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ABOS I KAC !

Microwave Integrated Circuits (MIC's) and High Fregquency
Digital Circuits (HFDC's) have reached a high degree of
complexity arising essentially from increasing integrations
levels and the use of multilayer parallel and crossing
microstrip interconnections as well as arbitrary shaped
metalizations on different interfaces of 1isoctreopic and
anisotropic dielectric substrates.

Presently, taking intc account the constraints in MIC =
dimensions, CAD tools are necessary to optimize the ceoupling
capacitances and inductances between conductors as well as the
fringing capacitances cccuring on the metalization
discontinuities.

In our work, we have applied the Method of Lines to develop
a software program to analyze, in quasi-static approach, some
microwave structure and components. The Method of Lines was
selected because of its numerous advantages among them the
suitability to deal with complex microwave structures, no
relative convergence problem, low memory space requirement and
no spurious physical results.

We have extended the application of this method to tws
layers of parallel conductors, isolated crossing conductors as
well as rectangular and open-end microstrips with vanlsning
thickness deposited on anisotropic dielectric substrates of
Sapphire. The results agree well with theoretical predicticns
and published data where more complex mathematical approaches
have been used.

Also, some of the three-dimensional problems have been



analyzed in guasi-static with an emphasis on the anisotropy of
Sapphire which is prefered for its various known advantages in

microwave integrated circuits.

-13i-



INTRODUCTION

CONTENT

CHAPTER1

GENERALITIES

1-1 Evolution of microstrip integrated circuits. .8

1-2  MIC
1-2-1
1-2-2
1-2-3
1-2-4

1-3 MIC
1-3-1
1-3-2

Concept of lumped parameters ............ &
Concept of distributed parameters ...... . 7
Microwave semiconductor devices ......... 7
Microstrip transmission lines ........... 3
Microwave integrated circuits ........... 10
Hybrid technology ............... .. . . 10

interconnections ............. ... .. .. .. . . 11
The main interconnections ............. . . 11
Interconnections propagation modes ...... 12
Microstrip interconnections ........... . . 12

discontinuities . ........... ... . .. ... .. .. 14
The general discontinuities ............. 15
Discontinuities modelization ........... . 15

1-4 Mathematical methods for microstrip analysis.17

-1ii-



1-5 Microstrip quasi-TEM anslysis .............. . 20
1-6 Mathematical methods applied to quasi-TEM

approach . ..... ... 20

1-6-1 Constant cross-section structures ....... 2
1-8-1-1 The conformal transformation method ..20
1-6-1-2 The finite difference method ....... . 21
1-6-1-3 The integral equation method ......... 21
1-6-1-4 The variational method in FTD ........ 22
1-6-2 Arbitrary shaped metalizations .......... 22
1-6-2-1 The matrix inversion method .......... 23
1-6-2-2 The variational method ............... 23
1-6-2-3 The Galerkin’'s method in FTD ......... 23
1-7 The Method of lines ............ . ... .. ... .. .. 24
1-8 Conclusion ... ... ... .. . 24

CHAPTER?Z2
THE METHOD OF LINES APPLIED TO ONE-DIMENSIONAL
DISCRETIZATION

2-1 Introduction ......... ... .. ... 25
2-2 The Method of Lines ............... . . .. . ..... 27
2-3 Method of lines for quasi-static case ....... 28

—iv-



Q8]
|
FS

3-1

3-2

2-3-1

Lateral boundary conditions .......... 28

2-3-2 Analysis of a multilayer multistrip
structure ....... .. ... 30
2-3-2-1 Transformation of Laplace’s

equation .................... 30
2-3-2-2 Interface continuity

conditions .................. 33
2-3-2-3 Determination of the

capacitance matrix .......... 40

2-3-3 Non-equidistant discretization ....... 44

2-3-4 Illustration for a shielded
microstrip line ...................... 47
2-3-4-1 Discretization .............. 48
2-3-4-2 Matrices formation .......... 439
2-3-4-3 Capacitance matrix formation.50

2-3-5 5Software description ................. 52

Conclusion ....... ... . ... . . .. .. . . 54

CHAPTER3

THE METHOD OF LINES APPLIED TO THREE-DIMENSIONAL

PROBLEMS

Introduction . ..... .. . . ... .. ... 55

Analysis of two crossing conductors ......... 56



3-2-1 Three-dimensional Laplace’s equation
transformation .......... .. ... . .. ... .. 56
3-2-2 Continuity conditions ................ 63
3-2-3 Transformation in the original domain.83
3-2-4 Determination of conductors coupling
capacitance .......... . ... .. ... . ..., .. 84
3-3 Mol applied to discontinuities ............. . 55

3-4 The method of lines applied to anisotropic

dielectrics ... ... . .. . 86
3-5 Software description ............ ... .. ... . 87
3-6 Conclusion ........... .. ... 53

CHAPTERA4

RESULTS AND DISCUSSIONS

4-1 Constant cross-section structures ............ 70
4-1-1 Effects of shielding walls ............ 71
4-1-2 Mol compared to the Integral Equation

Technique. ... ... . ... . . . 73
4-1-2-1 Convergence rates ............ 73
4-1-2-2 Capacitance matrices of

multistrip structures ........ 74

Capacitance matrix of a two layers of

three conductors . ...... ... . .. . ... . . ... 76

_.vi_.



4-1-4 TEM parameters of microstrips for some
isotropic and anisotropic dielectrics .77
4-2 Some three-dimensional problems ............ . 79
4-2-1 Coupling capacitance of two crossing
conductors ... ... ... 80
4-2-1-1 Effect of lateral walls ... .. 50
4-2-1-2 Effect of substrate thickness
and snisotropy .............. . 31
4-2-2 Capacitances of rectangular
microstrips ... ... 82
4-2-3 Open-end microstrip capacitance ....... 84
4-3 Conclusion .......... . ... .. 35
CONCLUSION . ... ... .. o 86
REFERENCES . .. . . .. .. 38
APPENDICES
A/ Derivation of Laplace’s equation ........... 32

B/ Summation of the microcapacitance elements. .93

-vii-



INTRODUCTION

In Microwave Integrated Circuits (MIC 's), microstrip
components are the essential elements regarding their
technolcgical process advantages. They are invclved in the
form of lumped elements having all types of discontinuities
and in the form of multilayer parallel and/or crossing
interconnections relating the microwave active and passive
devices [1],[2].

In reality, even for a simple microstrip structure, the
analysis is made very complicated because of the singular
behaviour of the electric and magnetic fields at the
air-dielectric interface and particularly at the conductor
edges and corners. We can imagine the analysis complications
encountered with the microwave and high speed digital
integrated circuits fabricated during the two last decades and
involving higher 1integration, inhomogeneous, anisotropic and
gvromagnetic dielectric substrates. All these technological
needs and constraints, increasing with circuits complexity,
have stimulated, during many decades, the development of
various numerical and pseudo-numerical analysis techniques
that are strengthing numerous CAD tools. Part of these methods
are based on the quasi-static approach which is valid in the
low gigahertz region and, even more, provides design guidance
and serves as a basis for solution of the full-wave
propagation problem. The quasi-static analysis is necessary
knowing that a full-wave analysis of a complete monolithic

integrated circuit will not be possible in the immediate



future with acceptable numerical expense [3].

With this analysis approach, multiconductor transmission
lines in multilayer media have been investigated by means of
Green's function technigues (4], conformal mapping [5],
variational method [6], Fourier transform method [7], Fourier
integral method [8], and generalized spectral domain analysis
{91. For three-dimensional problems, caused mainly by
arbitrary shaped conductors and discontinuities, different
Green’'s function methods have been applied

— Galerkin’'s method in spectral domain (10].

. Matrix inversion method [1t].

_ Integral equation technique [12].

All the precited methods use Eenerally, either Green’s
functions that are not easy to formulate for complex
structures or expansion functions whose truncations may rise
convergence problems due to the fields singular behaviour at
conductors and dielectric discontinuities.

A method, recently applied to MIC problems analysis, called
in mathematical literature “the method of lines (MoL)", has
been used to calculate microwave elements, in 1880, by Shulz
and Pregla [13]. This method is very efficient for the
analysis of planar and quasi-planar microwave and optical
waveguide structures. The MoL has been extended to
three-dimensional problems, in 1984, by Worm and Pregla [14],
applied, in quasi-static, firstly to parallel multiconductor
systems, by Diestel in 1987 [15], and later to isolated
crossing conductors, by Veit et al in 1980 [18]. This method

presents numerous advantages:



— easy mathematical formulation.

_ high accuracy with little numerical effort, unlike finite
difference method.

_— suitability to deal with complex two and three-dimensional
problems.

— no relative convergence problemn.

— no spurious solution, unlike finite element method.

— no necessity of prior knowledge about fields, unlike
spectral domain method.

In quasi-static approach, with the method of lines,
Laplace’s equation 1is solved analytically in the dielectriec
subtrates by discretizing one space variable for constant
cross-section structures and two variables for arbitrary
shaped conductors. The last space variable perpendicular to
the dielectric interfaces is kept continuous regarding the
uniformity of the dielectric substrates. Hence, an analytical
expression is found for the -electric potential on each
discretization line, by applying the continuity conditions to
the dielectric interfaces and the boundary conditions to the
shielding enclosure. The discretization vields vectors of
electric potentials and charge densities that are related by a
matrix that is reduced to the elements corresponding to the
conductors and inverted to obtain the conductors
microcapacitance matrix. Finally, by summing the appropriate
terms, the lumped capacitance 1is determined in the case of
arbitrary shaped conductors; while the lineique capacitances
are determined for constant cross-section structures.

In our work, we have applied the method of 1lines in



quasi-static approach to analyze some MIC's problems. We have
used this method, assuming infinitesimal thickness conductors,
to calculate the microstrip TEM parameters (lineique
capacitance, impedance and effective permitivity), to study
the effects of the shielding enclosure on a microstrip
lineique capacitance, and to determine the Maxwellian
capacitance matrix of two arrays of parallel conductors
separated by two dielectric substrates. We have investigated
the effects of the strip width to substrate thickness ratio on
the capacitances of a microstrip, two isolated crossing
conductors and some micrestrip discontinuities. The
investigations have been done considering different dielectric
permitivities with an emphasis on the anisotropy effects of
the Sapphire dielectric.

In chapter one, an overview is given about the evolution of
MIC s, focusing on the microstrip interconnections,
discontinuities and quasi-static methods used to analyze then.

In chapter two the method of 1lines with one-dimensional
discretization is presented with a detailed analysis of two
multiconductor arrays separated by two dielectric substrates.
Then, clarifications are given about the positioning of the
discretization lines on and between the conductors and near
the shielding walls. Finally, an illustrative example is given
about the calculation of the capacitance of a microstrip with
all the steps and intermediate numerical results as well as
the description of the software program.

In chapter three, this method 1is applied with

two-dimensional discretization to analyze three-dimensional



problens, namely, the coupling capacitance between two

isolated crossing conductors, microstrip sections and
discontinuities. Then, the application of this method, to
anisotropic dielectrics, is outlined. Finally, the software

program is described.

In chapter four, the results obtained with the
semi-analytical method of lines are compared to those reached
with other analytical and numerical technigues in the cases of
two and three dimensional problems; with an emphasis on the
anisotropy effects of Sapphire.

Finally, the possible and necessary extensions of the
application of the Mol to more MIC's and MMIC's structures and

components are summarized 1in a conclusion.



CHAPTERI1

GENERALITIES:

In this chapter, the history of the development of MIC
components 1s given as well as the analysis methods employed
for such elements which are mainly: microstrip transmission

lines and microstrip sections with various discontinuities

[(17].

