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Microwave Integrated Circuits (MIC's) and High Frequency

Digital Circuits (HFDC's) have reached a high degree of

complexity arising essentially from increasing integrations

levels and the use of multilayer parallel and crossing

microstrip interconnections as well as arbitrary shaped

totalizations on different interfaces of isotropic and

anisotropic dielectric substrates.

Presently, taking into account the constraints in MIC's

dimensions, CAD tools are necessary to optimize the coupling

capacitances and inductances between conductors as well as the

fringing capacitances occu-ring on the metalization

discontinuities.

In our work, we have applied the Method of Lines to develop

a software program to analyze, in quasi-static approach, some

microwave structure and components. The Method of Lines was

selected because of its numerous advantages among them the

suitability to deal with complex microwave structures, no

relative convergence problem, low memory space requirement and

no spurious physical results.

We have extended the application of this method to two

layers of parallel conductors, isolated crossing conductors as

well as rectangular and open-end microstrips with vanishing-

thickness deposited on anisotropic dielectric substrates of

Sapphire. The results agree well with theoretical predictions

and published data where more complex mathematical approaches

have been used.

Also, some of the three-dimensional problems have been
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analyzed in quasi-static with an emphasis on the anisotropy of

Sapphire which is prefered for its various known advantages in

microwave integrated circuits.
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INTRODUCTION :

In Microwave Integrated Circuits (MIC's), microstrip

components are the essential elements regarding their

technological process advantages. They are involved in the

form of lumped elements having all types of discontinuities

and in the form of multilayer parallel and/or crossing

interconnections relating the microwave active and passive

devices [1],[2].

In reality, even for a simple microstrip structure, the

analysis is made very complicated because of the singular

behaviour of the electric and magnetic fields at the

air-dielectric interface and particularly at the conductor

edges and corners. We can imagine the analysis complications

encountered with the microwave and high speed digital

integrated circuits fabricated during the two last decades and

involving higher integration, inhomogeneous, anisotropic and

gyromagnetic dielectric substrates. All these technological

needs and constraints, increasing with circuits complexity,

have stimulated, during many decades, the development of

various numerical and pseudo-numerical analysis techniques

that are strengthing numerous CAD tools. Part of these methods

are based on the quasi-static approach which is valid in the

low gigahertz region and, even more, provides design guidance

and serves as a basis for solution of the full-wave

propagation problem. The quasi-static analysis is necessary

knowing that a full-wave analysis of a complete monolithic

integrated circuit will not be possible in the immediate



future with acceptable numerical expense [3].

With this analysis approach, mu1ticonductor transmission

lines in multilayer media have been investigated by means of

Green's function techniques [4], conformal mapping [5],

variational method [6], Fourier transform method [7], Fourier

integral method [8], and generalized spectral domain analysis

[9]. For three-dimensional problems, caused mainly by

arbitrary shaped conductors and discontinuities, different

Green's function methods have been applied :

_ Galerkin's method in spectral domain [10].

_ Matrix inversion method [It].

_ Integral equation technique [12].

All the precited methods use generally, either Green's

functions that are not easy to formulate for complex

structures or expansion functions whose truncations may rise

convergence problems due to the fields singular behaviour at

conductors and dielectric discontinuities.

A method, recently applied to MIC problems analysis, called

in mathematical literature "the method of lines (MoL)", has

been used to calculate microwave elements, in 1980, by Shulz

and Pregla [13]. This method is very efficient for the

analysis of planar and quasi-planar microwave and optical

waveguide structures. The MoL has been extended to

three-dimensional problems, in 1984, by Worm and Pregla [14],

applied, in quasi-static, firstly to parallel multiconductor

systems, by Diestel in 1987 [15], and later to isolated

crossing conductors, by Veit et al in 1990 [16]. This method

presents numerous advantages:
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_ easy mathematical formulation.

_ high accuracy with little numerical effort, unlike finite

difference method.

_ suitability to deal with complex two and three-dimensional

problems.

_ no relative convergence problem.

_ no spurious solution, unlike finite element method.

_ no necessity of prior knowledge about fields, unlike

spectral domain method.

In quasi-static approach, with the method of lines,

Laplace's equation is solved analytically in the dielectric

subtrates by discretizing one space variable for constant

cross-section structures and two variables for arbitrary

shaped conductors. The last space variable perpendicular to

the dielectric interfaces is kept continuous regarding the

uniformity of the dielectric substrates. Hence, an analytical

expression is found for the electric potential on each

discretization line, by applying the continuity conditions to

the dielectric interfaces and the boundary conditions to the

shielding enclosure. The discretization yields vectors of

electric potentials and charge densities that are related by a

matrix that is reduced to the elements corresponding to the

conductors and inverted to obtain the conductors

microcapacitance matrix. Finally, by summing the appropriate

terms, the lumped capacitance is determined in the case of

arbitrary shaped conductors; while the lineique capacitances

are determined for constant cross-section structures.

In our work, we have applied the method of lines in
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quasi-static approach to analyze some MIC's problems. We have

used this method, assuming infinitesimal thickness conductors,

to calculate the microstrip TEM parameters (lineique

capacitance, impedance and effective permitivity), to study

the effects of the shielding enclosure on a microstrip

lineique capacitance, and to determine the Maxwellian

capacitance matrix of two arrays of parallel conductors

separated by two dielectric substrates. We have investigated

the effects of the strip width to substrate thickness ratio on

the capacitances of a microstrip, two isolated crossing

conductors and some microstrip discontinuities. The

investigations have been done considering different dielectric

permitivities with an emphasis on the anisotropy effects of

the Sapphire dielectric.

In chapter one, an overview is given about the evolution of

MIC's, focusing on the microstrip interconnections,

discontinuities and quasi-static methods used to analyze them.

In chapter two the method of lines with one-dimensional

discretization is presented with a detailed analysis of two

multiconductor arrays separated by two dielectric substrates.

Then, clarifications are given about the positioning of the

discretization lines on and between the conductors and near

the shielding walls. Finally, an illustrative example is given

about the calculation of the capacitance of a microstrip with

all the steps and intermediate numerical results as well as

the description of the software program.

In chapter three, this method is applied with

two-dimensional discretization to analyze three-dimensional
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problems, namely, the coupling capacitance between two

isolated crossing conductors, microstrip sections and

discontinuities. Then, the application of this method, to

anisotropic dielectrics, is outlined. Finally, the software

program is described.

In chapter four, the results obtained with the

semi-analytical method of lines are compared to those reached

with other analytical and numerical techniques in the cases of

two and three dimensional problems; with an emphasis on the

anisotropy effects of Sapphire.

Finally, the possible and necessary extensions of the

application of the MoL to more MIC's and MMIC's structures and

components are summarized in a conclusion.



CHAPTER I

GENERALITIES:

In this chapter, the history of the development of MIC

components is given as well as the analysis methods employed

for such elements which are mainly: microstrip transmission

lines and microstrip sections with various discontinuities

[17].

1-1 Evolution of nicrowave integrated circuits:

1-1-1 Concept of lumped parameters:

Low frequency electronic circuits are generally composed of

lumped elements, active devices and interconnections between

the various passive elements and active devices. Typical

lumped elements are capacitors, inductors and resistors whose

values are assumed to be concentrated in the corresponding

elements. This assumption is valid for low frequencies at

which the dimensions of the lumped elements are much smaller

than the wavelength under consideration. However, at higher

frequencies, the components dimensions and wavelength become

comparable and the apparition of stray elements begins under

the form of inductance between the capacitors plates,

capacitance between inductor turns and interconnections

inductances and capacitances. In these conditions, also

electromagnetic radiations occur and all these effects become

significant at microwave frequencies.
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i-i-^ uoncept or distributed parameters:

The previous limitations of the lumped circuits prompted the

development of a new approach called the distributed circuit

approach. In the thirties, circuits composed of transmission

lines in which the electromagnetic fields are bound in the

transverse direction came into existence. Among these

transmission lines the coaxial line and the rectangular

waveguide became the most popular. The emphasis was shifted

from the currents flowing inside the conductors to the

electromagnetic waves propagating in the space inside these

transmission lines. In a coaxial line, the lowest order mode

is a transverse electromagnetic (TEM) mode in the case of

which the transmission line can be characterized by

capacitances and inductances distributed along the length. In

the rectangular waveguide, the electromagnetic fields

configuration is described in terms of transverse electric

(TE) and transverse magnetic (TM) modes and there exits an

useful analogy between the fields strength and voltages and

currents in suitably loaded transmission lines, thus enabling

the guide to be represented as a distributed networtk.

1-1-3 Microwave semiconductor devices:

During the second world war, microwave circuits and

technology using coaxial lines and waveguides got a rapid

development leading to the emergenge of klystrons, magnetrons,

travelling wave tubes, etc ...

In the early 1950's, when the microwave technology, after war

time secrecy and military applications, penetrates the civil

world, a tremendous revolution was achieved in both techniques
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technology brought solid state devices and led to a rapid

progress in microwave technology after 1965. A number of

devices were developed to perform various microwave functions

such as power generation, mixing, switching, amplification,

etc. These include the IMPATT diode, Gunn diode, Schottky

barrier diode, PIN diode, Gallium Arsenide field effect

transistor and Silicium bipolar transistor. Small size

semiconductor devices were available and it was necessary to

find transmission media compatible with these devices.

1-1-4 Microwave transmission lines:

The solution was the use of planar transmission lines whose

first kind, called "strip transmission line or stripline", was

proposed by Barret and Barnes in early 1951. The structure is

mainly a strip conductor sandwitched between two dielectric

substrates with conductive plating on the two outer sides ,

Fig.l-la. In 1952, another basic transmission line called

"microstrip line" was conceived. It consists of a dielectric

substrate with a strip conductor on one side and a conducting

plane on the other side, Fig.l-lb. Unlike the stipline, the

microstrip is basically an open structure and requires a high

dielectric constant substrate to confine the electromagnetic

fields near the strip conductor. In the 1950's, these

transmission lines were analyzed by studying their impedance,

radiation, discontinuity effects, etc. However, microwave

components using these elements did not become popular because

low loss dielectric materials with reproducible

characteristics, at microwave frequencies were not available.
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i-x-u niuruwave integrated circuits:

During the 1960's, with progress in materials technology and

fabrication processes, namely the deposition of metallic films

using the thin and thick film technologies, the interest in

planar transmission lines was revived. The integration of

planar transmission lines resulted in the beginning of the

evolution of a new circuit form called Microwave Integrated

Circuits (MIC's) in the late 1960s. In 1968, a third type of

planar transmission line named the "slot line" was proposed by

Cohn. This structure consists of a slot etched from the

conducting layer on one side of the dielectric substrate, the

other side being bare, Fig.l-lc. Subsequent, various other

planar transmission lines, which form variants of the

stripline, microstrip line and slot line were evolved ever

widening the scope of applicability of MICs. Among them, the

suspended stripline, suspended microstrip, inverted

microstrip, coplanar waveguide and coplanar strips.

