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ABSTRACT

The present work is concerned with the parallel design and implementation of the Multiple
Scale Signal Matching (MSSM) [26,38] algorithm on a transputer [7,10,25,40] network. The
MSSM algorithm is based on a multichannel vision model [35], to establish the correspondence
between two images with the allowance that one of them can be deformed elastically.

The MSSM algorithm uses a process consisting of two stages: the filtering and the
matching stages. This process is iterated following a coarse-to-fine regime of the vision
channels [35] at which the matching process is performed.

Therefore, the algorithm exhibits a certain degree of computational complexity over huge
amounts of data. This suggests the use of parallel processing to reduce the execution time of
the algorithm. For this reason we have considered the parallelization of the algorithm over a
PC transputer network with the OCCAM 2 [4,18,28,41] language under the Transputer
Development System TDS3 [19]. A task partition approach is used to parallelize the algorithn.
First, the algorlthm is partitioned into a set of elementary tasks. Then, an intertask data flow is
established. Aﬁerwards the network topology is fixed and subsequently the tasks are placed
onto the transputer network processors. Finally, the tasks are scheduled onto processors in
order to mioimize the processors idle time caused by the intertask data flow, and obtairing an
‘optimal starting time for each task ignition.

The experiments were carried out to measure the performance of the parallel implementati>n
with respect to the sequential one. The effect of the increase in the computational time wken
additional vision channels are used, with respect to the increase in the number of processors
has been also investigated. The performance tests indicate a substantial improvement in speed
compared with a single processor execution. The performance analysis has permitted us to

identify the optimal number of processors suitable for such an application.
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Introduction :

Recently, much research interests have been devoted to the development of new acceleration
mechanisms for computer systems in order to meet the application computational needs such as
the ones concerned with the field of computer vision (image understanding or scene analysis).
Many acceleration techniques have been proposed and have ceased to be efficient just a while

before being used. This fact motivated computer scientists towards multiprocessing concepts. The

multiprocessing concepts allow an application program to be run on a parallel computer in a

parallel fashion. A parallel computer consists of a collection of processing units ( i.e. processors,
that cooperéte to solve a problem by working simultaneously on different parts of it ). As a result,
the time re'quired. to solve the problem by a traditional uniprocessor computer has been
significantly reduced.

The major distinction between-the many proposed parallel systems is the fact of being or not

" being based on the shared memory scheme. "The shared memory system consists of a set of

conventional CPU’s that are connected to a common memory through a single bus. The
communication between the different CPU’s is achieved by the shared memory. However, rince all
data traffic has to take place over the same bus, this later will be saturated as soon as a handful
number of processors is used. Hence, the performance of the system is slowed down in terms of
execution speed. The non-shared memory systems which are referred as distributed memory
systems consist of a set of processors that have their own private memory. In the di ibuted
memory system, the processors can be connected through a static or dynamic interco 1ection

network such as a programmable cross bar switch. The eventual communication bet . 1 the

”



processors can be established by message passing. However, this kind of communication scheme
has required a special hardware interface that obeys to a strict communication policy.

On the other hand, there have been many challenging problems of quite tremendous
computational complexities. For instance, computer vision requires many digital image processing
techniques[44] whose operations are computationally huge and act on large dimensional image
arrays. Moreover, most computer tasks possess a large amount of inherent parallelism so that they
can be split down into smaller tasks and allocated according to a certain criterion processing policy
on hardware processors of a parallel system.

The algorithm that will be implemented in this research work has been introduced in the field of
computer vision and is called the Multiple Scale Signal Matching (MSSM) [26,38]. It is based on
the multichannel model [35] of human vision. The MSSM algorithm deals with the matching of
two images wheré one is used as fhe reference. Th‘é matching process is based on the elastic
matching theory [46]. The input to the MSSM algorithm consists of two globally aligned images
and the output is under the form of a horizontal and a vertical discrepancy map. The discrepancy
maps represent the measure of images discrepancy. They contain the corresponding coordinates of
each pixel of the matched image with respect to the reference one.

This thesis is concerned with the parallel design and implementation of the MSSM algorithm on
a distributed memory system using transputers [7,10,25,40]. The distributed memory systems are
more advantageous than the shared memory systems because they are scalable. The idea here is
that the performance of the system is maintained by an eventual use of a large number of
processors. As this type of systems requires the provision of a well adapted hardware for the

different processors to communicate with each other, new processors have been introduced such



as transputers and Wrap processor [16]. In addition, suitable programming languages have been
dedicated to such systems as well such as the OCCAM language [4,18,28,41].

In the design of the parallel MSSM algorithm, a task allocation scheduling [30,43] approach is
employed. The parallel design proceeds by first decomposing the program into a set of elementary
tasks which are then mapped on the hardware processors so that an optimal task allocation
scheduling will be obtained. The procedure of the task allocation scheduling can be considered as
a function which maps the elementary tasks from a sequential space onto a parallel one. An
optimal amount of parallelism can be obtained if to each task that is mapped from the sequential
space to the parallel one, a best starting point in time of its ignition is acquired on the parallel
space.

The algorithm is implemented on a iransputer network using a set of INMOS SPRINT boards
[33]. The programming ehvironment is based on the INMOS Transputer Development System
(TDS3) [19] and OCCAM. TDS3 manages the resources of the parallel system.

The thesis will be presented in the follo;iving chapters:

In Cﬁapter 1, a discussion on the motivation that led computer designers to turn to parallel
processing systems will be initiated through an examination of the different acceleration
mechanisms that have been proposed at the different levels of computer system design.

In Chapter 2, we will review some of the important computer architecture taxonomies.

In Chapter 3, parallel systems programming issues will be described with a particular stress on
distributed systems and task allocation scheduling techriques.

In Chapter 4, we will review the transputer since it is the basic computing element in our design

and implementation hardware. The hardware, software and development system will be described.



In Chapter 5, we will give descriptions of the different stages of the MSSM algorithm.
In Chapter 6, we will present the sequential design and implementation of the MSSM algorithm
on a single transputer.
In Chapter 7, we will discuss the parallel design and implementation of the MSSM algorithm
based on a task partition approach followed by the performance measure of the parallel
implementation with respect to the sequential one.

Finally, we conclude with remarks and further scope.



CHAPTER1

MOTIVATION FOR MULTTIPROCESSOR
SYSTEMS
AND PARALLEL PROCESSING

1-1 Introduction:

Since the appearance of the computer, the demand for higher computer system pérformance v
has never ceased. To face such a situation, computer designers have always been looking for
" new acceleration design techniques through which higher perforﬁlances could be achieved.

In response to the complexity of computer systems, the design process has been divided
into three distinct levels [3]: the realization level related to the technology and type of material
used for the implementation of the different computer system components, the implementation
level that is concerned with the organization and the interconnection topology of the several
components of the machine, as well as the specification of rules governing the flow of data and
control signals between them, and finally the architectural level dealing with the principle of the
computer basic function operations; such as arithmetic and logic operations.

The mechanisms used to accelerate computer system are classified according to the three
design levels at which they are applied. An overview of the computer system acceleration

techniques is shown in Figure 1.1.



This chapter describes the different acceleration techniques proposed and introduces the

idea that motivated computer designers toward parallel systems and the parallel processing

approach.
Acceleration mechanisms
v v v
Realization Implementation Architecture
Packagin N I .
gng ew Latency Bandwidth

density Technology

' ¢

Memory Execution Memory = Execution

l‘ v _ !

° Parallel - RISC Special-Purpose
syste.m Architecture Architecture
architectures

Figure 1.1: Computer system acceleration mechanisms.

1-2 Accelerations at the realization level:

At the realization level, the speed of the computer system is related to the technolog Hf
the devices or the components used at the implementation level to construct the des: «d
computer system architecture.

The first computer generation was realized with electromechanical relays. In the . st

generation, these relays were replaced by vacuum tubes which were superseded later by



transistors. In the following generation, the transistors were packaged into small-scale
integrated (SSI), and medium-scale integrated (MSI) circuits. In addition, magnetic core
memories were replaced by solid state memories.

Due to the increasing packaging density, the technological improvements have resulted into
large-scale integration (LSI), and very large scale integrated (VLSI) chips that are commonly
used for the implementation of commercialized computers. For example, a recent
microprocessor that uses this high packaging density, the MOTOROLA MC68040 [12]
integrates a MC68030 CPU, a 66882 math coprocessor, memory management unit, and a local
cache memory on a single chip. The current trend is directed towards achieving a higher
density known as Wafer-Scale Integration (WSI) in which a set of processors can be integrated
| separately but interconnected on a wafer to build, for instance a multiprocessor system.

Another way uged to improve thé computer system.performance. at the realization level is
the search for a new type of material which can offer higher spéed than the one used. For
example, Gallium Arsenide (GaAS) offers a higher speed than Silicon (Si), as it can withstand
higher temperatures.

This new technology and specially the high density packaging has given an evolutionary
step in the speed up improvement of the computer system by producing less propagation
delays and having high speed circuits used for the implementation of the several components of
the computer system. However, due to the physical limitations, the possibilities for the

acceleration at this level have almost reached their limits.

1-3 Accelerations at the implementation level:
At this level, the design process is concerned with the organization of the different units of

the computer system, the topology of their interconnection, and the rules governing the flow of



data between them. To have a better view of the different acceleration techniques at this level,

it is useful to consider the basic von-Neumann machine organization as shown in Figure 1.2.
Basically, the von-Neumann machine operates as follows: the CPU fetches the instruction

from memory, decodes it, and finally executes the instruction and stores the result in a proper

location.
CPU

Instruction
unit

Main
I Memory

Execution
unit

Figure 1.2 - Simple computer system units organization.

From the above description, four issues that are related to the speed of the computer can be
identified and are defined as follows:
1- Memory latency: The time period (time delay) of the memory response.
2- Memory bandwidth: The amount of data that can be transferred per second from and to
memory.
3. Execution latency: The time taken for an instruction to be executed.

4- Execution bandwidth: The amount of data processed per second.

It can be noted that the computer speed up at the implementation level is inversely

proportional to the latency aspect of both memory and execution units, and inversely



vy -

proportiox%al to also both memory and execution bandwidth. In order to achieve computer
speed up improvements some form of acceleration mechanisms are needed to reduce the
memory and execution latency (time delay), and others to increase both the memory and
execution bandwidth (time rate).

1-3.a Memory latency:

The first technique that has been used to decrease the memory latency is based on the fact
that the access time of the registers (5 to 10 ns) is less than the access time of the main
memory (250 to 1000 ns). Therefore, memory latency could be reduced by increasing the
number of registers so that most frequently used operands can be stored and accessed faster

than if they were stored in the main memory. Most microprocessors use this technique, such as

. th=MC68000 which possesses 16 working registers (8 data register, 8 address registers).

However, this techﬁique tends to be avoided due to the fact that, the chip area is expens.ve and
limited. For example this technique is not used in the design of the INMOS transputers
[7,10,25,40], where only six working registers are available.

Another way used to reduce the memory latency is by using high speed memories.
Presently, very fast memories are designed with an access time around 50 ns. They are placed

between the CPU and the main memory (slow memory) and are called Cache memories as

shown in Figure 1.3.

CPU

Main
Memory

Figure 1.3: Computer system organization with cache memory.
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As the Cache memories are very expensive, only a small amount of fast memories are used.
They are combined with a large amount of slow memories. The most frequently referenced
data must be transferred from large slow memory (main memory) into the small fast memory,

so that it can be accessed more quickly.

1-3.b Memory bandwidth:

One way used to increase the memory bandwidth is based on the pipelining approach. This
approach consists of dividing the main memory into several modules. Each module responds to
the processor’'s memory request independently. This technique is referred as memory
interleaving [3].

The idea on which this techmque is based is that when higher processing power is to be
achieved, larger and faster memories are required. However, larger memories require larger-
address decoding time resulting in lower memory bandwidth. To solve such a problem, the
main memory is partitioned into many separate modules. If the main memory is divided into M

separate modules, m (=Logy M) bits will be required to activate one of the M modules. The

remaining bits are used to address a word from the activated module.
Using this technique, two approaches can be applied. The first approach is called lower-
+ order interleaving. It is called so, because the lower order bits are used to select one of the
modules in which the required word is to be found (Figure 1.4). The second approach is called
higher order interleaving. The higher order bits of the address are used to select one of the
modules in which the required word is stored (Figure 1.5).
The low order interleaving approach has the advantage to support spatial locality [3]. In
other words consecutive addresses are found or stored in consecutive modules. Since

4 instructions are executed in a sequential manner, the consequence of storing them in



consecutive modules makes this technique th

suited for accessing vector elements when d

image processing.

Another way is based on parallelism, which in this context implies the use o

Address in module

Module

v A

Module 1 |- Module

—

T Decoder

Figure 1.4 : Low order interleaving.

Module

Address in module

——

t Decoder

v

Module 1

A

Module

......... M

Figure 1.5 : High order interleaving.
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e most frequently used. This organization is well

ata are represented by vectors as in the case of

f wider mem. v

data paths. For example, if the memory is divided into two parts, one part is used to store ¢ :

and the o

ther to store instructions, the memory bandwidth can be doubled.
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1-3.c Execution latency :

Execution latency is the time required for an operation to be executed. The improvement of
a computer system at this point is associated with the reduction of the number of clock cycles
required for an operation to be accomplished. In the case of simple operation where only one
clock cycle is required, the improvement is related to the technological acceleration techniques
at the realization level. For complex operations such as multiplication and division, that require
longer execution time, the reduction of the aumber of cycles is a direct improvement of the
execution latency. One way used to decrease the number of clock cycles of complex
operations is by using specialized arithmetic units requiring less hardware compared to
multifunctional units. This results in less propagation delays, yielding an optimized execution
latency.

Another approach used to minimize the execution latency is the development of co-

processors, which are specialized processors used to intervene in the case where complex
operations are to be performed. In the most recent computers, a floating-point co-processor is
designed to be attached to each microprocessor. An example for such floating-point co-
processor is the INTEL 80287,80387 which can be attached to 80286 [1], 80386 [1] CPUs
respectively. In the INTEL most recent microprocessor the floating point co-processor is

integrated in the 80486 uP .

1-3.d Execution bandwidth:

The execution bandwidth is associated with the number of instructions executed per second
(time rate). Thus, to have an idea about the improvement of the execution bandwidth, it is
useful to consider the different phases of the microprocessor instruction cycles which are

shown in Figure 1.6.

A
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Instruction
fetch

Instruction Operand Store
Execut
Decode fetch reeute Result

A 4

Figure 1.6 : Microprocessor instruction execution cycles.

The CPU instruction execution passes through the following five cycles:

-Instruction fetch (IF): The instruction is fetched from memory and stored in some register.

-Instruction decode (ID). The previously fetched instruction is decoded.

