysis

Chapter 5

The two model reduction procedures, the solvents based and the

spectral factors based procedures, developed in the previous chapter are

implemented on computer using one of the most popular computer tools

known as MATLAB.

MATLAB is a sophisticated mathematics and simulation environment

that can be used to model and analyze dynamic systems. It handles

continuous, discrete, linear, or nonlinear systems As its name implies, it has

extensive features for matrix manipulations. Matlab is an open environment

for which many specialized toolboxes have been developed:

- Control Systems.

- Signal Processing

- Optimization.

- Robust Control.

- |i Analysis and Synthesis (u Tools).

- Spline.

- System Identification.

- Neural Networks and

- Chemometrics.

SIMULINK (formerly known as Simulab) is a graphical environment for

modelling and simulating block diagrams and general nonlinear systems.

Matlab supports some basic programming structures that allow looping and
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conditioning commands along with relational and logical operators. The

syntax and use of some of these structures are very similar to those found in

other high level languages such as C, BASIC, and FORTRAN The

combination of these commands can lead to powerful programs or new-

functions that can be added to Matlab.

The main Matlab features used in the two algorithms range from the

simplest matrix operations, and array operations, to matrix functions such as

the Singular Value Decomposition, Impulse Response, Kronecker Product,

.. .etc.

5.1 Singular Value Decomposition

The singular values of the Hankel matrices T{H(s)} and

r{H(s)}-T{H(s)} are evaluated using a Matlab built-in function SVD. The

notion of Singular Value Decomposition play a key role in the analysis of

robust stability mainly for multivariable systems.

Consider a rectangular matrix H with rank p, then SVD(H) produces a

diagonal matrix I of the same dimension as H with non-negative elements,

and unitary matrices U and V such that

H = U1VT (5A)
where H is m x n, U is m x m, and V is nxn.

Note that VT stands for the conjugate transpose of V. The matrix I is

defined by

To", i
f[l|0] if

0
if

n> m

n <m

and

p- m'm{m,n}

The singular values are ordered as

o > o^ > ••• ><Jn
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The smallest singular values are rarely exactly zeros, but if H is 'nearly

singular' some of the singular values will be small. The ratio (er, la) can be

regarded as a condition number of the matrix H [66],

5.2 Impulse Response

The two algorithms presented in the previous chapter use the impulse

response for the graphical comparison of the original and reduced models

The choice of the impulse response is not hazardous since its the one that

characterizes completely the linear time invariant (LTI) system

The Impulse response of continuous-time linear systems is also

available in Matlab as a built in function under the notation

lmpulse(A,B,C,D,iu) (5-4)
which plots the time response of the linear system

\x=AX,BU {55)
to an impulse applied to the single input iu. The time vector is automatically

determined Impulse (NUM.DEN) can also be used for the scalar case and it

plots the impulse response of polynomial transfer function

G(s)=NUM(s)/DEN(s) where NUM and DEN contain the polynomial

coefficients in descending powers of s.

\mpulse(A,B,C,D,iu,T) or lmpulse(NUM,DEN,T) uses the user-supplied time

vector T which must be regularly spaced. When invoked with left hand

arguments

\Y,X,T] = lmpulse(A,B,C,D,...)

[Y,X,T] =lmpulse(NUM,DEN,...), K' ;

it returns the output and state time history in the matrices Y and X. Y has as

man) columns as there are outputs and length T rows, while X has as many

columns as there are states. No plot is drawn on the screen.
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5.3 Solvents Based Model Reduction Procedure

The solvents based method inputs two sets of matrices corresponding to

the "numerator" coefficients and the coefficients of the characteristic matrix

polynomial of the original transfer function. In addition the algorithm

requires the supply of the allowed relative error Ri: to be used as a

condition for the system truncation.

The algorithm starts by determining and classifying in order of

decreasing dominance the solvents of the characteristic matrix polynomial

using any matrix polynomial root finding method It then computes the

controller form of the given model and its corresponding Hankel matrix, and

applies the Matlab command SVD to this Hankel matrix in order to compute

its singular values The block diagonalization of the original system is

performed using the Vandermande matrix constructed from the determined

solvents and its inverse computed using the Matlab inverse command (INV).

Following the block truncation, the last added subsystem is in turn

tuned, after its diagonalization, using the Matlab command eigen (EIG).

With this tuned reduced model, a Hankel matrix of the same dimension as

the original model is formed and its corresponding singular values are also

determined using the Matlab built-in function (SVD). Finally the sum of the

singular values of the difference between the two models is divided by the

sum of those of the original model and compared with the allowed relative

error RI'l.

However, it is appropriate to mention that the lack of examples

satisfying our assumptions in the current control literature constrained us to

build our own examples for the testing of the developed algorithm.

To this end, the "numerator" matrix coefficients are chosen arbitrarily

to avoid getting trapped by a particular case, while the coefficients of the

characteristic matrix polynomial are constructed in such a way that it

includes a complete set of solvents satisfying a dominance criterion.

This is achieved by first building the solvents using the relation defined in

theorem 2.10 and given by
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R = PAP"1 rs 7x
where R is the solvent <" ' ''

A the Jordan form of R and

P is a matrix of eigenvectors of R.
Let

DR(s) =D0s< +D.s'-> +D2sl-2^...+D1_ls +Dl (5.8)
where D0 is the identity matrix. In addition, we assume that the constructed
matrices {/?,/?:,/?3,...^;} form acomplete set of solvents of /),(,) Hence,

DM) =D0R>l-DiR;-1+D2R'l-i+...+Dl_lRl +D, =0
DR(R2) =D0R'2 ^D.Rl2 !+A^"2+-+A-^: +A =0

Dr(R,) =D0r: -D.R'r +D2R'l-2+...+Dl_iRl +Dl=0
This above system of equations can be expressed in matrix form as

(5.9)

[A A-, A-2 - A]

^ I I I

Rx R2 R3
A Rl R;

Kl Ri] A1

1

R.

Rf --{Rl K R[ ••• Rl] (5.10)
,1-1

Rl

and since we have assumed the existence of a complete set of solvents, the
matrix

VB

' I 1 I " 7 i
Ri R2 R-, •• R, !
Rl R; A ••• a i

X1 Rl-1 R? ••• /?/-!
is nonsingular [42], Therefore we can write.

[A A-i A-2 ••• A]=-[A A A

(5.11)

R']h]] (5.12)

To show the efficiency of the above algorithm, a large number of matrix
transfer functions have been tested. Some of them are chosen as examples
and discussed in the following.
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Example 1:

The first chosen example is a 4th order 3x3 matrix transfer function in the

form of a right matrix fraction description (RMFD)

H(s) = N(s)D-*(s)

where

N(s) = N,ss -N2s- + Nis^N4

D(s) =D./ ~Ds3 + D2s2 +D2s-D4

with

(\ 0 0^

W,=J0 1 Oj:
lo 0 \)

and

f\ 0 6)

A = o i o;.

vo 0 \)

f 1.0028c - 3

A =! -0.1729c-3

V 0.0423c + 3

N, =

C 33 44

-22

44

55^;
-88 99|
64 64J

(^54.6829 -3.4100
D. =|-4.8014 40.0253

r-25

! ii
1.55

^3= 11

-11.2305^

3.6803 !

V1.1092 -2.2721 36.2918 j

-51 22^

22 10

39 74J

-0.1037c ~ 3 -0.4024c-3^

0.4468c-3 0.1317c+ 3

-0.0415e + 3 0.3498c + 3y

( 6.412k ~3

D3 =; -1.5983c - 3

I 0.4022e +3

f4.5100e + 3 -0.4791e + 3 -2.6615c+ 3^
D4 =| -1.0450c +3 0.4596c+ 3 0.8352c+ 3

I 0.2140c+ 3 0.0769c ^3 0.1931c+ 3

The solvents of the above characteristic matrix polynomial are determined

and classified according to step 2 of the algorithm. In order to be more

informative, we have provided the corresponding spectrum of each solvent.