1-1-6 Hybrid technology:

Development in vacuum deposition techniques and

photolithography allowed the realisation of lumped circuit

elements such as the single turn inductor, spiral inductor,

interdigitated capacitors and resistors. The process of

fabricating MICs by soldering or bounding semiconductors

devices on the passive circuit composed of planar transmission

lines and lumped elements, has been termed "hybrid technology"

and the circuits realized are called "hybrid MICs".

Since 1970, an important progress in hybrid MICs has led to

compact integrated modules with highly reliable performance.
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rreseriLiy, me monontnic tecnnology permits the insertion of

the active devices in a semiconducting substrate that contains

passive elements and interconnections, resulting in a much

higher degree of miniaturisation and integration. The

materials used are namely Silicon (Si) and particularly

Gallium Arsenide suitable for building Monolithic Microwave

Integrated Circuits (MMICs).

1-1-7 Monolithic microwave integrated circuits:

The last two decades have been a revolution in techniques

and technologies of microwave systems through the use of MIC's

in microwave radars, communications, navigation and sensing

systems. With the emerging GaAs technology, MMIC's are

receiving increasing attention for the next generation of

microwave components. The monolithic approach offers promising

future for millimeter-wave IC's and for systems desiring

extremely wide band capabilities.

1-2 MIC's interconnections:

1-2-1 The main interconnections:

In both hybrid and monolithic microwave integrated circuits,

planar transmission lines are the basic interconnection media.

There are three main versions of the planar transmission lines

the stripline, the microstripline and the slot line

(Fig.1-1).

There are other variants of these lines - suspended lines,

suspended microstrip, inverted microstrip, coplanar waveguide

and coplanar strips (Fig.1-2).
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1-2-2 Propagation modes in the interconnections:

In a stripline, the dominant mode of propagation is the

transverse electromagnetic (TEM); while in a microstripline,

as the medium is inhomogeneous, the TEM mode can not exist.

However, at low microwave frequencies, the propagation is

close to TEM; the longitudinal magnetic and electric fields

are negligible compared to the transverse fields and the mode

is said "Quasi-TEM". In a slotline, the dominant mode is

essentially non TEM.

1-2-3 Microstrip interconnections:

Regarding the wide applications of microstrip lines in

MIC's, we will focus on these transmission lines. They are

very useful for the microwave and millimeter-wave hybrid and

monolithic integrated circuits required for solid state

systems because of their simplicity and planar structure. A

planar configuration implies that the characteristics of the

circuit element can be determined by the dimensions in a

single plane.

Transmission lines and passive lumped or distributed circuit

elements, which are manufactured and assembled from planar

metal conductors or conducting strips on insulating

substrates, are essential basic elements in MIC's and MMIC's.

The metal strips or microstrips are deposited by thin film or

thick film technology on dielectric substrates. The processing

steps are substantially different compared to conventional

coaxial and waveguide circuit technology.
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i i- -3 me um.iusi.inj Ltaiismissiuii lines aavantages:

Circuit built with microstrip transmission lines or microstrip

components have three important advantages:

- The complete conductor pattern can be deposited and

processed on a single dielectric substrate which is supported

by a single metal ground plane. Such a circuit can be

fabricated at a substantially lower cost than waveguide or

coaxial circuit configurations.

- Active and passive devices can be bonded directly to metal

strips on the dielectric substrate.

Devices and components incorporated into IC's are

accessible for probing and circuit measurements ( with some

limitations imposed by external shielding requirements).

Although the microstrip has a very simple geometric

structure, the electromagnetic fields involved are actually

complex. Accurate and thorough analyses require quite

elaborate mathematical treatment.

1-3 MIC discontinuities:

Microwave integrated circuits based on microstrip

transmission lines involve necessarly discontinuities in the

strip conductors . These discontinuities result from abrupt

changes in the geometry of the strip conductor. Their

characterization is therefore essential for accurate design of

MIC's as well as the capacitance calculations of arbitrary

shaped conductors located on parallel planes.
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1-3-1 The general discontinuities.

The discontinuities generally encountered in practice are of

the following types:

-Abruptly ended strip conductor.

-Rectangular conductor patch.

-Series gap in the strip conductor.

-Step change in width.

-Right angle bend.

-Bends of arbitrary angle.

-Tee junction.

-Cross junction.

-Slot in the strip conductor.

( see Fig.1-3.)

1-3-2 Discontinuities modelization.

In general the dimensions of the discontinuities are much

smaller than the wavelength, and hence, they can be

approximated by equivalent circuits consisting of various

lumped elements resulting from the accumulated charges at the

end regions of the conductors. There will be electric currents

flowing in the end region, corresponding to the extra charges,

and there will be a measurable amount of radiated energy loss.

Consequentially, the discontinuity physically realized, in

fact, has the network appearance of an PLC network:

a resistive component to account for the radiated energy, an

inductive component to represent the extra currents and a

capacitive component corresponding to the extra charges on the

discontinuity end corners [1],[2], and [12].
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(a) Abruptly ended strip conductor.

(c) Series gap in the strip conductor.

(e) Right angle bend.

(g) Tee junction.

Fig.1-3. Top views of the generally

encountered nicrostrip discontinuities.
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In practical work, for the frequency range up to 1 GHz, the

electromagnetic energy lost by radiation and through inductive

components is negligible according to published experiments.

At frequencies in the range 1- 20 GHz, the radiation and the

currents redistribution at the conductor corners become

measurable and significant. However, the capacitance aspect is

the dominant part for many discontinuities such as open-end,

square and rectangular microstrips.

1-4 Mathematical nethods for nicrostrip analysis:

The various methods of microstrip analysis may be divided

into three groups [2].

The first group comprises quasi-static methods as the

modified conformal transformation method, finite difference

method (FDM), integral equation techniques and variational

method in Fourier transformed domain. In this approximation,

the nature of wave propagation is considered to be pure TEM

and microstrip characteristics are calculated from the

electrostatic capacitances as will be detailed further

(section 1-5). It is found that this analysis is adequate for

designing circuits at the lower microwave frequencies (below

X-band) where the strip width and the substrate thickness are

much more smaller than the wavelength in the dielectric

material.

In the second group, called the dispersion models, the

deviation from the TEM nature is accounted for

quasi-empirically. Some parameters of the model are determined

such that the final expression agrees with the known

experimental (or exact theoretical) dispersion behaviour of

the microstrip. This group comprises: coupled TEM and TM modes
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models, ridged waveguide model, planar waveguide model and

coupled TEM/TE-lines models.

The third group, in which the full-wave analysis is

accomplished by considering the hybrid nature of the mode of

propagation, includes: integral equation method, Galerkin's

method in FTD for open microstrips. For enclosed microstrips:

finite difference method, integral equation methods and

Galerkin's method in FTD.

1-5 Microstrip quasi-TEM analysis:

When at least two conductors are located in a homogeneous

dielectric medium, the TEM analysis is applied. In the case of

a microstrip, the two conductors, i.e, the strip and the

ground plane are no more in a homogeneous medium as shown in

Fig.1-1. Gupta et al.[2] have used Maxwell's equations to

convincingly demonstrate the necessity for longitudinal

components of electric and magnetic fields. This is clearly

inconsistent with a pure TEM propagating mode. However, at

lower microwave frequencies ( below X-band ), where the strip

width and the substrate thickness are much smaller than the

wavelength in the dielectric material, the propagation can be

considered TEM with a good accuracy. In this frequency range,

the longitudinal magnetic and electric fields components are

neglected compared to the transversal fields and the

quasi-static analysis yields to good results.

In this approach, the microstrip transmission

characteristics are calculated from the values of two

electrostatic capacitances Ca and C [2]:

First, Ca is determined for a unit length of the microstrip

with the dielectric substrate replaced by air.
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Second, C is calculated for a unit length of the microstrip

with the dielectric substrate present.

Then, values of characteristic impedance Z0, phase constant f3

and the effective permitivity ee// can be written in terms of

these capacitances as follows :

Zo =
1

{CCa
d-1)

P = Poahr- (1-2)

eff (1-3)

w

Po=- (1-4)

where c is the velocity of the electromagnetic waves in free

space. ea// is the effective dielectric permitivity that takes

into account the fields in the air region, 0O is the phase

constant in free space and w is the wave radial frequency.

The electrostatic capacitances per unit length Ca and C can

be calculated by relating the strip electric potential to its

charge density in the transversal plane (perpendicular to the

propagation axis). The electric potential is evaluated in each

dielectric medium by solving Laplace's equation, which is

deduced from Maxwell's equations (see Appendix A). Then,

applying the continuity conditions to the air-dielectric

substrate interface containing the conductor, an expression

relating the strip charge density to its electric potential

is determined leading to the electrostatic capacitance per

unit length.
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1-6 Mathematical methods applied to quasi-TEM approach:

There are many methods used in quasi-static approach for the

calculation of the electrostatic capacitance [2], [17 to 27].

They can be classified in two groups: the first including

methods dealing with two dimensional problems and the second

containing techniques for three-dimensional problems. For

constant cross-section or infinitely long microstrip

structures, the calculation of propagation parameters reduces

essentially to the solution of a two dimensional Laplace's

equation subject to boundary conditions determined by the

structure geometry. There are many methods which exist to

solve this problem. The commonly reported ones are the

conformal transformation method, the finite difference method,

the integral equation technique and the variational method in

Fourier Transformed Domain (FTD).

1-6-1 Constant cross-section structures:

1-6-1-1 Conformal transformation method:

This method, introduced by Wheeler [5], is based on

transformations from the microstrip plane to a parallel plate

capacitor plane where the dielectric substrate cross-section

is no more homogeneous but partially filled with air. The

transformation functions depend on the strip width to

dielectric substrate ratio and lead to closed formulas for the

microstrip impedance [17].

The method is exact and has been applied to obtain closed form

expressions for the characteristic impedance of the

homogeneous stripline. However for structures with
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inhomogeneous medium, the application of this method becomes

prohibitively complicated and the conductor thickness as well

as the microstrip enclosure are ignored.