-Operand fetch (OF): The operand address is computed and the data is fetched.

-Execution (E): The operand and the operation to be performed are passed to the execution

unit (E), where the result is calculated.

" _Store result (S): The result from the operation is stored in an'adequate memory location.

If these stages are performed in a sequential manner, only one instruction is executed at a

time (Figure 1.7).

I3
12

Il

Instructions

IF |ID | OF| E S

tl t2 t3

Figure 1.7 : CPU instruction execution cycles
in serial manner

v

Time
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One approach used to increase the execution bandwidth is by pipelining the five stages of
the instruction execution cycles as it is illustrated in Figure 1.8. With such an approach, the
improvement of the execution bandwidth is achieved through the fact that several operations
are being processed simultaneously. However, when the five units are designed to handle the
CPU instruction execution cycles concurrently, several problems may arise that may cause the
five execution units from being overlapped. For example, problems resulting from the
pipelining approach applied to INTEL 8086 [27] can be encountered in one of the following
conditions: The first condition occurs when an instruction requires access to memory location
not in the queue. The second problem which may affect the performance of the processor,
occurs when a branching instruction is encountered. The third condition occurs when a
~ complex operation such as multiplication is to be executed. This latter can be avoided by
providing more thén one execution unit so that regul’ér'pipelimng may proceed in a regular

manner.

4

b Instructions

3 IF | ID|OF| E| S

2 IF|{ID|OF| E | S

11 |IF|ID|OF} E S

tl t2 t3 Time

Figure 1.8 : Pipelining the CPU instruction
execution cycles.

Most of the acceleration techniques discussed in the previous sections concerning the
implementation level have been exploited. Therefore, acceleration mechanisms other than those

at the implementation level are to be sought.
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1-4 Accelerations at the architectural level:

Due to the limitations encountered at both the realization and implementation levels,
computer designer were pushed to look for evolutionary performance improvements at the
architectural level.

The acceleration technique investigations at the architectural level set light on three ways to
improve computer system performances. The first way is concerned with the design of special-
purpose architecture optimized for specific applications. The second technique is oriented
toward the reduction of the computer hardware complexity, known as RISC architecture
[6,8,23]. The third trend is oriented toward multiprocessor systems. Different types of

multiprocessor systems, proposed to achieve higher performance are presented in Chapter 2.

1-4-1 Special purpose architecturé:

The optimization of the computer architecture for épeciﬁc application improves the
computer speed compared with that of géneral purpose computer. Several processors are
designed to fulfill the requirements of signal processing, known as digital signal processors
(DSP's) such as Fast Fourier Transform, Matrix operations, or Digital Filtering operations in
which huge amounts of data are manipulated and complex computation are to be performed in
a short time. In general, special purpose processors consist of an ALU, a multiplier, an
AND/OR barrel shifter, some address calculators, a program sequencer and a local memory.
Special purpose architecture processors are not only used for signal processing, but also for
display controllers, data communication, and disk controllers.

1-4-2 Reduction of hardware complexity:
The history of computer growth shows a significant increase in computer instruction size

and complexity. By the 1970s, it appeared that much of this complexity that has grown into the
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computer architecture was there because it was possible, not because it was necessary. Then, it
has been realized that it has a great influence on its performance. The complex instructions
implementation influence the CPU decoding and execution time. The different types of
operands influence the memory organization and addressing modes. This situation compelled a
number of investigators to search for an optimum computer architecture.

The objective behind the computer architecture optimization is the simplicity in instruction
decoding and execution to achieve an optimal performance. This approach has led to reduced-
instruction-set computer (RISC) architecture [6,8,23]. Therefore, a more powerful general
purpose computer architecture can be obtained. Its high performances can be achieved from
the fact that its design is based only on most frequently used instruction, simple addressing

- mees, and small number of data types. As the number of instructions is reduced, a smaller
number of bits is néeded for their representation. Thus, a simple hardware circuitry js required
for their implementation. This implies the achievement of a smaller propagation delay.

The main features of RISC architecture that distinguish it from the complex instruction set
.computer architecture (CISC) are:

e relatively few and simple instructions:

The reduction in the number of instructions allows a small, and simple instruction set
format. An 8 bits field can be used to represent the most frequently used operations. The
simple instructions permit simple decoding and fast execution. Under this concept, the complex
operations need to be interpreted.
¢ afixed instruction format.

A large number of instruction format means that a given bit field has different
interpretations, depending on the other fields. Consequently, instruction decoding takes a

longer time. The use of a fixed instruction format speeds up the decoding operations.

e
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e hard-wired, rather than microcoded, instructions.
The hard-ware implementation of instructions allows faster execution.
e Only a few and simple addressing modes.
The reduction in the deferent addressing modes avoid operand address computations.

Simple addressing modes teﬁd to find the operand address in one cycle.
e memory transfers occur only with LOAD/STORE instruction.
¢ large register set.

As the register responds to the CPU request in less time than the main memory, a large
number of register is used to contain the most frequently used operands. This allows a shorter

operand fetch time.

Although, some new ifnprovements in the RISC architgcture_'.are. offered, keeping a-
computer system as a uniprocessor is not sufficient. A demand for even faster computer still
hold on. Thus, to have a signiﬁcaht increase in tomorrow’s computer system speed, computers
should be able to perform many operations in parallel. This means that a computer should
consist of a set of processors that work in parallel to accomplish a certain task. With such
approach, the execution of programs can be further accelerated using more than one

+ Processor.




19

2-2 Reasons for architectural classification :

With the advance of technology, there has been a rapid growth in the number of proposed and
constructed architectures. As a result of this growth it has been stated that it is not clear which
architecture has the best prospects for the future. Then, it has become important for computer
system designers to look for taxonomies through which the several models can be easily

distinguished. The main reasons of such architectural taxonomies are :

- Architectural model classification permits the computer system designer to know and

understand all what has been achieved in the computer architecture field.

- When all the existing systems are classified according to fixed factors, the gaps in the

classification can suggest other possibilities which may lead to new improvements.

- The last reason for this classification is that it allows useful models of performance to be built

and used.

2-3 Flynn's classification:

Any computer, whether sequential or parallel operates by executing instructions on a given set
of data. A stream of instructions (algorithm) tells the computer what to do; at each step a stream
of data (input to the algorithm) is processed by these instructions. Depending on the number of
streams, Flynn's classification (1966) [3] distinguishes four classes of computer architecture, as

shown in Figure 2.1.
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Single data  Multiple data

stream stream
Single
mstruction SISD SIMD
stream
Multiple
instruction MISD MIMD
stream

Figure 2.1 Flynn's classification of computers.

2-3.a SISD (single instruction single data) computers:
A computer of this class consists of a single processing unit receiving a single stream of

instructions that operate on a single stream of data as shown in Figure 2.2.

Inst | Data
Processor

Stream _ Stream

L3
v

Memory

v

Control

Figure 2.2 : SISD computer system.

All computers, which are based on the von-Neumann architecture and operating in a sequential or

serial manner belong to this category.

2-3.b MISD (multiple instruction single data) computers:
N processors, each with its own control unit, share a common memory unit as shown in F igure
2.3. There are N streams of instructions and only one data stream. During the operation of such a

system, all the processors execute simultaneously different instructions on the same input data.
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This class of computers has a limited number of applications and has been a subject of
controversy as the computations require a single input data bank to be processed by several

operations, giving several output results.

<  Processor 1 |¢ Contlrol
|  Processor 2 ¢ Con;rol
Memory D e
«—»{ Processor N |¢ Control
N
- Figure 2.3 : MISD computer system.

2-3.c SIMD (single instruction multiple data) computers:
All the processors operate under the control of a single instruction stream issued by a central

control unit. Each processor possesses its own local memory as shown in Figure 2.4.

Control
Unit

MO Ml Mn

v

Memory
or
Interconnection network

Figure 2.4 : SIMD computer system.
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With the use of the SIMD computers, the problem of interprocessor communication arises either
with the use of a shared memory or an interconnection network (crossbar switch) . When the
communication is established through the shared memory, difficulties will be encountered if

several processors attempt to write or read simultaneously data from a given location.

2-3.d MIMD (multiple instruction multiple data) computers:
This class of computers is the most powerful and the most frequently used in parallel system
models. It is distinguished from the previous ones by having N processors, N streams of

instructions, and N streams of data, as it is shown in Figure 2.5.

Shared
Memory

v

Interconnection network

Data Data Data
stream stream stream
P1 P2 f-rccrrmemmmmiea et PN
Inst Inst Inst
stream stream stream
Control Control { ... Control
1 2 N

Figure 2.5 : MIMD computer system.
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Each processor has its own local control unit and communication between processors can be
established through two ways: the shared memory (tightly coupled computer system) in which
case communication between processors obeys a certain policy to avoid memory access conflicts,
interconnection networks (loosely coupled computer systems) in which case messages are passed
between processors according to a specific protocol of communication. This is commonly termed

message passing concept.

However, with the rapid growth of the proposed and constructed architectures, many novel
constructs did not fit well within Flynn's taxonomy. Two other classifications have been devised

and proposed.

2-4 Treleaven's classification:

While'Flynn-'b.ased his clﬂassiﬁc‘atioﬁ upon instruction and data streams, Treleaven. (1984) [3]
has given rr.lore importancé to control and data mechanisms. .

The control mechanisms determine how the computation will proceed. Four mechanisms can
be distiﬁgu?:hed: control driven, data driven, demand driven, and pattern driven. In the first
aspect, the computation proceeds according to a sequence of instructions which are encc ded and
stored in memory. In the data driven, the key factor driving the execution of the progrem is the
availability of the data. The computation, in the demand driven, proceeds only if the outr ut result
is demanded. In the last mechanism, execution takes place only when certain condition are
satisfied.

The data mechanisms define the manner in which computational units exchange dat. Setween

each other. Two possible aspects can be distinguished: shared data and message passi ;. In the

first mechanism, only a single copy of data in memory can be accessed by any computat. nal unit.
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In the message passing, each computational unit possesses one copy of the data; whenever a copy
needs to be passed from one unit to another, it is copied or passed as a message to the destination
unit.

Eight different types of architectures have stemmed from the crossing of these two

mechanisms as shown below in Figure 2.6.

Control
mechanisms

»
v

Message | COME DAME | DEME | PAME
passing Data

mechanism

Shared | cOsH | DASH | DESH | PASH
data

Control Data Demand Pattern
driven dniven driven driven

Figure 2.6: Treleaven's computer classification.

2-4.a COSH : (Control driven with Shared data)

The COSH combines the feature of a control driven mechanism with the shared data
mechanism. The main feature of this type of configuration is a centralized control and a code
acting on a shared data. The COSH model is implemented by conventional microprocessors such

as the MC680020 computer and conventional computers such as the Vax-11.
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2-4b COME : (Control driven with message passing)

The COME model combines the features of the control driven with the message passing
mechanisms. Such a model does not allow the sharing of data. Data between computational units
are passed as messages which are copies of data. A pure COME model has not yet been
implemented.

2-4.c DASH : (Data driven with shared data)

The DASH computational model assumes the data driven computation combined with the
shared data mechanism. A data driven computer involves high degree of parallelism and requires a
large number of computational units. However, synchronization problems related to the shared
data mechanisms outweigh the parallelism benefits.

2-4.d ,DAME : (Data driven'W_ith message passing)

The computational model DAME assumes that the ignition of programs execution depends on
the availability of the data or messages within each computational unit, The natural structure of
DAME type computer is parallel. If a set of computational units have their data available, they
may prbceed concurfently. One of the most known computers based on the DAME computational
model 1s the data flow architecture [17,22].
2-4.¢ DESH : (Demand driven with shared data)

The DESH computational model combines the demand driven mechanism with shared data
mechanisms. The execution ignition starts with an initial quiery for an expression evaluation. The
evaluation can proceed as long as all the arguments are available. When an argument is needed, a
subquiery for its evaluation is performed. When the argument is evaluated, the computation

proceeds with the original quiery. Initial quiery and subquieries are stored in a shared memory.




26

Consequently, optimal argument evaluation can be obtained. Once an argument is evaluated, it
does not need to be computed again. In the DESH model a set of computational model can
proceed simultaneously in the evaluation. Like in the case of DASH models, synchronization
problems related to the shared data mechanism outweigh the parallelism benefits.

2-4.f DEME : (Demand driven with message passing)

The DEME model is similar to the DESH model except that it assumes demand-driven
evaluation with message passing instead of shared data. The message passing mechanism offers to
the DEME model the opportunity for parallel evaluation while avoiding the synchronization
problems related to the shared data mechanisms. The drawback is the need for the evaluation of
the same sub-expression several times, if many computational units require this evaluation.

“2-4.g PASH : (Pattern driven with shared data)

In The PASH -computational model the execution is driven by goal statement, located in
shared memory. Each computational unit is equipped with a pattern matching device. In each
computational unit, the ignition of the execution is caused when a pattern matching occurs.

The PASH model offers a good possibility for parallel execution as long as many patterns can
be matched in parallel.
2-4.h PAME : (Pattern driven with message passing)

The PAME is similar to the PASH model except that the execution ignition is driven by
messages, consisting of data patterns. An initial pattern is used to start the execution. Then ,
upon the arrival of a message, the pattern contained in the message is matched against the one

present in the receiving computational unit.




27

2-5 Skillicorn’s classification :
This taxonomy can be considered as an extension of Flynn’s classification. Skillicorn (1988)
[9] has based it upon the function structure of the architecture and the data flow between its
component parts. The computer system is seen as consisting of four functional units:
- An instruction processc;r (IP), that interprets the machine instructions.
- A data processor (DP), that acts on data.
- A memory hierarchy , a storage device for both data (DM) and instructions (IM) that passes
data to and from the processors.
- A switching network (SW), that insures the connectivity between the other functional units.
According to this functional view, the von-Neumann machine consists of a single IP, a single

DP and two 'memory hierarchies (DM and IM) as shown in Figﬁre 2.7.

Instruction
DP IP
States
Operand | Operand Inst Address
address
Data Inst
Memory DM M Memory
Hierarchy Hierarchy

Figure 2.7: von-Neumann machine structure.

The switching network has no role in this class. Based on the model, a large number of classes
has resulted by replicating functional units and combining them in different manners. The

different possibilities by which the multiple functional units are interconnected leads into several
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classes of architectures. Four different forms of abstract switches can be used to connect the

functional units together:

- 1-to-1 : A single functional unit of one type is connected to a single functional unit of another.

- n-to-n : In this configuration, the ith unit of one set of functional units is connected to the ith of

another.

- 1-to-n : In this configuration, one functional unit is connected to all n devices of another set of

functional units.

- n-by-n : In this configuration, each device of one set of functional units can communicate with

any device in the second set and vice versa.