(-2W25 -0.5026 -0.2009^ whose spectrum is

/?,=• 0.5345 -19.8128 0.0564 ( {-21.0000,-20.0000,-19.0000}
V-0.0639 1.1596 -19.0147

f-18.1725 -0.5026 -0.2009^
Rz=\ 0.5344 -16.8128 0.0564

V-0.0639 1.1597 -19.0147/

^4 12

-54 14^

30 14

85 96 54j

-0.7832c-3 -3.7313c - 3>

0.9637c+ 3 1.2178c -3 ••

-0.0089e-3 04137e-3;

{-18.0000, -17.0000, -16.0000}
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R,

f-13.4865 1.8626
i 1.4882 -1.5966

81876 A

-1.1418!

-0.4719 -2.6170JV 1.8800

<-0.5107

R, =| -0.9887
V 0.6688

-0.2273 -0.2632^

-0.5086 0.4134

-0.3942 -1.2807;

{-15.0000, -1.5000, -1.2000}

{-1.0000, -0.8000, -0.4500}

Then according to the eigenspectrum of the above solvents, a fair

approximation is expected for a reduced model containing the first 8 large

eigenvalues. This is obtained for a relative error of 2e-9, with a simplified

scalar characteristic polynomial A(s) of order 8 in the form a rational matrix

H(s) =
1

A(5)
[G(s)]

where

with

A(s) =a0s* -a.s1 ~a2s6 +a355 *cr454 ~ass3 ^a6s2 ~a1s^ai

a0=l; a, =127.4434; a2 = 6.9726c - 3; a. = 2.1275c - 5, a, = 3 9256c -r 6;

a5 = 4.4203c + 7; a6 = 2.8824c + 8; a7 = 9.2905c - 8, a, = 8.759 le + 8

and

G(5) = G057 4- G.56 -i- G2ss + G354 + G453 -r G,5: ^G5s-^ G7
where

^ 0.8712 -0.5283 -0.6162^ f 89.7467 -19.3896 -11.9846^

G0=j-0.1840 0.5691 0.6834
V-0.1788 -0.7828 0.0830

T3664 660 1796^
G: = -3157 -7381 13597;

V 2308 680 3097;

; c,

G,

( 68.9c ^4 66.1c - 4 160.4c ^

G4 =!-211.3e +4 -539.3c+4 51.7c+ 4
V 104.8c + 4 109.2c+ 4 156.1c-5,

-41.6038 -54.5320 102.5558;,

21.4312 -33.1551 38.2828 j

f 73.5c+ 3 43.2c ^3 90.9e^3>

=I -112.9c -3 -289.4c -r 3 468.7c - 3

V 74.5c-3 59.4e^3 103.2c+ 3.

11.8c t 5 -2.2c+ 5 91.3c+ 5^

; G5 = j -204.5e + 5 -505.9c h- 5 813c -r 5 j;

55.8c -t- 5 43.6c -r 5 73.9e ^ 5;

f24.8c 1-6 -2c +6 -42.4e + 6A,
G6=;-0.3c~6 -209.8c+ 6 353.7e + 6;G7

V-7.lc-6 -65.6c t 6 -55.6c t6)

( 126.7c + 6 -519c-6 -481.5c ^
-89.3c ^6 -201.3c-6 390.7c ^6 |.

^-114.4c -r 6 -527c-6 -522.1c - 6J
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The impulse responses of the three components (y},y2 and y3) of th
outputs of the original and reduced models are compared in the figur
below. It is easy to see that the two responses are close to each other.

First Component of the Original Model
Second Component of the Original Model
Third Component of the Original Model
First Component of the Reduced Model
Second Component of the Reduced Mode

Third Component of the Reduced Model

Time (Sec)

Note that a reduced model with a higher order will give a better

approximation. This is an important requirement for any method of model
reduction.

Example 2

As a second application for the solvents based model reduction procedure,

we have chosen a 6th order 2x3 matrix transfer function in the form of a

matrix fraction description defined by:

H(s)--[N,/ -N.Z-N^ +NiS2 ^N5s+N6\D,s6 +D./ +As4 -A*3 +A^ +A* +Af
where

(\ 0 tf

lo 1 0)
N, =|

NA =

and

N,

665 -44 144^

'3333 4444 5445^ _f-155 -231 112^
,-2212 -2188 3199j ' ^3 =̂ 399 442 66lJ '

f774 885 22H

1.355 144 994J' 5 [l21 477 999J' ^6
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(\ 0 0"! f261.7789 -37.744 -41.9195^
A=;0 1 0j; A=|-36.5803 196.1755 24.5753;

V0 0 lj ^43.6054 -13.1646 157.6456;

f22728 -6890 -7576A:
D2 =j -6974 11780 4127 !

V 7369 -3027 4565;

f 1.9449c+ 6 -1.0117c*6 -1.0146c-6^
D4 = -1.0116c * 6 0.5904c-6 0.5261c-6

V 0.9608c* 6 -0.5239c* 6 -0.4602c *d

( 6.786c *5
i

-3.2278e*5 -3.5106c* 5^

3 = -3.3954c-5 2.0639c* 5 1.8095c * 5

v3.2452e*5 -1.6577c-5 -1.3998c *5y

A

f 1.6780c -6 -0.9554c-6 -0.8537c *6^;
-0.8875c-6 0.5454c* 6 0.4454c - 6 |.

V0.8402c* 6 -0.4945c* 6 -0.4059c * 6J

f 3.9672c - 5 -2.4898c * 5

D6 =: -2.1205c* 5

V2.0022e*5

1.3691c+ 5

-1.2824c+ 5

-1.9125e*5^;
1.0063c* 5 ;.

-0.9373c+ 5;

The obtained solvents of the characteristic matrix polynomial of the original

model with their associated spectrums are as follows:

whose spectrum gives

{-88.0000 =5.0000i, -99.0000}

f-91.6454
1

4.5195 -6.3442^
. =; -6.0781 -90.2170 -3.2531

I -2.9871 -6.6767 -93.1376;

^-84.5276 1.5596 1.7489 N

: = 5.8657 -84.4691 -2.1516

V -3.6509 2.5557 -80.0034,

f-80.2035 31.9386 410512
R3 =I 204.1226 -85.7445 -106.8212

i,-160.5958 65.9966 81.9480

r-1.7291 0.2339 0.2623^
/?4 =! 0.8798 -1.7202 -0.3226^

V-0.5476 0.3833 -1.0506;

f-0.8959 0.1870 0.1450^

R5 =; 0.1284 -0.7916 0.0317

V 0.0315 0.0934 -0.7125J

r-0.3192 0.1438 0.1029^
R0 -! 0.1091 -0.2275 -0.0033

I !
V 0.0089 0.0515 -0.1534;

{-85.0000, -83.0000, -81.0000;

{-79.0000, -3.0000, -2.0000;

-1.7998, -1.5001, -1.2000}

{-1.0000, -0.8000, -0.6000}

{-0.4000, -0.2000, -o.iooo;
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The following reduced model is obtained for a relative error equal to 3e-22