1-6-1-2 The finite difference method:

This method is based on the numerical solution of Laplace's

equation in finite difference form [17], [21] and [27]. It is

suitable for enclosed microstrip and the conductor thickness

can easily be incorporated into the analysis. In this method,

the electric potential is considered at grid points where it

is expressed in terms of the potentials of the four points

that are in the immediate vicinity. A " relaxation method " is

used to determine the grid points potentials with an allowed

error. The charge on the strip is calculated by integrating

the potential over the conductor surface and finally, the

capacitance is determined as the charge to potential ratio.

1-6-1-3 The integral equation method:

In this method, the microstrip analysis is formulated in the

form of integral equation rather than differential equation

[17], [18]. This analysis is divided into two points. First,

the formulation of a suitable Green's function and second, the

solution of an integral equation expressing the electric

potential in terms of the Green's function and the charge

distribution. The solution is obtained by writing the integral

equation in matrix form where the potential vector is related

to the charge vector by a matrix which, when inverted, leads
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to the conductor capacitance. Green's function for the

microstrip configuration is obtained from the theory of

images.

1-6-1-4 The variational method in Fourier Transformed Domain

(FTD) :

The search of microstrip analysis techniques which are

computationally more efficient has led to the "Variational

method in FTD" [6], [17]. In fact, there are two significant

features of this method. First, a variational method of

calculating the capacitance from the charge density which

avoids the need for knowing the charge distribution

accurately. Secondly, the major portion of analysis is carried

out in FTD with the result that the integral equation for the

potential gets replaced by an ordinary product of charge

density and Green's function. Then, using Parseval's formula,

the capacitance is expressed with the transformed charge

density and potential. This latter is obtained by solving

Laplace's equation which becomes ordinary in the transformed

domain and the transformed charge density is calculated by

using an approximate trial function that maximizes the

capacitance.

1-6-2 Arbitrary shaped metalizations:

For the discontinuities, the problems become

three-dimensional and the static values of capacitances can be

evaluated by finding the excess charge distribution near the

discontinuity end corners. The different methods used for the

discontinuities capacitance calculations have been treated by
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many autnors: rarrar ana Adams LHJ, Maeda [36], Itoh et al.

[10], Silvester and Benedek [12]. Among these methods : matrix

inversion method, variational method and Galerkin's method in

the spectral domain.

1-6-2-1 The matrix inversion method:

The matrix inversion method is a very general approach to

find the static capacitance of a conductor of any arbitrary

shape on the top surface of the dielectric substrate [11]. In

this method, the total conductor area is divided into small

subsections over which the charge density is assumed uniform.

The potential at any subsection due to the other subsections

charges is expressed in matrix form with the help of a

three-dimensional Green's function that is obtained using the

theory image. Finally, the total conductor capacitance is

calculated from the matrix relating the strip potentials and

charges.

1-6-2-2 The variational method:

The method uses the variational principle for formulating

the capacitance problem [17], [36]. The capacitance is

expressed with a suitably chosen potential Green's function

and the charge distribution that is used as a trial function

to maximize this capacitance.

1-6-2-3 The Galerkin's method in FTD.

In this method a two-dimensional Fourier transform is

applied to both electric potential and charge density. Then,
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Poisson's equation, the boundary and interface conditions are

written in spectral domain. The transformed Poisson's equation

is written, using Galerkin's method, in matrix form leading to

an expression of the conductor capacitance [26].

1-7 The method of lines.

In quasi-static approach, the method of lines (MoL), as

called in mathematical literature, is applied to transform

Laplace's equation from the partial differential form to an

ordinary differential equation by discretizing all the space

variables except one which allows an analytical solution [13

to 16]. Then the continuity conditions applied to the

interfaces lead to a matrix that relates the conductors

electric charges to their potential yielding the capacitance

matrix.

1-8 CONCLUSION:

We have overviewed some of the principal MIC components as

well as the overall methods employed to analyze them. From

comparison, we conclude that the MoL is the simplest in

mathematical formulation with no need of Green's function or

series expansions. In the next chapter, we will see how

suitable this method is for the analysis of multilayer

parallel multiconductor microwave structures.
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CHAPTERS

THE METHOD OF LINES APPLIED TO ONE-DIMENSIONAL DISCRETIZATION.

2_1 Introduction

The growth of microwave and high speed digital integrated

circuits has rised the necessity to analyze the

interconnections problems. In both monolithic microwave

integrated circuits and microwave integrated circuits, the

optimal positioning of the strips on different dielectric

interfaces is a key factor in- design. A compromise must be

found between the IC size and the unwanted coupling between

adjacent elements in high density integrated circuits.

A full-wave analysis of complete MIC's will not be possible

in the immediate future with acceptable numerical expense. As

alternative solutions, quasi-static field theoretical analyses

have been used to analyze such integrated circuits. Many

numerical and pseudo-numerical techniques, in quasi-static

approach, have been used for evaluating the capacitance and

inductance matrices of multiconductor systems. Among these

methods, as has been presented in the previous chapter, we can

enumerate: the integral equation techniques [18], the method

of moments [19], [20], the finite difference method [21], [1],

The network analog method [22], [23], the conformal mapping

technique [24], [25], and the variational method [6], [26] and

[27].

Recently, Henrich DIESTEL has applied the method of lines

(MoL) to analyze, in quasi-static approach, a monolayer
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muinuuiiuui;i,ui sysieiii wi.Ln lsuLrupxc nomogeneous dielectric

substrate and vanishing thickness strips [15].

The Method of Lines is applied in quasi-static approach by

considering the electric potential function and solving

Laplace's equation after converting it from the partial

differential form to an ordinary one. This is obtained by

discretizing, with lines parallel to the y direction, the

independent variable x in which conductors discontinuities

occur on the dielectric interfaces and keeping continuous the

independent variable y which contains the homogeneous

dielectric substrates.

Dirichlet's conditions hold on lateral electric walls that

belong to the shielding, where the electric potential equals

zero while the boundary conditions are set on top and bottom

perfect conducting planes composing the shielding as well.

The discretization yields to a system of algebraic equations

relating the electric potentials and charges that are in

vector forms. After some matrices manipulations and

diagonalization, to decouple this system of equations, an

expression is found for the electric potential vector in each

dielectric substrate. Applying the continuity conditions to

the interfaces containing the conductors, the potential

vectors are related to the charge density vectors, whose

elements are charge densities between consecutive lines, by a

real and symmetric matrix. The capacitance is defined only for

conductors; then this matrix is reduced to the non-zero charge

density elements of the strips and inverted to obtain a

microcapacitance matrix relating the "sub-charge densities" of

the strips to the "sub-potentials". Finally, the

macrocapacitance between conductors is formed by assembling

and summing up the microcapacitance elements according to the
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This chapter deals with the MoL in quasi-static approach,

applied to constant cross-section structures that is with one

dimensional discretization. In section two, the history of the

MoL is given with the method introduction in the MIC's field.

In section three, the method using sinusoidal discretization

is clarified by a detailed analysis of a multilayer

multiconductor structure followed by an illustrative example

and the description of the developed software program.

2-2 The Method of Lines.

The Method of Lines was developed by mathematicians in

order to solve partial differential equations [28]. This

method has certain similarities with the finite difference

method ( FDM ) from which it differs in the fact that for a

given system of partial differential equations, all but one of

the independent variables are discretized to obtain a system

of ordinary differential equations. This semi-analytical

procedure allows an analytical solution and, by this, saves a

lot of computing time. The MoL has been applied to various

problems in theoretical physics [28]. The advantages of this

method are easy formulation, simple convergence behaviour,

suitability for comlexe structures, no spurious solution and

no need of prior knowledge about the potential function. Also,

there is no need to specify specially suited expansion or

Green's functions; which is particularly advantageous to the

analysis of complex microwave structures. With conventional

FDM, large systems of equations are solved while with this

pseudo-analytical method the system of equations is reduced

considerably.
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SHULZ [13] for the calculation of planar microwave structures

which are generally composed of one or more dielectric

substrates containing conductors at the interfaces. Regarding

the discontinuities due to the conductors, one space

independent variable is discretized for constant cross-section

structures while two space variables are discretized for the

other arbitrary shaped planar microwave structures. The third

space variable perpendicular to the interfaces planes is kept

continuous as the dielectric substrates are homogeneous.

Dirichlet's and/or Neumann's conditions hold on electric

and/or magnetic walls disposed perpendicularly to the

discretized variable direction while boundary conditions hold

on both top and bottom perfectly conducting planes.

The MoL has no relative convergence problem caused by the

singular behaviour of the fields at the conductors edges and

affecting the techniques where series expansions are

truncated. In this method all functions are expanded

corresponding to the number of lines and hence with the same

accuracy. As a consequence the results always converge

correctly ; however the rate of convergence depends on the

positioning of the conductors.edges between the discretization

lines [29], [30].

2-3 The Method of Lines for quasi-static case.

2-3-1 Lateral boundary conditions:

In quasi-static approach, the partial differential equation

(Laplace's equation) is solved for the electric potential

♦ (*.*)• In order to have a unique solution, Dirichlet and/or
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Neumann conditions must hold on electric and/or magnetic walls

that are normal to the independent space variables.

With the MoL, the Dirichlet's condition ( 4>(JC,y) -0) is

realized by positioning the electric wall on a discretization

potential line, while the Neumann's condition ( *♦(*.>)
0 ) is

obtained by locating a magnetic wall between two

discretization lines having the same electric potential, as

may be allowed for symmetric structures (Fig. 2-1).

The four possible left-right boundary conditions are:

Top ground plane

DIRICHLET -

DIRICHLET —

NEUMANN

NEUMANN

- DIRICHLET

- NEUMANN

- DIRICHLET

- NEUMANN

Strip Magnetic wall (N)

• /
el. I
wall

> f Electric wall

(D) I
«

(D)

I

I

I Discretization

I

I

line i+2

I

* i-2 % *1 ¥i*i vi*2 f
i+3

Botton

ground plane

Fig.2-1. Illustration of Dirichlet's and Neunann's conditions.
(D) : Dirichlet.
(N) : Neunann.
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2-3-2 Analysis of a multilayer multistrip structure:

Consider the structure shown in Fig.2-2 in which five

dielectric layers having permitivities constants (e, ,e2,...,es)

are bounded by perfectly conducting planes. At the dielectric

interfaces 1 and 3, N lossless, zero thickness and infinitely

long conductors are located. In the quasi-static analysis the

electric potential function Kx.y) for each region (I,II,...,V)

has to satisfy the partial differential equation:

a24>(*.y),*24>(*.y)
dy2 dx2 ^ U

and the boundary condition:

<K*,y) = o (2-2)

on the electric walls. The continuity conditions have to be

considered at the dielectric interfaces while the Dirichlet's

conditions hold on the lateral electric walls which are parts

of the shielding.