These architectures can be classified according to the following specifications:
- the number of IP (nIP), )
- the number of DP (nDP),
- the number 9f memory units (nDM, niM),
- the connectivity between IP’s and DP’s (IP-Di’),
- the connectivity in DP’s (DP-DP),
- the connectivity in IP’s and IM’s (IP-IM),
- the connectivity in DP’s and DM’s (DP-DM).

On this basis, 28 possible classes of architectures can be determined as it is illustrated in

Table2.1.




Table 2.1 Skillicorn's possible architectures

Class | IPs DPs |IP-DP IP-IM | DP-DM | DP-DP Name
1 0 1 none none 1-1 none |reduct/data uniprocessor
2 0 n none none n-n none |separate machine
3 0 n none none n-n n by n | loosely coupled reduct/dataflow
4 0 n none none nbyn none | tightly coupled reduct/dataflow
5 0 n none none nbyn nbyn
6 1 1 1-1 1-1 1-1 none |von Neumann uniprocessor
7 1 n 1-n 1-1 n-n none
8 1 n 1-n 1-1 n-n n by n | Type 1 array processor
9 1 n 1-n 1-1 nbyn none | Type 2 array processor
10 n n 1-n 1-1 nbyn! nbyn
11 n 1 1-n n-n 1-1 none
12 n 1 1-n nbyn 1-1 none
13- n n n-n n-n n-n - nope | separate von Neumann
uniprocessors
14 n n n-n n-n n-n loosely coupled von Neumann
15 n n n-n n-n nbyn tightly coupled von Neumann
16 n n n-n n-n nbyn
17 n n n-n nbyn n-n
18 n n n-n nbyn n-n
19 n n n-n nbyn nbyn
20 n n n-n nbyn nbyn
21 n n nbyn n-n n-n
22 n n nbyn n-n n-n
23 n n nbyn n-n nbyn
24 n n nbyn n-n nbyn
25 n n nbyn | nbyn n-n
26 n n{ nbyn | nbyn n-n
27 n n nbyn | nbyn n byn
28 n n nbyn | nbyn nbyn

29
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CHAPTER 3

PARALLEL SYSTEMS
PROGRAMMING

3-1 Introduction:

When the programming aspect is taken a step further, parallel processing systems fall into two
broad claéses: Shared memory systems and distributed memory systems. This is generated by their
different approach to memory organization.

While the first kind of systems is easy to program and has the advan'tage of using the software
designed for sequential machines, the se@ond needs the creation of new programming languagés
and soﬁware supports which are practically inexistant. This fact has not prevented computer .
designers from giving more importance to distributed systems as they provide more capacities in
solving parallel problems.

A parallel program is composed of many processes that have to be executed simultaneously on
different processors. These latter need to work together and should be organized in a predefined
order to achieve the overall task.

A process scheduling policy is discussed to introduce the method of tackling a parallel program
according to the graph theoretical approach [15,47]. Finally, a way of measuring the performance

of any parallel program is given.
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3-1 Shared memory system programming:

Within such systems, a set of conventional processors are connected through a system bus to a
single shared memory (Figure 3.1). Its programming is sequential at each processor level. The
interprocessor coordination is accomplished through the global memory. Parallel programming
with shared memory systems is easy because of its similarities with operating systems
programming and general multiprogramming. However, it is difficult to scale up to a large number
of processors. This drawback is due to the saturation of the bus when the shared memory is

demanded by many processors at the same time.

Shared memory

< y I >

P, P, Py

Fig 3.1: Shared memory system.

Several architectural solutions have been proposed to remedy this shortcoming. One solution
is t0 use a master processor to grant access to the bus using time sharing. Still there remains a
serious memory bandwidth problem: if P processors want to access the memory, this will take P
times longer than a single processor. This was partially solved by using the memory interleaving
method; the memory is divided into several independent modules that are connected to the

processors through a crossbar switch (Figure 3.2).
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Fig 3.2: Memory interleaving approach

With such a configuration, only one processor can access one memory module at a time. But

they can access many modules at a time.

A third solution is the use of cache memories that have copies of the global shared memory as

shown in Figure 3.3.

CPU;, CPU,
Cache Cache
Mapping Mapping
2 MANAGEr |- --ccccvnnennnnnd manager
Shared global
memory

Figure 3.3 : Shared global memory mapping
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In such a configuration, bus saturation can be reduced as long as all the instructions and data
ire to be fetched and loaded in the local cache memories. However, this technique may lead to the
+ emory coherency problem [31). The cache memories are said to be coherent if all the data values
.re the same. A memory manager and a cache coherency algorithm [37] are needed to manage the
:apping between local cache memories and the global memory. It can be inferred that this

1 :chnique adds complexity to the initial problem.
A recent method that has been made possible by technological improvements at the realization
.evel is the use of Multiport parallel random access memory (PRAM) [36] (Figure 3.4.).The
number of ports being less than 4 and the size of the memory not exceeding the 16 Kbytes barrier

minder a wide use of these memories and promise a future expansion.

PRAM
OR
Multiport memory
Port0 Portl o PortN
/'y Y ' PER ¥
\ 4 ) 4 \ 4
P(] Pl - ® = = = Pn

Figure 3.4 : PRAM system

3-2 Distributed memory system programming:
As it can be noticed in the last section, all the solutions that have been proposed tend to
allocate to each processor its own local memory. This fact has naturally led to the concept of

distributed memory systems, where every unit is a stand-alone processor with its proper memory.
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The interprocessor communication is established by message passing. Distributed systems are
often called message passing systems. There are two ways to achieve the transfer of data between
processors: synchronously or asynchrounsly. In the first, the two processors involved in the
communication are fixed at a rendez-vous point. In other words, when one is still executing the
other is blocked or delayed until both of them are ready. For the second method, the sender
processor passes the message regardless if the receiver processor is ready or not. This calls for a
buffering operation that has to be supported by an interface between the two processors.

Distributed memory systems are given the advantage over the shared memory systems by the
fact of being scalable ( i.e. the communication bandwidth and the overall system performance are
maintained when a large number of processors is used).

»* There are, however, two major problems associated with the programming of distributed -
systems that aﬁ‘éct the overall system performance : communication time delays. and load
unbalance. If the cost of communication during the execution of a parallel program is too high, the
processors spend most of their time transferring data through the system interconnection network.
For the second issue, the system is unbalanced which means that the tasks are not well allocated
resulting in processors that execute many tasks while others are sitting idle. The system resources
are not used to their limits. Therefore, the design of parallel programs on distributed systems
requires a mapping from the sequential space to the parallel space. This mapping is achieved
through process scheduling. This feature is so important to parallel programming that the

following section is devoted to its description.
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3-4 Task allocation scheduling:

In the design of parallel programs on distributed systems, a set of processors are supposed to
be connected in such a way that a parallel target machine is constructed. The scheduling requires
that the program be decomposed into elementary tasks. These tasks have to be assigned to the
processors according to a ‘certain policy depending on the tasks interdependence and the limitation
of the target machine.

The scheduling technique can be either local or global [47]. The first one deals with concurrent
processes in single processor systems. The global scheduling handles the allocation of tasks in
multiprocessor systems. The global scheduling can be performed either in a dynamic [14] or in a
static [30,43] manner. In the static task scheduling, the information regarding the tasks such as
execution time of each task, intertask or interprocessor cofnmun_icati_on time, task execution
precedence relations or their execution order is known prior. to the task allocation. It is called
static or deterministic task allocation scheduling techniques. In the case of dynamic task
assignment and scheduling, no prior fixed information about the tasks is given, and the number of
tasks or system resources could change during the system runtime. Task assignﬁlent and
scheduling decisions must be made during system runtime in order to satisfy the changing
requirements. Static task assignment and scheduling techniques have received a lot of attention in
parallel program design. As the design of the Multiple Scale Signal Matching (MSSM) algorithm
of interest in this thesis is based on the static task allocation model known as graph theoretical

method, we survey the graph theoretical approach here.
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3-4.a Graph theoretical method:

There are three main aspects that have to be considered to build a graph theoretical system.
The first two constituents are the task graph and the target machine graph. In the task graph the
tasks are assigned numbers and are represented by nodes. Each node is split into two halves, the
upper half indicates the task number and the lower one gives the execution time of the tasks. The
data dependency and execution order are represented by directed arrows that are labeled with the

communication time delay (Figure 3.5).

Fig 3.5 : Program task graph

In the target machine graph the processors are given numbers and are represented by nodes. They

are linked by directed arrows labeled to indicate the interprocessor connection (Figure 3.6)

Fig 3.6 : Target machine graph.
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The remaining stage is the scheduler that takes care of the decision of allocating tasks to resources
according to some policy. The combination of the task graph with the target machine through the
scheduler gives out the Gantt Chart. It represents the different processors on one axis and the task
execution time on the other one (Figure 3.7). After the task assignment, the Gantt Chart can serve
as a means of system performance measure and will eventually give an idea about the resource

(processors) utilization or the system load balancing.

Task graph

° Time Pl P2
(») 2

Scheduler

vy

. Gantt chart
Target machine graph

Fig 3.7 : Graph theoretical system approach.

The task allocation scheduling based on the graph theoretical approach requires that the
algorithm under development be partitioned into a set of tasks to set light on the :nherent
parallelism of the algorithm. The purpose of task allocation scheduling on a set of interco nection
processors is to reduce the job turnaround. Such an objective can be achieved by maxim /'ng the
resource utilization, while reducing the time that can be spent in communication. It is a 1axmin

problem because a trade off between system load balancing and minimizing the - -rhead
1
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communication time is encountered. While trying to minimize the interprocessor communication
time delay, the tasks tend to be assigned to a single processor on which they are executed in
sequential manner. In such a case, the system load balancing is lost. On the other side, if the tasks
are assigned in such a way that a best load balancing is obtained, more overhead communication
delay is added to the overall execution time. Under such constraints, if the number of the
processing elements is increased, a higher execution time may result even if the system is well
balanced. The increase in the execution processing time can be explained by the increase of the
interprocessor communication time, which is due to the precedence order of parallel tasks that are
assigned to separate processors.

Based on these two aspects, the allocation strategy tends to assign the heavily attached tasks
on the same processor. In oth‘e‘r‘words, if the communication time delay between two attached
tasks is very large, a shorter execution time can be obtained if both of them are allocated on a

single processor. To illustrate better this idea, let us take a look at the Gantt Chart shown in

Figure 3.8.
0
1 Tars
TC13
2
2 3 3
\Te=/) \Im=l)
N~—
Task graph. Gantt chart A Gantt chart B

Figure 3.8 : The task allocation consideration due to communication time delay.
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Te15 between task 1, and

It can be noticed from Gantt Chart A that if the communication time
task 3 is greater than the execution time of task 2, the starting time of task 3 on P2 is later than its
starting time on P1. When all the tasks (1, 2, and 3) are mapped on processor P1, the execution

time (Tg ) of this task graph is the summation of the execution times of tasks 1,2, and 3 as

described by the following equation:

When task 3 is assigned to processor 2, the execution time of this task graph is the summation of

task 1, 2, plus the communication delay Tcys. This can be described by the following equation.
Tg =Tgy + Tgy + Ieys Eq32
It can be noticed from equation 3.1 that when all of the tasks are allocated on a single

processor (P1), the execution time is equal to three units of time. From equation 3.2, it is clear

that if Ze1s > Ti2, the task graph execution time will be greater than if all the tasks are executed on

~ a single processor P1 (more than three time units). Therefore, when Ioyy < T, , the execution
time is shorter than the sequential execution as shown in Gantt Chart B.

Another approach, known as the task duplication approach [27], may be used to offset the

communication delay during the task allocation process. The duplication may solve the maxmin
problem by duplicating the tasks that influence the communication time delay. As shown in Figure
3.9, T1 is duplicated to run on both P1 and P2. Thus, task T3 can start sooner than if both tasks
T2 and task T3 were assigned to the same processor. Therefore, duplicating task T1 gives the
advantage of the inherent parallelism of the application and reduces the communication time delay

at the same time.

|
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Figure 3.9 : Task duplication approach.
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Based on the two approaches described above, it can be noticed that a shortest execution time

~n be achieved not only by distributing the eventual parallel tasks on as many processors as -

possible. When parallel tasks are distributed on all possible available processors,-thé overall

communication time increases. This later may affect drastically the overall execution time of the

program. Therefore, with the task allocation scheduling, a shortest execution time is obtained by

minimizing the communication time delay.

3-5 Performance measure;

The main objective behind the parallel design of algorithms is the reduction of their execution

time when implemented on a multiprocessor system with respect to their execution time on single

processor systems. However, the performance measure of the parallel implementation can be

performed through the execution time gain which is defined as the sequential execution time over

the parallel one. The time gain [32] is denoted by (5, and is represented by the following equation:
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G = Eq33

Where : T g is the sequential execution time on a single processor system.

T} is the parallel execution time on a multiprocessor system. .
Another factor that can be used for the performance measure of a parallel implementation is the
efficiency of the system on which the parallel algorithm is implemented. It is defined as the time
gain over the number of processors (transputers) in the network. The efficiency of the system can

be represented by the following equation:

G
E = — Eq3.4
P q

Wheré P is the number of processors in the multipr’o.ce_ss-or system.

By inspecting the two perforrﬁance measure equat-iorils given above, it can be noticed that, if tﬁe
algorithm is completely parallelized, a maximum efficiency of 1 is obtained. Thus, if the algorithm
is completely parallelized, the sequential execution time over the parallel one equals the number of
processors in the system as given below: |

Ts
Max(G)= 7. = P Eq3.5
P

However, in real applications, due to the time spent in communication between processors, the
precedence relationship that may exist between parallel algorithm tasks and load balancing issues,
the efficiency of the system is degraded. This means that the three above constraints increase the
difficulty of arriving to the maximum time gain. Thus, in the parallel design of a parallel algorithm,

one 1s required to overcome these problems, so that an optimal time gain is obtained.
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CHAPTER 4

TRANSPUTERS

4-1 Introduction:

During the past ten years, many shared parallel computers have been designed such as Cray-1
[45] and ILLIAC V [11,39] and many distributed memory systems have been designed such as the
Butterfly [37] and MPP (Massively Parallel Processor) [29]. In shared memory systems a set of
conventional processors are gathered around a shared memory. Such a configuration leads to the
bottieneck problem as the interconnected processors share a common bus.

| Computer scientists have discovered that distributed memory systems can scale up easily than
shared memory systems and lead to the design of massively parallel processors such as the MPP |
v(Massively Parallel Prc;cessor). But since distributed memory systems are based on. corﬁmunication
networks, the interface between the processors and the communication networks is a burden. It
was complex and slow on one hand and on another hand, the CSP (Communicative Sequential
- Processes) model [5] could not be implemented at the language level. |

Recently, withw the advaﬁce of the integration techniques to very large scale (VLSI), very
powerful interconnected processors have been designed to conétruct multiprocessor systems to
fulfill the requirements of increased computational power and to overcome the bottleneck problem
encountered in shared memory systems. The most famous ones are the INTEL/Carnegie Mellon
Warp[16], and the INMOS transputer [7,10,25,40].