Clearly, this value is very small and shows that the truncated subsystem is

negligible in front of the original model in terms of singular values

magnitude, hence a good approximation is expected The reduced model is a

rational matrix with a common denominator A(s) of order 11 such that:

where

A(5) =a05;i *a;5;0 ~a2s9 +a,s* *a4/ +a5s6 ^a6s5 *a754 *a8/ - a9s2 -a.-5*ai;

with

a0 = 1, a, =611.2816, a2 = 1.6075c + 5, a3 = 2.3633c * 7; aa = 2.108-n? + 9;

a5 = 1.1542c* 11; a6 = 3.7008c + 12; a7 = 6.0725c + 13; a8 = 3.6194c + 14;

a9 = 9.6655c * 14, a,0 = 1.1945c + 15;a.. = 5.579c + 14.

and

G(s) =G0slQ +G.s9 +G2s* +G3s7 +G,s6 +G5s5 * G6s4 - G7s> * G,s2 +G9s * G10

where

_f 0.7971 -3.1581 -2.9157^ _f 3558.7 2555.1 3708.2^
°~V-0.1658 1.2233 0.5531/ ; "1-2276.7 -1636.7 3512;'

_M.10c-6 1.55c* 6 2.04c *6^ _f 1.29c *8 3.02c *8 3.92c *8A,
: !v-1.01c +6 -0.84e + 6 1.49c+ 6/ 3~Ul.82c +8 -1.53c * 8 2.63c * 8;'

^ f 6.3c* 9 28c+ 9 36.3c * 9A f/0.07e*12 1.27c* 12 1.65c * 12>
G4 = ! I; G,= ! I-

v-16.9c*9 -13.4c+ 9 23.6c + 9) ' V-0.8c*12 -0.58c* 12 1.09e*12/

^ f-0.23c*13 2.17e*13 2.96c+ 13^ r~1.58e + 13 -5.5c* 13 -2.4c-13^
6 v-i.65e + 13 -1.02c* 13 2.21c+ 13;' 7"v-4.88c*13 -1.26c* 13 8.25c *13;!'

^ f -0.6c* 14 -8.35c-14 -7.57c * 14A, f-0.12c*15 -1.96e*15 -1.81e + 15A
Gs = • GQ = •

V-0.64e*14 0.7c+ 14 1.79e + 14/ 9 1,-0.1 le +15 0.16c+ 15 0.38c+ 15/

f-0.09c+15 -1.35c ^15 -1.23c ^15^

10 v-0.12c+15 0.08c+ 15 0.32c+ 15;

The impulse response curves of the full and reduced models are compared in

the figure shown below.
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Example 3

The next example is also a 6,h order matrix transfer function with solvents

satisfying a dominance criterion, but very close to each other as will be

apparent from the solvents spectrums

H(s) =[A\s^N2s* +Nisi -7V452 +NiS+ N6\D0s6 +As5 - D2s4 *A3s3 +A4r +A5s +A
where the "numerator" coefficients are

0 0 0^ f 3333c +4 1444c+ 4 5555c* 4^
0 1 0, 7V2 = -2222e +4 -8888c +4 9889c - 4 j;

v0 0 l; l5554e +4 9997c +4 4424c -r 4J
Nl =

'-5555c+ 4 -5551c+ 4 2222c+ 4"^
1521c + 4 2552e+ 4 1221c + 4N,= N =

'11 lie + 3 -5444c ^3 4114c+ 3^

2222c ^3 3433c+ 3 5444c + 3

l5475e ^3 6869c +3 4112c +3;v 3333c+ 4 8889c ^4 4222c+ 4

f6656c * 4 4486c + 4 8777c + 4^

#,=! 2555e-r4 3666c+ 4 1411c+ 4
v2565e-r4 3565c* 4 6486c + 4y

N*

'4799e^4 9818e + 4 9777c + 4^

7655c+ 4 3583c+ 4 8788c * 4

^9876c * 4 8598c + 4 6989c * 4)

The characteristic matrix polynomial coefficients are:

fl 0 0> (480.5753 -5.5798 -0.9693 >
D 0 1 0,; A -| -7.8798 :72.9928 9.8446

1 i

U 0 i; l. 5.0091 5.1369 465.4315;
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( 9.6089c +4 -0.2234c +4 -0.0400c +4^
D2 = | -0.3140c +4 9.3069c -r 4 0.3903c +4 |;

V0.1984c+ 4 0.2028c-4 9.0061c* 4;

f 1.0231c +7 -0.0357c+ 7 -0.0066c - 7A,
A3 =| -0.0500c * 7 0.975 lc - 7 0.0618c *7 ;:

V0.0314c-7 0.0320c* 7 0.9273c*7;

; 6.1181e*8 -0.2854c* 8

A =j-0.3973c* 8 5.7366c* 8
V0.2477e*8 0.2514c* 8

5.3573c*8> fl.9481e*10 -0.1139c*10 -0.0224c*10^
0.488 le - 8j; A =j-0.1576c *10 1.7968c*10 0.1925c*10
5.3 573c - 8; v. 0.0976c - 10 0.0986c * 10 1.6466c -10;

'2.5801c* 11 -0.1814c* 11 -0.0368c *lf)
A =; -0.2498c *11 2.3407c+ 11 0.3030c* 11 |.

V0.1534e*ll 0.1545c+ 11 2.1031c+ 11;

The computation of the solvents of the above characteristic matrix

polynomial yields

f-89.3686 1.0758 0.4898 >
/?,=! 1.1535 -88.3098 -0.9243

1-0.4290 -0.2753 -87.3215,/

f-85.6565 0 5731 0.1861

R2 =: 0.7074 -84.9929 -0.7329

V-0.3611 -0.3233 -84.3505;

f-82.6565

R3 =; 0.7047

1-0.3611

f-79.6565

RA =| 0.7047
I -0.3611

R<

'-76.3787

=| 1.9838
V -1.8271

^-66.8585

! 2.6257
V -1.6697

*« =

0.5731

-81.9929

-0.3233

0.5731

-78.9929

-0.3233

0.9248

-74.3733

-2.1794

1.8599

-64.331

-1.7123

0.1861 ^

-0.7329

-81.3505;

0.1861 ^

-0.7329

-78.3505;

-0.4019^
-3.4401 I

-72.2480;

0.3231 ^

-3.2815

-61.8105;

whose eigenvalues are

{-90.000, -88.000, -87.000}

•86.0013, -84.9988, -83.9997 }

{-83.0000, -82.0000, -80.9999}

{-80.0000, -79.0000, -77.9999

{-76.9999, -76.0000, -70.0000}

{-68.0000, -65.0000, -60.0000}

As it may be seen, all the solvents show the same spectrum (the eigenvalues

are almost of the same m 'tik' ); In other words there is no apparent

dominance between the 6 solvents. This is the reason for which the only
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plausible approximation given by our algorithm is the original model itself

Hence, we omit to give the reduced model transfer function and the impulse

responses comparison of the two models.

Example 4

We finish with the solvents based method by selecting a 6th order 3x3

matrix transfer function with "numerator

given as follows:

^1 0 0^ f 333 111 555/

-222 -888 999/

V 555 999 444;

f-5e +3 -55c+ 3 22c+ 3^ file+ 4
N3=\ 15c +3 25c+ 3 12c +3|; N4 =\22c *4 33c+ 4

V33e*3 88c+ 3 42c +3; l75e*4 69c -r 4

and "denominator" coefficients

JV, =j 0 1 Oi; N2 =
V0 0 1;

'56c+ 5 46c+ 5 7c *5^

25e - 5 36c + 5 1 le + 5

\.25e + 5 35e + 5 66c + 5)

N<

and

'1 0 0/

A0 = 0 1 0!;

V0 0 l)

A =

459.7188

46.1736

72.1022

f7.9210e + 4 -5.6742c +4
A =j1.4540e - 4 1.3298c -r 4

U.2084c*4 -2.7025e^4
'2.0018c ^8 -2.1178<?+ 8

D4 = j 0.6126c ^8 -0.5465c -r 8 -0.1090c-8

V0.8801c*8 -0.9708c* 8 -0.0554e*8J
'2.5707e + 9 -3.1333c+ 9 -0.4029c + 9^

A6 = • 0.8049c + 9 -0.9201c+ 9 -0.1335e-9.

