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ABSTRACT: This paper presents a fuzzy reasoning based approaahddeling the disi-
buted dynamics of a parallel flow heat exchangéstributed-parameter and lumped-parameter
models of the heat exchanger are first derived. Vidiility of such model representations is
discussed and limitations regarding their use facfcal purposes are presented. The alterna-
tive modeling approach presented in this work aitndeveloping a moderately complex model
with interpretable structure for the parallel fllwgat exchanger which is the main component
of a pilot thermal plant. The proposed multivar@ahlizzy rule-based model achieves simulta-
neous prediction of the air and water temperaturas. experimental study conducted on the
real plant shows the performance of the fuzzy madebhpturing the key dynamical properties
of the physical plant over a wide operating rangg @nder varying dynamics.

1 INTRODUCTION

In process industry, heat exchangers are genarsdig to achieve efficient heat transfer from
one fluid to another. These thermal systems cafolned in particular in the chemical, petro-
chemical and manufacturing industries. They arallgarranged in units as a part of complex
network systems. Given their extremely complex dyica, modeling of heat exchangers is still
the subject of many studies (Fink et al. 2000, ZafRio and Santiesteban-Cos 2007, Arbaoui
et al. 2007, Zhang et al. 2009). The complex dyoanaire represented through distributed-
parameter models that are derived from conservédiws. However, such model representation
is in general difficult to analyze and complicafednumerical simulation.

Lumped-parameter models have been widely usedpmzeimate the distributed dynamics
of heat exchangers (Zavala-Rio and Santiesteban2003, Astorga-Zaragoza et al. 2008,
Shang et al. 2005, Astorga-Zaragoza et al. 20079s@ simplified models are involved in vari-
ous engineering issues such as control designegsamonitoring (Peng et al. 1997, Persin and
Tovornik 2005) and parameter estimation (Weyen.e2@00). The lumping procedure consists
in dividing the whole exchanger in a finite numbércells so that it becomes possible to derive
a set of ordinary differential equations that dimes its key dynamical properties. However,
this gives rise to high order models when accunadgleling is required. On the other hand,
some studies proposed a special type of low-ordetefs that have been considered as a relia-
ble representation of the heat exchanger dynanziaga{a-Rio and Santiesteban-Cos 2007).
Nevertheless, such models could not ensure goaliction capability for wide-range operation
or under varying dynamics.

This work presents a fuzzy reasoning based apprapplied to a parallel flow heat ex-
changer for better characterization of its distiéaudynamics. The main aim is to derive an in-
terpretable moderately complex model that shoultapiee a high prediction capability over a
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wide operating range and under varying operatingltmns. Briefly, the paper is organized as
follows. Section 2 describes the parallel flow heathanger and presents its fundamental
model. The fuzzy modeling procedure applied tophet heat exchanger is presented in Sec-
tion 3. Experimental results are shown in Secti@md a conclusion is given in Section 5.

2 FUNDAMENTAL MODEL OF THE DISTRIBUTED HEAT EXCHANGER

The parallel flow heat exchanger considered in wWusk is the main part of the pilot thermal
plant depicted in Fig. 1. It consists of three ygbsms: the heater, the air circuit and the water
circuit. In more detail, the system is compose@rfelectric heater of the air (E) which gene-
rates the heating power (kW), pipes for air and water circulation, a caoremt gas-liquid ex-
changer (HE), two valvesV() and {/,), to control the portion of the air flow which ie-

cycled and the portion which is evacuated, respelgti and a variable speed pump (SP) to
control the water flowQ,, (m’s). The water entering the heat exchanger witheheerature

T35 (°C) is heated up to the temperatdig (°C) with hot air. The amount of air coming from
the electric heater with temperatufg,(°C) enters the heat exchanger with the temperatur
T,6 (°C) after flowing through the air circulation pipand leaves the heat exchanger with tem-
peratureT;5(°C). Total or partial recycling of air can be cmeed depending on the position
of the two motor-driven valve¥, (%) andV, (%). To derive the distributed-parameter model

of the parallel flow heat exchanger, a common pitace consists in subdividing the plant in
several elemental volumes with lengif, &[0, L]. To this end, let us consider the following

simplifying assumptions:

Figure 1: Schematic of the pilot heat exchanger.

Al. The air and water temperatures and velocitiesadially uniform.