As the transputer has been used in the implementation of the present project, this chapter is

devoted to an insight of its hardware and software aspects, along with its development system.
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4-2 The transputer architecture:

All transputers include a processor (16 or 32 bits), a system service, two or more serial links
with their link interface, a timer and what makes them members of the distributed memory system

family, an on-chip memory that can be expanded through a memory interface (Figure 4.1).

A
B
Reset — <
System
Analyse— service =
Error «— I Processor
o
Fr
- Be
Timer
LinkIn O
Link interface LinkOut ¢
Locgl
memory
"""""""" “——, Linkin3 -
Link interface ! )
________________ 4—— LinkOut 3
Memory.
D interface e Event-Req
Event agent }————— Event-Ack

Figure 4.1 Transputer genertc architecture

The processor has six registers for the execution of sequential programs: Areg, Breg, and Creg.
They are used to evaluate expressions and hold instruction operands and results; the Ireg, a
program counter pointing to the next instruction to be executed; the Wreg, work spac : register
that points to the block of local data of the current process; and finally the operand regi: :r Oreg.

The transputer's processor consists of two other registers that support concurrent proce “sing and

|
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are known as the Front and Back registers. They are used to hold the addresses of the first and the
last processes to be executed concurrently.

The system service manages three signals that are important to transputer based systems: Reset,
Analyze (in the case of tracing), and Error that signals an error occurring during the execution of
a program.

The transputer has a pair of event pins that are used to signal to the transputer that some
external events have occurred. Events are handled by an on-chip event agent. They are
programmed exactly like a link via the Event-req input. When external events occur, the transputer
can acknowledge the external devices using Event-Ack output pin.

The transputer has two timers which can be utilized by the programmer for real-time
[ ~gramming, timing events, and delays.

The transpufer memory addresses are signed binary representation. This fact reduces the
address computation time in the processor's ALU. The address space is organized as follows: The
nine bottom words are used by the links and events, the next two upper ‘words are used by the
timers. The remaining space is allocated for the interrupt save area, the on chip memory, the
external memory, peripherals, and ROM (Figure 4.2).

The transputer links are fundamental to both the hardware and software aspects of the
transputer communication concepts. Under this latter, the communication is established through
their physical bi-directional serial links using the message passing concept. The transfer of data is
orchestrated at a rate of 10 Mbits per second. This speedvis totally independent of the processor's

computing speed, allowing connection of different transputer versions in the same system.
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Communication through the links involves a simple protocol that ensures. the trafsmission of a

byte at a time in a packet. Each packet consists of two one's, the byte to be sent, and terminated

by a zero "0"; (Figure 4.3). The reception is acknowledged by the receiving transput=r using an

acknowledgment packet as soon as the data packet is identified.

Data

0o 1 2 3 5 6 7
1 1 Data 0
Acknowledge packet
1 0

Figure 4.3: Transputer communication protocol
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4-3 Transputer instruction set:

All the instructions are one-byte long. The four most significant bits constitute the function

field, the other bits are used to represent the operand value (Figure 4.4).

Function Operand

Figure 4.4: Instruction format

This format of instruction is based on the concept of the RISC architecture [6,8,23] that requires a
simple decode mechanism, reduces chip area, and increases execution speed. There are three forms
of instructions: Direct, indirect, and prefixed.

Of the sixteen possible instructions, thirteen are used to repfesent the most frequently used
functions. They are known as one address or direct instructions as the operand is used by the

instruction as a value;

1- Load‘local | 5- Load constant 9- Load non-local 12- Jump
2- Store local 6- Add constant 10- Load non-local pointer ~ 13-Call
3- Load local pointer 7- Add to memory 11- Adjust workspace

4- Store non-local 8- Conditional jump

Another type of instructions use the operand to define operations on values already in the
evaluation stack. They are called indirect or zero address instructions. The remaining two
instructions are the prefix and Negative prefix that are used to extend the operand of any

instruction to the length of the operand register. The prefix instruction starts by loading its four
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data bits into the operand register to four places, then the data field of the next load instruction is
ORed with the four least significant bits of the operand register (Figure 4.5). Consequently, data
can be extended to the length of the operand register by a sequence of prefixing instructions. The
negative prefix instruction is similar to prefix one except that it performs a 2's complement of the

operand register before shifting it.

7 0

Function Data

32 0

Operand register

Figure 4.5 : Loading the operand register.

.

4-4 The OCCAM language:

OCCAM's model of programming is based on CSP (Communicative Sequential Processes)
model [40]. It was developed by INMOS to allow a program to be consid;ered as it consists of a
collection of concurrent processes that communicate with each other and peripheral devices'
through channels. Although OCCAM language [4,18,28 41] is an abstract programming language,
its development has been closely associated with that of the INMOS transputer [7,10,25,40].
Thus, OCCAM can be considered as the transputer assembly language which provides to the
programmer the same programming techniques on a single transputer and a network of
transputers. This enables a programmer to be essentially unconcerned about the final

implementation scheme.
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OCCAM programs are constructed of hierarchical levels of processes. At the lowest level, the
language is built up from just three primitive process types: assignment, input, and output. These

two latter support interprocess communication via channels as it is illustrated in Figure 4.6.

Cla o C™
Communication

channel C
Process 1 Process 2

Figure 4.6: process communication

The symbols used for these three primitive processes are:

1) Assignment: a:= b Assigns expression b to variable a.

2) Transmit.: C ! b Outputs the value contained in b to a previously declared channel C.

3) Receive : C ? b Inputs a value from a previously declared channel C and assigns it to the

variable b.

OCCAM supports a number of basic variable t)}pes: CHAN, TIMER, BOOL, BYTE and INT.
OCCAM's channels as well as the type of data to be transmitted or received must be declared in

the outer scope of a program as it is illustrated in the following example.

Channels declarations:

CHAN OF INT chanl, chan2.
Program
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This states that both chanl and chan2 are declared as being channels, through which integers are
transmitted and received.
OCCAM supports also the signed integer INT16, INT32, INT64, and the floating point type

REAL 32, and REAL 64.

Expressions may be constructed using the following operators:
Arithmetic operator: +, -, *,/,\ (\ the remainder )
Modulo arithmetic
Relational | = <> > < <=>=
Boolean operators: AND, OR, NOT
Bit operations: BITAND, BITOR, <> (exclusion OR), BITNOT
Shift operators; <<>> .

Prin;jtive pfocesses. may be COrfxbined to build up level processes by the use.of constructs. The

sequential construct, SEQ, indicates the processes that follow it are to be executed sequentic:iy.

R Sequential execution of processes:

CHAN OF INT Chanl1,Chan2:
INT X:
SEQ

Chan1? X

X:=X+1

Chan2! X

In addition to this sequential construct, OCCAM provides a construct which enabl s the parallel
execution of processes, thus facilitating interprocess communication. The parallel cc truct, PAR,

indicates that the processes which follow it are to be executed in parallel.
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Parallel execution of processes:

CHAN OF INT Chanl1,Chan2:
PAR

.. process 1

INT x (x here is local to Process 1)

Chanl ? x

... Process 2

INT x (x here is local to Process 2)

Chan2 ! x

As in many conventional languages, OCCAM's conditional statement is provided through the IF

construct.

Conditional statement:

CHAN OF INT Chanl,Chan2,Chan3:
|INT x,y:
| IF
x=1 . :
Chanl!y Output y on channel chanl
x=2

Chan2!y Output y on channel chan2
ELSE

Chan3'y Output y on channel chan3

In addition, there is another means of choosing or selecting the process to be executed, which

depends on greater number of variables: the CASE construct.

Selection statement:

CHAN OF INT Chanl,Chan2:
INT x,y:
CASE X
1,2,3
Chanl!y Output y on channel chanl
4

* Chanly Output y on channel chan2
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The value of y will be either output on chanl (if x=1, or x=2, or x=3) or chan2 (if x=4).
With the OCCAM language, choices can also be made according to the state of the channels.
Such feature can be accomplished by the ALT construct. The ALT construct can be particularly

useful where input values might appear on one of a number of alternative channels,

Alternation statement:

CHAN OF INT Chanl,Chan2,Chan3:
INT X:
ALT
Chanl
Process 1
Chan2
Process 2
Chan3
Process 3

 If one among the three channels. produces an input, only the associated process will be executed.

OCCAM offers two constructs that perform repetition. The first one is used to repeat a
process for a specified number of times. Such a repetition can be used with the SEQ construct to
create conventional loops, and with the PAR construct to build up arrays of concurrent processes,

as shown in the following example.

Repetition using SEQ construct:

1- SEQ i=0 FORN
PROCESS

2-PARi=0 FORN
PROCESS i

The second repetitive construct can be performed by the WHILE construct which includes a test

in its execution. The process is executed as long as the test is true.
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LOOPS using WHILE statement:

INT X,n:
SEQ
X:=n
WHILE X>0
SEQ
y:=X+1
X:=X-1

In order to increase the readability and maintainability of the programs, processes can be named
and represented by procedures. The procedure is formed by the keyword PROC, the name of the
process, and the process itself or the procedure body. This latter is executed whenever its name is
encoungeréd during the execution’ Qf the program. Procedures may contain parameters which allow

different values to be passed to another procedure or channels to be used at its different instances.

Procedure;
PROC task (CHAN OF INT C1,C2,C3)

INT X:
ALT
C1?X
Process 1
C2?7X
Process 2
C3?X
Process 3

CHAN OF INT Chanl1,Chan2,Chan3:
SEQ
task (chanl,chan2,chan3)
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4-5 Transputer development system:

The transputer development system (7DS3) [19] is an integrated development system that is
used to develop OCCAM applications for transputer based networks. It runs on transputer board
plagued on an IBM PC, as the INMOS SPRINT board [33] or the BOO8 board [20]. All the
development software utiiities such as the Folding Editor, Compiler, and Debugger are integrated
in the TDS3 and run on the transputer boards (Figure 4.7).

The interface between the TDS3 environment and the MSDOS or the resources of the IBM PC
in general is performed by a program which runs on IBM PC called a SERVER. This latter
provides the development system with the access to the terminal and filling system of the IBM PC.
The developed program applications can be written, compiled, and loaded on the transputer within

the transputer development system.

Connector Screen

I [l

T425 O =—

IBM PC System Bus

compiler

Figure 4.7 : Transputer development system.
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IV -5. a SPRINT board description:

The SPRINT board [33] is a half length PC plug-in board. It includes an INMOS T425 [21]
transputer, and 2 Mbytes of Dynamic memory. Its PC bus interface is completely B004
compatible. This latter owes its name from the fact that the first ever transputer board that has
been used in a PC machine had the part number B0O4. Since then all the other board
manufacturers have produced compatible interfaces, so that the software interface to the
transputer remains compatible.

A "DB25" socket is provided at the rear of the SPRINT board. All the transputer links,
subsystem control signals, the PC link and the PC-controlled system services are taken out of the
"DB25" socket as shown in Figure 4.8. This allows to the SPRINT board to be connected to other

INMOS ‘boé.rds or controlled by ar external network.

|_SwitchBlock2 | [ Switch Block 1 |

| U QAQU Iji | DB25 Socketﬁ

DDDU T425

Figure 4.8 : INMOS sprint board.

The SPRINT board contains two set of switches by which several of the operating parameters of
the board can be changed. The first block of switches is concerned with the setting of the
transputer links speed (from 10 Mbit/sec to 20 Mbit/sec), the transputer clock speed (17.5, 20,
225, 25, 30, 35 MHz), and also the transputer memory speed. The second block of switches

controls the direction of the link signals from the PC host and the system service of the transputer




(Reset, Analyse, and Error signals). By setting these switches, the service signals can be either

connected to the line of the host interface or to the "DB25" socket, allowing the board to be

configured, so that it can be controlled from the host PC or an external PC.

The communication between the SPRINT board and the host IBM PC is assured by the CO12

link interface adapter [21] (Figure 4.9). The CO12 device is a chip produced by INMOS used for

the conversion of the parallel data from the PC host to the serial data stream that is acceptable by

the transputer.

]

UP DOWN

RESET
< ANALYSE

ERROR

~+ PCNOTRESET iENiELTYSE
— PCNOTANALYSE ERROR
*—  PCNOTERROR
| CO12 f Buffered link |+ Link0
Link1
Control
I 4 Link2
PC Interface «— Link3

!

Transputer

Memory

]

Sub-system

Y Subsysnoterror

Subsysnotanalyse

Figure 4.9 : SPRINT board block diagram

4-3.b SPRINT board configuration :

Subsysnotreset

The SPRINT board [33] can be configured in three different manner. The DB25 socket and

switch blocks described in the previous sections are provided for this purpose. Depending on

whether the on board transputer is to be controlled by host or by another external network as in
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the case when building a multiprocessor system. The three possibilities are discussed in the

following.

1) Transputer controlled from an IBM PC:

This is called a stand alone configuration. In this mode, the SPRINT board is completely
controlled by the host. The Reset, Analyse, and Error signals of the transputer are connected to
the PC bus interface. In the case when, the ON board transputer is to be used to control an
external network (other transputers), the Sub Sys-port or the DownNot-port on the DB25 socket

can be used.

2)- Transputer controlled from an external network:
In this mode, the Reset, Analyse, and Error signals of the transputer are connected to the Up-
Not line on the DB25 socket. This configuration is used when a transputer network is to be built.

With this configuration the onboard transputer is completely controlled by an external network.

'3)- Controlliné transputers other than the one on the board:

In this mode, the link input, and output lines of the CO12 link adapter are connected to the
DB25 socket, and with the three transputer control signals (PCNotReset, Analyse, and Error), the
host IBM PC on which the SPRINT board is installed can be used to control other transputers
than the onboard one. This configuration is almost unused.

In the transputer based network used to carry out the parallel implementation of the Multiple
Scale Signal Matching algorithm [26,38], four SPRINT boards were used. Each one has been
inserted on different PC's (IBM compatible) as depicted in Figure 4.10. The Host board has been

configured in a stand alone configuration mode (controlled by the Host IBM PC). The remaining
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boards were configured using the second mode by which they can be controlled by the Host

transputer board. More details about the transputer interconnection links will be presented in

Chapter 7.
IBM PC
l 1  Sprint
1 Board
Sprint 1] ~[7]  Sprint
Board  ||] WUl Board
Host IBM PC IBM PC
l 1 Sprint
1 Board
i IBM PC

Figure 4.10 : Transputer based network uéing the INMOé .
SPRINT board

4-6 Transputer family:

| In the first transputer generations, there are three main types: the 32 bit transputers with a
floating point unit known as the T8 or T8xx, the 32 bit transputer without floating poin: unit
known as T4 or T4xx, and the 16 bit transputers known as the T2 or T2xx. The first prod::ction
was the IMS T414 (1985) [21,24]. It has 2 Kbytes of on chip memory and four slower links. The

T414 was enhanced into new version termed the IMS T425 [21], which has a 4 Kbytes of on chip

memory and fastest links, plus some additional instructions and pins for extra functions.
The T400 [21] is a low cost version of the T425 with only two links and 2 Kbytes of . nory.