U.1564c + 9 -1.3889c+ 9 -0.1659c+ 9y

The corresponding solvents are computed and given below with their

corresponding spectrums.

,'-120.0000 30.0000 -30.0000/ whose eigenvalues are

{-120.0000, -115.0000, -110.0000}

"6 =

54e*4 14e*4A

44e*4;;

12c+ 4;

'47e + 5 88c * 5 77c * 5/

65c+ 5 35c+ 5 78c *5j;
v76c+5 58c* 5 69c * 5)

-192.8817 0.5155^

240.2222 14.8614 !;
-93.6154 311.0590;

-0.3242c + 4^,

0.1939c -r 4 '
3.1471e*4

0.3650c * 8>

f6.1847e + 6

A - \ 15608c - 6
U3035e~6

(1.4395c* 9
A - !0.4529c - 9

V0.6488c*9

-5.7046c* 6

-0.575le* 6

-0.6664c * 6^

-0.0531c-6

-2.6648c* 6 0.9912c-6y

-1.6472c* 9 -0.2471e*9A

-0.4733c* 9 -0.0798c-9

-0.745 le* 9 -0.0827c * 9;

R -1.2500

-2.5000

-95.0000

15.0000

-22.5000

-130.0000;
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f-93.0765 -27.1166 24.4240/

R2 =| 5.7696 -121.3471 18.2699

V 1.9232 -12.1160 -85.5764;

^-90.0000 30.0000 -30.0000^
R> = ! -1.2500 -65.0000 -22.5000

V -2.5000 15.0000 -100.0000;

;'-l 54.868$ 36.0344 162.3556/
j

R< - -41.1307 3.7307 43.4907

v -62.8111 15.6643 61.1300;

'-2.2628 -3.8425 ().0527/

R< = ; 2.2635 -8.1582 - 0.0526

V 6.8951 -9.7372 - 4.5790;

'0.0010 - 3.6677 0.3332/

R6~-= : 1.7508 -
i

4.9175 0.0832

v4.2517 - 8.0853 -1.0835,

-105.0000, -100.0000, -95.0000}

{-90.0000, -85.0000, -80.0000}

•75.0000, -8.0000, -7.0000}

•6.0000, -5.0000, -4.0000}

{-3.0000, -2.0000, -1.0000}

A convincing approximation of order 10 is derived for a relative error equal
to le- 11, with scalar characteristic polynomial coefficients given by:

a0 =1; a. =975.7036, a2 =4.2738e * 5; a. =1.1067c * 8, a4 =1.8762c * 10, a, =2.1758c * 12,
a6 =1.7480c * 14; a7 =9.6056c +15, a8 =3.4555e* 17; a9 =7.3481c* 18, a10 =7.0139c* 19.

The numerator matrix polynomial coefficients are:

( 0.8933 -0.2295 0.1722/ ,'l.0939e + 3 -0.3291e-3 0.6374c + ?
G- 0.1799 1.3326 -0.6697;, G, =: -0.2723c + 3 0.3664e * 3 0.3814c* 3

V-0.7605 1.6838 1.2935; V-0.1700c*3 2.6249c* 3 1.3671e*3;

f0.4677e*6 -0.1872c+ 6 0.3926c* 6>
Gz =; -0.2278c + 6 -0.0488c * 6 0.4374e+ 6

V-0.0490c * 6 1.6484c * 6 0.6107e * 6)
G3 =

( 1.0883c + 8 -0.7364*+ 8 1.1289c+ 8/

-0.7408c ^8 -0.1880c+ 8 1.4262e +8J;
-0.4240c+ 8 5.4917c+ 8 1.5415c +8j

G4

'0.1695e^ll -0.201 le+ 11 0.1879c+ 11/
-0.1406e + 11 0.024 7e ^11 0.2363c + 11

1,-0.1509c + 11 1.0922e •+ 11 0.2447e -r 1\,
;GS =
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'0.1982c* 13 -0.3542c-13 0.1957c* 13/

-0.1757c +13 0.1459e*13 0.2216c* 13.!;
1,-0.2674*+13 1.3676c* 13 0.2549c* 13;



0.1755c* 15 -0.3888c+15 0.1300e*15/ fl.0744e-rl6
15 0.2250c +15 0.1148c* 15j,G7=;-0.8269c* 16

V-0.2678c*15 1.0912c* 15 0.1749e + 15; v-1.5533e +16

G6 = .' -0.1489c

'0.3895c* 18 -0.9304c* 18 0.1255e*18/

G8 =; -0.2705c* 18 0.6641c* 18 -0.0118e *18 j;
V-0.4883e*18 1.5082c* 18 0.1928c* 18 J

'0.6166c* 19 -1.4286c* 19 0.1270c-19^

G9 =| -0.3926c* 19 1.0507c* 19 -0.1171c* 19
i,-0.6457«?+19 1.8246c* 19 0.2144c * 19j

The comparison between the original and reduced models curves is shown in

the following figure
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5.5 Spectral Factors Based Model Reduction Procedure

The spectral factors-based method also inputs two sets of matrices: the

matrix coefficients of the "numerator" and the coefficients of the

characteristic matrix polynomial of the transfer function given in the form of

a matrix fraction description. As for the solvents-based method, we need to

supply the allowed relative error RE.

This algorithm also searches for the roots of the characteristic matrix

polynomial, but this time it searches for the spectral factors and classifies

them in order of decreasing dominance. After the formation of the original

model Hankel matrix and the determination of its singular values, the

characteristic matrix polynomial of the reduced model is built using matrix

polynomial multiplication while the new "numerator" is determined using

matrix polynomial division.

At this level, the Hankel matrix difference between the original and the

reduced models is formed and its singular values are computed using the

Matlab command SVD. Then, when the relative error is satisfied, the

reduced model is block-decoupled using the Vandermande matrix whose

solvents are obtained from the corresponding spectral factors of the reduced

model using a similarity transformation with the help of the Matlab built in

commands Kronecker (KROX) and (VEC). Afterward, the last su1 stem is

diagonalized using the Matlab command eigen (EIG) allowing extraction of

the dominant part of the last added subsytem Finally, the two models are

compared using the function impulse (IMPULSE) supplied also with Matlab

The problem of lack of examples satisfying our assumptions arises also

for this method In order to provide a reliable test for the algorithm, we

have constructed our own examples and, in the following, we outline the

procedure.

The choice of the "numerator" matrix coefficients is random, while the

coefficients of the characteristic matrix polynomial are derived as follows:

First the spectral factors are formed using the relation
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Q = MDM- (5.13)

where 0 is the spectral factor,

A is a Jordan matrix containing the eigenvalues of 0 and

M is a matrix of eigenvectors of 0.

Then, assuming that DR(s) has a complete set of spectral factors

\Q ,G2,...,G,}, it can be writen as a product of / linear spectral factors

DR(s) = (sI-Q])(sI-Q2).--(sI^Ql)

=d0s' +as'~l +A5^2+---+A_;^A (5'14)
To illustrate the efficiency of the spectral factors based model

reduction procedure we have chosen a set of examples These examples are

generated in such a way that the spectral factors of the characteristic matrix

polynomial satisfy a dominance criterion.