1-1 Evolution of microwave integrated circuits:

1-1-1 Concept of lumped parameters:

Low frequency electronic circuits are generally composed of
lumped elements, active devices and interconnections between
the various passive elements and active devices. Typical
lumped elements are capacitors, inductors and resistors whose
values are assumed to be concentrated in the corresponding
elements. This assumption is valid for low frequencies at
which the dimensions of the lumped elements are much smaller
than the wavelength under consideration. However, at higher
frequencies, the components dimensions and wavelength becone

comparable and the apparition of stray elements begins under

the form of inductance between the capacitors plates,
capacitance between inductor turns and interconnections
inductances and capacitances. In these conditions, also

electromagnetic radiations occur and all these effects become

significant at microwave frequencies.



l-1-4 ULoncept of distributed parameters:

The previous limitations of the lumped circuits prompted the
development of a new approach called the distributed circuit
approach. In the thirties, circuits composed of transmission
lines in which the electromagnetic fields are bound in the
transverse direction came into existence. Among these
transmission lines the «coaxial 1line and the rectangular
waveguide became the most popular. The emphasis was shifted
from the currents flowing 1inside the conductors to the
electromagnetic waves propagating in the space inside these
CLransmission lines. In a <coaxial line, the lowest order mode
1s a transverse electromagnetic (TEM) mode in the case of
which the transmission line can be characterized by
capacitances and inductances distributed along the length. In
the rectangular waveguide, the electromagnetic fields
configuration is described in terms of transverse electric
(TE) and transverse magnetic (TM) modes and there exits an
useful analogy between the fields strength and voltages and
currents in suitably loaded transmission lines, thus enabling

the guide to be represented as a distributed networtk.
1-1-3 Microwave semiconductor devices:

During the second world war, microwave circuits and
technology using coaxial 1lines and waveguides got a rapid
development leading to the emergenge of klystrons, magnetrons,
travelling wave tubes, etc
In the early 1850°'s, when the microwave technology, after war
time secrecy and military applications, penetrates the civil

world, a tremendous revolution was achieved in both techniques
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technology brought solid state devices and led to a rapid
progress in microwave technology after 1965. A number of
devices were developed to perform various microwave functions
such as power generation, mixing, switching, amplification,
etc. These 1include the IMPATT diode, Gunn diode, Schottky
barrier diode, PIN diode, Gallium Arsenide field effect
transistor and Silicium bipolar transistor. Small size
semiconductor devices were available and it was necessary to

find transmission media compatible with these devices.

1-1-4 Microwave transmission lines:

The solution was the use of planar transmission lines whose
first kind, called "strip transmission line or stripline”, was
proposed by Barret and Barnes in early 1851. The structure is
mainly a strip conductor sandwitched between two dielectric
substrates with conductive plating on the two outer sides ,
Fig.1-1la. In 1952, another basic transmission line <called
"microstrip line"” was conceived. It consists of a dielectric
substrate with a strip conductor on one side and a conducting
plane on the o¢ther side, Fig.1-1b. Unlike the stipline, the
microstrip is basically an open structure and requires a high
dielectric constant substrate to confine the electromagnetic
fields near the strip conductor. In the 1850°s, these
transmission lines were analyzed by studying their impedance,
radiation, discontinuity effects, etc. However, microwave
components using these elements did not become popular because

low loss dielectric materials with reproducible

characteristics, at microwave frequencies were not available.
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Fig.1-1. Cross-sectional views of the basic transmission lines.



L=L=-J nrerowave 1ntegrateda circults:

During the 1960°'s, with progress in materials technology and
fabrication processes, namely the deposition of metallic films
using the thin and thick film technologies, the interest in
planar transmission lines was revived. The integration of
planar transmission lines resulted 1in the beginning of the
evolution of a new circuit form called Microwave Integrated
Circuits (MIC’'s) in the late 1960s. In 19688, a third type of
planar transmission line named the "slot line" was proposed by
Cohn. This structure consists of a slot etched from the
conducting layer on one side of the dielectric substrate, the
other side being bare, Fig.l-1lc. Subsequent, various other
planar transmission lines, fwhich form variants of the
stripline, microstrip line and slot line were evolved ever
widening the scope of applicability of MICs. Among them, the
suspended stripline, suspended microstrip, inverted

microstrip, coplanar waveguide and coplanar strips.
1-1-8 Hybrid technology:

Development in vacuum deposition techniques and
photolithography allowed the realisation of lumped circuit
elements such as the single turn inductor, spiral inductor,
interdigitated capacitors and resistors. The process of
fabricating MICs by soldering or bounding semiconductors
devices on the passive circuit composed of planar transmission
lines and lumped elements, has been termed "hybrid technology”
and the circuits realized are called "hybrid MICs".

Since 1870, an important progress in hybrid MICs has led to

compact integrated modules with highly reliable performance.

_10_



rresencly, LME€ mOonciltnlc technologdy permits the inserticon of
the active devices in a semiconducting substrate that contains
passive elements and interconnections, resulting in a much
higher degree of miniaturisation and integration. The
materials wused are namely Silicon (Si) and particularly
Gallium Arsenide suitable for building Monoclithic Microwave

Integrated Circuits (MMICs).

1-1-7 Monolithic microwave integrated circuits:

The last two decades have been a revolution in techniques
and technologies of microwave systems through the use of MIC's
in microwave radars, communications, navigation and sensing
systems. With the -emerging GaAs technology, MMIC s are
recelving increasing attention for the next generation of
microwave components. The monolithic approach offers promising

future for millimeter-wave IC’s and for systems desiring

extremely wide band capabilities.

1-2 MIC’'s interconnections:

1-2-1 The main interconnections:

In both hybrid and monolithic microwave integrated circuits,

planar transmission lines are the basic interconnection media.

There are three main versions of the planar transmission lines

- the stripline, the microstripline and the slot line
(Fig.1-1).

There are other variants of these lines - suspended lines,
suspended microstrip, inverted microstrip, coplanar waveguide

and coplanar strips (Fig.1-2).

-11-



1-2-2 Propagation modes in the interconnections:

In a stripline, the dominant mode of propagation is the
transverse electromagnetic (TEM); while in a microstripline,
as the medium 1is inhomogeneous, the TEM mode can not exist.
However, at low microwave freguencies, the propagation is
close to TEM; the longitudinal magnetic and electric fields
are negligible compared to the transverse fields and the mode
1s said "Quasi-TEM”". 1In a slotline, the dominant mode is

essentially non TEM.

1-2-3 Microstrip interconnections:

Regarding the wide applications of microstrip lines in
MIC’s, we will focus on these transmission lines. They are
very useful for the microwave and millimeter-wave hybrid and
monolithic integrated circuits required for solid state
systems because of their simplicity and planar structure. A
planar configuration implies that the characteristics of the
circuit element can be determined by the dimensions 1in a
single plane.

Transmission lines and passive lumped or distributed circuit
elements, which are manufactured and assembled from planar
metal conductors or conducting strips an insulating
substrates, are essential basic elements in MIC's and MMIC's.
The metal strips or microstrips are deposited by thin film or
thick film technology on dielectric substrates. The processing
steps are substantially different compared to conventional

coaxial and waveguide circuit technology.

-12-
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Circuit built with microstrip transmission lines or microstrip
components have three important advantages:

-~ The complete conductor pattern can be deposited and
processed on a single dielectric substrate which is supported
by a single metal ground plane. Such a circuit can be
fabricated at a substantiaslly lower cost than waveguide or
coaxial circuit configurations.

- Active and passive devices can be bonded directly to metal
strips on the dielectric substrate.

- Devices and components incorporated intoc IC’'s are
accessible for probing and circuit measurements ( with some
limitations imposed by externai shielding requirements).

Although the microstrip has a very simple geometric
structure, the -electromagnetic fields involved are actually
complex. Accurate and thorough analyses require quite

elaborate mathematical treatment.
1-3 MIC discontinuities:

Microwave integrated circuits based on microstrip
transmission lines involve necessarly discontinuities in the
strip conductors . These discontinuities result from abrupt
changes 1in the geometry of the strip conductor. Their
characterization is therefore essential for accurate design of
MIC's as well as the capacitance calculations of arbitrary

shaped conductors located on parallel planes.

-14-



1-3-1 The general discontinuities.

The discontinuities generally encountered in practice are of
the following types:
-Abruptly ended strip conductor.
-Rectangular conductor patch.
-Series gap in the strip conductor.
~-Step change in width.
-Right angle bend.
-Bends of arbitrary angle.
-Tee Jjunction.
-Cross Junction.
-5lot in the strip conductor.

( see Fig.1-3.)

1-3-2 Discontinuities modelization.

In general the dimensions of the discontinuities are much
smaller than the wavelength, and hence, they can be
approximated by equivalent circuits consisting of various
lumped elements resulting from the accumulated charges at the
end regions of the conductors. There will be electric currents
flowing in the end region, corresponding to the extra charges,
and there will be a measurable amount of radiated energy loss.
Consequentially, the discontinuity physically realized, 1in
fact, has the network appearance of an RLC network:

a resistive component to account for the radiated energy, an
inductive component to represent the extra currents and a
capacitive component corresponding to the extra charges on the

discontinuity end corners [11,[2], and [12].

-15-



(a) Abruptly ended strip conductor. (b) Rectangular conductor patch.
(resonator)
(c) Series gap in the strip conductor. (d) Step change in width.

(e) Right angle bend. |

(f) Bend of arbitrary angle.

e

(g) Tee junction. (h) Cross junction.

(i) Transverse slit in the strip
conductor.

Fig.1-3. Top views of the generally

encountered microstrip discontinuities.
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In practical work, for the frequency range up to 1 GHz, the
electromagnetic energy lost by radiation and through inductive
components 1is negligible according to published experiments.
At frequencies in the range 1- 20 GHz, the radiation and the
currents redistribution at the conductor corners becone
measurable and significant. However, the capacitance aspect is
the dominant part for many discontinuities such as open-end,

square and rectangular microstrips.

1-4 Mathematical methods for microstrip analysis:

The wvarious methods of microstrip analysis may be divided
into three groups [2].

The first group compriseé quasi-static methods as the
modified conformal transformation method, finite difference
method (FDM), integral equation techniques and wvariational
method in Fourier transformed domain. In this approximation,
the nature of wave propagation is considered to be pure TEM
and microstrip characteristics are calculated from the
electrostatic capacitances as will be detailed further
(section 1-5). It is found that this analysis 1is adequate for
designing circuits at the lower microwave frequencies <(below
X-band) where the strip width and the substrate thickness are
much more smaller than the wavelength in the dielectricz
material.

In the second group, called the dispersion models, the
deviation from the TEM nature is accounted for
quasi-empirically. Some parameters of the model are determined
such that the finsal expression agrees with the known
experimental (or exact theoretical) dispersion behaviour of

the microstrip. This group comprises: coupled TEM and TM modes

-17-



models, ridged waveguide model, planar waveguide model and
coupled TEM/TE-lines models.

The third group, in which the full-wave analysis is
accomplished by considering the hybrid nature of the mode of
propagation, includes: integral equation method, Galerkin's
method in FTD for open microstrips. For enclosed microstrips:
finite difference method, integral equation methods and

Galerkin’'s method in FTD.
1-5 Microstrip quasi-TEM analysis:

When at least two conductors are located in a homogeneous
dielectric medium, the TEM analysis is applied. In the case of
a microstrip, the two conduogors, i.e, the strip and the
ground plane are no more in a homogeneous medium as shown in
Fig.1-1. Gupta et al.[2] have used Maxwell’'s equations to
convincingly demonstrate the necessity for longitudinal
components of electric and magnetic fields. This is clearly
inconsistent with a pure TEM propagating mode. However, at
lower microwave frequencies ( below X-band ), where the strip
width and the substrate thickness are much smaller than the
wavelength in the dielectric material, the propagation can be
considered TEM with a good accuracy. In this frequency range,
the longitudinal magnetic and electric fields components are
neglected compared to the transversal fields and the
quasi-static analysis yields to gdood results.

In this approach, the microstrip transmission
characteristics are calculated from the wvalues of two
electrostatic capacitances Ca and C [2]:

First, Ca is determined for a unit length of the microstrip

with the dielectric substrate replaced by air.

-18-



Second, C is <calculated for a unit length of the microstrip
with the dielectric substrate present.

Then, values of characteristic impedance Z,, rhase constant B

and the effective permitivity

these capacitances as follows

<
Ca

m
©
“
=
Il

Bo=

€. Can be written in

terms of

(1-1)

(1-2)

(1-3)

(1-4)

ol&

where ¢ is the velocity of the electromagnetic waves in free
space. €., is the effective dielectric permitivity that takes
into account the fields in the air region, B, is the phase
constant in free space and w is the wave radial frequency.