It is available in plastic packaging. The T426 [21] is similar to the T425 except that it inc .ides a
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memory interface (emi) [25] by which memory capacity can be increased with a minimum of
external components.

The second production of the transputer first generation was the 16 bit transputer version. The
first version of this category was the T212 [21] with 2 Kbytes of on chip memory and slower
links. This was enhanced into T222 [21] and T225 [21] which have 4 Kbytes of on chip memory.

The third transputer production started with the IMS T800 [21,13]. It is an enhanced T414
version. It includes a 4 Kbytes of on chip memory, Floating point coprocessor, and four serial
links. The T800 has been improved giving the T805 [21] with extra instructions and hardware pins
for extra functions. This latter was enhanced into T801 [21] which includes a fast memory
interface.

A summary of first generation transputer is given in the table given below.

T212 M212 T222 T225 T414 T400 T425 T426 T800 T8G1 T80S

On-chip memory (bytes) 2K 2K 4K 4K 2K 2K 4K 4K 4K 4K 4K
Floating point hardware No No No No No No No No No No No
Word length (bits) 16 16 16 16 32 32 32 32 32 32 32
Number of links 4 2 4 4 4 2 4 4 4 4 4
Programmable DRAM controller No No No No Yes Yes Yes Yes Yes No Yes
Overlapped acknowledge No No Yes Yes No Yes Yes Yes Yes Yes Yes
Disk interface No Yes No No No No No No No No No

The second transputer generation is known as the IMS T9000 [25,42]. From the user's point of

view, this generation is similar to the previous one except that it is more powerful. The general

architecture is the same, with a processor, a floating point unit, on chip memory, a programmable

memory interface, and four communication links.
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The T9000 represents a significant advance on Txxx transputers, the processor is designed to
run ten times the speed of the T805. Its frequency reaches 50 MHz. The T9000 has an additional
81 instructions compared to the T805. A new feature of the T9000 is that communication between
processes may take place along virtual channels that can be mapped on a single physical link. The
T9000 can map up to 64 thousand virtual channels on a single link. The mapping is handled by a

virtual channel processor (VCP) integrated with the processor.
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CHAPTER 5

THE MULTIPLE SCALE SIGNAL MATCHING
ALGORITHM

5-1 Introduction :
The aim of the Multiple Scale Signal Matching (MSSM) algorithm [26,38] is to establish
. the. j_iscrepaﬁcies measurement between two images, one of them being the reference.

The MSSM algc')rithn} is based on the elastic matching theory [46]. Under this latt.er, one of
thé objects (images) is assumed to behave as an elastic material, the other serving as a
reference. The matching process is accomplished after both the reference and the object
(images) have been globally aligned by involving geometrical transformation such as rotation,
translation, and scaling. After a global alignment, the object (image) is deformed like a piece of
rubber, without tearing or folding. Deformation proceeds step-by-step so that the elastic object
matches the reference.

This approach finds applications in medicine, geography, and in recognition of 3D shapes in
general. This chapter is devoted to the description of the Multiple Scale Signal Matching

algorithm.




S-2 General description :
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The aim of the Multiple Scale Signal Matching algorithm is the measurement of the

discrepancies between two images, one of them being the reference. Figure 5.1 provides the

software architecture for the MSSM algorithm. Horizontally, the algorithm can be seen as

consisting of a sequence of octave-separated frequency channels from the lowest frequency

channel of o to the highest one % v

4

o
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2

o

Model Patient Model Patient
image image 1mage image
Filter Filter Filter Filter
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Figure 5.1 : Software architecture of the MSSM

At the input of the algorithm are two globally matched images and the output is a pixel-by-

pixel continuous measure of horizontal and vertical discrepancies.

Basically, each of the MSSM channels consists of two main stages: a filtering stage and a

matching stage. The filtering stage involves the filtering of the two images with a Difference of

Gauss (DOG) filter [34]. The result is fed to the matching stage. This latter starts with an
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initial discrepancy estimate (i.e. (0,0)) and outputs a horizontal and a vertical discrepancy
maps.
5-3 The filtering stage:

Edges, boundaries, or contours occur in physical aspects of the image and are represented
by intensity changes. The aim of the filtering stage is to detect these intensity changes.

Several methods have been developed to that extent. One of these methods is known as the
Gradient based method. The intensity changes can be detected by computing the first
derivative of the image function. Consider a function f{x) which represents 1D intensity
changes as shown in the Figure 5.2.(a). If f{x) is changing, a change in intensity is indicated by

a peak in its first derivative as it is illustrated in Figure 5.2.(b)

fx)

v

v

Figure 5.2: Zero-crossing.

The generalization of f '(x) to a 2D function that represent the intensity changes of an imag? is

the gradient of f{x,y) given by:
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Y/ (xy)= Z4 (;y) - 74 (;y)

Iy Eq 5.1

where iy is the unit vector in the x-direction and iy is the unit vector in the y-direction.

Another method takes the second derivative of the intensity function and detects the
intensity changes at the zero-crossing, or at the points where the second derivative f "(x)
changes its sign as it is illustrated in Figure 5.2. (c).

The extension to 2D gives the laplacian equation as:

2y 2@y

2
V< Ffxy)= Eq52
S(x.y) ) @2 q

Due to the fact that some edges are _srhall and local in nature and others are large and

coarse, Marr [34] stated that the intensity changes in an arbitrary image may take place at a
wide range of frequencies. Thus, the direct application of the first or second derivative to the
function image would not be the optimal method by which all the intensity changes can be
detected. He developed a method to detect all the intensity changes arguing that two basic
ideas underlay the intensity changes detection : (1) the intensity changes occur at different
scales in an image and so their optimal detection requires the use of an operator that responds
to several different scales; (2) a sudden intensity change gives rise to a peak or trough in the
first derivative or, equivalently, to zero-crossing in the second derivative as illustrated in the
l Figure 5.2. The most satisfactory operator fulfilling the two above conditions is a gaussian

shaped filter which has an impulse response given by:

hxy)=e 279° Eq5.3




where o represents the standard deviation or the blurring parameter,

The choice of the gaussian filter is motivated by the fact that it can be tuned to a scale or
frequency band at which the intensity changes are to be detected and because it is smooth and
localized: a smoother h(x,y) is less likely to introduce any changes that are not present in the
original shape, a more localized h(x,y) is less likely to shift the location of intensity changes.

The intensity changes can be detected from the smoothed images by using one of the
methods discussed in the previous sections. In the Multiple Scale Signal Matching technique,
the second partial derivative is applied in order to detect the intensity changes, by looking for
the zero-crossing points using the difference of gauss filter. The mathematical representation of

* the tering process is :

V2Lf () h(ey)]  Eq54

It can noticed that the Difference of Gauss (DOG) filter consists of two parts, a gaussian
part and a derivative part. The gaussian part is used to blur the images to the scale or band of
frequency at which the intensity changes are to be detected, while its derivative part is used to
detect the zero-crossing.

Thus, the filtering of the two pair of images can be achieved, first by convolving the two
images with gaussian distribution function and second by taking the second derivative of the
convolved functions. In the first step, the images will be blurred to a degree determined by the
standard deviation sigma (o).

The mathematical representation for the patient image (P) and the model image M)is:
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fS(x,y),x =0,1,............. X,y=01_..... Y
Eq5.5
S =M,orP
The filtered image, denoted by Fy(x,y)is:
Fg(x,y)= V2G(x.y) * f¢(x.p) Eq5.6
Where * stand for convolution.
G(x,y), the gaussian distribution function, is defined as:
2y
Gxy)=(T—>3)e 2102 Eq 5.7
2no
Fg¢ (x,y) can bé rewritten as:
Fo(x.p)= VAG(x,y) * f5(x.p)] - | Eq5s

The left part between bracket of Equation 5.8 ([G(x,y) * fs(x_. y)]) represents the product of

the distribution function and the image function. At this level the two images are blurred to a
certain degree determined by the sigma (o) value of the gaussian distribution function. This
results in a blurred image Bg(x,y).
In the second step the blurred images are differentiated twice. The filtered images become:
Fg(x,y)= V2Bg(x.y) Eq5.10
These will serve as input to the matching stage.

The images below show the results of smoothing (blurring) an image with gaussian distribution

function with different sigma (0=1,2,3,4,5) values.




Oniginal image Blurred image with sigma =1

Blurred image with sigma =3

Blurred image with sigma =2
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Blurred image with sigma =5

Blurred image with sigma =4

It is clear that the ievel of details in 'each_o‘f the output images varies with the sigma valﬁé.
Thus, in order to take into account all intensity changes occurring at different spatial
frequencies, the image must be convolved with different Difference of Gauss (DOG) filters
with different sigma (o) values.

The intensity changes in the image f{x,y) will manifest themselves at the output as zero-
crossing [34] in the second derivative D*(f *G). In other words, the edges can be detected by
looking for zero-crossing of D*(f *G) or its equivalent DG f.

The following are examples of zero-crossing detection using DOG filters with different

sigma ( o ) values.
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Zero-crossing detection when sigma =1
Zero-crossing detection when sigma =2
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Intensity changes when sigma =3
Intensity changes when sigma =4

The number of iterations in the MSSM algorithm represents the frequency channels at
which the intensity changes are to be detected. In fact this technique is based on a multichannel

model based on human vision [35].
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5-4 THE MATCHING STAGE :

Matching is a process in which two existing representations are put into correspondence.
Having a model as reference and some input data from a sensor, the purpose of the matching
process is to interpret the input data in terms of the reference.

The matching process has to be performed into two stages. First the model and the input
data have to be globally aligned. This may involve translation, rotation, and scaling, so as to
bring both the model and input data into an approximate correspondence. The second stage is
concerned with matching each basic element of the first object with an area around the
corresponding basic element on the other object. This technique is based on the elastic
matching concept [46]. With the elastic matching approach, one of the two objects that are to
_be Tatched is assumed to be behave as an elastic material, the other serving as a reference.
Then by deforming £he elastic object like a piece of rubber without tearing or folding; its ‘shabe
can be changed so that it matches the reference.

The matching stage of the MSSM algorithm is concerned only with the second stage of the
matching process. This means that the input to the MSSM algorithm is two globally aligned
images. The MSSM matching stage proceeds by matching one pixel image to another in the
model image by looking for local matches between a pixel in the first image and a small area in
the second one which is defined by a window size (w). The window (w) has its center
corresponding to the matched pixel and its boundaries are placed on the neighborhood of the
corresponding matched pixel (see Figure 5.3 [2]). The window size determines how much the

matched pixel can be shifted from its corresponding coordinates in the model image.
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Figure 5.3 : Matching technique.
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The process starts from an initial discrepancy map j.e. (0,0), and then to each iteration a
discrepancy map is generated. The latter serves as initial discrepancy map for the next one. The
final discrepancy map contains the corresponding coordinates of each pixel of the patient
image on the model image. Once the matching process is accomplished, the correspondence
between the model and the matched image is established. Therefore, any knowledge in the
model can be applied directly to the matched image. For example, in the medical field as each
pixel in the model image can be already known which tissue it represents, each pixel in the

matched image can be classified according to the type of tissue it represents.
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CHAPTER 6

SEQUENTIAL DESIGN AND IMPLEMENTATION
OF THE MSSM ALGORITHM

6-1 Introduction:

The sequential design and implementation of the Multiple Scale Signal Matching (MSSM) over
a singlé transputer system is some how necessary folr ;hé next work which deals with its: parallel -
design and implementation over "(1 network of transbuiers. The sequential implementation wili
serve as a basis to measure the performance of the parallel implementation.

The design of the MSSM algorithm is based on concurrent programming concepts through
which the algorithm is seen as consisting of a collection of interconnected processes running
concurrently in parallel on a single transputer (7425). With concurrent programming design
methodology, each process is regarded as an independent unit. It communicates with other
processes along point-to-point channels (through Memory). Using the OCCAM programming
language, the communication is synchronized with message passing, avoiding the addition of any
separate synchronization mechanism.

At first sight, the internal design of the process is hidden, and is completely specified by the

data it sends or receives from the other processes. Each process is specified by a name, and is seen
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as a black box, with its communication channels represented by directed arrows that indicate the
flow of data from and to the other processes.

Internally, each process can be designed as a set of communicating processes. With such
approach, the algorithm design is hierarchically structured, and errors can be easily avoided. At

each level the design is concerned only with a small and manageable set of processes.

6-2 Program design:

The design starts first by considering the algorithm as a system in which processes are
represented by oval boxes, and communication channels by directed arrow lines. At first sight, the
MSSM  algorithm can be considered as a single process with two channels from which the
required data transfer can be provided. These channels are connected to another process which
serves as an interface between the MSSM application and its environment. For illustration, a block

diagram shown in Figure 6.1 is used to give the top level representation of the program design.

from.isv
to.isv
Interface
process
+
Server chanl chan2
IBM |
host PC MSSM
; process
: Transpute

Inmos Sprint Board

Figure 6.1 : MSSM top level design block diagram.
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Each process and channel is specified by a name on the diagram. At this level a top level OCCAM
program can be written. The two processes (INTERFACE and MSSM processes) shown in the
above block diagram are designed to be executed in parallel. The only items they share are the
channels between them (chanl, chan2). These latter are declared in the outer scope of the main

program as shown below.

Main program

-- chanl is seen as an output channel by the INTERFACE process and as an input channel by the
MSSM process.

-- chan2 is seen as an input channel by the INTERFACE process and an output channel by the
MSSM process : .-

-- from.isv and to.isv channels are used to connect the INTERFACE process to the server
program (SP) running on the host IBM PC

.- The KS ai = SS channels are used to allow the INTERFACE process to access the termmals
(keyboard, screen)

CHAN OF REAL32 chanl :

CHAN OF INT chan2:

CHAN OF SP from.isv,to.isv :

CHAN OF KS keyboard :

CHAN OF SS screen :

PAR
INTERFACE (from.isv,to.isv,keyboard,screen,chan1,chan2)
MSSM (chanl,chan2)
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In this top level design, the two processes are independent, and as long as they agree on the
form of data to pass between them, the next design level can proceed by treating them

independently.

6-3 The interface process:

The INTERFACE process is designed to handle the input and output (/O) communication
between the MSSM process and the SERVER program on the host IBM PC. The INTERFACE
process uses two channels to communicate with the SERVER program in order to access the filling
system on the host IBM PC. The first channel "from.isv" is used as an input from the server
program and the second one (fo.isv) is used as an output to the SERVER program.