Example 1

This example is a 6th order 2x3 transfer function in the form of a right

matrix fraction description described by:

H(s) =[iV.55 *NzsA +7V353 +NAs2 +Nss +N6^D0s6 +D.s> *D2s" +A*3 +DAs2 +D,s *D6

where

'10 0
^0 =

vo i o;
N, =

3333 4444 5445/

-2212 -215 3199/
N, =

-155 -231 122/

V 399 442 661;

997 699 365/f665 -44 144s \774 885 221
N, =|

355 144 994. 1121 477 999; - ^230 487 656j

And the matrix coefficients of the characteristic matrix polynomial are

(\ 0 6] '259.3207 -38.5824 -36.966 r*

A =; o i o

v0 0 Ij

a = -205.0275 263.1699 112.5201

v. 167.7410 -62.4038 93.1095J

( 2.4686c* 4 -0.7223e*4 -0.8133c +4)
A =! -3.5612c+ 4 2.2989c+ 4 1.9048c *4

V 2.8659c* 4 -1.1277c+ 4 -0.6488c - 4
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A

f 0.8648c* 6 -0.3464c* 6 -0.4352c *6A

-1.5995c* 6 0.6940c* 6 0.8363c *6 i;
1.2690c * 6 -0.5253c * 6 -0.6300c * 6)



f 2.5399c + 6 -1.1337c+ 6 -1.3022e*6/ '2.1970c* 6 -1.1315e +6 -1.1204e*6A
A=:-4.7714e +6 2.1993c+ 6 2.4794e +6 ', D,= -4.1498c* 6 2.1691e +6 2.1254c* 6

v 3.7826c* 6 -1.7149c* 6 -1.9243c* 6; V 3.2885c* 6 -1.7085c * 6 -1.6677*-6;

'5.1561e + 5 -3.0925e*5 -2.5262e*5/

A =| -9.7671c +5 5.8909c +5 4.7866e +5 \.
V 7.7368c* 5 -4.6607e * 5 -3.7761e-5;

As it has been stated, the algorithm starts by determining the spectral

factors of the above characteristic matrix polynomial, leading to:

'-91.6454 4.5195 -6.3442^

Q. =! -6.0781 -90.2170 -3.2531
V-2.9871 -6.6767 -93.1376;

'-84.5276 1.5596 1.7489 /

A- 5.8657 -84.4691 -2.1516

V-3.6509 2.5557 -80.0034y

'-80.2035 31.9386 41.0512 /
i

G3 = 204.1226 -85.7445 -106.8212

V-1605958 65.9966 81.9480

'-1.7291 0.2339 0.2623^

G4=; 0.8798 -1.7202 -0.3226!
^-0.5476 0.3833 -1.0506;

f-0.8959 0.1870 0.1450 ^
A =! 0.1284 -0.7916 0.0317

V 0.0315 0.0934 -0.7125;

f-0.3192 0.1438 0.1029

A = 0.1091 -0.2275 -0.0033

whose spectrum gives

{-88.0000 x5.0000i, -99.0000}

•85.0000, -83.0000, -81.0000;

{-79.0000, -3.0000, -2.0000;

{-1.8000, -1.5000, -1.2000

{-1.0000, -0.6000, -0.8000}

{-0.4000, -0.2000, -o.iooo;
V 0.0089 0.0515 -0.1534;

From the eigenspectrum of the above spectral factors, it is apparent that a

good approximation can be obtained for a reduced model containing the first

7 large eigenvalues This is achieved for a relative error equal to 8c-4,

giving a reduced model under the from

1
H(s)

A(s)
[G(s)]

where the coefficients of the scalar characteristic polynomial A(\) are:
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a. 1; a, =603.0001; a, = 1.5573c + 5; a, = 2.2328c * 7; aA = 1.9196c* 9;

a, = 9.8958c* 12 a. 2.8324c* 12, a7 = 3.4722c* 13.

and the coefficients of the matrix polynomial G(s) are as follows:

'0.2120 2.9378 4.2110/ ^ 3.2056c * 3 6.2480c + 3 8.0109c * 3/
i: G =

V-9.9602 1.5097 7.2005; ' v-7.9832e + 3 -1.5426e + 3 7.4066c + 3
A =

' 1.0665c +6 2.4448c i- 6 3.0623c *6^
,-3.2073c*6 -0.5063c* 6 2.8652e + 6) ?

G,=
1.3094c* 8 4.1461e* 8 5.1615c *8X

-6.4565c* 8 -0.4599c-8 5.3436c * 8;

G4-
f 0.6696c * 10 3.5793c - 10 4.4771e * 10/
V-6.6770c + 10 -0.0503c* 10 5.1921c* 10

G,=l
0.0890c-12 1.5514c* 12 1.9672c* 12/

V-3.4166c*12 0.1110c* 12 2.5409c* 12/

^-0.1931c*13 2.6884e*13 3.4826c* 13/
i

-6.8753c-13 0.3837c* 13 4.9592c+ 13/
G« -

It is interesting to observe that the impulse response error between the

original and reduced models is almost negligible. This is illustrated by the

following figure
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Note also here that a better approximation can be obtained for higher order

reduced models. This is done by choosing a smaller relative error RE
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Example 2

The next example is a 6th order 3x3 matrix transfer function with

"numerator" coefficients given by:

f-5e^3 -55c+ 3 22e + 3/
j

N\ =!l5e*3 25c+ 3 12c +3 I:

(I 0 tf

N, 0 0

vo o 1;

333

AT. =i -222

111 555

-888 999

555 999 444; V33e * 3 88c * 3 42c + 3;

'lie+ 4 -54c-4 14c + 4A f56e + 5 46e^5 7e*5^ ^47e*5 88c* 5 77e * 5"

Ni=\22e +4 33e +4 44c +4 \;N4 = 25c +5 36c-5 lie *5 IN, =| 65c *5 35c* 5 78c *5
v.75e +4 69e*4 12e +4; i,25e - 5 35e-r5 66c* 5) v76e*5 58c *5 69c * 5,

and "denominator" coefficients given by

f 1 0 0/ ( 191.1518 301.9950 -76.6902/

A =, 0 1 0

\.o 0 I)

A -189 0205 644.5408 -31.0642

V-168.7804 248.8579 354.3072;

,'-0.0092c+ 5 0.7609c* 5 -0.0943c -r 5s

A =| -0.5788c +5 1.2436c * 5 0.0288c +5
-0.5622c+ 5 0.7805c* 5 0.5150c* 5;

A2.4688c + 8 3.9742c^8 0.5700c + 8/
I

A =

AO.2700e-7 0.7401e*7 0.0369c* 7/

-0.6943c* 7 1.108le* 7 0.1521e*7

-0.7098c* 7 0.9459c* 7 0.3750c* 7;

-0.7552^ + 10 1.0796c +10 0.0832c* 10/

A -4.0845c + 8 5.5766c-8 0.9961e + 8|; A = -1.0347e +10 1.4324e*10 0.1224e*10

,-4.1008e + 8 54636c+ 8 1.2396c -8J ^-0.9460e - 10 1.3085c * 10 0.1222c * 10;

M.9495c + 10 2.7531e + 10 0.2226c* 10/

A=| -2.6104e*10 3.6236c* 10 0.3098c* 10j.
V-2.3659e +10 3.2932e +10 0.2865c *loj

The computation of the spectral factors of the above characteristic matrix

polynomial yields:

,'10 -246.6667 93.3333/

G, =; 120 -336.6667 73.3333 j
V60 -103.3333 -93.3333;

f-96.1538 -54.2308 488462/
A -| 11.5385 -152.6923 36.5385

V 3.8462 -24 2308 -81.1538;

^-90 60 -60/

A = : -2.5 -40 -45 !