The electrostatic capacitances per unit length Ca and C can
be calculated by relating the strip electric potential to its
charge density in the transversal plane (perpendicular tc the
propagation axis). The electric potential is evaluated in each
dielectric medium by solving Laplace’'s equation, which is
deduced from Maxwell’s equations (see Appendix A). Then,
applying the <continuity conditions to the air-dielectric
substrate interface containing the conductor, an expression
relating the strip charge density to its electric potential
is determined leading to the electrostatic capacitance per

unit length.
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1-6 Mathematical methods applied to quasi-TEM approach:

There are many methods used in quasi-static approach for the
calculation of the electrostatic capacitance (2], [17 to 27].
They can be classified in two groups: the first including
methods dealing with two dimensional problems and the second
containing techniques for three-dimensional problems. For
constant cross-section or infinitely long microstrip
structures, the calculation of propagation parameters reduces
essentially to the solution of a two dimensional Laplace’s
equation subject to boundary conditions determined by the
structure geometry. There are many methods which exist to
solve this problem. The commonly reported ones are the
conformal transformation method, the finite difference method,
the integral equation technique and the variational method in

Fourier Transformed Domain (FTD).
1-6-1 Constant cross-section structures:
1-6-1-1 Conformal transformation method:

This method, introduced by Wheeler [51, is based on

transformations from the microstrip plane to a parallel plate

capacitor plane where the dielectric substrate cross-section
1s no more homogeneous but partially filled with air. The
transformation functions depend on the strip width to

dielectric substrate ratio and lead to closed formulas for the
microstrip impedance [17].

The method is exact and has been applied to obtain closed form
expressions for the characteristic impedance of the

homogeneous stripline. However for structures with
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inhomogeneous medium, the application of this method beccomes

prohibitively complicated and the conductor thickness as well

as the microstrip enclosure are ignored.

1-6-1-2 The finite difference method:

This method is based on the numerical solution of Laplace’s
equation in finite difference form [17],[{21] and [27]. It is
suitable for enclosed microstrip and the conductor thickness
can easily be incorporated into the analysis. In this method,
the electric potential is considered at grid points where it
is expressed 1in terms of the potentials of the four points
that are in the immediate vicinity. A " relaxation method " is
used to determine the grid points potentials with an allowed
error. The charge on the strip is calculated by integrating
the potential over the conductor surface and finally, the

capacitance is determined as the charge to potential ratio.

1-8-1-3 The integral equation method:

In this method, the microstrip analysis is formulated in the
form of integral equation rather than differential equation
(171, [18]. This analysis 1is divided into two points. First,
the formulation of a suitable Green’'s function and second, the
solution of an 1integral equation expressing the electric
potential in terms of the Green’'s function and the charge
distribution. The solution is obtained by writing the integral
equation in matrix form where the potential vector is related

to the charge vector by a matrix which, when inverted, leads
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to the conductor capacitance. Green’'s function for the

microstrip configuration 1is obtained from the theory of

images.

1-8-1-4 The variational method in Fourier Transformed Domain

(FTD):

The search of microstrip analysis techniques which are
computationally more efficient has led to the “Variational
method in FTD" [6], [17]). In fact, there are two significant
features of this method. First, a variational method of
calculating the capacitance from the charge density which
avoids the need for knowing the charge distribution
accurately. Secondly, the major portion of analysis is carried
out in FTD with the result that the integral equation for the
potential gets replaced by an ordinary product of charge
density and Green’s function. Then, using Parseval's formula,
the capacitance is expressed with the transformed charge
density and potential. This latter 1is obtained by solving
Laplace’'s equation which becomes ordinary in the transformed
domain and the transformed charge density 1is calculated by
using an approximate trial function that maximizes the

capacitance.
1-6-2 Arbitrary shaped metalizations:

For the discontinuities, the problems become
three-dimensional and the static values of capacitances can be
evaluated by finding the excess charge distribution near the
discontinuity end corners. The different methods used for the

discontinuities capacitance calculations have been treated by
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many autnors: rarrar and Adams L11), Maeda [36], Itoh et al.
[10], Silvester and Benedek [12]. Among these methods : matrix
inversion method, variational method and Galerkin's method in

the spectral domain.
1-6-2-1 The matrix inversion method:

The matrix inversion method is a very general approach to
find the static capacitance of a conductor of any arbitrary
shape on the top surface of the dielectric substrate [11]. In
this method, the total conductor area is divided into small
subsections over which the charge density is assumed uniform.
The potential at any subsection due to the other subsections
charges 1is expressed in matrix form with the help of a
three-dimensional Green’'s function that is obtained wusing the
theory image. Finally, the total conductor capacitance is
calculated from the matrix relating the strip potentials and

charges.
1-8-2-2 The variational method:

The method uses the variational principle for formulating
the capacitance problem [17], [36]. The capacitance 1is
expressed with a suitably chosen potential Green’'s function
and the charge distribution that is used as a trial function

to maximize this capacitance.
1-6-2-3 The Galerkin’'s method in FTD.

In this method a two-dimensional Fourier transform is

applied to both electric potential and charge density. Then,
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Poisson’'s equation, the boundary and interface conditions are
written in spectral domain. The transformed Poisson’s equation
is written, using Galerkin’'s method, in matrix form leading to

an expression of the conductor capacitance [28].

1-7 The method of lines.

In quasi-static approach, the method of lines (MoL), as
called in mathematical literature, 1is applied to transform
Laplace’'s equation from the partial differential form to an
ordinary differential equation by discretizing all the space
variables except one which allows an analytical solution [13
to 16]. Then the oontinuitx conditions applied to the
interfaces lead to a8 matrix that relates the conductors
electric charges to their potential yielding the capacitance

matrix.

1-8 CONCLUSION:

We have overviewed some of the principal MIC components as
well as the overall methods employed to analyze them. From
comparison, we conclude that the MoL is the simplest in
mathematical formulation with no need of Green’'s function or
series expansions. In the next <chapter, we will =see how
sultable this method is for the analysis of multilayer

rarallel multiconductor microwave structures.
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CHAPTER?2

THE METHOD OF LINES APPLIED TO ONE-DIMENSIONAL DISCRETIZATION.

2_1 Introduction

The growth of microwave and high speed digital 1integrated

circuilts has rised the necessity to analyze the
interconnections problems. In both monclithice microwave
integrated circuits and microwave integrated circuits, the

optimal positioning of the strips on different dielectric
interfaces is a key factor in design. A compromise must be
found between the IC size and the unwanted coupling between
adjacent elements in high density integrated circuits.

A full-wave analysis of complete MIC's will not be possible
in the immediate future with acceptable numerical expense. As
alternative solutions, quasi-static field theoretical analyses
have been wused to analyze such integrated circuits. Many
numerical and pseudo-numerical technigues, in quasi-static
approach, have been used for evaluating the capacitance and
inductance matrices of multiconductor systems. Among these
methods, as has been presented in the previocus chapter, we can
enumerate: the integral equation techniques [18], the method
of moments [19], [20], the finite difference method [21], [1],
The network analog method [22], [23], the conformal mapping
technique [24]1, [25], and the variational method [6], [26] and
[27].

Recently, Henrich DIESTEL has applied the method of lines

(MoL) to analyze, in quasi-static approach, a monolayer
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WULLLILUUIIUULLUL SYySLED WLl 1S0ULruplCc nomogenecus ailelilectric
substrate and vanishing thickness strips [15].

The Method of Lines is applied in quasi-static approach by
considering the electric potential function and solving
Laplace’'s -equation after converting it from the partial
differential form to an ordinary one. This 1is obtained by
discretizing, with lines parallel to the y direction, the
independent variable x in which conductors discontinuities
occur on the dielectric interfaces and keeping continuous the
independent variable y which contains the homogenecus
dielectric substrates.

Dirichlet’'s conditions hold on lateral electric walls that
belong to the shielding, where the electric potential eguals
zero while the boundary condigions are set on top and bottom
perfect conducting planes composing the shielding as well.

The discretization yields to a system of algebraic equations
relating the electric potentials and charges that are in
vector forms. After some matrices manipulations and
diagonalization, to decouple this system of -equations, an
expression is found for the electric potential vector in each
dielectric substrate. Applying the continuity conditions to
the 1interfaces containing the conductors, the potential
vectors are related to the charge density vectors, whose
elements are charge densities between consecutive lines, by a
real and symmetric matrix. The capacitance is defined only for
conductors; then this matrix is reduced to the non-zero charge
density elements of the strips and inverted to obtain a
microcapacitance matrix relating the "sub-charge densities” of
the strips to the "sub-potentials”. Finally, the
macrocapacitance between conductors is formed by assembling

and summing up the microcapacitance elements according to the
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This chapter deals with the MoL in quasi-static approach,
applied to constant cross-section structures that is with one
dimensional discretization. In section two, the history of the
MoL is given with the method introduction in the MIC’'s field.
In section three, the method using sinusoidal discretization
is clarified by a detailed analysis of a multilayer
multiconductor structure followed by an illustrative example

and the description of the developed software program.

2-2 The Method of Lines.

The Method of Lines was developed by mathematicians in
order to solve partial différential equations [28]. This
method has certain similarities with the finite difference
method ( FDM ) from which it differs 1in the fact that for =
given system of partial differential equations, all but one of
the independent variables are discretized to obtain a systenm
of ordinary differential equations. This semi-analytical
procedure allows an analytical solution and, by this, saves =a
lot of computing time. The MoL has been applied to various
problems in theoretical physics [28]. The advantages of this
method are easy formulation, simple convergence behaviour,
suitability for comlexe structures, no spurious solution and
no need of prior knowledge about the potential function. Also,
there is no need to specify specially suited expansion or
Green’'s functions; which 1is particularly advantageous toc the
analysis of complex microwave structures. With conventional
FDM, large systems of equations are solved while with this
pseudo-analytical method the system of equations is reduced

considerably.
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L111D wTLilUd 1Ha> uUECil L 1I0SL used 1l 190U DYy K. rKBsuULA snd U.
SHULZ [13] for the calculation of planar microwave structures
which are generally composed of one or more dielectric
substrates containing conductors at the interfaces. Regarding
the discontinuities due to the conductors, one space
independent variable is discretized for constant cross-section
structures while two space variables are discretized for the
other arbitrary shaped planar microwave structures. The third
space variable perpendicular to the interfaces planes 1is kept
continuous as the dielectric substrates are homogeneous.
Dirichlet’'s and/or Neumann's conditions hold on electric
and/or magnetic walls disposed perpendicularly to the
discretized variable direction while boundary conditions hold
on both top and bottom perfectly conducting planes.

The Mol has no relative convergence problem caused by the
singular behaviour of the fields at the conductors edges and
affecting the techniques where series expansions are
truncated. In this method all functions are expanded
corresponding to the number of lines and hence with the same
accuracy. As a consequence the results always converge
correctly ; however the rate of convergence depends on the
positioning of the conductors. edges between the discretization

lines [29], [30].

2-3 The Method of Lines for quasi-static case.

2-3-1 Lateral boundary conditions:

In quasi-static approach, the partial differential equation

(Laplace’s equation) 1is solved for the electric potential

$x.y»- In order to have a unique solution, Dirichlet and/or
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Neumann conditions must hold on electric and/or magnetic walls
that are normal to the independent space variables.
With the MoL, the Dirichlet’'s condition (¢(x,y)=0) is

realized by positioning the electric wall on & discretization

potential line, while the Neumann's condition (2%}ﬂ-0) is
obtained by locating a magnetic wall between two
discretization lines having the same electric potential, as

may be allowed for symmetric structures (Fig. 2-1).

The four possible left-right boundary conditions are:

DIRICHLET --- DIRICHLET
DIRICHLET --- NEUMANN
NEUMANN ~~- DIRICHLET
NEUMANN --- NEUMANN
Top ground plane Strip Magnetic wall (N)
g
;;iL, ;// Electric wall

(D) )

Discretization
line i+2

|

i

{

I
'ei-z s.ei_l ‘ei ?i +1 ‘eioz &ena
Bottom
ground plane

Fig.2-1. 1Illustration of Dirichlet’s and Neumann's conditions.

(D) ! Dirichlet.
(N) . Meumann.

-29-



2-3-2 Analysis of a multilayer multistrip structure:

Consider the structure shown in Fig.2-2 in which five
dielectric layers having permitivities constants (€,.€5....,Eq)
are bounded by perfectly conducting planes. At the dielectric
interfaces 1 and 3, N lossless, zero thickness and infinitely
long conductors are located. In the quasi-static analysis the
electric potential function ¢(x,y) for each region (I,II,...,V)

has to satisfy the partial differential equation:

2°o(x,y), 2%0(x,y) _
dy? Ix?