2-3-2-1 Transformation of Laplace's equation:

This boundary value problem is solved elegantly with the MoL

in which the electric potential function is discretized in the

direction where singularities occur (x coordinate) and is

expressed analytically on lines where the potential varies

smoothly (y coordinate). In Fig.2-2, an arbitrary arrangement

of lines is depicted (Fig.2-3). The first derivatives with

respect to x are evaluated between the
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Detail A for

descretization lines Closed electric wall

Fig.2-2. Cross-sectional view of a nuIticonductor

miItilayer nicrowave planar structure.

*i-l

Fig.2-3. Detail A fron Fig.2-2. aboti
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(solid) potential lines on dotted lines which for clearness

are not shown in Fig.2-2.

With the abbreviation <t>(x,, y) - 4»,(y), the i-th finite

difference approximation is:

3<t> |_4>i+i ~^t
(2-3)

where ht represents the i-th interval size. The evaluation of

the second derivatives is performed on the potential lines.

The second derivative is given by

a2<t>

with the i-th interval size et between dotted lines . In order

to obtain symmetric operators in case of non-equidistant

discretization, eq.(2-3) is normalized as:

2 U

ht( a<j>,

dx li 3x Ii- 1
(2-4)

^(-<l>< +<i><+i) (2-5)

i=0,l,...,M

with the boundary conditions according to (2-2) , i.e

4>o" <t>wi" °> eq.(2-5) can be summarized in the following matrix

equation:

hr-hl+x-rhD* (2-6a)

where
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a<t>

<t>= (<t>l .•••.<f>w)' (2-66)

and

(2-6c)

The bidiagonal matrix D represents the first order difference

operator for Dirichlet-Dirichlet condition:

0

- 1 .1

£> = (2-7)

0 - 1

which is an M+l x M matrix.

Analogously to (2-5) the finite difference equation (2-4) is

normalized as:

( a2<t>, ^ Ih( a<t>, a<t>
2 li

V dx^J e\dxn dxu-

i = l, M

In matrix form, eq(2-8) becomes

hr\l^xx'-r.D^x

where
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(2-96)

and

re = diag A/- (2-9c)

The matrix D' is the transpose of matrix D.

The first-order operator Dx with respect to the coordinate x

is defined by :

Dx = rhDre (2-10)

from (2-6) and (2-9) , we obtain the following important

relation :

/i2re-l<t>xx = /i24\x=-DxDx* = Dxx<i> (2-11)

The vector

4>i ♦-Y
<f> =

/T"" IT
J

represents the normalized vector potential. As can be seen on

Fig.2-2, et is that interval size which is intersected by the

line for $t . This geometrical interpretation holds in

general: each line (dashed or solid) has its own interval

size .

In the special case of equidistant discretization with

g, - ht- h we have
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4> = <J> (2-12)

and

rh = ra = I (2-13)

where I is the identity matrix, the second order operator Dxx

then changes into the well known finite difference operator.

In the Method of Lines, for constant cross-section

structures, the discretization is performed only in one

direction (x coordinate). With the relation (2-11), Laplace's

equation (2-1) then becomes:

i2 . i
iy2* +tfD"*~0 (2-14)

The operator Dxx is a real symmetric tridiagonal matrix

meaning that the potentials are coupled . By orthogonal

transformation, the system of equations (2-14) is decoupled

and Dxx is transformed into the diagonal form of the real and

distinct eigenvalues :

TlDxxT = \ (2-15a)

where

K= diag(Xj),j= 1 ,...,M (2-156)

For the matrix of eigenvectors T, the relation T'.T- / is

valid.

An analytical representation of the eigenvalues and

eigenvectors is possible only in the case of equidistant
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discretization . In the general case of non-uniform

discretization, the eigenvalues and eigenvectors are

determined numerically. The " Implicit QL - Method", an

accurate, fast and stable technique has been proved to be

particularly suited for this purpose [31].

The system of coupled differential equations (2-14) can now

be transformed into the following system of decoupled ordinary

differential equations:

or

where

-^(T'*) +-^(T'Z)XXT)(TJ4>) =0
dy* /i

d' 1

dy2 h2

J/ = T'4>

is the transformed vector of potentials.

With the substitution X.--X2, (2-17a) yields :

«Lv-mdy2 \h)
V = 0

(2-16)

(2- 17a)

(2- 176)

(2-18)

The solutions of these one-dimensional differential equations

correspond to the transmission line equations. They can be

represented in the form:

K(y) = C1cosh(J(y) + C2sinh(J(y) (2- 19a)

with
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(j = - (2-196)
h

where V, o and the constants CX,C2 are vectors of dimension M

(number of discretization lines).

For the structure shown in Fig. 2-2, according to the chosen

y-axis origin, the electric potential V(y) has the following

expressions:

In medium I:

sinhtf(y- //,)
K^) =B' rJrttf (2-20a)- cosh a H j

In medium 11 :

A2cosha(y + //,) +£2 sin htf(y + H 2)
VnM =— *' (2-206)

cosh <S H 2

In medium III:

y43cosha(y+ H2 + H3)+ B3sinha(y + H2 + H 3)
l////(y):

coshaf/

In medium IV

„ _ _ /l4cosho(y + //2 + //3 + //4)
K,"(y)= z^m +

-37-
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B4slnhq(y +Ha +/y, +iy4) (2_2Qd)
cosh

In medium V:

^y; cosh(J/75

2-3-2-2 Interface continuity conditions:

The continuity conditions for the normal component of the

electric displacement vector has to be satisfied at each

interface . By using the expressions of the electric

potential, the continuity equations lead at each interface

k/k+1, to :

Vk(y)=KkM(y) (2-20/)

dVk(y) dKfcM(y)_o
ek— efc+1 =Sk (2-ZQg)
* dy dy

Where k = I,II,...,V and S* is the transformed electric

charge density at the dielectric interface between medium k

and k+1 (see Fig.2-2).

At interface 1, containing the first set of conductors, and

corresponding to y=0, we have:

-fi^anhtf//, = A2 + B2tanh(JH2 (2-21 a)

and
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6^5, -e2X(/l2tanho'/72 + £2) = S;/i (2-216)

At interface 2, with no conductors, and corresponding to

Y--Hz, we have:

A2

coshoH
= A3 + B3 tanhc//; (2-21c)

and

toXB2yY*-'2

coshc//2

At interface 3, containing the second set of strips, and

corresponding to y=-H2- H3 , we obtain:

e3X(/l3tanh(J//3 + 53) = 0 (2-21d)

cosho*//
= A4 + £4tanho-//4 (2-21e)

and

e-,X5s^1-^

coshc//3

Finally, at interface 4, with no strips and corresponding to

y--H2-H3-H4:

-e4X(/l4tanho-//4 + 54) = S7///i (2-21/)

A4

coshc//
= B5tanh(j//,

and

e4X£4

cosho*//4

Where S,,Sm are respectively the transformed electric charge

density vectors at interfaces 1 and 3 ( Fig.2-2 ), which is

•-e„XB« = 0
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explained subsequently.

2-3-2-3 Deternination of the capacitance natrix :

The system of equations (2-21) is solved for the constants

Bl,Az,Bz,A3,B3,AttB^,and B3 in terms of S, and Sm on each

discretization line.

Equations (2-20a)-(2-20c) lead to the potential vectors V, ,V,„

in terms of the charge density vectors S, and S,,,.

At the interfaces 1 and 3, the relation between the

transformed potentials and the charge densities is given in

matrix form as:

Vi r„ r12 hS,

vlll. _r2. *22_ _hSUI

Where the block matrices Tmn are of order M x M

Equation (2-22a) may be written in the form :

V = T hS

with

V =
V III

and

5 =
S in
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un me conducting scrips, a charge q, is located between two

consecutive lines distant of e,, hence, as the structure has a

constant cross-section, the surface charge density that

belongs to the i-th line is given by a, which is related to

the charge qt by :

'•-7,

Outside the strip at equals to zero

In matrix notation we have :

r 2

The normalized form of eq.(2-24) can be given as

^=re"1a =ireq =iQ =7S

(2-23)

(2-24)

(2-25a)

Where the transformed charge density S-T'I.

Equation (2-22 b) is valid in the transformed domain. With

(2-25a), 2-17b) one obtains :

<P = TYTlQ (2-256)

or

<*> = r<2 (2-26)

The capital letters, in (2-26), refer to the normalized

electric potential and charge vectors and matrices. In the
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original domain, (2-26) becomes

4> = yq (2-27a)

where

Ytt"^r'fcv«u (2-276)

The structure of the matrix equation (2-27a) can be

represented graphically as shown in Fig.2-4; where the hatched

areas correspond to the strip regions on which the potential

function is constant and the charge is not zero.

The hatched areas are joined together and result in the

"reduced matrix" y r,d so that from (2-27a), the following

matrix equation can be derived :

t red Y red t red (2-28)

The matrix yr,d is real, symmetric and positive definite.

Therefore the method of inversion due to Cholesky is

particularly suited to obtain the matrix y'^ [32].

The capacitance matrix can now be derived from Yr.'« by summing

up the submatrices elements (hatched areas on Fig.2-4), (see

appendixB); and one obtains:

q = Cu (2-29)

Where g-(q, q2W)' are the charges per unit length on the

strips with the corresponding potentials u-(4>, $2N)'-
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Fig.2-4. Graphical representation of the Matrix relating the potential vectors to the

charge vectors. The hatched areas represent the subnatrices corresponding to the non-zero

conductors charges.
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2-3-3 Non-equidistant discretization:

The Method of Lines is applied with non-equidistant

discretization such that the lines are more concentrated

around the conductor edges where fields singularities occur

and are more spaced in regions having smoother variations of

the fields [15].

In general, the potential function and the surface charge

density are unknown. In the present problem, an approximate

function for the surface charge density on the conductor is

given by the Maxwell distribution which holds exactly only for

an isolated conducting strip [33].