Both ." om isv" and "fo isv" are software OCCAM phannels that are mapped on the transputer's
. | physical link0.in, link0.out respectively. Two more c'ha._nn_els termed "chanl" and "chan2" are used
by the interface process to communicate ‘with the MSSM process. These two channels are not
mapped on the transputer's hardware links, both of them are sofiware channels. Thus, the
communication between the MSSM process and the /INTERFACE process is accomplished
through the transputer on chip memory.

The "SERVER" program is used here as an interface between the transputer on board and the
terminal, screen and the filling system. The INTERFACE process is the one which reads the files
containing the model and patient images through the SERVER program using the "from.isv" input
channel. Then it sends them to the MSSM process through the output channel “chani” in which
the two images will be treated. After the MSSM process completes its task, two discrepancy maps
are generated, which have to be communicated to the interface process through its output channel

“chan2" . The INTERFACE process, in turn has to communicate the generated discrepancy maps
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to the SERVER program through the output channel "fo.isv” in order to save the generated
discrepancy maps in the filling system.

In the INTERFACE process, two more channels must be defined ("KS", "S$8"). The purpose of
these two channels is to permit the user to interact with the system through the keyboard and
screen.

Since the INTERFACE process is the one that handles the input/output communication
between the SERVER program and the MSSM process, six procedures are to be designed. Each
procedure is written in a separate fold denoted by " ... " and compiled using a separate compilation

utility denoted by " SC ". The INTERFACE process OCCAM code can be written as follows:

INTERFACE PROCESS

PROC INTERFACE ( CHAN OF SP FROM.ISV,T0.IsV,CHAN OF KS KEYBOARD,CHAN
OF SS SCREEN,CHAN OF REAL32 chan1,CHAN OF INT chan2)

... SC INPUT

... SC READ.MD

... SC READ.PT

... SC SEND

... SC RECEIVE

<. SC WRITE

... LIBRARIES

... DECLARATIONS

SEQ
INPUT (FROM.ISV, TO.ISV, KEYBOARD, SCREEN,NUM_FILTERS, SIZEX, SIZEY, SIGMA)
READ.MD (FROM.ISV, TO.ISV, KEYBOARD, SCREEN, Md, SIZEX,SIZEY)
READ.PT (FROM.ISV, TO.ISV, KEYBOARD, SCREEN,Pt, SIZEX,SIZEY)
SEND (chanl, Md, Pt, NUM_FILTERS,SIZEX,SIZEY,SIGMA)
RECEIVE (chan2, XMAP, YMAP, SIZEX, SIZEY)
WRITE (FROML.ISV, TO.ISV, KEYBOARD, SCREEN, XMAP, YMAP, SIZEX, SIZEY)
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The "INPUT" procedure permits the user to input the number of filters (NUM_FILTERS), the
size of the images (sizex, sizey) to be processed, and the blurring parameter (SIGMA). The

OCCAM code of the "INPUT" procedure is given below:

INPUT PROCEDURE

PROC INPUT (CHAN OF SP from.isv, to.isv, CHAN OF KS keyboard, CHAN OF SS
screen, REAL32 NUM_FILTER,SIZEX,SIZEY, SIGMA)
...Declarations
...LIBRARY
...Body
SEQ
---- input the number of filters
ks.read.echo.char(keyboard,screen,chart)
ks.read.echo.real32 (keyboard,screen, chart, NUM_FILTER)
----input the number of image rows
ks.read.echo.char(keyboard,screen,chart)
ks.read.echo.real32 (keyboard,screen, chart,SIZEX)
----input the number of image columns
- ks.read.echo.char(keyboard,screen,chart)
ks.read.echo.real32 (keyboard,screen, chart,SIZEY)
--—-input the blurring parameter.
ks.read.echo.char(keyboard,screen,chart)
ks.read.echo.real32(keyboard,screen, chart,SiGMma)

The "READ.MD", and the "READ.PT" are written to perform the read operation of the model
and patient images from the filling system on the IBM PC. The input parameters to these
procedures are the two channels “from.isv” and "fo.isv" by which the access to the filling system is
performed, the "KS" channel used by input " READ " procedure through which the access to a file
can be simulated by the keyboard, the "SS” channel used by the "WRITE" procedure by which the
access to the screen is achieved, an array (Md, or Pt) of dimension N by N where the image is to
be stored, and the size of the images (sizex, sizey). The OCCAM code of the "READ.MD",

- procedure is shown below.
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READ PROCEDURE

PROC READ.Mp( CHAN OF SP FROM.ISV,TO,IsV,CHAN OF KS KEYBOARD,CHAN OF SS

SCREEN, [][] REAL32 1MG,REAL32 sizex,sizey)
... LIBRARY

... DECLARATIONS
...Body
SEQ
PAR
so.keystream.from. file( from.isv,to.isv,keyboard, "c:\model image",bres)
ss.scrstream.sink(echo)
WHILE (pixel<>ft.terminated)
SEQ
ks.read.char(keyboard,chart)
ks.read.real32 (keyboard,chart,pixel)
SEQ
Md(i][j]:=pixel -- or Pt(patient image)
j=iel
IF
J<=(INT ROUND sizey)
skip
J> (INT ROUND sizey)
SEQ
=i+l
j=1
ss.write.nt(echo)
ss.write.endstream(echo)

The "SEND" procedure is used to send to the MSSM process all the required data concerning
the number of filters (~vM_FiLTER), the size of the images(sizex,sizey), the blurring parameter

(si6Ma) and also the received images (Md, Pt) from the SERVER program. The OCCAM code of

this procedure is shown below




SEND PROCEDURE

[I{] REAL32 Md,Pt)
... Declarations
INT i:
... Body
SEQ
SEQ
chanl ! sizex
chanl ! sizey
chanl ! NUM_FILTER
chanl ! SIGMA

SEQ
SEQ i= FOR (INT ROUND sizex)
SEQ j=1 FOR (INT ROUND sizey)
chan. 1! Md[i][j]
SEQ
SEQ i= FOR (INT ROUND sizex)
. SEQ j=1 FOR (INT ROUND sizey) -
chanl! Pt[i][j] :

PROC SEND (CHAN OF REAL32 chan1,REAL32 NUM_F ILTERsizex,sizey,SIGMA,
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The "RECEI‘;’E"' procedure is need‘ed for the reception of the generated maps from the MSSM

process. Its OCCAM code is shown below:.

SEQi=1FOR ((INT ROUND sizex)-4)
SEQ j=1 FOR ((INT ROUND sizey)-4)
chan2?XMAP([i][j]
SEQ
SEQ i=FOR ((INT ROUND sizex)-4)
SEQ j=1 FOR ((INT ROUND sizey)-4)
chan2? YMAPJi][j]

RECEIVE PROCEDURE
PROC Receive (CHAN OF INT chan2,REAL32 sizex,sizey,[][] INT XMAP,YMAP)
... Declarations
INT i,j:
... Body
SEQ
SEQ
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Finally, the "WRITE" procedure performs the write (save) operation of the generated
discrepancy maps into the filling system on the host IBM PC. The communication between this
procedure and the SERVER program is established through the two channels "from.isv" and

"to.isv". The OCCAM code of this procedure is given below.

WRITE PROCEDURE

PROC WRITE(CHAN OF SP FROM.ISV,TO.1sV,CHAN OF KS KEYBOARD,CHAN OF SS
SCREEN,[]{] INT XMAP,YMAP,REAL32 SIZEX,SIZEY)

.. LIBRARY
... Declarations
... Body
SEQ
PAR
SEQ
going:=TRUE
1j:=11
WHILE going
SEQ _ .
ss.write.int(fromprog, XMAP(i][j},4).
j=i+l |
IF
J<=((INT ROUND SIZEY) - 4)
SKIP
J> ((INT ROUND SIZEY) - 4)
SEQ
=i+l
j=l1
IF
1<=((INT ROUND SIZEX) - 4)
SKIP
i> (INT ROUND SsIZEX )- 4)
going:=FALSE

ss.write.endstream(fromprog)
SEQ
scrstream. fan out(fromprog, tofile,secreen)
ss.write.endstream(tofile)
so.scrstream. to.file(from.isv,to.isv,tofile,"C:\x-map",bres) -- Or YMAP
IF
(INT bres=0)
SKIP
TRUE
STOP




81

6-4 The MSSM process :

Three processes are specified within the MSSM process: "RECEIVER", "TASK", and

"SENDER". They are designed to run in a sequential manner; see figure 6.2.

to.isv chan2
hanl
/ C
Server fromisv MSSM process
IBM PC RECEIVER

CTasK >
e

Figure 6.2 Software program configuration. -

At this level each of the MSSM process is designed separately while taking into account all the
items that they may share between them. The program top design level can be written with the

shared parameters declared in the outer of the scope of the MSSM process as shown below:,

MSSM PROCESS
PROC MSSM (CHAN OF REAL32 chanl, CHAN OF INT chan2)
REAL32 NUM_FILTER,SIZEX, SIZEY,SIGMA:
[90 ][90 ] REAL32 Md,Pt,DOG1,D0G2, EST1,EST2:
[90][90] INT XMAP, YMAP :
SEQ

RECEIVER (chanl, Md,Pt, NUM_FILTER,SIZEX,SIZEY,SIGMA,)
TASK (Md,Pt,XMAP,YMAP, NUM_FILTER, SIGMA,SIZEX,SIZEY,)
SENDER (chan2, XMAP,YMAP, SIZEX,SIZEY)
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The three processes described above being completely independent, each process can be designed

separately.

6-3.a RECEIVER process :

As shown in the block diagram of Figure 6.2, the first process "RECEIVER" is connected to
the INTERFACE process via a software channel (chanl). The "RECEIVER" process is concerned
only with the reception of data concerning the number of filters (NUM_FILTER), the size of the two
images (SIZEX,SIZEY), the blurring parameter (SIGMA) and also the two images to be treated
(Model, Patient). The transfer of information is established through the previously defined
software channel "chani”, which is connected to the INTERFACE process. Since the input data
must be stored in shared variables in order to be used by the Task process, these latter are taken
as input parameters to the RECEIVER procedure within the RECEIVER process. The OCCAM

code of this RECEIVER procedure then can be written as shown below.

RECEIVER PROCESS

5

PROC RECEIVER (CHAN OF REAL32 chanl, REAL32 NUM_FILETER, SIZEX, SIZEY,
SIGMA, [][] REAL32 Md,Pt,)

INT i,j,:
SEQ
SEQ
SEQ
chanl? sIzex -- RECEIVE THE IMAGE ROW NUMBER
chanl? siZEy == RECEIVE THE IMAGE COLUMN NUMBER
chan1? NUM_FILTER -- RECEIVE THE NUMBER OF FILTERS
chanl? siGma == RECEIVE THE BLURRING PARAMETER
SEQ

SEQ i=1 FOR (INT ROUND SIZEX) -- RECEIVE THE MODEL IMAGE
SEQ j=1 FOR (INT ROUND SIZEY)
chan1?Md[i][j]

SEQ i=1 FOR (INT ROUND SIZEX) -- RECEIVE THE PATIENT IMAGE
SEQ j=1 FOR (INT ROUND SIZEY)
chan1 ?Pt[i][j]
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6-4.b The TASK process:

The second process "TASK" deals with the processing of the two images. The "TASK" process
consists of four procedures: "FILTER" , "BLUR", "DIFGAUSS" , and "MATCHING". The four
procedures are executed in a sequential manner as shown in the top design level of the OCCAM

program shown below.

TASK PROCEDURE
PROC TASK (REAL32 NUM_FILETR,SIGMA,SIZEX,SIZEY[] [] REAL32 Md, Pt, XMAP,
YMAP)

INT N: -- N:represents the number of iterations
[100][100] REAL32 DOGI1, DOG2, ,EST1,EST2,hg:
SEQ

N:=0

WHILE N<= (( INT ROUND NUM_FILTERS)-1)
SEQ

FILTER ( SIZEX,SIZEY,SIGMA, N, hg)

BLUR (SIZEX,SIZEY, Md, hg , EST1)

DIFGAUSS (sI1ZEX,SIZEY ,EST1,DOG1)

BLURR (SIZEX,SIZEY,Pt, hg, EST2)

DIFGAUSS ( sI1ZEX,SIZEY,EST2,D0G2) ‘
MATCHING (SIZEX,SIZEY ,DOG1,DOG2,XMAP,YMAP)
N:=N+1

The "TASK™ process proceeds by first calculating the gaussian distribution function values. The
"FILTER" procedure is designed to perform such a task. The input parameters to this procedure
are: the size of the images "SIZEX, and SIZEY", the sigma value " SIGMA " which controls the
degree level to which the two images are to be blurred, and a 2-D array "hg" of dimension N by N
where the distribution function values are to be stored, and a variable "N" by which the frequency

of the channel o/2" can be determined.
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After having calculated the gaussian distribution transfer function values, the "BLUR"
procedure performs the convolution of the two image functions with the gaussian distribution
function. The input parameters to this procedure are the gaussian distribution function values
"hg(i,j) ", the image to be blurred "Md(i,j)", or "Pt(ij)", the size of the image, and an array
"ESTI"or "EST2" of diménsion N by N where the blurred images are to be stored.

The blurred images (EST1, or EST2) will serve as input to the "DIFGAUSS" process which will
perform the difference of gauss of the two blurred image functions. The size of the images, and the
N by N array where the results are stored are taken as input parameters to the "DIFGAUSS"
procedure.

The last procedure which performs the last stage of the Multiple Scale Signal Matching
algorithm is the MATCHING procedure. The input parameters to this procedure are the difference
of gauss of the model image (DOG1) and the patient image ( DOG2), and two arrays of dimension
N by N (XMAP, YMAP) where the X-Y discrepancy maps are to be stored.

All the procedures are written and compiled separatelyAfrom the main program. Within the
main program, these procedures can be called whenever one of them is needed to perfoﬁn one of

the task required by one of the stages of the MSSM algorithm.