0 (2-1)

and the boundary condition:

¢(x,y)=0 (2-2)

on the electric walls. The continuity conditions have to be
considered at the dielectric interfaces while the Dirichlet s
conditions hold on the lateral electric walls which are parts

of the shielding.

2~3-2-1 Transformation of Laplace’'s equation:

This boundary value problem is solved elegantly with the Mol
in which the electric potential function is discretized in the
direction where singularities occur (x coordinate) and is
expressed analytically on lines where the potential varies
smoothly (y coordinate). In Fig.2-2, an arbitrary arrangement
of lines 1is depicted (Fig.2-3). The first derivatives with

respect to x are evaluated between the
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g+ Detail A for

descretization lines

+Hy —*

Closed electric wall

!

0 ——3 1
11 x
—H, 2
I11
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_H4 4
U
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{
'Hs — h——él AR
Fig.2-2. Cross-sectional view of a multiconductor

muitilayer microwave planar structure.
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Fig.2-3. Detail A from Fig.2-2. above.

-31-



(solid) potential lines on dotted lines which for clearness
are not shown in Fig.2-2.
With the abbreviation ¢(x,,y)=¢,(y), the 1i-th finite

difference approximation is:

| ul ¢(

l.

(2-3)

where h, represents the i-th interval size. The evaluation of
the second derivatives is performed on the potential lines.

The second derivative is given by

8 ¢| axl_ i-1

(2-4)
e,

with the i-th interval size e, between dotted lines . In order
to obtain symmetric operators in case of non-equidistant

discretization, eq.(2-3) is normalized as:

ox

hf 000\ [h, _\ . _
F(" li) QLIRS IEY (2-5)

i=0,1,...,M

with the boundary conditions according to (2-2) , 1.e
$o=0,.,=0, €q.(2-5) can be summarized in the following matrix

equation:

hri'¢, =r,Do (2-6a)

where
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o0 ‘
_loy'”’ale ’

¢, =

¢=(¢1s--u¢u)t (2-6b)

rh=diag(,/£) (2-6¢c)

The bidiagonal matrix D represents the first order difference

and

operator for Dirichlet-Dirichlet condition:

1 0]
-1 1 .
p={ . . . . (2-7)
.
o . . -1]

which is an M+1 x M matrix.

Analogously to (2-5) the finite difference equation (2-4) 1is

e 52¢ _ -
(n2)- A (21-R1L) e

In matrix form, eq(2-8) becomes:

normalized as:

hr.'¢,=-r,D'¢, (2-9a)

where

-33-



X %9, Y
O x = I,,---,ax Iu) (2-9b)

=diag(\/§) (2-9¢)

The matrix D' is the transpose of matrix D.

and

The first-order operator Dx with respect to the coordinate x

is defined by

D,=r,Dr, (2-10)
from (2-8) and (2-8) , we obtain the following important
relation

2 -1 2 t
h’r;'¢, =h?®, =-D'D d=D (2-11)

The vector

represents the normalized vector potential. As can be seen on
Fig.2-2, ¢, is that interval size which is intersected by the
line for ¢, . This geometrical interpretation holds in
general: each 1line (dashed or solid) has its cwn interval
size.

In the special case of equidistant discretization with

e,=h,~h we have
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¢ =0 (2-12)
and

ro=r,=1I (2-13)

where I 1is the identity matrix, the second order operator Dxx
then changes into the well known finite difference operator.

In the Method of Lines, for constant cross-section
structures, the discretization is performed only 1in one
direction (x coordinate). With the relation (2-11), Laplace’s

equation (2-1) then becomes:

o <l>+lD $=0 2-14

Sy e le®T (2-14)
The operator Dxx 1is a real symmetric tridiagonal matrix
meaning that the potentials are coupled . By orthogonal
transformation, the system of equations (2-14) is decoupled

and Dxx is transformed into the diagonal form of the real and

distinct eigenvalues

T'D . T=A (2-15Sa)
where
K=diag()x}.),j=l,...,M (2-15b)
For the matrix of eigenvectors T, the relation T'.T=/ is
valid.
An analytical representsation of the eigenvalues and

eigenvectors is possible only in the <case of equidistant
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discretization . In the general case of non-uniform
discretization, the eigenvalues and eigenvectors are
determined numerically. The * Implicit QL - Method”, an
accurate, fast and stable technigue has been proved to be
particularly suited for this purpose [31].

The system of coupled differential equations (2-14) can now
be transformed into the following system of decocupled ordinary

differential equations:

dd;Z(T‘¢)+#(T‘DxxT)(T‘¢)=0 (2-16)
or
dd;2V+;—ll—2xV=o (2-17a)
where
V=T'd (2-17b)

is the transformed vector of potentisls.

With the substitution A=-X2%, (2-17a) yields

2 2
ddsz’('E) V=0 (2-18)

The solutions of these one-dimensional differential equations

correspond to the transmission 1line equations. They can be

represented in the form:

V(y)=C,cosha(y)+C,sinhao(y) (2-19a)

with
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Qa
N
S P

(2-19b)

where V., ¢ and the constants (,.C, are vectors of dimension M
(number of discretization lines).

For the structure shown in Fig. 2-2, according to the chosen
y-axis origin, the electric potential V(y) has the following

expressions:

In medium I:

v _ 3 sinho(y-H,) 5~ 20
(¥)=8B, ~coshoH, ( a)

In medium II:

v _Azcosho(y+H2)+stinho(y+H2)
n(¥)= coshoH,

(2-20b)

In medium ITII:

Azcosho(y+H,+H;)+ Bisinho(y+H,+ Hj3)
coshoH,

Vin(y)=

(2-20¢)

In medium IV:

A ,cosho(y+ H,+ 1-13+H4,)+
coshoH,

Vi(y)=
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B.,sinho(y+H2+H3+H.,)0
cosh

H, (2-20d)

In medium V:

Bssinho(y+H,+H;+H,+Hs)
Vio(y)=— COSSGHS * 22 (2-20e)
S

2-3-2-2 Interface continuity conditions:

The continuity conditions for the normal component of the
electric displacement vector has to be satisfied at each
interface . By using the expressions of the electric

potential, the continuity equations 1lead at each 1interface

k/k+1, to
Vie(y)=Via(y) (2-201)
dl/k(y) dl/k+l(y)
ek—izy—_—ehl—_jiy_—”=sk (2-20g)
Where k = I,II,...,V and S, 1is the transformed electric

charge density at the dielectric interface between medium k

and k+1 (see Fig.2-2).

At interface 1, containing the first set of conductors, and

corresponding to y=0, we have:

-B,tanhoH = A,+B,tanhoH, (2-21a)

and
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€, XB,-€,X(A,tanhoH,+B,)=S,h (2-21b)

At interface 2, with no conductors, and corresponding to

y=-H,, we have:

cos:_;Hz=Aa+BatanhdH3 (2-21¢)
and
€, XB,
Eaﬁ;;ﬁ:—63X(A3tanhofLy+Ba)=O (2-21d)
At interface 3, containing the second set of strips, and

corresponding to y=-H,-H,, we obtain:

A3 -
————=A,+B,tanhodH 2-2]
coshoH, '+ °s+tal s ( e)
and
€;XB;
Cosh6H3_€4X(A4tanhOH4+B4)=Smh (2-21F)
Finally, at interface 4, with no strips and corresponding to

Yy=-H,-Hy-H,:

A,

——— =B .tanhoH 2-21
coshoH, s tan ° ( g)

and

€, XB,

——-€:XBs=0 2-21-h
coshoH, €57 5s ( )

Where S,,S5,, are respectively the transformed electric charge

density vectors at interfaces 1 and 3 ( Fig.2-2 ), which is
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explained subsequently.
2-3-2-3 Determination of the capacitance matrix

The system of equations (2-21) is solved for the constants
B,,A;.B,,A3.B3.A,,B,,and Bs in terms of S, and S,, on each
discretization line.

Equations (2-20a)-(2-20c) lead to the potential vectorsV,.V,,
in terms of the charge density vectors S, and S,,.

At the 1interfaces 1 and 3, the relation between the
transformed potentials and the charge densities is given in

matrix form as:

M
VIII r21 r22 hSIH

Where the block matrices TI,, are of order M x M

Equation (2-22a) may be written in the form

V=ThS (2-22b)
with
V= Vi (2-22c¢)
Vi
and
S= S (2-22d)
SIII
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un tne conaucting strips, a charge q, 1s located between two
consecutive lines distant of e,, hence, as the structure has a
constant cross-section, the surface charge density that
belongs to the i-th 1line is given by 0, which is related to

the charge q, by

q.
g,=— (2-23)
e,
Outside the strip o, equals to zero
In matrix notation we have
r ,
o=-r,q (2-24)
h
The normalized form of eq.(2-24) can be given as
-1 1 1
Y=rlo==r,q=-Q=TS (2-25a)

Where the transformed charge density S=T'S.
Equation (2-22 b) is wvalid in the transformed domain. With

(2-25a), 2-17b) one obtains

¢=TI' T'Q (2-25b)

or
¢=TQ (2-26)
The capital letters, in (2-28), refer to the normalized

electric potential and charge vectors and matrices. In the
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original domailn, (2-26) becomes:

¢ =vq (2-27a)
where
h h
Yrk=\/-:rrk»\/_ (2-27b)
e €y
The structure of the matrix equation (2-27a) can be

represented graphically as shown in Fig.2-4; where the hatched
areas correspond to the strip regions on which the potential
function is constant and the charge is not zero.

The hatched areas are Jjoined together and result in the
"reduced matrix” vy,, SO thagrfrom (2-27a), the following

matrix equation can be derived

¢red=Yreered (2—28)

The matrix v,, is real, symmetric and positive definite.
Therefore the method of inversion due to Cholesky is
particularly suited to obtain the matrix v}, [32].

The capacitance matrix can now be derived from Yrea bY summing
up the submatrices elements (hatched areas on Fig.2-4), (see

appendixB); and one obtains:

g=Cu (2-29)
Where g=(q,.....q.y)" are the charges per unit length ocn the
strips with the corresponding potentials u=(¢,...... b.n)'.

42~



o J— e
1 2
Y 4 < L4
2ay %x %
1 V:"f/:/(,g,);i £4 /A
a
.
']
CAAAL S
20, 2
2
- ] [
" — a [ ]
Z
3 4 4
Byet
- - N
] - [ ]
- ™ -
P
§Bzﬂ N P ;< :

Fig.2-4. Graphical representation of the

2N

T

nes S
% A 5%
42299 eLe
aems [
- .
- .
™ n
ass A
> b
- "
. s
. .
¢ 4
[ R K |

matrix relating the potential vectors to the

charge vectors. The hatched areas represent the submatrices corresponding to the non—zero
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2-3-3 Non-equidistant discretization:

The Method of Lines 1is applied with non-equidistant
discretization such that the lines are more concentrated
around the conductor edges where fields singularities occur
and are more spaced 1in regions having smoother variations of
the fields [15].

In general, the potential function and the surface charge
density are unknown. In the present problem, an approximate
function for the surface charge density on the conductor is
given by the Maxwell distribution which holds exactly only for
an isolated conducting strip [33].

If the potential lines are spaced sinusoidally on the strip

at
2i- M |
x,=sin(—l—nn) (2-30)

Where Mn 1is the total number of 1lines for the strip n and
-1<x<1, the same amount of charge is located between any two

consecutive lines

1 1
f — " (2-31)

Because of the singular behaviour of the charge density at
the edges, more lines are located near the ends of the strips.

The general form of the charge density on the strips between
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conducting planes and different dielectrics is similar to that
of an isclated conductor. Therefore eq.(2-30) shall be adopted

for the present problem and one obtains for a strip, x,<$x<x,:

Xp+Xg Xp— X, 2i-Mn
2 2 sm(——n) (2-32)

2 2 2Mn

i=0,....,.Mn

At the edge of perfect conducting strips, the field strength
is also singular so that eq.(2-32) shall be valid for the
regions between edges of different strips. By this, the
smallest interval size , locatéa near each edge, can be chosen
the same for all these regions so that in the vicinity of
every edge the interval sizes are small and nearly symmetric.
With the smallest interval A =X umn~Xuma,, Where Mmin is the
number of lines for the smallest strip width or region between
strips; the number of lines for each region can be derived

from eq.(2-32), so that for x,$x<x,, we have the integer

2n
Mn=INT 2-33
" (n—2arcsin[l—2A/(xb—xa)]) ( )

The interval sizes

h,=x,.,-x, (2-34)

are calculated in a following step from eq.(2-32). While the

centers of intervals are deduced from (2-34) as:
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ey +hy
e, =— (2-395)

The outer regions which are limited by the lateral walls can
be treated in the same way if the intervals are calculated for
twice the regions. The intervals have their maximum value near
the electric walls where the fields are almost =zero. An
important advantage of the non-uniform discretization can be
recognized in the fact that if the walls are only auxillary
quantities, they can be shifted sufficiently far away from the
conducting strips without large numerical effort.