If the potential lines are spaced sinusoidally on the strip

at

2i- Mn.
(2-30)

Where Mn is the total number of lines for the strip n and

-1<x<1, the same amount of charge is located between any two

consecutive lines :

dx

n^«-iVl -x2 Mn
(2-31)

Because of the singular behaviour of the charge density at

the edges, more lines are located near the ends of the strips.

The general form of the charge density on the strips between
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conducting planes and different dielectrics is similar to that

of an isolated conductor. Therefore eq.(2-30) shall be adopted

for the present problem and one obtains for a strip, xa <x <xb:

X

*< =

for

b x a x b x a . [2i-Mn \
sin n

V 2Mn J

i = 0,..., Mn

(2-32)

At the edge of perfect conducting strips, the field strength

is also singular so that eq.(2-32) shall be valid for the

regions between edges of different strips. By this, the

smallest interval size , located near each edge, can be chosen

the same for all these regions so that in the vicinity of

every edge the interval sizes are small and nearly symmetric.

With the smallest interval A - x Until x UmlK-1 > where Mnin is the

number of lines for the smallest strip width or region between

strips; the number of lines for each region can be derived

from eq.(2-32), so that for xa<x<xb, we have the integer :

Mrc = INT(
2rt

n- 2arcsin[ 1 -2A/(x6-xa)]
) (2-33)

The interval sizes

h, x j+] x, (2-34)

are calculated in a following step from eq.(2-32). While the

centers of intervals are deduced from (2-34) as:
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ht-i+ht
(2-35)

The outer regions which are limited by the lateral walls can

be treated in the same way if the intervals are calculated for

twice the regions. The intervals have their maximum value near

the electric walls where the fields are almost zero. An

important advantage of the non-uniform discretization can be

recognized in the fact that if the walls are only auxiliary

quantities, they can be shifted sufficiently far away from the

conducting strips without large numerical effort.

At the strips edges, the fields are singular giving rise to

problems of convergence for analytical techniques where series

expansions are truncated. In the method of lines, all

functions are expanded corresponding to the number of lines

and hence, with the same accuracy. As a consequence, the

result always converges correctly. However, the rate of

convergence depends on an edge condition from [29], who

considered equal interval sizes and showed that the strip edge

should be positioned as illustrated in Fig.2-5.

"i

Metallic strip

«k

€k*l

0.25 hi 0.75 h.

Fig.2-5. Positioning of a strip edge between

two discretization lines.
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This result is applied to non-uniform discretization as the

interval sizes are almost equal near the strip edges. The

location of the lines in the regions of strips and spaces is

defined by eqs.(2-32) and (2-33). In order to include the edge

condition, the interval sizes on the strips have to be

shortened by the factor :

F =
w

(2-36)

which is deduced from the edge conditions [15], with

W - x„-xa, and in a subsequent step the outer interval sizes of

the regions between the strips'are fitted.

2-3-4 : Illustration for a shielded nicrostrip line.

Let's consider the simplest microwave structure which

consists of a shielded microstrip line as shown in Fig.2-6.

Fig.2-6. Cross-section of a shielded nicrostrip

structure.

-47-



applying eq.(Z-JZ; to LMW-2A, with i varying from *sium to
2

MSlntw-l, we obtain the hi intervals on the left size space

region. The next interval which contains the strip edge is

equal to A.

Equation (2-32) applied to the strip (xb-xa-W- ") , (— to

account for edge conditions), i varying from 0 to 1, in our

case, gives the intervals on the strips. The next interval is

equal to A.

Equation (2-32) applied to I„„-2A, with i varying from 0 to
kIS 1

—j^- 1, gives the intervals on the right side region.

The discretization leads to the matrices: rA,r,,D,Dxx.

2-3-4-2 Matrices fornat ion :

The matrix rh from (2-6 c) has as diagonal elements :

(0.669 , 1.085 , 0.790 , 0.913 , 0.790 , 1.085 , 0.699)

In our case,

w w
h-TT—. r=Tr = 0.5 (2-39)

Mmin+ 12

From eq. (2-9b), the matrix r, has as diagonal elements :

(0.831 , 0.904 , 0.845 , 0.845 , 0.904 , 0.831)

From eq.(2-7), as we use Dirichlet's conditions on both
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lateral walls, the first order difference operator is

D-

1 0 0 0 0 0

1 1 0 0 0 0

0 -1 1 0 0 0

0 0 -1 1 0 0

0 0 0 -1 1 0

0 0 0 0 -1 1

0 0 0 0 0 -1

From eq. (2-11), the matrix Dxx is

Dxx -

-1.150 0.885 0 0 0

0.885 -1.473 0.477 0 0

0 0.477 -1.042 0.595 0

0 0.595 -1.042 0.477

0

0

0

00

0

0

0

0

0 0.477 -1.473 0.885

0' 0 0.885 -1.150

The diagonal elements of the eigenvalue matrix of Dxx are

(-0.336 , -0.091 , -0.692 , -1.525 , -2.386 , -2.399)

The eigenvector matrix of Dxx is :

T-

0.505 0.315 0.468 0.335 0.426 0.364

0.465 0.377 0.242 -0.142 -0.546 -0.514

0.170 0.508 -0.471 -0.606 0.142 0.322

- 1.170 0.508 -0.471 0.606 0.142 0.322

0.465 0.377 0.242 0.142 -0.546 0.514

-0.505 0.315 0.468 -0.335 0.426 -0.364

2-3-4-3 Capacitance Matrix fornation:

Applying the equations (2-19) through (2-25b), we end up

with the diagonal matrix V' whose elements Vu are given by :
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r (U) =
tanha^H xtanha^f

eiX<
I tanhoLh + —XanhOiH {

(2-40)

The diagonal elements of the matrix I~' are

(0.962 , 1.635 , 0.601 , 0.405 , 0.331 , 0.323)

The matrix r , in the original domain, from (2-27b), i:

0.457 0.232 0.126 0.084 0.048 0.032'

0.232 0.528 0.2CT6 0.129 0.072 0.048

0.126 0.206 0.549 0.253 0.129 0.084

0.084 0.129 0.253 0.549 0.206 0.126

0.048 0.072 0.129 0.206 0.528 0.232

.0.032 0.048 0.084 0.125 0.232 0.457

In our case, the reduced matrix yrtd is

Yr.
0.549 0.253

0.253 0.549

The microcapacitance matrix y~}d is :

Cmic
2.312 -1.066

-1.066 2.312

The macrocapacitance, in this case a scalar obtained by

summing up the elements of matrix Cnic as only one conductor

is considered, is :

y;.'*-^ = 2.492 pF/m
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2-3-5 Software description

As shown in Fig.2-7, the software program runs as follows:

1-The user of our developed software should first input the

geometric and electric characteristics of the structure (strip

width W, strips number N, gap spacing SS, structure

cross-section width L, the smallest number of lines in the

smallest region Mnin, the dielectrics permitivities and the

subtrates thicknesses.).

Then, the software will determine:

2-The smallest interval size using (eq.2-34) with W replaced

by SS if the gap spacing is smaller than the strip width.

3-The scaling factor h = (smallest region / (Mnin+1) ).

4-The positioning of the discretization lines on the total

cross-section of the structure from equations (2-32 and 2-33)

that are applied to the metalization and gap regions. The

Dirichlet-Dirichlet condition is realized by coinciding a line

on each lateral electric wall (eq.2-38). The strip edge

condition is rspected by positioning the conductor edge at a

distance - from the left line and at A from the right line

(eq.2-36) as shown in Fig.2-5.

5-The normalization matrices rK and r, given by (2-6c) and

(2-9c), by storing the intervals h, , e, and the lines number M

during their evaluations.

6-The second order difference operator D and its transpose

D' by (eq.2-7).

7-The matrices DX,DX and Dxx are using (eqs.2-10, 2-11).

8-The eigenvalue and eigenvector matrices \,T of Dxx using

the QL algorithm.

9-The matrix T, relating the potential and charge vectors at
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Input geometric
and electric

characteristic

of the structure.

Calculation of

the smallest
interval size ^

(eq.2-34)

Calculation of

scaling factor h.
(eg.2-39)

Discretization
and deter*ination
of intervals hj and e.

(eqs.2-33 to 2-35)

Formation of

normalization
p»atrices rj, and ra
(eqs.2-6c, 2-9c)

Construction of
first order

difference operator
D and D* , , ,,

(eg.. 2-7)

Formation of Matrices
Dx. D, and D.

(egs.2-18, 2-11)

Fig.2-7. Flowchart of the software program

using one-dimensional discretization.
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Determination of

eigenvalue and eigen
vector matrices \ , T
of Dxx

(eg.2-15)

Construction of
matrix r

(egs.2-19 to 2-26)

Transformation of

matrix r in the

original domain

(eq.2 -27b)

Reduction of

matrix r

(eq.2-28) , Fig.2-4.

Inversion of reduced
matrix r^^ leading

to Microcapacitance
matrix Cmic

Formation of capaci
tance matrix C

(eg.2-29)

END )



the conductor interfaces, by solving the system of equations

for each discretization line, (eqs. 2-20 to 2-26).

10-The matrix T in the original domain by (eq.2-27b).

11-The matrix r in the original domain which is reduced to

the non-zero charges of the conductors ( Fig.2-4), (eq.2-28).

12-The reduced matrix yr,d inverts it and sums it up

appropriately to obtain the capacitance matrix.

2-4 Conclusion.

We have shown the application of the MoL to the calculation

of the capacitance matrix in the case of two layers of

parallel conductors. The extension to more layers of strips

can be easily carried on by increasing the system of equations

governing the continuity conditions on the dielectric- -sub

strates interfaces. The structures analyzed in this chapter

represent the interconnections joining MIC components which

have, generally, arbitrary shapes involving discretization in

two space directions. In the next chapter, some of these

three-dimensional problems will be analyzed with this method.
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CHAPTER3

THE METHOD OF LINES APPLIED TO THREE-DIMENSIONAL PROBLEMS:

3-1 Introduction :

In MIC's and MMIC's, three-dimensional problems are rising

due to both isolated crossing interconnections and arbitrary-

shaped conductors on parallel dielectric substrates. In

chapter two, constant cross-sectional structures were

considered; however, in practice, digital IC's contain

isolated interconnections crossing orthogonally . In

MMIC's, these crossings occur as air bridges or underpasses

for spiral inductors and directional couplers.