1-5 30 -110;

whose eigenvalues are

{-150.0000, -140.0000, -130.0000}

{-120.0000, -110.0000, -100.0000}

{-90.0000, -80.0000, -70.0000;
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f-64.6296 18.1481 -1.2963
6J4-| 4.0741 -30.3704 -29.2593 j

I -5 10 -55 ;
•60.0000, -50.0000, -40.0000}

49.6316 -75.5789 -4.5263/

A 54.1579 -79.8947 -4.6316

U 10.6842 -153.2105 -13.7368;
{-35.0000, -5.0000, -4.0000

f0.0000 -3.6667 0.3333/
A =; 1.7500 -4.9167 0.0833 ; {-3.0000, -2.0000, -1.0000}

V4.2500 -8.0833 -1.0833;

From the eigenspectrum of the above spectral factors, it is suggested that a

\3!h order reduced model (scalar characteristic polynomial) will be adequate

in approximating the behaviour of the 18''' order original model This is

fulfilled for a relative error equal to 0.008, giving

m- -|-[gW]
where the scalar coefficients of A(s) are:

a0 = l; a, = 1.1750c- 3, az = 6.2840c + 5, a3 = 2.0243c * 8, a4 = 4.3796c * 10;

as = -6.7165c* 12 a6 = 7.5067c + 14; a7 = 6.1869c -r 16, a, = 3.7576c * 18;

a9 = 1.6599c* 20, aU} = 5.1806c + 21, au = 1.0809e * 23;

a,z = -1.3506c + 24; a13 = -7.6281c + 24.

and the coefficients of the matrix polynomial G(s) are as follows:

(0.6234 0.5375 -0.2842/ f 0.8762c + 3 0.4380c* 3 0.2990c * 3/

G, -0.1033 1.0942 -0.0174 j; G, =
V.-0.0356 0.4963 0.4658

-0.1538c+ 3 -0.2473e +3 1.0097e*3j;
v 0.6821c* 3 1.3313c* 3 0.6393c* 3;

f 5.9994e +5 -0.9763c +5 3.7763c +5
G: =I-1.3967e +5 -4.7165c +5 7.9352c +5

v. 9.3608c* 5 4.7648c* 5 4.3816c* 5;

T 0.4107c* 11 -0.4062^*11 0.3261c* 11/

G4=| -0.0626c +11 -0.4189e*ll 0.5737e +llj; G5
VL3385C + 11 -0.4258c + 11 0.3739c+ HJ

125

f 2.1163e + 8 -1.3264c* 8 1.5203c* 8/

-0.4818c+ 8 -1.8722^-* 8 2.7775c + 8,

4.8205c* 8 -0.1441e*8 1.6529c * 8;

f0.4335e +13 -0.6174c+ 13 0.4299e*13/
0.0229e +13 -0.6366c* 13 0.7765c* 13 |;

V2.2864e*13 -1.1429c* 13 0.5418c +13;



f0.1854e + 15 -0.5095c + 15 0.3694c* 15/

G6=: 0.1757e*15 -0.6957c* 15 0.7213c* 15j, G7 =
V2.5443c*15 -1.5967e*15 0.5256c* 15;

'-0.0912c* 17 -0.1934c +17 0.2077e*17/

0.2444c + 17 -0.5479e+17 0.4692c + 17;,

V 1.8794c+ 17 -L3633c + 17 03509e + 17;

,'-L6144c-18 0.2019c* 18 0.6913c* 18/ f-08777e * 20 0.5194c *20 0.0642^ +20/
' 0.7344e*20 -1.1319e*20 0.6978c +20 ;

2.8039e*20 -2.4322c* 20 0.4880c* 20;

GB

G,

: 1.7682c+ 18

!v 9.1295c* 18

'-2.2847c* 21

/ 1.6841c*21

V 5.0253c* 21

'-0.8555c * 23

0.3865c * 23

V 1.7930c+ 23

G„ =

-3.0326c+18 2.1521c* 18

-7.3500c* 18 1.6190c* 18;

2.090 le + 21

-2.6699c+ 21

^.4443c + 21

2 1086c+ 23

-1.9567c+ 23

0.6200c + 23

-0.4568c+ 21/

1.5921c+ 21 |;

0.7299e +2lJ

-1.6309e + 23/

1.8655c+ 23 |.
-2.375 le +23J

The original and reduced models impulse response curves comparison is

shown below

A
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Example 3

The next example is a 6th order 3x3 matrix transfer function with

"numerator" coefficients given by:

(I 0 0/ C3457 4424 5845/

iV0=;0 1 0; Ar,=;-2013 -2981 3187

V0 0 i;

'761 -144 532/

v. 5641 3201 8924y!

^210 -511 -322/

N2 =. 477 632 761 |;
'v654 921 320;

A3 =' 565 241 879,; 7V4

V147 954 632;

;'844 655 521/
321 445 986

A 897 499 815/

N5 -; 430 768 647;

i,485 696 832;568 788 399;v

And "denominator" coefficients given by:

'l 0 0/ ^334.4496 -122 3903 24 0180/
l

D;=! 35.0898 173.6470 114.3352
v 11.5207 -41.8154 343.9035;

A, = 010

lo o i;

A

A,

3.9658c+ 4 -2.2531c+ 4 0.085 le* 4

0.6610c+ 4 0.8856c* 4 2.1482c* 4

v0.2087e + 4 -0.7735c + 4 4.1101c+ 4.

f4.8484e + 7 -4.8274e + 7 1.3041e+ 7>1

1.0228c+ 7 -0.6737c+ 7 3.8110c* 7

0.2369c+ 7 -0.9542c+ 7 4.3270c+ 7;

( 6.9559c + 8 -9.9582e + 8 3.8161c+ 8/

-1.6861c+ 8 5.7096c + 8'

l-0.1389c +8 -0.4581e+ 8 4.0346c* 8;
A5=; 0.7988c+ 8

2.1162c* 6 -1.6019e*6 0.0994c * 6/

0.022le* 6 1.4270e*6h
-1.6019e*6 2 0951c* 6;'

-4.5065c+ 8 2.9776c* 8/

0.4043c*8 -0.5169c+ 8 3.3418c-8;

V-O0503e*8 -0.2887c+ 8 2.6839c-8;

A3 = 0.4296c * 6

Ul227e +6
{ 3.3308c ^8

A =

The computed spectral factors with their corresponding spectrums are the

following:

whose spectrum gives

{-100.0000, -95.0000, -90.0000}

r.
j -100.7031 -25.4688 1860156/

A = -4.2969 -104.5313 78.9844
1

-0.5469 -2.0312 -79.7656;

(.-110 86 -134/

a
__

-30 5 130

V. -15 42 -143;

(.-552386 4.7045 -31.2614/

-32.5341A
i

8.0341 -58.3864

V 7.8750 -5.25C)0 --73.3750;

{-85.0000, -83.0000, -80.0000}

{-70.0000, -62.0000, -55.0000;

127



^-64.5556 57.1111 -26.2222/
!