At the strips edges, the fields are singular giving rise to
problems of converdence for anglytical techniques where series
expansions are truncated. In the method of lines, all

functions are expanded corresponding to the number of lines

and hence, with the same accuracy. As a consequence, the
result always converges correctly. However, the rate of
convergence depends on an edge condition from [29], who

considered equal interval sizes and showed that the strip edge

should be positioned as illustrated in Fig.2-5.

R '
Metallic strip

F).ZS hj 0.75 hy 4

Fig.2-5. Positioning of a strip edge betueen
two discretization lines.
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This result 1s applied to non-uniform discretization as the

interval sizes are almost equal near the strip edges. The

location of the lines in the regions of strips and spaces is

defined by egs.(2-32) and (2-33). In order to include the edge

condition, the 1interval sizes on the strips have to be

shortened by the factor

F=—2 (2-36)

which 1is deduced from the edge conditions [15], with

Wm=x,-x,, and in a subsequent step the outer interval sizes of

the regions between the strips 'are fitted.

2-3-4 : Illustration for a shielded microstrip line.

Let’'s consider the simplest microwave structure which

~

microstrip line as shown in Fig.2-5.

consists of a shielded

¢
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Fig.2-6. Cross—section of a shielded microstrip
structure.
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Applylng eq.(Z2-32) to Liw-2A, With 1 varying from #si,. to
2

MS1,,=-1, we obtain the hi intervals on the left size space

region. The next interval which contains the strip edge 1is

equal to A.

Equation (2-32) applied to the strip (x,,—x,,-w-f’;ﬁ), (,%e to

account for edge conditions), i varying from Q to 1, in our

case, gives the intervals on the strips. The next interval is

equal to A.

Equation (2-32) applied to L,.-2A, with i varying from O to

"ﬁ“'—l, gives the intervals on the right side region.

The discretization leads to the matrices: rasTe. DD,

2-3-4-2 Matrices formation

The matrix r, from (2-8 ¢) has as diagonal elements

(0.668 , 1.085 , 0.780 , 0.913 , 0.780 , 1.085 , 0.699)

In our case,

h=———=—==0.5 (2-39)

From eq. (2-9b), the matrix r, has as diagonal elements
(0.831 , 0.904 , 0.845 , 0.845 , 0.904 , 0.831)

From eq.(2-7), as we use Dirichlet’s conditions cn both
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lateral walls, the first order difference operator is

1 0 0 0 0 0]
-1 1 0O 0 0 ©
0 -1 1 0O 0 0
D={ 0 0 -1 1 0 o0
0O 0 0 -1 1 0
O o0 o0 o0 -1 1
. 0 0 0 0 0 -1,
From eq. (2-11), the matrix Dxx is
[(-1.1S0 0.88S 0 0 0 o ]
0.885 -1.473 0.477 0 0 0
0 0.477 -1.042 0.595 0 0
Drx=1 0 0.595 -1.042 0.477 0
0 0 0 0.477 -1.473 0.885
.0 0 o 0 0.885 -1.150 ]

The diagonal elements of the eigenvalue matrix of Dxx are

(-0.336 , -0.091 , -0.692 , -1.525 , -2.388 , -2.399)

The eigenvector matrix of Dxx is

0.505 0.31S 0.468 0.335 0.426 0.364 ]
0.465 0.377 0.242 -0.142 -0.546 -0.514
0.170 0.508 -0.471 -0.606 0.142 0.322
-1.170 0.508 -0.471 0.606 0.142 0.322
0.465 0.377 0.242 0.142 -0.546 0.514
| -0.505 0.315 0.468 -0.335S 0.426 -0.364 |

2-3-4-3 Capacitance matrix formation:

Applying the equations (2-19) through (2-25b), we end up

with the diagonal matrix ' whose elements I, are given by
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: tanho,H,tanhoh
I (i,i)=

€
tanho¢h+—2tanhdtHl)
€, X,

€,

(2-40)
The diagonal elements of the matrix [ are

(0.9682 , 1.635 , 0.801 , 0.405 , 0.331 , 0.323)

The matrix I' , in the original domain, from (2-27b), 1is

FO.457 0.232 0.126 0.084 0.048 0.032
0.232 0.528 0.206 0.129 0.072 0.048
0.126 0.206 0.549 0.253 0.129 0.084
nor 0.084 0.129 0.253 0.549 0.206 0.126

0.048 0.072 0.129 0.206 0.528 0.232
L 0.032 0.048 0.084 0.125 0.232 0.457

In our case, the reduced matrix v,, is

[0.549 0.253]
r 1 0.253 0.549

The microcapacitance matrix v;), is

Cmi 2.312 ~1.066
el _1.066  2.312
The macrocapacitance, in this case a scalar obtained by

summing up the elements of matrix Cmic as only one conductor

is considered, 1is

Yiea = =2 = 2.492 pF/m.
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2-3-5 Software description

As shown in Fig.2-7, the software program runs as follows:

1-The user of our developed software should first input the
geometric and electric characteristics of the structure (strip
width W, strips number N, gap spacing 8S, structure
cross-section width L, the smallest number of 1lines in the
smallest region Mmin, the dielectrics permitivities and the
subtrates thicknesses.).
Then, the software will determine:
2-The smallest interval size using (eq.2-34) with W replaced
by SS if the gap spacing is smaller than the strip width.
3-The scaling factor h = (smallest region / (Mmin+l) ).
4-The positioning of the discretization lines on the total
cross-section of the structure from equations (2-32 and 2-33)
that are applied to the metalization and gap regions. The
Dirichlet-Dirichlet condition is realized by coinciding a line
on each lateral electric wall (eq.2-38). The strip edge
condition is rspected by positioning the conductor edge at a
distance § from the left line and at A from the right line
(eq.2-38) as shown in Fig.2-5.
5-The normalization matrices r, and r, given by (2-8c¢) and
(2-9¢), by storing the intervals h, , e, and the lines number M
during their evaluations.
6-The second order difference operator D and its transpose
D' by (eq.2-7).
7-The matrices D,,D, and D,, are using (eqs.2-10, 2-11).
8-The eigenvalue and eigenvector matrices A,T of Dxx using
the QL algorithm.

9-The matrix I, relating the potential and charge vectors at
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of the structure. of Dxx
(eq.2-15)
|
Calculation of .
the smallest Construction of
interval size a
(eq.2-34) (eqs.2-19 to 2-26)
|
Calculation of rr:::i?:.ﬁfl?: 2:8
scaling factor h. original domain
(eq.2-39) g
(eq.2-27bH)
Discretization Reduction of
and determination matrix I
of intervals hjand e, (eq.2-28) , Fig.2-4
(eqs.2-33 to 2-35) ' ! B
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!
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Fig.2-7. Flowchart of the software progran

using one-dimensional discretization.
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the conductor interfaces, by solving the system of equations
for each discretization line, (eqs. 2-20 to 2-28).
10-The matrix I in the original domain by (eq.2-27b).
11-The matrix I' in the original domain which is reduced to
the non-zero charges of the conductors ( Fig.2-4), (eq.2~-28).
12-The reduced matrix v,, inverts it and sums it up

appropriately to obtain the capacitance matrix.

2-4 Conclusion.

We have shown the application of the Mol to the calcnlation
of the capacitance matrix in the case of two layers of
parallel conducters. The extension to more layers of strips
can be easily carried on by increasing the system of equations
governing the continuity conditions on the dielectric- -sub-
strates interfaces. The structures analyzed 1in this chapter
represent the interconnections joining MIC components which
have, generally, arbitrary shapes involving discretization in
two space directions. In the next chapter, some of these

three-dimensional problems will be analyzed with this method.
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CHAPTERS

THE METHOD OF LINES APPLIED TO THREE-DIMENSIONAL PROBLEMS :

3-1 Introduction

In MIC's and MMIC's, three-dimensionsal problems are rising
due to both isolated crossing interconnections and arbitrary

shaped conductors on parallel dielectric substrates. In

chapter two, constant cross-sectional structures Wwere
considered; however, in practice, digital IC's contairn
isolated 1interconnections crossing orthogonaliy . 1I-n
MMIC s, these crossings occur as sir bridges or underpasses
for spiral inductors and directionsal couplers.

Little has been reported in litterature to analyze such
complex structures. A static spectral-domaine apprcach 1is used
to calculate the coupling capacitances of air bridges andg
underpasses [34]. The generalized “transverse rescnance
technique” 1s used in full-wave analysis for circuits
parameters determination of & stripline crossing [35]; however
it is inefficient with crossing multiconductors. But the Mol,
with two dimensional discretization, has shown a great
sultability to deal with multiconductors crossing orthogonaily
and to determine their coupling capacitance matrix [16].

The design and packaging of MIC's require also, the
calculation of capacitances for arbitrary shaped conductors
located on parsllel planes. Many papers have been published

concerning the capacitance calculation for open circuits,
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change of width, gap in microstrip and rectangular section in
microstrip. The methods used are various, among them:
Galerkin’'s method in spectral domain [10], Green’'s function
based on variational principle [36], integral equation with
computer solution technigue [12], and [37].

In this chapter, the Mol, with two dimensional
discretization, is applied to three dimensional problems; that
1s microstrips having discontinuities in two space directions.
In section two, this method is used for the calculation of the
coupling capacitance of two isolated orthogonally crossing
conductors. In section three, the application of this method
to the analysis of microstrip sections and discontinuities is
deduced from (3-2). In section four, the Mol is extended to
anisotropic dielectrics with diagonal tensor permitivities.
Finally, in section five, the software program, based on the

Mol is described.

3-2 Analysis of two crossing conductors.

3-2-1 Three dimensional Laplace’s equation transformation:

We analyze the structure, shown in Fig.3-1, composed of two
conductors, crossing orthogonally, of length L,,L, , and widths
W,.W,, having vanishing thickness and separated by a perfect
homogeneous dielectric substrate of thickness h.

We consider the potential function ¢(x,y,z) which must satisfy

Laplace’'s differential equation

o
st 5+ =0 (3-1)
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in the different regions I, II and III ( Fig.3-1). Neumann s
conditions hold on magnetic walls. To solve this boundary
value problem using the MoL, the differential gquotients with
respect to x and y , in Laplace’s equation (3-1), are
approximated by finite difference expressions.

A typical pattern of discretization for two crossing strips,
1s illustrated 1in Fig.3-2. The lines of discretization run
parallel to the z axis and are marked by “+" and "." in the
x-y plane. The potential function ¢(x, y,.2) noted ¢, and the
second derivatives ¢,.(x,.¥:.2) and ¢,,(x;,¥r.2) are evaluated at

the line (x,,y.,z) marked "+" in the detail (Fig.3-2). The

first derivatives are related to locations between the
potential lines 1i.e. ¢,(¥e.2)|,-is evaluated at point "a" and
¢,(x“z)h is determined at location "b" (see Fig.3-2). The

mixed derivative ¢,,(z)|!'k is calculated at one of the corn=ars

of the rectangular mesh of area @y Xey,., illustrated by ths
dats
With the MoL, the potential function 1is discretized with

respect to both x and y; i.e. the differential quotients for
these variables are approximated by finite differsnce
expressions as shown previously eq.(2-3). If we define the

first order operator with respect to x by

[D,1=[ruw 1D, 1[r..] (3-2)

¥here [D,) denotes a bidiagonal difference operatcr for

Neumann-Neumann conditions as:

-1 1 . . o0
o -1 1 . 0

[Dx]= (3-3)
| 0 -1 1
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the following approximate relation for the amatrix of the

M.,xM, second derivatives holds

REr ] [0, 10r, 1 ' =h%[®,,]

—_ - —
=-[D, 1 [D[®]=-[D,1[®] (3-4)
Mx and My are respectively the number of discretization

lines in x and y coordinates.