Little has been reported in litterature to analyze such

complex structures. A static spectral-domaine approach is used

to calculate the coupling capacitances of air bridges and

underpasses [34]. The generalized "transverse resonance

technique" is used in full-wave analysis for circuits

parameters determination of a stripline crossing [35]; however

it is inefficient with crossing muIticonductors. But the MoL,

with two dimensional discretization, has shown a great

suitability to deal with multiconductors crossing orthogonally

and to determine their coupling capacitance matrix [16].

The design and packaging of MIC's require also, the

calculation of capacitances for arbitrary shaped conductors

located on parallel planes. Many papers have been published

concerning the capacitance calculation for open circuits,
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change of width, gap in microstrip and rectangular section in

microstrip. The methods used are various, among them:

Galerkin's method in spectral domain [10], Green's function

based on variational principle [36], integral equation with

computer solution technique [12], and [37].

In this chapter, the MoL, with two dimensional

discretization, is applied to three dimensional problems; that

is microstrips having discontinuities in two space directions.

In section two, this method is used for the calculation of the

coupling capacitance of two isolated orthogonally crossing

conductors. In section three, the application of this method

to the analysis of microstrip sections and discontinuities is

deduced from (3-2). In section four, the MoL is extended to

anisotropic dielectrics with diagonal tensor permitivities.

Finally, in section five, the software program, based on the

MoL is described.

3-2 Analysis of two crossing conductors.

3-2-1 Three dinensional Laplace's equation transfornation:

We analyze the structure, shown in Fig.3-1, composed of two

conductors, crossing orthogonally, of length Z.,.I2 , and widths

WX,W2> having vanishing thickness and separated by a perfect

homogeneous dielectric substrate of thickness h.

We consider the potential function $(x,y,z) which must satisfy

Laplace's differential equation :

_J^ +_X+_^ =0 (3-1)
dxz dy* dz-
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Fif.3-1. Top and cross-sectional views of two orthogonally

crossing conductors at different dielectric interfaces.
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in the different regions I, II and III ( Fig.3-1). Neumann's

conditions hold on magnetic walls. To solve this boundary

value problem using the MoL, the differential quotients with

respect to x and y , in Laplace's equation (3-1), are

approximated by finite difference expressions.

A typical pattern of discretization for two crossing strips,

is illustrated in Fig.3-2. The lines of discretization run

parallel to the z axis and are marked by "+" and "." in the

x-y plane. The potential function Kx„yt,z) noted $(t and the

second derivatives ♦„(*,.yt.z) and $yy(xt,yt.z) are evaluated at

the line (x«.y».z) marked "+" in the detail (Fig.3-2). The

first derivatives are related to locations between the

potential lines i.e. $x(y t> z)|( -is evaluated at point "a" and

$y(.xt>z)\t is determined at location "b" (see Fig.3-2). The

mixed derivative <t>„,(z)|,.t is calculated at one of the corners

of the rectangular mesh of area exixeyt., illustrated by the

dots ".".

With the MoL, the potential function is discretized with

respect to both x and y; i.e. the differential quotients for

these variables are approximated by finite difference

expressions as shown previously eq.(2-3). If we define the

first order operator with respect to x by

(D~x] =[rhx][Dx][rex] (3-2)

Where [Dx] denotes a bidiagonal difference operator for

Neumann-Neumann conditions as:

[Dx]-

-1 1

0-1 1

0

-58-

0

0

- 1 1

(3-3)



T

Detail A

1 *fl.k
column k

Fig.3-2. Mon-eguidistant discretization pattern for two

crossing conductors. The dots ( •) correspond to the nixed

dderivatives while the plus (+) represent the potential lines.
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the following approximate relation for the matrix of the

MxxMy second derivatives holds :

h2[rexyl[4>xx][rey]-l=h2[<S>xx]

--[D*]l[Dx][*]--[Dxx][*] (3-4)

Mx and My are respectively the number of discretization

lines in x and y coordinates.

The elements of the matrix [4>] represent the normalized

potentials

[*],.*»
[4>L.,

<^v£>
(3-5)

The normalization matrices are:

Ow.)] = diag(
•x^'y

xt(yt)

(3-6)

and

[r^)i=dia9(VS (3-7)

A finite difference approximation similar to (3-4) can be

given for the second derivatives with respect to y. However,

for the position of [♦],,» in the matrix [$] to equal the

position of the corresponding marking "+" in the

discretization pattern, we must interchange the matrices of

potential and operators [Dyy], (eq.3-8).
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Laplace's differential equation is solved at the Mx.My nodes

"+". For the normalized potential, the following approximate

equation holds :

d

dz

1 1
m + -2-[Dxx][<P] + [*][Dyy] — =0 (3-8)

h* J u 7yJh2

with the real, symmetric and tridiagonal second order

operators [D~Z] and [D~]. A two fold discretized function is

represented clearly by a two dimensional matrix. For the

mathematical and computational solution of the boundary value

problem, however, the representation of the discrete potential

function in the form of a vector is more advantageous. Hence

instead of eq.(3-8), the following equivalent equation is

solved :

d2 -r 1 -. 1
* + —2[Dxx}$ + —[Dyy}<S> = 0

dz* h
(3-9)

with the vector ?-(?, ?u)' whose elements are the column

vectors of the potential matrix [4>] .

The second order operators take the form of block matrices

defined by

[Dxx] = [I]u®[Dxx]

and

lDyy] =[Dyy]9[I]Uy

where [/]u^u,) denotes the unit matrix of order

symbol "®" designates the Kronecker product.
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The potentials [4>](it are coupled and the decoupling is

achieved by a real transformation of the operators [DlZ] and

[Dyy].

By this, the operators of eq.(3-9) are transformed to the

block diagonal structure of their eigenvalues; i.e,

[TV[Dxxryy)][f]=-axry)]2 (3-12)

with the matrix of eigenvectors

[T]-[Ty]9[Tx] (3-13)

where

[Tx] and [Ty] are the eigenvector matrices for the operators

of eq .(3-8) .

The transformation of eq.(3-9) yields the following set of

MxMy ordinary differential equations :

where

and

d25
dz' h

<J> = 0

5 =[f]'$

XZ ^ AX Xy

_7Tj ~L"^"J +\~n~
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If h is not the same in x and y coordinates, we take the

smallest of the two in order to guaranty the desired precision

of calculation in both space directions x and y.

3-2-2 Interface continuity conditions:

Equation (3-14) is similar to eq.(2-18) and the solution is

similar to the one given in eq.(2-19a). With the same steps as

in section (2-3), matching the fields at the interfaces and

using boundary conditions, we end up with a matrix relating

the conductors electric potential vector to the electric

charge vector in the following form :

5

trn] tr12]

[r2I] [f22]
Qa

Qb
(3-16)

where the [T^,] are block diagonal matrices of order Mx.My.

3-2-3 Transfornation in the original donain:

The transformed vectors of potentials and charges are

related to the corresponding vectors in the original domain

by:

4>Aun = [re][T]<i>HB] (3-17)

and

q,(fl) =[rJ"1[T]Q A(B) (3-18)

with
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[r.]-[r, ]®[reJ (3-19)

3-2-4 Deternination of conductors coupling capacitance:

After doing the inverse transformation of eq.(3-16) into the

original domain and after the inversion of the reduced matrix,

one obtains the following equation :

Qred =[yYrL^red =[C]ired (3-20)

Where [C] is the microcapacitance matrix. The macro or

conductor capacitances are calculated by partitioning [C] and

summing up the appropriate terms, (see Appendix B). This

yields:

cond

c

c 21 22 J cond

where Clz and C21 are equal and represent the lumped coupling

capacitance between conductors A and B.

c

c.
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3-3 Mol applied to discontinuities.

The MoL is applied to the capacitance calculation of

arbitrary shaped metalization involving discontinuities by

following, mainly, the steps of section (3-2) with a slight

difference concerning the lateral walls, discretization

pattern and matrix reduction that depend on the conductor

shape. In the case of finite dimension metalization, electric

lateral walls are used (Dirichlet-Dirichlet). Also, the

dimension of the system of continuity equations depends on the

number of dielectric interfaces containing, eventually many

microstrip sections which is the case for couplers, filters

and gap in microstrips ...etc. In this situation, similarly to

sections (2-3), (3-2), a capacitance matrix is reached

yielding the coupling and intrinsic capacitances.
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i}-4 The Method of Lines applied to anisotropic dielectrics.

For anisotropic dielectric substrates having diagonal tensor

permitivity of form:

e =

ex 0 0

0 ey 0

0 0 e.

Laplace's equation ,from [38],becomes:

d 6 d <t) d <t>
e —-+e —- + e —- = 0

x •» 2 y \ 2 *•> 2<3x dy* dz
(3-22)

The MoL is applied as shown in sections (2-3),(3-2) for

capacitance calculations by transforming (2-18) into:

d2V £x(Xy
dy2 ey\h) V = 0 (3-23)

for constant cross-section structures, and eq.(3-14) into

d2 ^ fxm
<f>- -± <j> = o

dz* \h J
(3-24)

with

fXA2 eJXA2 eJxA

V h J
(3-25)

V h

for three-dimensional

discretization.

V h J

problems with two-dimensional
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3-5 Software description

As shown in Fig.3-3, the software program runs as follows:

1-The user inputs the structure dimensions in x and y

directions as well as the dielectric substrate thicknesses and

permit ivities

2-The smallest interval size A and the scaling factor h are

calculated and the smallest values are selected between the

x-y directions from (eqs.2-32, 2-33).

3-The discretization is performed as explained in section

(2-3-5) as long as the conductors have finite dimensions in

x-y directions. However, when they have infinite lengths

(crossing conductors), Neumann's conditions are used by

centering the lateral walls between two consecutive

equi-potential lines. The edge conditions are considered as

explicited in section(2-3-5). The dicretization leads to the

intervals h.ix, hty ,eIx ,e(y and their respective numbers Mx, My.

4-The normalization matrices r Kjl,r Ky.rtx,rty are constructed

from eqs.(3-6), (3-7).

5-The second order difference operator Dx, Dy are constructed

using (eq.2-7) for finite dimension conductors and (eq.3-3)

for infinitely long conductors.

6-The matrices Dxx.Dyy are determined using (eq.3-4).

7-The matrix pattern of the electric potential is converted,

for computational convenience, in vector form by using

Kronecker product and transforming the matrices Dxx,Dyyin

Dxx,Dyy using (eqs.3-10, 3-11).

8-The eigenvector matrices Tx, Ty of Dxx,Dyy are obtained

from the QL algorithm.