6-4.c The SENDER process:

The "SENDER" process sends the two generated discrepancy maps to the INTERFACE
process through its software output channel "chan2". Then, the interface process, in turn, will
communicate them to the SERVER program in order to be saved in the filling system on the IBM

PC. The OCCAM code of the sender process can be written as shown below:




SENDER PROCEDURE
PROC SENDER (CHAN OF INT chan2, XMAP, YMAP,SIZEX,SIZtY)
INT 1)
SEQ
SEQ

SEQi=1 FOR ((INT ROUND SIZEX)-4)
SEQ j=! FOR ((INT ROUND SIZEY)-4)
chan2! XMAP[i][j]

SEQ i=1 FOR ((INT ROUND SIZEX)-4)
SEQ j=1 FOR ((INT ROUND SIZEY)-4)
chan2! YMAP[i][j]
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At this level, as all the procedures are designed, the OCCAM code program for the whole

system will have the following structure:

.. SC Interface
.. SC MSSM
.. CHANNEL DECLARATIONS
PAR
INTERF. "‘_,E (from.isv,to.isv keyboard screen,chanl,chan2)
MSSM (chanl,chan2)

6-5 Conclusion :

As it can be noticed from the above algorithmic description, the approach on which this design is

based has permitted us to organize the MSSM algorithm as a set of subtasks. In this sequential

design, this approach has permitted us to design a structured program through which errc  could

be easily avoided in the debugging process. The sequential implementation will serve as a : isis for

the performance measure of parallel implementation. The sequential procedures can b

‘n as
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being processes or tasks that can be assigned for processors within a parallel network. The images
displayed in chapter 5 have been obtained from the implementation of the algorithm in a the
sequential manner described in this chapter.

At the implementation level, the experiments were carried out on images of dimension 89 by
89. The execution time of the sequential implementation with respect to the variation of the
number of channels are given in table 6.1. The signification of each MSSM tasks along with their
corresponding execution time obtained from the sequential implementation is summarized in table

6.2 ("sig" represents the blurring parameter).

Table 6.1
Number of channels Sequential execution time (min)
1 21:22 |
2 29:59
3 34:18
4 36:41
Table 6.2
Task | Execution time (Min) Associated operation
T, 0:31 Reading the model and patient images (89 by 89).
T, 0:04 The gaussian transfer function values calculation.

Tz, |sig=1|0:31|sig=4 3:38 Blurring the model image.
sig=2 | 1:29| sig=4 9:45

T, |sig=1|0:31{sig=4 3 :38 | Blurring the patient image.

sig=2| 1.29|sig=4 9:45

Ta 0:13 Applying the deference of gauss on the blurred model image.
Ts> 0:13 Applying the difference of gauss on the blurred patient image.
Ts 0:51 Matching the two images.
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CHAPTER 7

o

PARALL

|, DESIGN AND IMPLEMENTATION
OF THE MSSM ALGORITHNM

[

7-1 Introduction:

It is well known that the Multip'l.e‘Scale Signal Matching (MSSM) algorithm deals with a huge
~amount of data and exhibit.s a certain degree of computational complexity. This suggests its
parallelization and its implementation on a multiprocessor system to increase its execution speed.
This is hjghly favored by the inhe.rent parallelism of the algorithm.

A task partition based method is used for the parallel design of the MSSM algorithm, namely
the graph theoretical method. The major goal behind its parallelization would be its decomposition
into subprograms or tasks that are mapped on hardware processors (transputers) in an optimal
manner so that a shorter execution time will be obtained.

Experiments were carried out to measure the performance of the parallel implementation with
respect to the sequential one (chapter 6). We also investigate the effect of the increase in vision
channels (1 to 4) with respect to the increase in the number of processors on the computational

time,
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7-2 Algorithm decomposition:
Due to its software architecture (Figure 5.1), the MSSM algorithm can be decomposed into the

following tasks:

e Task I (T1) : Reads the model and patient images from the filling system.

® Task 2 (T,) : Calculates the gaussian distribution function values.

* Task 3 (T;) : Blurs the two images. For allocation clarity sake, the blurring of the model image
is denoted by T;, and that of the patient image is denoted by T; ,

® Task 4 (T,): Calculates the second derivative of the two blurred images. For the same reason
as before, Ty, refers to the model image and T, , refers to the patient image.

® Task 5 (Ts): Matches the two differentiated images from task T, and issues the discrepancy

aps.

7-3 Parallel program design:

The MSSM algorithm has been implemented on different topologies depending on the number

of transputers used (2,3, and 4). During each implementation, the number (n) of vision channels is

varied from 1 to 4 to observe the effect of increasing the number of processors on the
computational time. The task graph of the algorithm and the target machine are constructed. The
program tasks are assigned and scheduled in such a way that a shorter execution time will be
obtained. Such an objective can be achieved by assigning heavy communicative tasks on the same
processor and using a task duplication technique as discussed in Chapter 3. The procedures
involved in the task allocation of the MSSM program application are designed according to the

following algorithmic strategy:
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1- All the ready tasks (that have no predecessors) are identified and put in a ready list and
ordered according to their execution time.
2- All the non ready tasks (that have Dredecessors) are identified and classified in a waiting list
according to their execution order.
3- As long as the ready list lis not empty, do the following:

3-1- Obtain as many tasks from the ready list as there are available processors.

3-2- Allocate the tasks obiained from step 3-1 on the available processors.

3-3- When all the predecessors of a task in the waiting list are executed, their successors are
added to the ready list.
7-3-1 Topology 1 ( two transputers ) :

The target ‘machine graph is given at the outset. It consists of two transputers Tg; and Tk,

connected as shown in Figure 7.1.

TRI

Figure 7.1: Target graph 1.

* 3.l.a Task allocation for n=1 :(2 transputers)

The MSSM algorithm is performed in a single pass as shown in the task graph 1 of Figure 7.2.
From its inspection T, and T, have no predecessors and can be put in the ready list (R.L.); see
Figure 7.3.a. The remaining tasks are put in the waiting list (W.L). As there are two available

processors (Tri, Trz), we can readily assign the two tasks T, and T, to Tg; and T respectively.
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Upon completion, both T, and T;, are ready to be executed and are transferred from the waiting

list (WL) to the ready list (RL); see Figure 7.3 b.

‘ Figure 7.2 : Task graph 1

At this level, noticing the communication time delay of those tasks, we can assign them on
different processors thus achieving a better starting point. When these two tasks are ccompleted,
T“ and T4, are added to the ready list (Flgure 7.3.c) and are executed by Tg; and Tr2

respectively. Finally, task 5 is ready (Figure 7.3.d ) and is allocated to Tg; .

RL WL R.L WL RL WL RL WL
T, Ts, Ts, T4 T4, Ts Ts
T; T, T3z | | Taz T4z
Tss T;
T4z
&
(a) (b) (c) (d)

Fig 7.3 : MSSM task assignment for n=1.
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Based on the previous discussion, the Gantt chart is constructed as shown in Figure 7.4.

Processors

I

T | T2 * T32
! 1
N
Try T3.1
t 1 .
Time
Idle state

T sending data receiving data
® [ ]

Fig 7.4 : Gantt chart 1.

e 3.1.b Task alloéation for n=2 :(Two transputers)

In this case, the MSSM is iterated twice. By inspecting the task graph shown in Figure 7.5, it
can be noticed that the tasks T, and T, (both of the 1* and 2™ iterations) have no predecessors.
Thus they can be considered as ready for execution. Since only two transputers are available, the
tasks T, and T, of the 1* iteration are assigned to Tg; and Tg, respectively. T, having a much
smaller execution time than T;, we can launch the execution of task T, of the 2™ iteration at the
end of execution of T of the 1% iteration. At this level, a problem appears due to the nature of
task T of the MSSM algorithm. Tasks T, of the 1" iteration and 2™ iteration act on the same data
variables, so if T of the 2™ iteration is executed just after that of 1% iteration, the data integrity of
this latter will be lost. This can be avoided by generating an array for each iteration that calls for a

task and an additional amount of memory space (not negligible in our case).
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Consequently, we can observe that the task graph in Figure 7.5 does not give all the information

about tasks interdependency when the algorithm is iterated. To remedy to such a conflicting

0.04

Figure 7.5 : Task graph 2.
situation, all the tasks that share the same data variables must be identified. The task precedence

relationship that results must be localized and represented by dashed arrows as shown in Figure

7.6.

Ty
1

Figure 7.6 : Task graph 3.
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Now, the MSSM task assignment can proceed as follows: The 1% iteration can be processed as
in the first case for n=1 and postponing the ignition of the task T, of the 2™ iteration that is no
longer ready till the completion of tasks Ts, and Ts,. However, following the task execution order
of the 1" iteration, T, and T, are executed just after T;, and T32. After this operation, Ty, is
busy with the processing of Ts and Ty, is free and consequently can receive task T, of the 2™
iteration. Since T, takes less time than Ts, tasks Ts; and T, of 2™ iteration are ready to be
executed when T, reaches its finishing point. At this point only one processor is available, namely
Tro. Task Ts is assigned to the free processor.

In the meantime, Ts is completed and Ty, gets free, but task Ts.1 can not start till it gets data
from T, (see task graph 2 in F igure 7.6). Therefore Ty, remains idle till the termination of T;, to

get < »-1 from Tg,; see Gantt Chart 2 in F igure 7.7. Then, Tg, resumes processing of task T, and

“isidle till Ty, and Ty are executed on Ty, to pass data to task 1son Tg;.

Processors

t

Tre ¢ 132 T42 *lT2] T32
! ; i
Tas o T3] T4.1 |®
* + ' ot .

Figure 7.7 : Gantt chart 2 for n=2 -

As it can be noticed, Tg; remains idle after Ts of the 1st iteration waiting for Ts; to complete

so that data transfer takes place. A solution to avoid this problem is to use the task duplication
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technique (discussed in chapter 3) to shift up in time task Ts, as shown in the Gantt Chart of

Figure 7.8.

Processors

4

Duplication of
Task T2

Taz ¢ T3.2 T4.2 [®[T2| T32
l 1 1 l 2 2
Tas o T3.1 T4.1 {# T5 (T2
T 1 1 T 1 2 R

Figure 7.8 : Gantt chart 3 for n=2

Since the execution time of task T, is much greater than the communication delay time, another
solution based on the rendez-vous principle can be used to achieve a later starting time for task
' Ts ~r'the 2 " iteration. After the completion of task T of the 2 ™ iteration, Tg, is kept idle till Ts
of vthe 2™ iteration. is terminated (Gantt Chart 4). At this point interprocessor communication
(fixed in the program) is established and Ts, and T3 can proceed simultaneously on Tg; and Tg,
respectively (see Gantt Chart 4 in Figure 7.9). Thus, a best starting time can be achieved when a
best rendez-vous point for both transputers is chosen. The allocation of the remaining tasks is

performed as in the 1" iteration (following always the same algorithmic strategy).

Processors
¢ Rendez-vous

T point

T3.2
1

T3.1
1

ad K )

v

Time
Figure 7.9 : Gantt chart 4 for n= 2
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® 3.1.c Task allocation for n=3: (2 transputers)

In a similar manner and still using the dashed arrows to represent precedence relationships

between the three iterations, a task graph (Figure 7.10) is constructed and the Gantt Chart is

drawn as shown in Figure 7.11.

Figure 7.10 : Task graph 4.

Processors
4+
T T3.2 T3.2 [T42 T4.2e
R 1 2 2 3|
T3.1 T3.1 T4.1 T4.1 T5
Tr, 1 2 2 1
Time

Figure 7.11 : Gantt chart 5.
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¢ 3.1.d Task allocation for n=4: (2 transputers)

Using the same method when the number of channels is equal to four, we obtain the task graph

and the Gantt Chart shown in Figure 7.12 and Figure 7.13 respectively.

Figure 7.12 : Task graph 6.

Processors

Tiﬂl

Tt.l ﬂ

Figure 7.13: Gantt chart 6.
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7-3-2 Topology 2 : ( Three transputers )

The target machine graph for this topology is shown below:.

Figure 7.14 : target machine 2

® 3.2.a Task allocation for n=1:(3 transputers)

Using the task graph shown in Figure 7.2, and the target machine graph shown above
(Figure 7.14), the task allocation is the same as in the first topology and the third processor
remains idle all ghe tirrie. This is due to the fact that there are always no more than two tasks in the
ready list as shown in Figure 7.3. The Gé.nti chart is shown in Figure 7.15.

Processors

iR3

Fig 7.15 : Gantt chart 7.

® 3.2.b Task allocation for n=2 : (3 Transputers)
Basing our allocation on the task graph of Figure 7.6 (task graph 3 ), we find that only tast s T,

and T, of the 1" iteration are ready and task T, of the 2™ iteration is ready only and only if it d¢ s
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not affect the data integrity of task T, of the 1st iteration. This can be achieved by assigning T, of
the 2nd iteration to the third available processor Tgs.
At this point a very important up date has to be made to the scheduling policy concerning the
meaning of a ready task.
A task is ready if it fulfills the following conditions:
® 1- [t has no predecessors.
e 2-[fitaffects the data integrity of other tasks, it has to be run on a separate processor if
available.
Following this new definition of a ready task, the algorithmic strategy on which the task
assignment is based can be updated as follows:

1- All the tasks that have no data dependency, and that do not depend on the termination of other
tasks are put in a ready list. | |
2- All the remaining tasks are put in the waiting list.
3- While the ready list is not empty do the following:
i- If the number of ready tasks is less than the number of available processors do:

i.1- obtain as many tasks that have no data dependency and that may affect the data
integrity from the waiting list as there are remaining available processors, and add them to the
ready list.

i.2- Allocate the ready tasks on the available processors.
i.3- Go to step 3.
ii- Else
ii-1 Allocate as many ready tasks on as many available processors. The tasks are taken
with respect to their execution order.
ii-2 Go to step 5

5- Whenever a task reaches its finishing point, its successors are added to the ready list.
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Following this new algorithmic strategy, the task assignment in the present case can be done as

shown in the Gantt chart shown below.

Processors
T T3.1 T32 [T4.1|T4.2
R3 2 2 2 2
Txs T31.2
T, T

Figure 7.16 : Grant chart 8.

* 3.2.c Task allocation for n=3 : (3 Transputers)

Processors
. .

T3.1 T32 T4.1|T4.2{T2
Trs 2 5 2] 2 |3
Tro T31.2
Txi T31.1

Figure 7.17 : Gantt Chart 9

* 3.2.d Task allocation for n=4 : (3 Transputers)

Processors
4
T T3.1 T332 T4.11T4.21T2
B 2 2 2 2 3
Tra T31.2
Tas T31‘.1

Time

Figure 7.18 : Gantt Chart 10

v
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7-3-3 Topology 3: (Four transputers)

The third parallel target machine consists of four transputers connected as shown in the

following target machine graph.

Figure 7.19 : target machine graph 3

. .® 73.a Task allocation for n=1 : (4 Transputers)
- By applying the same algorithmic strategy in connection with the task graph of Figure 7.2, it
can be noticed that the number of ready tasks is less than the number of available processors.

Therefofe, Trs and Trsare not utilized as shown in the Gantt chart of Figure 7.20.

Processors

Trs

Time

Fig 7.20 : Gantt chart 11.
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¢ 3.3.b Task allocation for n=2: (4 Transputers)

Processors

Tr:

Figure 7.21: Grant chart 12.