The elements of the matrix [¢] represent the normalized

potentials

[ﬂ,s# (3-5)

- h h
NERVE,

The normalization matrices are:

h
[Fec,y]= diag(, | —— (3-6)

x, (¥y:)

and

[rh,(ny)]=diag( (3-7)

A finite difference approximation similar to <(2-4) can be
given for the second derivatives with respect to y. However,
for the position of [¢],, 1in the matrix {¢] to egual the
position of the corresponding marking T4 in the
discretization pattern, we must interchange the matrices of

potential and operators [D,,], (eq.3-8).
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Laplace’'s differential equation is solved at the Mx.My nodes

"+". For the normalized potential, the following approximate

equation holds

d2
dz?

] — —_ 1
[¢]+F[Dxx][¢]+[¢][Dyy]F=O (3-8)

with the real, symmetric and tridiagonal second order
operators [D,.] and [D,,]. A two fold discretized function is
represented clearly by a two dimensional matrix. For the
mathematical and computational solution of the boundary value
problem, however, the representation of the discrete potential

function in the form of a vector is more advantageous. Hence

instead of eq.(3-8), the foilowing equivalent equation 1is
solved

dzzmﬁ[pu]mﬁ[pwp—o (3-9)
with the vector 3-(3,“”.$uf whose elements are the colunn

vectors of the potential matrix [¢].

The second order operators take the form of block matrices

defined by

[Dux]=01]u,®[D ] (3-10)
and

[Dyy1=1D,,1®[1],, (3-11)
where (/)u,u,, denotes the unit matrix of order M,(M,) and the

symbol "®"' designates the Kronecker product.
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The potentials ([¢],, are coupled and the decoupling is
achieved by a real transformation of the operators [Dex] and
(D,,].

By this, the operators of eq.(3-9) are transformed to the

block diagonal structure of their eigenvalues; 1.e,

[TVID guer) M T1=-[X,(,, 12 (3-12)

with the matrix of eigenvectors

[T1=[T,1®[T,] (3-13)
where

[Tx] and [Ty] are the eigenvector matrices for the operators
of eq.(3-8).
The transformation of eq.(3-3) yields the following set of

M M, ordinary differential equations

¢-| = | d=0 3-14
dz? [h] ( )
where

$=[T1d (3-15a)
and

2 v 12 ¢ 72
} =[%} +[-’Ty:l (3-15b)



1f h 1s not the same in x and ¥y coordinates, we take the
smallest of the two in order to guaranty the desired precision

of calculation in both space directions x and y.

3-2-2 Interface continuity conditions:

Equation (3-14) is similar to eq.(2-18) and the solution is
similar to the one given in eq.(2-18a). With the same steps as
in section (2-3), matching the fields at the interfaces and
using boundary conditions, we end up with a matrix relating
the conductors electric potential vector to the electric

charge vector in the following form

¢, [F,,] [T,,1]] Q,
- |=| = - 3-16
P, [T,] [rzz] Q; ( )

where the [[,.,] are block diagonal matrices of order Mx.My.

3-2-3 Transformation in the original domain:

The transformed vectors of potentials and charges are

related to the corresponding vectors in the criginal domain

by:

$A(B)=[fe][f]84(3) (3‘17)
and

Qacsy=[F) ' [T10 4csy (3-18)
with
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[Fel=[r.1®[r, ] (3-19)

3-2-4 Determination of conductors coupling capacitance:

After doing the inverse transformation of eq.(3-16) into the
original domain and after the inversion of the reduced matrix,

one obtains the following equation

Grea=[¥1rea®rea = [C16,0q (3-20)
Where [C] 1is the microcapacitance matrix. The macro or
conductor capacitances are calculated by partiticning [C] and
summing up the appropriate terms, (see Appendix B). This

yvields:

- Cll Cl2

q cona = 6o (3-21)
. C21 (:22 ¢

cond

where C,, and C(C,, are egual and represent the lumped coupling

capacitance between conductors A and B.

-84 -



3-3 Mol applied to discontinuities.

The Mol is sapplied to the —capacitance calculation of
arbitrary shaped metalization involving discontinuities by
following, mainly, the steps of section (3-2) with a slight
difference concerning the lateral walls, discretization
pattern and matrix reduction that depend on the conductor
shape. In the case of finite dimension metalization, electric
lateral walls are wused (Dirichlet-Dirichlet). Alsoc, the
dimension of the system of continuity equations depends on the

number of dielectric interfaces containing, eventually many

microstrip sections which is the case for couplers, filters
and gap 1in microstrips ...etc. In this situation, similariy to
sections (2-3), (3-2), &a capacitance matrix is reachec

vielding the coupling and intrinsic capacitances.
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3-4 The Method of Lines applied to anisotropic dielectrics.

For anisotropic dielectric substrates having diagonal tensor

permitivity of form:

e, 0 O
e=| O €, 0]
0O O €

F4

Laplace s eguation ,from [38],becomes:

2 2 2
o, e, 2%
Ix?* Yay? dz?

=0 (3-22)

The MoL is applied as shown in sections (2-3),(3-2) for

capaciltance calculations by transforming (2-18) into:

2 € 2
‘;Z—e—"(g) V=0 (3-23)
Y y

for constant cross-section structures, and eq.(3-14) into:

d? = (X N\~ .
dz2¢—(7f)<b=0 (3-24)
with
(&) ()oY 5259
h €.\ h €.\ h
for three-dimensional problems with two-dimensional

discretization.
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3-5 Software description.

As shown in Fig.3-3, the software program runs as follows:

1-The user inputs the structure dimensions in x and vy
directlions as well as the dielectric substrate thicknesses and
permitivities
2-The smallest interval size A and the scaling factor h are
calculated and the smallest values are selected between the
x-y directions from (egs.2-32, 2-33).
3-The discretization is performed as explained in sectiocn
(2-3-5) as long as the conductors have finite dimensions in
x-y directions. However, wheq they have infinite lengths
{crossing conductors), Neumann’'s conditions are used by
centering the lateral walls between two consecutive
equi-potential lines. The edge conditions are considered as
explicited in section(2-3-5). The dicretization leads toc the
intervals h,.h,.e,.e, and their respective numbers Mx, My.

tx? y

4-The normalization matrices r,.,ra,.M.,.7,, are constructed
from eqgs.(3-8), (3-7).

5-The second order difference operator Dx, Dy are constructed
using (eq.2-7) for finite dimension conductors and (eq.3-3)
for infinitely long conductors.

5-The matrices 5??.5;7 are determined using {(eq.3-4).

7-The matrix pattern of the electric potential is converted,
for <computational convenience, in vector form by using
Kronecker product and transforming the matrices Dxx,Dyyin
Dxx,Dyy using (eaqs.3-10, 3-11).

8-The eigenvector matrices Tx, Ty of Dxx,Dyy are obtained

from the QL algorithm.

9-The eigenvector matrix T is calculated from (eq.3-13).
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10-The eigenvalue matrices of Dxx,Dyy <-(X,f.-(x,f) are

calculated by (eq.3-12).

11-The eigenvalue matrix (-(X.)9 is determined from
{eq.3-15b).
12- A system of equations similar to (eqs.2-20, 2-21) 1is

solved to construct the matrix [ relating the electric and
charge vectors using (eq.3-16).

13-The matrix I' is transformed in the original domain using
(egs.3-17, 3-18, 3-18)

14-This matrix in the original domain 1is reduced to the
non-zero elements of the electric charge vector using
(eq.3-20), (see fig.2-4).

15-The reduced matrix is 1inverted and summed up
appropria-tely (see appendixB) to obtain the capacitance
matrix using (3-20). For crossing conductors, the off-diagcnal

elements correspond to the coupling capacitance (eq.3-21).

3-6 Conclusion.

In this chapter, it has been shown how the MolL is suitable
+o deal with complex structures such as crossing conductors
and microstrip sections having eventually anisotreopic
dielectric substrates. The analysis may be extended to
maltiple crossing interconnections as well as to multiple
“inite dimension metalizations at different interfaces. The
computational power of this method is exhibited in the next
chapter by comparing the MoL results to those obtained with
other techniques that 1involve more complexe mathematical

approaches.
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CHAPTERA4

RESULTS AND DISCUSSION.

In this <chapter, the results obtained with the software
programs written in FORTRAN 77 on MICROVAX II, based on the
MolL, are —compared to previous published data where other
analytical and numerical techniques have been wused. In the
first section, one variable discretization is considered with
the study of the shielding effects and the determination of
some TEM parameters for few structures. In section two,
two-variable discretization is applied to c¢rossing conductors
and sonme microstrip sections and discontinuities. The
anisotropy effects of ©Sapphire are investigated for all the

structures.

4-1 Constant cross-section structures:

The developed software based on the Mol in quasi-static
approach, can be applied to parallel microstrips MIC
interconnections occurring either as one or two layers of N
conductors located at the interfaces of isotropic/anisotropic
dielectric substrates, (Fig.2-2). This program can be used as
a CAD tool to optimize the MIC interconnections positions to
maximize or minimize, depending on the application, the TEM
paramaters. The structures are considered with constant cross
section; i1.e. with conductors 1lengths very large compared to

their widths.
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4-1-1 Effects of shielding walls:

The closed enclosure composed of top and bottom conducting

planes as well as lateral electric walls, (Fig.z-2 ) 1is
necessary for our analysis with the MoL. The bottom ground
plane is part of the microstrip structure, however the top

plane and lateral walls do not exist when open structures are
considered. Hence their effects on the lineique capacitance of
1 microstrip have been studied. In Fig.4-1, the influence of
the distance H1 between the top plane and the strip cn the
capacitance is shown for permitivities 1, 18 and strip widths
0.1 and 1. We can see that, as predicted, the effects of the
npper shielding plane on the capacitance are more accentuatad

for lower substrate permitivities and wider strips.

C/Crpini L
8
H €9
w
4 h e
e =1
o)
L=10; h=1
3r
a: w=t; er«}
b w=0.1; 6,1

C: wal; erx16
d: w=0.1; erde

Q.1 ! Hi/h 10
Fig4-1. Effects of the top wall on the microstrip
capacitance.
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In Fig.4-2, the capacitance 1s sketched versus L/h (lateral
walls distance normalized with respect to the substrate
thickness) for permitivities 1,16, strip width w=1 , substrate
thickness h=1 and top plane distance H1=0.1 and 10. We notice,
as predicted, that the lateral walls distance affects more the
microstrip capacitance for lower permitivities and farther top

plane.

1.3
C/Cmin
L
1.28+ H1 - W eo
e
h o,

1.2
00=1; w=1,; h=1

1.18 -

1.1+
a: H1=10 er= 1
b H1=10 o, =16

1.08 ci H1=0.1 e,~18
@ H1=0.1 o =1

d
1

i
2 3 4 s ] 7 [ } 9(/n10

Fig.4-2. Effects of the Iateral wails distance on

the microstrip capacitance.

Finally, from Figs.(4-1) and (4-2), we conclude that, 33 iong
as both L/h and Hl/h are greater than 10, the structures
behave as quasi-open. These conditions will be used further =z
compare our results to published data where open structures

have been considered.
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4-1-2-1 Convergence rates.

The Mol 1s compared to an

furnction integral egquation technique)

Kammler [18] who considered

thickness, between

analytical technigue

which

LCLINILIYUT .

cireen 3

was applied oy

paraliel conductors with vanrlishing

placed infinite perfectly conducting
planes. In Fig.4-3, the methods are compared for L
convergence rate and we can see that the Mol reaches 1 % error
with less numerical efforts than the IET.
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Fig 4-3 Convergence rates of MoL and IET.
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4-1-2-2 Capacitance matrices of multistrip

structures.
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structures (Filg.4-4).

AL LS L Ll WL L LT L UL

T
{ -
; Er—l
1 1 2 .. . Kammler’'s
: (0.1 0.2 ! structure [18]
i
L

i _

@

1 1 2 Hol

1 ' qo 1w. ¢ e— structure
; . .
H

Fig.4-4. Cross-section of a multistrip structure.

In tables 4-1 to 4-5 , the intrinsic

w

fi

elements of the symmetr

largest structure (N=5), the capacitance matrix converges

re caompared by considering only

ic

the diagonal

an accuracy of 0.3 % in S5 seconds.

capacitance matrices.