9-The eigenvector matrix f is calculated from (eq.3-13).
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of the structure
in x and y directions
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and scaling factor
in x or y direction

(egs .2-34,2-39)

Discretization and

determination of the

number and size of

Intervals
(eqs.2-34,2-35)

Formation of normali

zation matrices

"x "y ex «S

(egs.3-6, 3-7)

Construction of first
order difference

operators
[Dxl [Dx]*[Dyl tDy]*

(eg.2-7 or 3-3)

Formation of matrices

f5x~] fUxVnSn fDyV
(eq.3-2)

Formation of second

order difference

operators Ceq.3-4)
tDxxl and CDyy]

Fig.3-3. Flowchart of the software program

using two-dimensional discretization.
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10-The eigenvalue matrices of D~xx,Dyy (-(XJ2, -(Xy)2) are

calculated by (eq.3-12).

11-The eigenvalue matrix (-(Xz)2) is determined from

(eq.3-15b).

12- A system of equations similar to (eqs.2-20, 2-21) is

solved to construct the matrix T relating the electric and

charge vectors using (eq.3-16).

13-The matrix T is transformed in the original domain using

(eqs.3-17, 3-18, 3-19)

14-This matrix in the original domain is reduced to the

non-zero elements of the electric charge vector using

(eq.3-20), (see fig.2-4) .

15-The reduced matrix is inverted and summed up

appropria-tely (see appendixB) to obtain the capacitance

matrix using (3-20). For crossing conductors, the off-diagonal

elements correspond to the coupling capacitance (eq.3-21).

3-6 Conclusion.

In this chapter, it has been shown how the MoL is suitable

to deal with complex structures such as crossing conductors

and microstrip sections having eventually anisotropic

dielectric substrates. The analysis may be extended to

multiple crossing interconnections as well as to multiple

finite dimension metalizations at different interfaces. The

computational power of this method is exhibited in the next

chapter by comparing the MoL results to those obtained with

other techniques that involve more complexe mathematical

approaches.

-69-



CHAPTERS

RESULTS AND DISCUSSION

In this chapter, the results obtained with the software

programs written in FORTRAN 77 on MICROVAX II, based on the

MoL, are compared to previous published data where other

analytical and numerical techniques have been used. In the

first section, one variable discretization is considered with

the study of the shielding effects and the determination of

some TEM parameters for few structures. In section two,

two-variable discretization is applied to crossing conductors

and some microstrip sections and discontinuities. The

anisotropy effects of Sapphire are investigated for all the

structures.

4-1 Constant cross-section structures:

The developed software based on the MoL in quasi-static

approach, can be applied to parallel microstrips MIC

interconnections occurring either as one or two layers of N

conductors located at the interfaces of isotropic/anisotropic

dielectric substrates, (Fig.2-2). This program can be used as

a CAD tool to optimize the MIC interconnections positions to

maximize or minimize, depending on the application, the TEM

paramaters. The structures are considered with constant cross

section; i.e. with conductors lengths very large compared to

their widths.
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4-1-1 Effects of shielding wails:

The closed enclosure composed of top and bottom conducting

planes as well as lateral electric walls, (Fig.2-2 ) is

necessary for our analysis with the MoL. The bottom ground

plane is part of the microstrip structure, however the top

plane and lateral walls do not exist when open structures are

considered. Hence their effects on the lineique capacitance of

a microstrip have been studied. In Fig.4-1, the influence of

the distance HI between the top plane and the strip on the

capacitance is shown for permitivities 1, 16 and strip widths

0.1 and 1. We can see that, as predicted, the effects of the

upper shielding plane on the capacitance are more accentuated

for lower substrate permitivities and wider strips.

C/Cn ilnl L

a
H1 eo

w

*
h er

e -1
0

L-10 ; h-i

3

•\
a: w-t ; ©r"1

b w-0.1 , ey-1
c: W"1 ; er-16
d: w-0.1 ; er-ie

b

2

C

d

>

0.1 1 H1/h 10

Fig.4-1. Effects of the top wall on the microstrip

capacitance.
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In Fig.4-2, the capacitance is sketched versus L/h (lateral

walls distance normalized with respect to the substrate

thickness) for permitivities 1,16, strip width w=1 , substrate

thickness h=l and top plane distance Hl=0.1 and 10. We notice,

as predicted, that the lateral walls distance affects more the

microstrip capacitance for lower permitivities and farther top

plane.

1.3 r

C/Qmlni

1.2S

1.1$ -

1.0S

L

HI W
e

0

h 9r

Hi-io e * 1

H1-10 6^16
H1-0.1 er-16
H1-0.1 er-1

2 3 4 5 6 7 t 9 L/h 10
Flg.4-2. Effects of the lateral walls distance on
the microstrip capacitance.

Finally, from Figs.(4-1) and (4-2), we conclude that, as long

as both L/h and Hl/h are greater than 10, the structures

behave as quasi-open. These conditions will be used further to

compare our results to published data where open structures

have been considered.
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4-1-2-1 Convergence rates.

The MoL is compared to an analytical technique '.Green's

function integral equation technique) which was applied by

Kammler [18] who considered parallel conductors with vanishing

thickness, placed between infinite perfectly vonduct i.ng

planes. In Fig.4-3, the methods are compared for the

convergence rate and we can see that the MoL reaches 1 % error

with less numerical efforts than the IET.

11 13 15 17 19

M [number of strip lines]

Fig. 4-3 Convergence rates of MoL and IET.

4-1-2-2 Capacitance natrices of nultistrip structures.



••~r 'V 111 £*• <JL i. '_• '-1 UUi H15 '-U J. 1. i. ~ i- "-> I I '-

structures (Fig.4-4)

<r=1

J0.1 0.2 ,
-H C H

Kammler's

structure [18]

«r=l
1 2 N HoL

]0.1 0.2 S
-«t * H

structure

Fig.4-4. Cross-section of a multistrip structure.

In tables 4-1 to 4-5 , the intrinsic and mutual capacitances

are compared by considering only the diagonal and subdiagonal

elements of the symmetric capacitance matrices. For the

largest structure (N=5), the capacitance matrix converges witn

an accuracy of 0.3 % in 5 seconds.

TABLE 4-1 For N-1

MoL Kammler Difference

6

C/eo

pf/m
2.4768 2.4618 0.80
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TABLE 4-2

For N-2

MoL Kammler Difference
%

C11 2.9046 2.8888 0.54

C12 -1.0467
-1.0379 0.74

C11 - 022

C12 • C21

TABLE 4-4

For N-4

C/eo MoL Kammler Dl f ference
%

C11 2.9072 2.8914 0.64

C22 3.3098 32938 0.48

C12 -10135 -10001 0.73

C23 -0.9839 -0.9767 0.73

C13 -00799 -0.0796 0.50

C14 -0.0126 -0.0125 0.00

C11-C44 ; C22-C33 ; C12-C21-C34-C43

C23-C32 ; C13-C31-C24-C42 ; C14-C41

•75-

TABLE 4-3

For N>3

C/eo MoL Kammler Difference
%

011 2.9071 2.8014 054

C22 33076 3.2916 0.4 7

012 -1.0139 -1.0064 074

C13 -0.0846 -0.0841 0.59

C11 • C33

012 - C21 - C23 - C32

C13 • C31

TABLE 4-6 For N-5

C/eo MoL Kammler Difference
*

C11 2.90/2 2.8914 054

C22 3.3099 32939 0.48

C33 3.3120 32961 0.48

C12 -1.0136 -1.0061 0.73

C23 -09836 -0.9 764 0.72

C13 -0.0799 -00794 0.62

C24 -0.0766 -0.0761 0.63

CM -0.0118 -0.0117 086

C16 -0,0020 -0.0020 0.00

C11-C66 ; C22-C44 ; C12-C21-C45-C64

C23-C32-C34-C43 ; C13-C31-C36-C53
C24-C42 ; C14-C41-C26-C62 ; C16-C61



Our software program for two layers of parallel multistrips is

applied to a structure that has been analyzed by Kammler [13]

(Fig.4-5).

In table 4-6, our results are compared to those of Kammler and

they show a very good agreement. The percentage difference

does not exceed 0.4 % within an accuracy of 0.3 % and a

computation time of 7 seconds.

0.2
r^

V1
Kanmler

structure [18]

HoL

structure

Fig.4-5. A two layer nonostrip structure.

TABLE 4-6

C11=C22

C12-C21

c/y W=0.6 U = l

C/eo HoL Kannler Dif .•/ HoL Kannler Dif .-x

Cll 6.157 6.134 0.37 9.166 9.136 0.33

C12 -3.0366 -3.0364 0.36 -5.369 -5.355 0.26

4-1-3 Capacitance matrix of two layers of three conductors.

The capacitance matrix is determined for two layers of three

conductors separated by a dielectric of permitivity 11.6 as
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shown in F ig.4-6.

Fig.4-6. Cross—section of a two layer three

conductor structure.

The capacitance matrix obtained in 1 min of

an accuracy of 1.5 %, is:

imputations with

31.34 0.86 0.06 28.67 0.80 0.05

0.86 31.86 0.86 0.80 28.16 0.80

C 0.06 0.86 31.34 0.05 0.80 28.67

e„" 28.67 0.80 0.05 31.34 0.86 0.06
0.80 28.16 0.80 0.86 31.86 0.86

0.05 0.80 28.67 0.06 0.86 31.34

pF /m

We remark, as predicted, that the matrix elements with the

highest values correspond to the diagonal elements, represent

ing the intrinsic capacitances, and to the coupling capaci

tances between superposed conductors (elements C ^\C 4l\C 25'.C5Z;C 36

tnd Ca3). We notice, also, the smallest capaci tance

values C,6;C61;C34 and £«) which are the coupling between the

most distant conductors: (1 and 6) and (3 and 4).

4-1-4 TEM parameters of microstrips for some isotropic and

anisotropic dielectrics.
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The TEM parameters have been determined tor dirrerent

isotropic and anisotropic dielectric substrates and sketched

with respect to W/h. We obtained an accuracy of 0.3 % in 1

second for each point.In order to compare our results to

those of T.C.Edwards [21], we took a Sapphire substrate with

permitivity tensor along x,y,z directions (10.6; 11.6; 1G.6 ).

From Fig.4-7, it is noticeable that the permitivity effects

decrease for smaller values of W/h and that the capacitance is

more affected, by the ratio W/h, for higher substrate

permitivities and higher W/h ratios. Similar remarks can be

done for the impedance as expected from its inverse propor

tionality relation with capacitance. The impedance curve for

Sapphire agrees well with the results of T.C.Edwards [1, 21]

who used finite difference method.