G4 = ; -14.2222 -2.5556 -20.8889

I. -6.2222 10.4444 -37.8889.

f-0.3333 -4.00 -16.6667/
A = 5.6667 -13.00 -7.6667

V2.6667 -4.00 -7.6667;

'-3.6190 4.0435 -1.8833/

0.1737 -2.22991
V-0.2933 0.6522 -2.2073;

A =: -0.2715

{-45.0000, -35.0000, -25.0000

{-9.0000, -7.0000, -5.0000}

{-3.0000, -2.0000, -1.0000}

According to the spectral factors eigenspectrums, a fair approximation will

be obtained for a reduced model of order 12 under the form

1
H(s)

A(s)
[G(s)]

where the characteristic scalar polynomial coefficients are:

a0 = \; ax =825.0001, a2 = 3.0867c + 5, a3 = 6.9209e + 7; a4 = 1.0349c + 10

as = 1.0864c + 12; a6 = 8.2017c+ 5; a7 = 4.4817c + 15; a% = 1.7571c + 18;

a9 = 4.8138c* 18; a;o = 8.7334c + 19; au - 9.4040e * 20; a;2 = 4.5355c + 21.

and the coefficient matrices of the matrix polynomial G(s) are as follows:

,'l 0 6] ( 3.9476c + 3 4.5464e + 3 5.8210c ^3/

-2.0481e +3 -2.3296c+ 3 3.0727e +3j;
v 5.6295c + 3 3.2428c + 3 9.405 le + V

G o-0 1 Oj; G,
vo o i;

1.5744c+ 6 3.6089e + 6 2.2045c + 6/

G: = I-0.9355c + 6 -1.8765c + 6 1.8674c - 6

I 2.5475c+ 6 3.1686c* 6 3.8898c+ 6;
G,

'0.2570e + 9 1.1186c+ 9 0.2550c+ 9/

-0.1740c^9 -0.5627e-9 0.5033c + 9 |,

V0.4693c * 9 1.0844c + 9 0.5998c + 9;

A =

f 0.1955c + 11 1.8344e*ll -O.0589e-ll/

-0.1648c + 11 -O9012C + 11 0.7766e+ll

v04412c + ll L8881c*ll 0.3152c + lly

( 0.0437c +13 L7656c + 13 -0.4074c + 13/

; G<= -0.0776c +13 -0.8568c+13 0.7419e +13 i;
v 0.2079c + 13 L8951c + 13 -0.1885c * 13;

f-O0341e +15 1.0239c +15 -0.4078c +15/
Gfi =i -0.0097c +15 -0.4958e +15 0.4437c +15

VQ02'87e * 15 11357c+ 15 -0.3513c+15,

,A
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f-0.2658e + 16 3.463 le+16 -19222c * 16/
0.0637e + 16 -1.6880c* 16 1.5969e+ 16 ';

-O.1450e*16 3.9547c-16 -1.9620c-16;



'-0.7140c+ 17 6.100c+ 17 -4.4089c+17/ '-10385e*18 4.4289c+ 18 -3.9423e*18/

G8=| 0.2753e +17 -3.0062e +17 3.0631e* 17 |;G9 =| 0.4349e *18 -2.0566c*18 2.1624e^l8 !;
V-0.6605c +17 7.1864c* 17 -4.9445e * 17; 1.-1.2249*?-18 5.4554e*18 -4.7973c* 18;

A2.2221c*19 3.8688c* 19 -1.6121e + 19/ f-0366\e + 21 0.%26e + 21 -0.5024c-21/

G.0=! 0.7279c+ 19 -10259e-19 0.0016c +19 ;,GU =' 0.1233c*21 -O.3503c*21 0188Ie*21 |.
V-2.6634c +19 4.5796c +19 -1.8309c +19; ^-04213e*21 1.1108c* 21 -0.5322c *2lj

The comparison of the original and reduced models is given in the following

figure
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As it can be seen, this is a good approximation since the two models are

almost superposed.

Example 4

As a final example, we have chosen a 6th order 3x3 matrix transfer function

with matrix coefficients given as follows:

N,,

(\ 0 0/

.010

v0 0 i;

f2010 -9440 8140/
N, =! 2550 3430 5440 !, N, =

1,5450 6690 4020;

; #,=

f425 802 635/

-10 -321 879

V446 827 434;

/

N, =

•6015 -6051 2332/

1601

\. 323

2622 1421

89 422

f676e + 2 496c + 2 887c + 2/

235e + 2 346e + 2 151c+ 2

v285e + 2 365e * 2 656c - 2j
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f489e + 2 938c+ 2 987c +2/
/V5=;775e + 2 303e + 2 828c * 2 .

V986e-2 898c + 2 699c * 2;

and the coefficients of the characteristic matrix polynomial are:

'10 0/ '443.2222 2.5972 -2.2459/
A = ; 0 1 0 A,

lv0 o i;

,f8.1523e*4 0.1051e +4 -0.0839c+ 4/ (7.9646c -* 6 0.1690c+6 -0.1249e*<:
A =;-0.3363e +4 8.322 lc +4 0.2425c +4 |; A3 =j-0.5025c +6 8.2470e +6 0.3483c *6

-8.9817 447.2432 6.7297 i:

V-4.5700 19.0155 433.5347;

A0.1786e + 4 0.7140c+ 4 7.8043c+ 4. v-0.2781e*6 1.0697e + 6 7.4668c * 6

'4.3586*+ 8 0.1350c +8 -0.0926c +8) f 1.2661elQ 0.0536cl0 -0.0342el0/
A4= ;-0.3745c+ 8 4.5907e +8 0.2491e +8j; A5 =j-0.1392el0 1.3611cl0 0.0887el0 !;

A0.2157e +8 0.7994c +8 4.0043c+ 8; Uo.0834elO 0.2980cl0 1.1412eloJ

f 1.5273c +11 0.0845e +11 -0.0504e * 11/
A6 =j-0.2065c +11 1.6794c+ll 0.1258e+ll

1.-0.1284*+11 0.4433e +ll 1.3504e+llj

The computed spectral factors with their corresponding eigenvalues are:

Q,

'-89.5771

1.0992

1-0.4118

'-83.3883

A=! 1.2105
^ -0.8138

Q* =

f-76.7314
; 1.7207

V -0.9049

'-71.3728

A=| 11941
V -0.6788

'-66.1529

A=; 0.2570
I. -1.1214

1.0364

-87.6963

-0.5339

1.1538

-82.1737

-0.5633

1.0210

-76.6410

-0.6827

0.4908 /

-1.8026

-86.7266;

0.3415 /

-1.2121

-804381;

0.3087 /

-1.6227

-74.6276;

1.0480 0.3827 ^

-70.2345 -1.1586

-0.6445 -68.3926,

0.4771 0.0556 /

-64.6643 -1.1003

-0.4244 -65.1828;

{-90.0000, -88.0000, -86.0000}

{-84.0000, -82.0000, -80.0000}

•78.0000, -76.0000, -74.0000}

{-72.0000, -70.0000, -68.0000}

{-66.0000=0.4890i, -64.0000;
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f-55.9997 -7.3335 0.6666 /
Q6=-\ 3.5002 -65.8334 0.1666

V 8.5007 -16.1667 -58.1670;

{-62.0000, -60.0000, -58.0000}

A reduced model of order 15 is derived for a relative error equal to 0.1 with

the following coefficients

a0 = \; a, =1.144*-3; az = 6.1023c + 5; a} = 2.0134c + 8, a4 = 4.5950c + 10, a, = 7.684c + 12;

a6= 9.7264c* 14; a7 =9.4896c + 16, a8 = 7.1950c +18, a, = 4.2394c * 20; ai0 = 1.9254c +22;
au =6.6189c* 23; a ., = 1.6672c + 25, a13 = 29049c + 26, a;4 = 3.1306c* 27; a.5 = 1.5732c + 28

and

(l 0 0/

G0= 0 1 0; G,

vo o i;

f 1.1258c+ 3 0.7994e +3 0.6372c+ 3^
-0.0010c+ 3 0.3758c+ 3 0.8723c +3j,

i, 0.4506c +3 0.8080c +3 1.1445c * 3J

'5.2002c*5 5.3782c+ 5 4.5049e + 5/ fl3430e +8 1.5959e +8 1.4182c+ 8/
G2 =| 0.0134e +5 -0.2223c+ 5 6.2388c* 5!,G3 =| 0.0120c +8 -0.3921c+ 8 19837e +8

l3.2512e+5 5.5474e +5 5.2852c +5J 1.1.0414* ~8 16882c +8 1.3617e +8,

'2.1805c+ 10 2.7348c+ 10 2.6114c+ 10/ f2.3424e*12 2.9423c+ 12 3.1.0973c+12/

G4 = 0.0397c+10 -1.0409e +10 3.6812c +10|,G5 =! 0.0797c +12 -1.4802e+12 4.3862c+12J;
Vl.9441e + 10 2.988 le+10 2.2167e + 10; U3326e + 12 3.3666c+12 2.4089c+12;

fl.6945e*14 1.9123c+14 2.4301e +14/; '0.8272e*16 0.3692e +16 1.1941e +16/
Gfi = 0.1256c +14 -1.3274c+ 14 3.4362c +14 !;G7 = 01839c* 16 -0.8124c+16 1.6508c- 16 j;

v. 1.8691*+14 2.3%2e + 14 1.7664e*14; Vl.0040c*16 0.7922c+16 0.8252^*16;