TABLE 41 For N=1
Mol Kammier Difference
[
C/eo] 2.4768 2.4818 0.60
pi/m
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TABLE 4-2
For N=2
Mol Kammier Dme;ence
C1 | 2.8048 2.8888 0.54
c12| -1.0467 -1.0379 0.74
Cn - Ca2
ci2 = C21
TABLE 4-4
For N=4
Creo | Motk Kammier lefe;ence
cn 2.8072 2.8914 0.64
Co2 3.3088 3.2938 0.48
Ci2 -1.01358 -1.0001 0.73
c23 -0.0839 -0.9767 0.73
ciz | -0.0798 | -0.0795 0.50
cia | -0.0126 | -0.0126 0.00

C11-C44 ; C22-C33 ; C12-C21=C34-C43
C23:C32 ; C13=C31=C24+:C42 ; C14-C41
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TABLE 4-3

For N=3
C/e0 Mol Kammier le!e;ence
cn 2.8071 2.8914 0.64
c22 3.3078 3.2916 0.47
c12 -1.0138 -1.0064 0.74
C13 -0.0846 -0.0841 0.68
C1 = C33
C12 ~ C21=-C23 - C32
C13 = C31
TABLE 4-5 For N=§
Cre0 Mol Kammier Dlfference
cn 2.8072 2.8014 0.64
Cc22 3.30688 3.26836 0.48
ca3 | 38120 32961 0.48
ctz2 |-10136 | -1.0081 0.73
c23 [-0.9836 -0.8764 0.72
c13 -0.0799 -0.0784 0.82
C24 -0.0766 -0.0761 a.63
C14 -0.0118 -0.0117 0.86
C16 -0.0020 -0.0020 0.00

CN=C8E8 ; C22~C4a4 ; C12-C21=C4A5+C54
C23-C32-C34+C43 ; C13-C31-C36-C53
C24+C42 ; C14=C41=C25:CE2 ; C16-CH1




tty

Our software program for two layers of parallel multistrips is
appliied to a structure that has been analyzed by Kammler [13]
(Fig.4-35).

In table 4-6, our results are compared to those of Kammler and
they show a very good agreement. The percentage difference

does not exceed 0.4 7% within an accuracy of 9.3 % and =

computation time of 7 seconds.

! u _
| il m—— L
1 { 0.2 Kammler
i L—_ structure (18]
L
10
I €t
w =
i — i MoL.
1 1 0.2 structure

|

|

+

Fig.4-5. A two layer monostrip structure.

C W=0.6 W=1
TABLE 4-6 C/eo Mol Kammler Dif .« MoL Kammler Dif .«
C11=C22 Cit 6.157 6.134 0.37 9.166 9.136 0.33
C12=C21
C12 -3.0366 -3.0364 0.36 -5.369 -5.35% 0.26

4-1-3 Capacitance matrix of two layers of three conductors.

The capacitance matrix is determined for two layers of three

-

conductors separated by a dielectric of permitivity 11.5 as
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shown in Fig.4-8.

i 2 3 i
_______---L__j---_ﬁJ---________*
Ep »h
4 S 6 :
_____,_J--l__4--%__J--L____4__*
! w s Eo
‘a
i
€0=1 EP:11.6 a=z10 h=0.5 w=1 s=2
Fig.4-6. Cross-section of a two layer three
conductor structure.
The capacitance matrix obtaineq in 1 min of ccomputations with
an accuracy of 1.5 %, 1is:
[[31.34 0.86 0.06 28.67 0.80 0.05 ]
0.86 31.86 0.86 0.80 28.16 0.80
C 0.06 0.86 31.34 0.05 0.80 28.67 Y
c. |28.67 0.80 0.05 31.3¢4 o0.86 o0.06 P
0.80 28.16 0.80 0.86 31.86 0.86
| 0.05 0.80 28.67 0.06 0.86 31.34 |
We remark, as predicted, that the matrix elements with the
highest values correspond to the diagonal elements, repressnt-
ing the intrinsic capacitances, and to the coupling capaci-

tances between superposed conductors (elements C,,;C4:iC25:Cs:C 3

and

Cea) -

We

valnes C,4:C4:Ca

notice,

and C.»

also,

the

smallest

capacita

n

3

4C

which are

the coupling betw=en

most

distant conductors:

(1 and 8) and (3 and 4..

the
- LT

4-1-4 TEM

parameters of

anisotropic dielectrics.

microstrips for
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The TEM parameters have been determined for Jditrerent
isotropic and anisotropic dielectric substrates arnid sketched

with respect to W/h. We obtained an accuracy of 0.3 % 1in 1

second for each point.In order to compare our results to
those of T.C.Edwards [21], we took a S5apphire =substrate with
permitivity tensor along x,y,z directions (10.5; 11.8; 1t.g).
From Fig.4-7, it 1is noticeable that the permitivity effects
decrease for smaller values of W/h and that the capacitance 1s
more affected, by the ratioc W/h, for higher substrats
permitivities and higher W/h ratios. Similar remarks can De

done for the impedance as expected from its inverse propor-
tionality relation with capacitance. The impedance curve [or

Sapphire agrees well with the results of T.C.Edwards [1, 21

who used finite difference method.

200
C/e0
pF/m

2.6

Zo
ohms
150 }

.

100 ¢
p—T1. )

(10.6-11.6-10.6)

Sepphire

30

.

Impedance — Capacitance

Fig. 4-7 Impedances and capacitances of some Isotropic
and anisotropic dielectric substrates.
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The effective permitivity curves are 1llustrated 1in Fig.4-8.

.......... Anisotropic e lsotropic
14
=14

e =16
12

10

Sapphire
{10.8-11.6-10.6)

e _«11.8

r
‘.—
4

’ 8,"2.5

2.. _’_'____.____4———‘—"“
o 1 1 1 ) S S Y 1 1 i N
0.1 1 w/h 10

Fig 4-8 Effective permitivities of some isotropic and
anisotropic dielectric substrates.

For a Sapphire substrate, our results agree very well with
those of T. C. Edwards [1, 21]. As predicted, we notice that

the anisotropy effects increase for smaller W/h and that the

(31

ffective permitivity is less affected by W/h for smaller

s

ermitivities.

T

4-2 Some three-dimensional problems.

A software program, based on the Mol 1in gquasi-static

approach, has been developed for capacitance calculation

concerning structures having discontinuities in both x and ¥y
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directions and involving two-dimensional discretization. This
program has been applied to two isolated crossing conductors,
rectangular microstrips and to the determination of the
fringing capacitance of an open-end microstrip with 1sotropic

and anisotropic dielectrics.
4-2-1 Coupling capacitance of two crossing conductors:

In MMIC's and MIC's, it happens frequently that the
interconnections cross orthogonally at different dielectrzic
interfaces such as bridges and underpasses 1n which <the
conpling is predominantly capacitive. We have applied our
program to determine and study the coupling capacitance of two
crossing conductors separated- by isotropic and anilsotropic

dielectrics.

4-2-1-1 Effect of lateral walls.

t
s
T

We have studied the magnetic walls distance effects on

coupling capacitance as shown in Fig.4-9.

100
C
Cmax
90
L
% a w
saf n
a
L
70 - er=25
wl/ /717777
80 Top anad -sectional
a/h=6 p and cross-sectiona
views of crooaing atrips
50 F
‘o 1 L

8 10 14 L/n 18

Fig. 4-8 Eftect of the latera! wails on the
coupling capacitance of two crossing conductors.
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thickness h and more distant top plane, the magnetic lateral
walls distance has to be increased to neglect their effect and
determine the actual coupling capacitance.

4-2-1-2 Effect of substrate thickness and anisotropy:

We have studied the influence of substrate thickness csn th

40

coupling capacitance for different conductors widths with
isotropic and anisotropic (Sapphire) dielectrics. For permi-
tivity 3.8, the results obtained within an accuracy of 2 %,
sgree well with those published by Veit et al.[16]. In
Fig.4-10, we notice that as the strip width increases, the
coupling cspacitance goes térough a minimum for thinner
substrates. This avoids the designers the use of prohibitive

siubstrate thicknesses that may be needed in order to r=duc

Re

the coupling capacitance when it is undesired. We remark z2.s<,
that the anisotropy effects are more important for thicker

substrates.

Sapphire
(8.4-11.8-8.4)

W=t & -3.8 ret (18]

O 1 1 1 i 1
0.3 0.9 0.7 Q.9 1 1.3 1.5

h [mm]

—— ISOTROPIC (11.8) == ANISOTROPIC
Flg. 4-10 Etfect of Sapphire substrate thickness on the
coupling capacitance of two crossing conductors.
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4-2-2 Capacitance of rectangular microstrips:
We have

determined the capacitance
strips with

of rectangular
different shapes
strates, (Fig.4-11).

micro-
and isotropilc/anisotropic

sub-

z

S
|
|
L Ly
x 1/

Closed
shielding enclosure
{

Fommmmmmm ooy

/

Dielectric

substrate
! Ground plane

Fig.4-11.

A rectangular microstrip (w;x w;) deposited on a

dielectric substrate of permitivity €, and thickness h.

A dielectric substrate with

microstrip length to

permitivity 1 was considered for
width ratics of 1 and 0.2 in order to
compare our results to previous published data. Also, a



oappnlre suostrate, witn <tuTrle previousS mlCrostrip dimensiuns
ratios, has been wused 1in both 1isotropic (e€,=11.6) and
anisotropic cases (e, =9.4;e,=9.4;¢,=11.6) to illustrate the
anisotropy effect on discontinuity capacitances. The normal-

) . . W, W .
ized capacitance with respect to e€,e,—— (the capacitance of

two parallel plates having dimensions W,xW, separated bty a

dieliectric substrate of thickness h), is sketched in Fig.4-1Z,
with respect to the ratio h/W1l. An accuracy of 1.7 % is
ashieved in 41 min of computations, for each point.
C/op |
8 w2/wt =02, A 1
B D: w2/w1-02 ; e 1.8
C: w2/wl=1,; er-1
& w2/wl=1; er-1\.8
10
......... Anisotropic Sapphire
{9.4-11.6-0.4)
‘ I 1 i 1 R A 1
0.1 1 h/W
Fig 4-12 Normallzed capacitances of rectanguler
microstrip sections.
As predicted, the microstrip capacitance approaches the

parallel plate capacitance for smaller values of h/W and
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faster for a larger microstrip area. Uur curves are very
similar to those obtained by T.Itoh et al. who employed
Galerkin's method in spectral domain [10]), and to those
published by A.Farrar et al. who wused a Green’'s function
matrix method [11]. As remarked previously, we notice that the
anisotropy =ffect, for Sapphire, increases with higher valu=ss

of h/W1.

4-2-3 Open-end microstrip capacitance

The fringing capacitance at the end of a microstrip line may

he defined, as given in [10]}, by:

Liml[C(l)—lCo] (4-1)
oo 2
where C(1) is the total capacitance of the section of lengtn 1
and width W, Co is the lineique capacitance of a uniform
infinitely long line of the same width, and the factor I, Z

accounts for the discontinuities at both ends of the strip. In
the calculations, 1 is not infinite, but some finitely large
value compared to the width beyond which the change of [C(1l) -
1Co] is negligible. We have taken 1=5W and the osbtained
results are very close to those of P. Sylvester et al. [12]
who applied a Green’'s function integral equation technigu=s. In
Fig.4-13, the open end fringing microstrip capacitance normal-
ized with respect to the strip width, 1is sketched versus W/h
for isotropic dielectrics (e,=2.5;16;11.6) and an anisotropic
substrate of Sapphire (e,=9.4;e,=9.4:¢,=11.6). For each polnt an
sccuracy of 2.8 % is obtained with 53 min cof ccmputaticns. We

notice that both the fringing capacitance and 1ts rate S f
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agrees with theoretical predictions. In this case also, the

anisotropy effects increase with smaller values of W/h.

C/W
pF/m

100

Sapphire

anisotropic
. |sotropic

10 1 1 1 ot L 113 1 1 L I Y
0.2 2 wW/m 20
Fig 4-13 Fringing capacitences of open end microstrips.