C/eo

pF/m
2.6 16 /

Zo

ohms
150

•

100 -

(10.6-11.6-10.6)
v_

16

*

Alumin /
/• / Sipptim

50 - " •_. -.; m m*

\X; s' -•v. "

rt —. 1—r-rrr 1 1 1. 1 1 1 1 1 1

0.1 10

"*"" Impedonce '— Copoelfonoe

Fig. 4-7 Impedances and capacitances of some Isotropic
and anisotropic dielectric substrates.



re illustrated in Fig.4-8The effective permitivity curves a

14

Eeff

12

10
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-

*i*^m^

-

•_^zm
^-^Sapphlre

(10.6-11.6-10.6)

er-l1.6

-

•

er-2.5

• i i i i 1111

2 z.

0.1 1 W/h 10

Fig 4-8 Effective permltlvltlea of some Isotropic and
anisotropic dielectric substrates.

For a Sapphire substrate, our results agree very well with

those of T. C. Edwards [1, 21]. As predicted, we notice that

the anisotropy effects increase for smaller W/h and that the

effective permitivity is less affected by W/h for smaller

permitivities.

4-2 Some three-dimensional problems.

A software program, based on the MoL in quasi-static

approach, has been developed for capacitance calculation

concerning structures having discontinuities in both x and y
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directions and involving two-dimensional discretization. This

program has been applied to two isolated crossing conductors,

rectangular microstrips and to the determination of the

fringing capacitance of an open-end microstrip with isotropic

and anisotropic dielectrics.

4-2-1 Coupling capacitance of two crossing conductors:

In MMIC's and MIC's, it happens frequently that t- hp

interconnections cross orthogonally at different dielectric

interfaces such as bridges and underpasses in which the

coupling is predominantly capacitive. We have applied our

program to determine and study the coupling capacitance of two

crossing conductors separated by isotropic and anisotropic

d ielectrics.

4-2-1-1 Effect of lateral walls.

We have studied the magnetic walls distance effects on the

coupling capacitance as shown in Fig.4-9.

100

c

Omax

90

%

SO

70

SO

a/h • 1/ /^

L

/

a w

h

a

L

/ er= 2,5 •:::.

////////

/a/n • 6 Top and
/ views ol

crosa-aectlon

crooaing airit

al

la

50 -

40
6 10 14 L/h 18

Fig. 4-9 Effect of the lateral walls on the

coupling capacitance of two crossing conductors.
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thickness h and more distant top plane, the magnetic lateral

walls distance has to be increased to neglect their effect and

determine the actual coupling capacitance.

4-2-1-2 Effect of substrate thickness and anisotropy:

We have studied the influence of substrate thickness on the

coupling capacitance for different conductors widths with

isotropic and anisotropic (Sapphire) dielectrics. For permi

tivity 3.8, the results obtained within an accuracy of 2 %,

agree well with those published by Veit et al.[16]. In

Fig.4-10, we notice that as the strip width increases, the

coupling capacitance goes through a minimum for thinner

substrates. This avoids the designers the use of prohibitive

substrate thicknesses that may be needed in order to reduce

the coupling capacitance when it is undesired. We remark also,

that the anisotropy effects are more important for thicker

substrates.

Cc

pf= Sapphire
(9.4-11.6-9.4)

1.5

•X^ W • 1.5

1

-••"-• "w/, '"""

W - 0.6 _.

0,5
. I- - * — *~

W-1 ; e,-3.8 ret |161

1 1 1 1 1

0.3 0.5 0.7 0.9 1.3 1.5

h [mm]

—— ISOTROPIC (11.6) -- ANISOTROPIC
Fig. 4-10 Effect of Sapphire substrate thickness on the
coupling capacitance of two crossing conductors.
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4-2-2 Capacitance of rectangular microstrips:

We have determined the capacitance of rectangular micro-

strips with different shapes and isotropic/anisotropic sub

strates, (Fig.4-11).

x*'

•+«

Closed

shielding enclosure

f
/

/

-«2 Y

dD>

~1

I

IGround plane

Fig.4-11. A rectangular nicrostrip (uj^x w2) deposited on a

dielectric substrate of pemitiuity i r and thickness h.

A dielectric substrate with permitivity 1 was considered for

microstrip length to width ratios of 1 and 0.2 in order to

compare our results to previous published data. Also, a
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bappnire suostrate, witn tne previous microstrip dimensions

ratios, has been used in both isotropic (er=11.6) and

anisotropic cases ( ex - 9.4;ey - 9.4;ez - 11.6 ) to illustrate the

anisotropy effect on discontinuity capacitances. The normal-

w w

ised capacitance with respect to erea—^ (the capacitance of

two parallel plates having dimensions WxxW2 separated by a

dielectric substrate of thickness h), is sketched in Fig.4-12,

with respect to the ratio h/Wl. An accuracy of 1.7 % is

ashieved in 41 min of computations, for each point.

C/Gp

10

a: w2/w1 • 0.2 ; er- 1
b: w2/w1 -0.2 ; er-11.6
c: w2/w1 • 1 ; e-1

Ct w2/w1 • 1 ; e -11.6

Anisotropic Sapphire
(9.4-11.6-9.4)

_i i i i i i ' • i

0.1 1 h/W

Fig. 4-12 Normalized capacitances of rectangular
microstrip sections.

As predicted, the microstrip capacitance approaches the

parallel plate capacitance for smaller values of h/W and
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faster for a larger microstrip area. Uur curves are very

similar to those obtained by T.Itoh et al. who employed

Galerkin's method in spectral domain [10], and to those

published by A.Farrar et al. who used a Green's function

matrix method [11]. As remarked previously, we notice that the

anisotropy effect, for Sapphire, increases with higher values

of h/Wl.

4-2-3 Open-end microstrip capacitance

The fringing capacitance at the end of a microstrip line may

be defined, as given in [10], by:

Limi[C(0-*Co] (4-1)

where C(l) is the total capacitance of the section of length 1

and width W, Co is the lineique capacitance of a uniform

infinitely long line of the same width, and the factor 1/2

accounts for the discontinuities at both ends of the strip. In

the calculations, 1 is not infinite, but some finitely large

value compared to the width beyond which the change of [C(l) -

ICo] is negligible. We have taken 1=5W and the obtained

results are very close to those of P. Sylvester et al. [12]

who applied a Green's function integral equation technique. In

Fig.4-13, the open end fringing microstrip capacitance normal

ized with respect to the strip width, is sketched versus W/h

for isotropic dielectrics (er- 2.5;16;11.6) and an anisotropic

substrate of Sapphire (ex -9.4;ey -9.4;ez - 11.6). For each point an

accuracy of 2.8 % is obtained with 53 min of computations, we

notice that both the fringing capacitance and its rate or
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agrees with theoretical predictions. In this case also, the

anisotropy effects increase with smaller values of W/h.

10 -i i i i '!•'' _i i ''''

0.2
W/h 20

Fig 4-13 Fringing capacitances of open end microstrips.

4-3 Conclusion:

The MoL, necessiting in quasi-static mode a shielding

enclosure, can give accurate results for capacitances, impe

dances and effective permitivities that have to be determined

for open structures. Also, this method handles, elegantly,

complexe two- and three-dimensional problems such as multi

layer parallel multistrip structures, crossing conductors,

microstrip rectangular sections and open-end discontinuities

with both isotropic and anisotropic dielectric substrates.
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CONCLUSION

The method of lines, in quasi-static approach, has been

applied to develop a software program for the analysis of MIC

and MMIC structures in two and three dimensions.

We have started with the determination of the conditions in

which the shielding enclosure has negligible effects on the

conductors capacitances; simulating quasi-open structures. We

have, also, extended the application of this method to

two-layer multistrip structures, crossing conductors, micro-

strip rectangular sections and open-ends with anisotropic

d ielectrics.

All the results agree very well with theoretical predictions

and published results obtained by other techniques involving

much more complex approaches. We can confirm also, that the

considered shielding dimensions yield results very close to

those reached with open structures and that the MoL has a

great suitability to deal with complex MIC two- and three-di

mensional problems involving isotropic and anisotropic dielec

tric substrates.

Our software program may be used as a CAD tool to optimise

the dielectric permitivity, the positionning of MIC intercon

nections as well as the sizes of the conductors, the

iielectric substrates and the shielding.

However, we encountered memory space and computing time

problems with thick dielectric substrates. Hopefully, the

Method of Lines is being extended to deal with absorbing"

boundaries and this will reduce considerably the analyses

computing efforts.
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This method should be extended not only to more complex

microstrip discontinuities for the capacitance modeling of the

charges excess occuring at the metalization corners and abrupt

changes in width, but also to hybrid mode approach for more

accurate analyses.
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APPENDIX A

LAPLACE'S EQUATION DERIVATION:

From Maxwell's equations,

where V is the differential vector operator:

d . d d

TxX +Ty^Tz* ^-2)

E is the electric field and p the electric charge density. As

E is a gradient of an electric potential V,

leading to Poisson's equation:

V.VK =V2K =p (A-4)

Since the electric potential is evaluated in dielectric

substrates where p-0, then the electric potential satisfies

Laplace's equation given by:

d2V d2V d2V

Jx^+J^+7m'° (^5)
or

2

V'K=0 (A-6)

-92-



APPENDIXB

SUMMATION OF MICROCAPACITANCE ELEMENTS:

Consider a strip conductor k whose width is discretized by p

lines leading to an electric charge vector:

(Qki »Qk2>'"'Q kp)

If the conductor k is at potential V k, then the

microcapacitance matrix CKK , relating the conductor charge

vector to potential vector, is as follows:

9*,

3*2

P J

cn c 12

*pl
c

fcp2

c
*1

ci
pp.

V

V
*2

v.

(fl-1)

The intrinsic capacitance of the conductor is CKk such that

the conductor charge and potential are related by:

Qk = CkkVk {B-2)

As the conductor potential is uniform, then (eq. B-2) yields:

P

I
i- 1
1 9*.=

P

I c
i- 1

L/-1

it V , (£-3)

Hence, the intrinsic conductor capacitance is obtained by

summing up the microcapacitance elements.

The mutual capacitance between conductors m and n

(off-diagonal elements of capacitance matrix) is obtained by
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considering the microcapacitance matrix relating the potential

vector of conductor m and the charge vector of conductor n or

inversly.
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