® 3.3.c Task allocation for n=3: (4 Trénsputers) :

Processors

Tra

Txrs

Tk

TRI

Figure 7.22 : Gantt chart 13
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® 3.3.d Task allocation for n=4 : (4 Transputers)

Processors

T4.1

T3.2 T4.2 T4.1|T4.
1 1 4|4

T3.1 T4.1 T5 TS5 T5 T5
1 1 1 2 3 4

Figure 7.23 : Gantt chart 14.

7-4 Implementation:

The available hardware resources for the implementation of the MSSM algorithm consist of a
n.gmber of INMNS half length PC plué in boards. _These are known as SPRINT boards.

The SPRINT board comprises an INMOS T425 transputer with four serial links through‘which
communication between a set of transputers can be established. The four transputer links are
provided on the DB2S5 socket at the rear of the board. Each board is plugged on an IBM PC. ~'hen
through the DB25 socket a set of transputers can be connected through wires to constr.ct a
network as shown in Figure 7.24.

The required data, 89 by 89 images, are stored in the filling system of only one IBM PC (I .ost).
The transputer (Master) which is allocated on this PC is conmnected to the PC bus system by 1k 0

through an interface circuit (C012). Thus, for this transputer, only three remaining 'nks

.
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(1,2, and 3) are available to be connected to the other transputers (Slaves). These latters have four
links available for their connection within a network.
The programming language used for this implementation is OCCAM. The programs were

developed under the transputer development system (TDS3).

IBMPC2
Link1 Transputer 2 Slavel
Tas Link3
Host IBM PC 1
IBMPC3
Filling
system
I Master Link1
P C bus T ter 3
Server system Transputer 1 Link1 ranspu Link2
Co13 Slave2 Link3
INTEL MR Tas Link2 ' Tas _
uP : Link0
Link3 IBMPC4
Link1 Transputer 4 | Slave3
Trae
Link2

Figure 7.24 : Network configuration.

Before the tasks are allocated on the transputers, all the control signals (Reset, Analyse, and
Error ) of each transputer must be chained together, and connected to the Master transputer (the
transputer running the TDS3 on the host IBM PC). In order for the TDS3 to boot the transputers

(Slaves) and programs can be loaded on the network, it needs only to be connected to the Master
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transputer via its link0. The remaining transputers can be booted via any one of their links from the
Master transputer or from any one that has been booted from the Master transputer.

For the parallel implementation of the MSSM algorithm, the tasks (T1 through T5) have been
already designed in the sequential implementation (Reading the images (T1), The filter transfer
function values calculation (T2), Blurring (T3.1, T3.2), Differentiation (T4.1, T4.2), and the
Matching (TS) ). The remaining work is concerned with the design of the procedures that will be
used for the transfer of data between the elementary tasks of the MSSM algorithm that will be
allocated on the transputers.

On each transputer, all the tasks and communication procedures are compiled using a separate
compilation (SC) utility. They are put in the outer scope of the OCCAM program and are called
when needed from the main program. The OCCAM program code for each implementation will
‘_ have the following structure'(.... refers to a Fold): |
1) ... SC Tasks
2) ... Libraries
3) ... Declarations
4) ... Channels placements
5) ... Main program

All the tasks and the required communication procedures allocated on a processor are compiled
with a separate compilation utility and put in a fold denoted by SC. The libraries (I/O, Math, )
used are put in the second fold. The variables and software channels are specified in the third fold.
The forth fold is used to specify the mapping of the software channels on the hardware ones.

Finally the fifth fold is used to receive the main program from which all the required procedures

can be called.
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In what follows, we will present the implementation of the first program (one channel) of the
Ist topology (two Transputers). The remaining ones are similar, they differ only in the tasks
allocated to the processors.
- Topology 1 : (Two transputers)

The transputer links interconnection of this topology is shown in Figure 7.25,

Ll.out Llin
PC Master Slave

Transputer Transputer
] T Tra
Link0
Ll.in Ll.out

Figure 7.25: Transputer links interconnection.

.. ® JCCAM program code for the Master Transputer:

From the Gantt Chart1 of Figure 7.4, it can be noticed that three communication procédures
are needed for the transfer of data between the Master (TR1) and the Slave transputer (TR2). As
the hardware links connections are established (as shown in Figure 7.25) and the task are allocated
on the two transputers (as shown in the Gantt Chart | of in Figure 7.4), three communication’
procedures are designed to perform the transfer and the reception of data to and from the Slave

transputer (TR2).The code of each one of them is given belew:



SEND procedure:

This procedure is used to transmit the image to be treated by the Slave transputer
(TR2). The input parameters of this procedure is a 2D array (Pt) in which the
image is to be stored and a channel (Out) through which it will be sent.

SEND (CHAN OF REAL32 Out, [][] REAL32 Pt)

INT i,
SEQ
SEQ i=1 FOR 89
SEQ j=1 FOR 89

Out ! Pt[i][j]

RECEIVE procedure (1):

This procedure is used to receive the gaussian distribution function values from
the Slave transputer (TR2). The input parameters of this procedure is a 2D array
(hg) in which the data values are put and a channel (In) through which these
values will be received. : ‘

RECEIVE 1 (CHAN OF REAL32 In, [][] REAL32 hg)

INT ij: '
SEQ '
SEQ i=1 FOR 89
SEQ j=1 FOR 89

In 7 hg[i](j]

RECEIVE procedure (2):

*This procedure is used to receive the image that has been treated by the Slave
transputer (TR2). The input parameters of this procedure is a 2D array (Dog2) in
which the image will be stored and a channel (In) through which it will be
received.

RECEIVE 2 (CHAN OF REAL32 In, [1[] REAL32 Dog2)
INT i,j:
SEQ
SEQ i=1 FOR 89
SEQ ;=1 FOR 89
In ? Dog2 [i][j]

106
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At this level, the whole OCCAM program code of the Master transputer can be implemented

as shown below.

Master OCCAM code program:

... SC Monitor -- this process performs task T1 (It reads the two images)
... SC Blurr -- This process performs task T3 1.

... SC Gauss -- This process performs task T4.1

... SC Match -- This process performs task T5

... SC SEND

... SC REICEIVE!1

.. SC RECEIVE2

... Libraries

[90][90] REAL32 hg,Md,Pt, Dogl,Dog2,Xmap,Ymap:
CHAN OF REAL32 chanl,chan?2 :

PLACE chanl. AT Linkl.in -- chanl is mapped on link1.in
PLACE chan2 AT Linkl.out  -- chan2 is mapped on link2.out -

SEQ -- main program
Monitor (from.isv, to.isv, keyboard, screen,Md,Pt)
SEND (chan2, Pt) .

RECEIVE = chanl,hg) -- "hg" is a two-dimensional array

Blur(hg,Est,Md) -- "Est and Md" are two-dimensional arrays
Gauss(Est,Dogl) -- "Dogl" is a two-dimensional array.
RECEIVE2(chanl,Dog2) -- "Dog2" is a two-dimensional array.

Match (Dogl,Dog2,Xmap,Ymap) -- "Xmap and Ymap " are two-dimensional arrays

e OCCAM program code for the Slave transputer (TR2):
For the Slave transputer, the OCCAM code program can be written as follows: From the Gantt
Chart 1 of Figure 7.4, it can be seen that three communication procedures are to be design ‘or the

accomplishment of the transfer of data with the Master transputer. These are designed as fo »ws:
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RECEIVE procedure:

This procedure is used to receive the image to be treated by the Slave transputer (TR2). The
input parameters of this Procedure are a 2D array (Pt) in which the image will be stored and a
channel (In) through which it will be received.

RECEIVER (CHAN OF REAL32 In, [J[] REAL32 Pt)
INT ij:
SEQ
SEQ i=1 FOR 89
SEQ j=1 FOR 89
In ? Pt [i][j]

SENDI1 procedure:

This procedure is used to transmit the gaussian distribution function values to the Master
transputer (TR1). The input parameters to this procedure are a 2D array (hg) in which the data
values are put and a channel (Out) through which the data values will be sent.

SEND1 (CHAN OF REAL32 Out, [][] REAL32 hg)
INT ij:
SEQ
SEQ i=1 FOR 89
SEQ j=1 FOR 89
Out ! hg [i][j]

SEND?2 procedure:

This procedure is used to transmit the treated image to the Master transputer (TR1). The input
parameters of this procedure are a 2D array (Dog 2) in which the data values are put and a
channel (Out) through which the data values will be sent.

SEND2 (CHAN OF REAL32 Out, [][] REAL32 Dog?)
INT i,j:
SEQ
SEQ i=1 FOR 89
SEQ j=1 FOR 89
Out ! Dog2 [i][j]
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As this level, the whole OCCAM program code for the Slave transputer can be written as

follows:
Slave OCCAM program code:
... SC Filter -- this process performs task T2
... SC Blurr -- This process performs task T2.1.
... SC Gauss -- This process performs task T3.1
... SC SENDI1
... SC SEND2
.. SC RECEIVE
... Libraries

[90][90] REAL32 hg,Pt, Est,Dog?2:
CHAN OF REAL32 chanl,chan2 :

PLACE chanl AT Linkl.in ..-- chanl is mapped on link1.in
PLACE chan2 AT Linkl.out  -- chan2 is mapped on link2.out
SEQ -- main program

Filter (hg) -- "hg" is a two-dimensional arrays

RECEIVE]I1(chanl,hg)
SENDI1 (chan2, hg)

Blurr(hg,Est,Pt) -- "Est,Md" are two-dimensional arrays.
Gauss(Est,Dog2) -- "Dogl" is a two-dimensional array.
SEND?2 (chan2,Dog?2)

Once the MSDSM tasks and the communication procedures are compiled, the following steps are

followed in order to avoid the deadlock problem.

e The software channels must be mapped on the correct and corresponding physical links
according to the interconnection shown in Figure 7.25.

e Both the Send and Receive procedures must agree on:

- The type of the channels used.




- The type of data to be transferred and received.

- The size of the data to be transmitted and received.

7-5 Results :
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Architecture involving 2, 3, and 4 transputers have been implemented and tested. Tables 7. 1,

7.2, 7.3, and 7.4 show the variation in the number of processors for each variation in the number

of channels of the MSSM algorithm. For every implementation, the time gain is calculated

according to the equation G = 1,/T,.

System # of processors Execution time (min) Time gain
Single transputer 1 21.22
Topology 1 2 11.22 1.89
Topology 2 3 11.22 1.89
Topology 3 4 11.22 1.89
Table 7.1: Number of vision channels =1
Systern # of processors Execution time (min) Time gain
Single transputer 1 29.59
Topology 1 2 16.22 1.82
Topology 2 3 12.14 2.43
Topology 3 4 12.14 243
Table 7.2: Number of vision channels =2
System # of processors Execution time (min) Time gain
Single transputer 1 34.18
Topology 1 2 18.38 1.85
Topology 2 3 13.06 2.61
Topology 3 4 13.06 261

Table 7.3: Number of vision channels = 3

-
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System # of processors Execution time (min) Time gain
Single transputer 1 36.41
Topology 1 2 20.14 1.80
Topology 2 3 13.59 2.67
Topology 3 4 13.59 267

Table 7.4 : Number of vision channels = 4

From the results shown in table 7.1, it can noticed that the time gain obtained for topology 1
(with 2 transputers ) is almost equal to the expected one (G=2). However, the results obtained for
the remaining two topologies (with 3, and 4 transputers) reveal that no appreciable time gain is
obtained although a greater number of processors is used. Obviously, this can be 'explained by

~ returning to the examination of the task graph 1 of Figure 7.2 and the Gantt Chart.1, 7, and 11 .
from which it can be seen that due to the task precedence relatic;n, during the task process, each
time the number of ready taéks are equal or less than the number of available processors.

Tables 7.2 relative to channel 2 reveals that an appreciable time gain of 1.82, and 2:43 for
topology 1, and 2 which approach the expected ones (G=2 for topology 1, and G=3 for topology
2') is obtained. However, no improvements have been obtained when moving from topology 2 to

'topology 3 and this is due to the sequential nature of the matching stage of the MSSM algorithm
as shown on the Gantt Chart 2, 8, and 12 of Figure 7.13, 7.16, and 7.21. Furthermore, this
observation is valid when the number of channels is increased to 3, and 4 as seen in tables 7.3 and
74

The execution time versus the number of channels is shown in Figure 7.26, 7.27, and 7.28 for

the three topologies. In Figure 7.26, we observe that the change in the execution time varies
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considerably when passing from 1 channel to 4 (11.22-20.14). However, we notice that for the
same number of channels, this change is smaller (11.22-13.59) and identical for both remaining
topologies (2,3). This time is fixed by the sequential nature of the MSSM algorithm as can be
observed on the Gantt Chart 12,13, and 14.

Since the change is the same for topologies (2, and 3) including 3, 4 transputers, an optimal

choice would be obviously a selection of topology 2 (With 3 transputers).

Figure 7.26
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Conclusion :

The task-level partition approach has been used to parallelize an application algorithm, namely
the Multiple Scale Signal Matching (MSSM). The result of the partition was mapped on a network
of transputers. Architectures involving 2.3, and 4 transputers have been implemented and tested.
The experiments were carried out to measure the performance of the parallel implementation with
respect to the sequential one. The effect of the increase in the computational time when additional
vision channels (1 to 4) are used with respect to the increase in the number of processors has been
also investigated. The performance tests indicate a substaﬁtial improvement in speed compared

--ha single processor execution. The performance analysis has permitted us to identify, among .
three topologies, the most suitable one for such an application, which is the one, including three
tranputers. Additional processors will not increase the performance of the algorithm and this is due
to the sequential nature of the matching stage of the MSSM algorithm.

At the design level, a graphical model has been used to represent the MSSM algorithm tasks as
well as the data flow which represent the algorithm tasks dependency. However, due to the
iterative nature of the MSSM algorithm, we perceived that it would be a mistake to always
consider that the intertask dependency is due only to the déta dependency. In fact a task starting
ignition can be dependent on the termination of another task if both of them act on the same data.
In such a case, we suggest that before the task assighment may take place, all the intertask
dependencies must be present on the application task graph. Then, depending on the number of

available processors, the tasks whose ignition may depend on the termination of other tasks can be
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considered ready to be allocated if and only if the number of processors is greater than the number
of ready tasks (which have no predecessors).

Although the major goal of implementing the MSSM algorithm on a set of transputers has been
achieved, there are still prospects for further improvements and extensions. This is limited only by
the nature of the MSSM aigorithm. To obtain other performances, two other approaches can be
applied: Data-level partition and parallelization at the instruction level. The first approach splits
the image in many subimages that will be treated individually by each processor of the parallel
machine. The partial results obtained from each processor are then gathered to construct the
whole treated image. This method requires a large number of processors and leads also to
increased communication delays. It gives also birth to boundary problems at subimage edges. The
second method which is based on the parallelization of operatiohs included in a single task of an

algorithm is characterized by analysis cdmplexity and requires a larger number of processors:
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