4-3 Conclusion:

The Mol, necessiting 1in quasi-static mode a shielding
ernclosure, can give accurate results for capaciltances, inpe-
Jdances and effective permitivities that have tc be destermined
for open structures. Also, this method handles, elegantly,
complexe two- and three-dimensional problems such as multi-

layer parallel multistrip structures, crossing conductor

n

3

microstrip rectangular sections and open-end discontinuities

with both isotropic and anisotropic dielectric substrates.
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CONCLUSION

The method of lines, in quasil-static approach, has been
applied to develop a software program for the analysis of MIC
and MMIC structures in two and three dimensions.

We have started with the determination of the conditions in
which the shielding enclosure has negligible effects on the
conductors capacitances; simulating gquasi-open structures. #e
have, also, extended the application of this method tc
two-layer multistrip structures, crossing conductors, micro-
strip rectangular sections and open-ends with anisotrogic
dielectrics. ‘

All the results agree very well with thecretical predictions
and published results obtained by other techniques involving

much more complex approaches. We can confirm also, that =k

44

censidered shielding dimensions yield results very close t

those reached with open structures and that the Mol

oy

o

12}
'\

great suitability to deal with complex MIC two- and three-di-
mensional problems involving isotropic and anisotropic dielec-
rric substrates.

Our software program may be used as a CAD ftool to cptimizs
tne dielectric permitivity, the positionning of MIC interccn-
zctions as well as the sizes of the conductors, <h=
iielectric substrates and the shielding.

However, we encountered memory space and computing tims
croblems with thick dielectric substrates. Hopefully, the

Methiod of Lines 1s being extended to deal with absorbing

w

boundaries and this will reduce considerably the analyses

computing efforts.
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This method should be extended not only to more complex
microstrip discontinuities for the capacitance modeling of the
charges excess occuring at the metalization corners and aprupt
changes in width, but also to hybrid mode approach for more

accurate analyses.



REFERENCES

{11 T. C. EDWARDS.

Foundations for microstrip circuits and design.”
John Wiley & sons, 1981.

{2} K. C. GUPTA, R. GARG, I. J. BAHL.
" Microstrip lines and slotlines.”
Artech. House Inc., Massachussets USA., 1379.

{31 P. WALDOW.
A simulation tool for multiconductor coupled lines
Microwave and RF engineering, pp 27-33, NovsDec 13385,

[4] J A. WEISS.
Microwave propagation on coupled pairs of microstrip
transmission lines,” in advances in microwaves.
New York: Academic, vol. 8, 1974, pp 235-320.

{51 H. A. WHEELER.
" Transmission line properties of parallel strips
separated by a dielectric sheet,” IEEE Trans. Microwave
Theory Tech., vol. MTT-13,. pp 172-185, Mar 1385.

{61 E. YAMASHITA.
Variational method for the analysis of microstrip-like
transmission lines , " IEEE Trans. Microwave Thecry Tech.
vol. MTT-16, pp 528-535, Aug 1858.

{71 R MITTRA and T. ITOH.
Charge and potential distributions in shielded

striplines , " IEEE Trans. Microwave Theory Tech
MTT-18, pp. 149-1586, Mar 13870.

., VOL

[8]1] A. FARRAR and A. T. ADAMS.
" Computation of propagation constants for the
fundamental and higher order modes in microstrip,
IEEE Trans. Microwave Theory Tech., vol. HTT-24,
pp. 456-460, July 19786.

[8 T. ITOH.

" Generalized spectral domain method for multiconductor
printed lines and its application to turnable suspended
microstrips, " IEEE Trans. Microwave Theory Tech Vol
MTT-26, pp. 983-8987, Dec.1978.

{10} T. ITOH, R. MITTRA and R. D. WARD.
" A method for computing edge capacitance of finite and
semi-infinite microstrip lines,” IEEE Trans. Microwave
Theory Tech., pp 847-843, Dec 1872.

-88-



Ll1] A. FAKKAK, A. T. AUAMS.
" Matrix methods for microstrip three-dimensional
problems”™ IEEE Trans. Microwave Theory Tech., vol.
MTT-20, No. 8., pp 487-504, August 1972.

[12] P. SILVESTER and P. BENEDEK.
" Equivalent capacitances of microstrip open circuilts
IEEE Trans. Microwave Theory Tech., vol. MTT-20. No.
pp 511-5186, August 1972.

(13} U. SCHULZ and R. PREGLA.
" A new technique for the analysis of the J
characteristics of planar waveguides, = A
Heft 4, pp. 1688-173, 1980.

(141 S. B. WORM and R. PREGLA.
" Hybrid-mode analysis of arbitrary shaped planar
microwave structures by the method of lines, " IEEE
Trans. Microwave Theory Tech., vol. MTT-32. No. 2.,
pp 191-1396, Febrary 1984.

[15] H. DIESTEL.
" Analysis of planar multiconductor transmissiocn-line
systems with the method of lines, " AEU, Band 41,
Heft 3, pp 188-175, 1987.

(167 W. VEIT, H. DIESTEL and R. PREGLA.
" Coupling of crossed planar multiconductor systems,
IEEE Trans. Microwave Theory Tech., vol. 38, No 3,
pp 2B5-289, March 1980.

{171 B. BHAT and S. K. KOUL.
" Stripline-like transmissicon lines for microwave
integrated circuits ", J. Wiley, 13883.

{181 D. W. KAMMLER.
" Calculation of characteristic admittances and
coefficients for strip transmissicon lines,
Trans. Microwave Theory Tech., vol. MTT-1R, No.
925-837, Nov. 1988,

{19] C. WEI, R. F. HARRINGTON and J. R. MAUTZ.
" Multiconductor transmission lines in multilayered

dielectric media, " IEEE Trans. Microwave Theory T=2ch.

vol.32, No. 4, pp 439-450, April 1934.

[20] H. G. BERGANDT and R. PREGLA.
" Calculation of the even- and odd-mode capacitance
parameters for coupled microstrips, © AEU, vol.Z3,
pp. 153-1&88, 1972.

[21] R. P. OWENS, J. E. AITKEN and T. C. EDWARDS.
" Quasi-static characteristics of microstrip on an

anisotropic sapphire substrate, " IEEE Trans. Microwave

Theory Tech., vol. MTT-24, No. 38, pp 499-505, August
1978.

-89~



[22} V. K. TRIPATHI and R. J. BOCOLO.

" A simple network analog approach for the guasi-static
caracteristics of general lossy, anisotropic, layered
structures, " IEEE Trans. Microwave Theory Tech.,
vol. MTT-33, No. 12, pp 458-4864, Dec. 1835.

{231 B. L. LENNARTSSON.
" A network analog method for computing the TEM
caracteristics of planar transmission lines,’ IEEE
Trans. Microwave Theory Tech., vol. MTT-20, No.3,
pp 536-531, Sept 1972.

f241 S. M. SAAD.

" Review of numerical methods for the analysis of
arbitrary shaped microwave and optical dielectric
waveguides, " IEEE Trans. Microwave Theory Tech., vol.
MTT-33, No. 10, pp 884-8388, Oct 1885.

{251 R. PREGLA.
" Calculation of the distributed capacitances and phase
velecities in coupled microstrip lines by conformal
mapping techniques, " AEU, vol. 28, pp. 470-474, 1872Z.

{267 D. MIRSHEKAR-SYAHKAL. -
" 3pectral domain method for microwave integratead
circuits ", J. Wiley & sons INC., 1830.

{271 V. F. FUSCO.
" Microwave circuits analysis and computer-aided d=sign |,
PHI, 1887.

[28] 0. A. LISKOVETS.

The method of lines,” Review, Differential nye
Uravneniya, vol. 1, No. 12, pp. 1688682-1878, 1385.
{291 U. SCHULZ.
" On the edge condition with the method of ines 1in

11
planar waveguides, " AEU 34 [1880], 176-173.

[30] R. PREGLA and W. PASCHER.
" The Method of Lines,” in numerical technigues for
microwave and millimeter wave passive structures,
T. Itoch, ed., (J. Wiley, Newyork, 1988), Chap. ©,
pp. 381-446.

[311 J. H. MATHEWS.
“ Numerical Methods for Mathematics, Science, And Engi-
neering ', 2nd editicn, PHI-Editions, 198Z.

{321 G. DAHLQUIST.
" Numerical methods”, in Automatic Computation, PHI,
INC., New Jersey, pp. 157-159, 1974.
{33] J. C. MAXWELL.
A threatise on electricity and magnetism, " 3rd =d.,
vol. 1. New York: Dover, 1954, pp. 23B-297.

-90-



Ld44]

[35]

[36]

£37]

(38]

[391]

(401

[41]

[42]

WiBMEK ana K. H. JANDEN.

Determination of coupling capacitance of underpasses,
air bridges and crossings in MIC s and MMIC s,
Electron. Lett., vol. 23, No. 7, pp. 344-346, 1937.

UWANO, R. SOPRRENTINO and T. ITOH.

Characterization of strip line crossing by transverse
resonance analysis, " IEEE Trans. Microwave Theory
Tech., vol.MTT-35, pp. 1389-1378, Dec 1887.

MAEDA.
An analysis of gap in microstrip ftransmission lines,
IEEE Trans. Microwave Theory Tech., vecl. MTT-2Za, No. &,
pp 391-387, June 1372.

E. RUEHLI and P. A. BRENNAN.
Efficient capacitance calculations for three-
dimensional multiconductor systems, " IEEE Trans.
Microwave Theory Tech., vol. MTT-21, No.2, pp 75-3Z,
Feb 1873.

G. KEEN, M. J. WALE, M. I. SOBHY and A. J. HOLDEN.
Quasi-static analysis of electrooptic modulators by the
method of lines, © Journgl of lightwave technology,
vol.8, No. 1, pp 42-50, Jan 1880.

AFFANE , A. OUADI and H. BOURDOUCEN

Quasi-static analysis of integrated circuits para-
-1lel interconnections”, JETA conference,

TUNISIA, 1882.

AFFANE and H. BOURDOQUCEN.

Quasi-static analysis of hybrid and monolithic integra
-ted circuits interconnections ', 43rd Electrcnic Compo
-nents and Technology Conference, Orlando, Florida,
USA, pp 1055-1080, June 3-5 1383.

ISSAQUN.
A quasi-static analysis of MMIC’ transmission-line stru
-ctures by the Method of Lines ", Magister thesis,

No 01\82, INELEC, BOUMERDES, ALGERIA.

BOUKBIR.
Etude et développement d analyseurs éléctromagnétigus=s
pour circuits intégrés monolithiques et hybrides dans
la bande millimétrique & partir de la méthcde des
lignes ", Doctoral thesis, No D92-13, INSA, RENNES,
FRANCE.



APPENDIX A

LAPLACE 'S EQUATION DERIVATION:

From Maxwell s equations,

V.E=p (A-1)
where V is the differential vector operator:
> J 2
— R+t —F+—32 (A-2)

oX oy 2z

E is the electric field and p the electric charge density. As

E is a gradient of an electric potential V,

E=-VV (A-3)

leading to Poisson's equation:
V.VV =9V =p (A-4)

Since the electric potential is evaluated in dielectric
substrates where p=0, then the electric potential satisfies

Laplace’'s equation given by:

2%V 2%V v
+ -+ =
Ox? 23y? 9z?2

(A-95)

or

ViV =0 (A-6)
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APPENDIXB

SUMMATION OF MICROCAPACITANCE ELEMENTS:

Consider a strip conductor k whose width is discretized by p

lines leading to an electric charge vector:

(ku’ng’“"QkP)t

If the conductor k 1is at potential V,, then the

microcapacitance matrix C,, relating the conductor charge

vector to potential vector, 1s as follows:

g | [Ccn Co o o G [ Ve
o U8 : : Coe : Vi,
. = . . [ . L] . . (B—l)
LQkp_ _Ckpl CkpZ ) ' ) Ckpp_J_Vkp4

The intrinsic capacitance of the conductor 1is C,. such that

the conductor charge and potential are related by:
Qr=CuV (B-2)

As the conductor potential i1s uniform, then (eg. B-2) yields:

p P
2 Qg = <?1Ck‘/ Vi (B-3)

i
j-1

Hence, the intrinsic conductor capacitance is cobtained by
summing up the microcapacitance elements.
The mutual capacitance between conductors n and n

(off-diagonal elements of capacitance matrix) is obtained by
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considering the microcapacitance matrix relating the potential

vector of conductor m and the charge vector of conductor n or

inversly.
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