'2.8097c+17 -7.9074c+ 17 2.2958c+ 17/ f0.0808c +20 -1.1707*+ 20 -0.1699c+ 20/
G8J 2.3%8c+17 -3.8874c*17 2.4342e* 17|;G9 =| 0.2437e* 20 -0.1889e*20 -0.3416e*20

U4725c*17 -4.6210c+17 16175**17; ^0.0606c - 20 -0.9268* + 20 -0.0928**20;

G

G,

'0.2602e + 21

••\ 1.7783*+ 21

1-0.1190* +21

' 0.063 le + 23

:| 0.8873c +23
1-0.1554*+ 23

-9.1826c+21

-0.9966c+ 21

-7.6182e + 21

-4.6624c + 23

-0.4312c+ 23

-3.9138*+ 23

-1.9347c+ 21/
i

-3.5920e +2l|;
-10688e + 21;

-1.0293c+ 23/

-1.9459*+ 23-

-0.5554e + 23;
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G,

f-O.0019e + 25 -1.5178c+ 25 -0.3359e + 25/
0.2869e + 25 -0.1212c+ 25 -0.6559e + 25

v-0.0722e + 25 -1.2794c+ 25 -0.1772c+ 25;

'-0.0526c+ 26 -2.8797c* 26 -0.6386c-26/

0.5418c+ 26 -0.1879c -26 -1.2894c-26

v-0.1795c + 26 -2.4343e*26 -0.3298**26,
Gu =

f-O.0875e + 27 -2.4220c+ 27 -0.5410c+ 27^
Gi4 =| 0.4544c +27 -0.1186e +27 -11273c +27.

l-0.1886c*27 -2.0537e +27 -0.2736c *27;

For clarity purposes we give, in the following, the impulse response curves

of the three components of the original and reduced models separately.

A
V, 3
c
o

O)
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-i 1 J
E
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As it may be observed, this is a poor approximation due simply to the
truncation of the last subsystem corresponding to the spectral factor Q6.
This shows also that the last subsystem can not be neglected in terms of
impulse response in front of the other first 5 subsystems. On the other side,
the value of the relative error RE =0.1 is meaningful in this sense, Compared
to the previous examples this value is large, meaning that the neglected
subsys i (one spectral factor) can not be ignored in front of the rest of the
model. This validates the choice of the Hankel matrix singular value relative
dominance criterion



Chapter 6

Conclusion

Usually analysis, synthesis and simulation in the classical control theory
require the use of a low-order system to approximate a high-order one. It
turns out that this trend remains very attractive to modern control systems,
in other words, the low dimensionality is often strongly desired.

Model approximation represents a useful means for the construction of

models smaller than Kalman's minimal realization which is often too large to
be tractable, and develop a partial realization which is "close" to the minimal

realization in some sense. In fact Kalman's minimal realization requires a
zero relative error (RE 0) while model approximation is defined to allow

some relative error (RE>0), that is only the dominant components of the
model are retained in the construction of the reduced model

The contribution of the present thesis has been first of all the

elaboration of two model reduction procedures: the solvents based method

and the spectral factors based method. Second, it points attention and

promote the use of very promising tools, the principal component analysis

and the theory of matrix polynomials, in solving model reduction problems.

The principal component theory is used to provide a relative measure of

the system components so that the analyst can go beyond the Kalman's

minimal realization. In opposition to results from singular perturbation or
classical dominant pole methods, it was found that the modes with slower

decay have less effect on the behaviour of the system when the state space
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description matrices B and C are taken into consideration in the truncation
criterion.

Matrix polynomial theory is used to develop two model reduction

approaches from a stable, proper, linear and time-invariant system described
by a transfer function in the form of a matrix fraction description. The
obtained reduced models are given under rational transfer function forms

and are also stable, proper, linear and time-invariant. The expression of the
reduced model in a rational form is due to the fact that most of the time the
reduced model is not block divisible.

As already mentioned, the first method is based on the dominant

solvents of the characteristic matrix polynomial A block Vandermande

similarity transformation and a Hankel matrix relative dominance criterion

have been used to develop a stable and efficient algorithm. The application
of this algorithm has shown some interesting results as illustrated by the
examples given in the previous chapter.

By choosing appropriate coordinate transformations prior to component

truncation, a number of different choices for "system components" are

defined including those which cause decoupling of the outputs, decoupling
of component dynamics and the decoupling of the disturbances The only
shortcoming of this procedure is the numerical cost of the inversion of the

Vandermande matrix.

In order to bypass this obstacle and increase the efficiency and stability

of the algorithm, a second method based on the dominant spectral factors of

the characteristic matrix polynomial, combining both the matrix polynomial

division and the block Vandermande similarity transformation is developed.
The major advantages offered by this method over the previous one are the

avoidance of the inversion of large Vandermande matrices, since the original
model is first reduced using polynomial division, then it is block decoupled

using the Vandermande similarity transformation, and the fact that it does

not require the computation of the complete set of spectral factors, hence, it

is also applicable to partially factorizable matrix polynomials. However, the
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transformation of the computed spectral factors to solvents has also its cost

in terms of space and time but to a lesser degree than inverting the
Vandermande matrix.

The determination of the solvents and the spectral factors of the

characteristic matrix polynomial is achieved through the use of any matrix
polynomial root finding method such as the ones seen in chapter 2. The
prerequisite with the proposed methods which can be seen as a restriction, is

the need for such matrix polynomial root finding methods that generate the
solvents and the spectral factors in a specific order of dominance assuming
the existence of a complete set. The comparison with existing methods in the
current literature shows, that the proposed methods have, in general, better

accuracy, they are easily programmed, save time since they start by
determining block reduced models and only the last subsystem is

diagonalized to be truncated at the eigenvalue level.

A look to the theoretical development of both methods, reveals that the

reduced models are derived from a transfer function given in the form of a

right matrix fraction description. However, it is understood that a similar

analysis of the left matrix fraction description can be done and similar

results will be obtained. It is also clear that the proposed methods are

applicable for both SISO systems and MIMO systems.

There are several points in this thesis which may be natural points of

departure for further studies. The investigation of other methods other than

the matrix polynomial division, for block reduction before the block

decoupling, using less memory space provides one such point Another point

of departure that is probably more important than the previous one is the

investigation of other methods for block decoupling. An interesting idea

would be the use of the algorithm developed in [65] for the inversion of a

block Vandermande matrix This may yield better results and save memory
space.

Moreover the search for other means to extract the dominant part of

the last added subsystem, and the study of other ways for converting the
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obtained reduced model state space triple to matrix transfer function form,
may be suggested as two other points for further studies.
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