A2. The thermophysical properties of air and waterconstant (in time and space).
A3. Heat conduction along the flow axis is negldcte

A4. The fluids are incompressible and single phase.

A5. The heat transfer coefficient is axially unifoeand time invariant.

A6. There is no energy storage in the walls.

A7. Inlet temperatures are constant.



Under assumptions A1-A6, energy balance applieal ddferential volume of air and water
leads to the following partial differential equatso
M=y, Ty Dala (1) ®
ot o Q,C,

0T, __, OTa, hud,

i 23 ' 0.C. (Tw —Ta) 2)
whereT: temperature (°C)Q : heat transfer area {inC : specific heat (Kcal/fiC), d: diame-
ter (m), v: fluid velocity (m/s), andh: heat transfer coefficient (Kcalfs?C). Subscripta and
w denote air and water, respectively.

As mentioned above, the distributed-parameter m@ideand (2) is difficult to manipulate
for practical purposes, such as dynamics analgeisirol design and performance monitoring,
for instance. Approximations through lumped-paranetodels are to be derived and used at
least for such purposes. To this end, one shotdd te the reliable representation presented in
(Zavala-Rio and Santiesteban-Cos 2007) and (Astdagagoza et al. 2007), which describes
the system dynamics using a 2nd-order lumped-paeanmodel with the logarithmic mean
temperature difference (LMTD). The model is givertive following form:

.20 2h.d
Two = ﬁ (Twi _Two) + Q;C:, AT (TwovTao) (3)
. 2Q 2h.d
Tao = ﬁ (Tai - Tao) - Q :CZ AT (Two 'Tao) (4)

where Vol denotes the total volume Yrand AT (T,,,,T,,) Stands for the mean temperature
difference throughout the heat exchanger, moddisaligh the LMTD as shown in (Shang et
al. 2005). Here, the subscriptando are used to denote input and output temperatAcesrd-
ing to Fig. 1, the corresponding model variables: i, =Tz3, Tyo =Tas, Ta =Ti6, and
Tao :T15'

Under assumptions A1-A7, the dynamic model (3) éjdhas been analytically proved to
keep the main features of the dynamic behaviohefparallel flow heat exchangers. However,
when considering one of the following operationuiegments i.e.

- Persistent dynamic excitation in heating power,

— Variable recycling of air,

- Varying dynamics induced by water leak flows, fastance,

it seems impossible to maintain the validity of thadamental model (3) and (4). Other alter-
native approaches should be investigated to dehlthvese wide-range operation requirements.

3 FUZZY CLUSTERING BASED IDENTIFICATION OF THE DITRIBTED-
PARAMETER HEAT EXCHANGER

Fuzzy identification aims at building dynamical fyzmodels in the form of IF-THEN fuzzy
logical rules (De Bruin and Roffel 1996, Driankavad. 1993, Tsekouras et al. 2005). The Ta-
kagi-Sugeno fuzzy model representation often pewidn attractive solution to many process
identification problems (Habbi et al. 2003) andnfEet al. 2000). Such model structure is con-
sidered here to describe the distributed dynanfitiseoparallel flow heat exchanger. The water
and air circuits of the pilot thermal plant depestcbngly on the following physical variables:
the heating powel, the air recycling valve positio¥, , the air evacuation valve positidf,,

the air temperature$;, and T;g, and the water temperature at the outlet of tlze Bechanger
T5,. Total or partial air recycling may induce nonkmesffects on the plant dynamics. Simple
experiments recording the time-step responses térvaad air circuits show us the principal
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local behavior of the heat exchanger. From thegerxents we concluded that there is no
evidence for higher than first-order local dynamics

Therefore, we need to find a supervision schemghefive measurements dg,, T4, P,
V, , based on the following NARX structure (Ciftciogind Sariyildiz 2006):

Y(k+1) = W(g(k)) ()

whereY =[T,, Tig]' is the temperature output vectaxk) =[Tg4 Ty Toy PV, ] the global re-
gression vector andd denotes nonlinear functions. To identify a dynamakagi-Sugeno
fuzzy model for each circuit, real data from thepheat exchanger is generated in normal op-
eration mode. During the identification experimethie water flow rateQ,, is kept constant
while the air flow rateQ, varies according to the position of the two valWgsandV,. The
heating powelP is manipulated over its whole operating domain floro 10 kW. The posi-
tions of the air recycling valve and the air evdimravalve are controlled simultaneously in the
range [0—100%]. The multivariable Takagi-Sugenazjumodel structure used for the predic-
tion of the process temperatures is describeddst af IF-THEN fuzzy rules where the ith rule
is of the form:

Rule i:

IF P(k)is A, andV, (K)is A, andT,4(k)is Al3 andTa,(Kk)is Al

THENT4(k +1) =b; +a33P(K) + ay,V, (K) +a15T1(K) +814Ts4 (k)

ALSO

IF P(K)is Ab; andV, (K)is Ab, andT,,(K)is Abs andT,q(K)is Ab, (6)
THENTy4(K +1) =bj + a5, P(K) + a5V, (K) + 833T14(K) + ap4T16(K)

The fuzzy model (6) is to be derived through fuzhystering (De Bruin and Roffel 1996,
Gomez-Skarmeta 1999, Driankov et al. 1993) usirg well-established Gustafson-Kessel
(GK) clustering algorithm described in (Gustafsord &Kessel 1979). The number of fuzzy
rules is determined by clustering the real datadiferent values of the parameter which
stands for the number of clusters. It was fourat thfuzzy model structure with three rules
(c=3) for each output is very accurate as desired ayd@ther increase in the model com-
plexity does not improve the model performance.

The task is now to determine the parameters ofrthiéivariable fuzzy model structure, i.e.
the fuzzy partitions of the rule premise varialdesl the rule-consequent parameters by means
of fuzzy clustering. To this end, the data measergsicollected in normal operation from the
pilot heat exchanger through a PC-based data atiguisystem are used. This set of training
data contains 2000 samples with noise. The systesnsampled every 2s.

The detected clusters are then projected ontorthdupt space of the input-output variables
of the TS fuzzy model and gaussian-type fuzzy assdetermined for each rule-premise varia-
ble withi=1,... 3 and j =1...4. Thus, the whole operating domain of each rulenise va-
riable is partitioned into three fuzzy regions esponding to different operating points of the
parallel flow heat exchanger. The rule-consequanampeters of the fuzzy model (6) are deter-
mined using the weighted ordinary least-square ate{Betnes 2000).

4 EXPERIMENTAL RESULTS

To assess the performance of the proposed muliblarfuzzy model, experimental validation
under varying dynamics is conducted on the reaftpMarying operating conditions are em-
phasized by introducing leaks with different magdds in the water circulation pipe of the heat
exchanger. It is well known that tube and pipe $emkheat exchangers are sources of strong
changes in the process dynamics (Habbi et al. 2808)Sun et al. 2002). A reliable model re-
presentation should give an accurate or at leaate@ptable prediction of the air and water
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Figure 2: Experimental validation of the rule-bafgzy model under varying dynamics:
(a) 15% leak flow, (b) 25% leak flow and (c) 30%HKeflow.

temperatures under this critical situation, whisHrequently encountered in practice, without
any prior tuning. To demonstrate the performancefdata-driven fuzzy model under varying
dynamics, several experiments with different leadgmtudes are conducted. Leaks are intro-
duced at different time instants using a bypassevaituated on the water circulation pipe of
the heat exchanger. In the experimental study)esilegk flows are emphasized under varying
excitation signals on heating powEr and air recycling and evacuation valve positidsand

V.. The following test cases were considered:

Case 1: 15% leak flow introducedtat 924s.
Case 2: 25% leak flow introducedtat Os.
Case 3: 30% leak flow introducedtat 1220s.

The resulting process and fuzzy model outputs &ohdest case are shown in Fig. 2. These
experimental results correspond to the seriesdpa@nfiguration. The good prediction capa-
bility of the developed fuzzy model is clearly Wk&. Indeed, it is clear that the fuzzy model
shows higher performance in predicting the watempieratureTs, and the air temperaturgg
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in all leak test cases. From a weak (15%) to aidensble (30%) leak flow, the fuzzy model
performs considerably well with a very acceptal#grde of accuracy. This important result is
maintained even during the saturation of the anpieratureT,¢.

5 CONCLUSION

In this paper, distributed dynamics approximatidmeugh lumping procedure and fuzzy clus-
tering are derived for a parallel flow heat exchamdrimitations of the distributed-parameter
and lumped-parameter models are presented andeanadive fuzzy rule-based model is sug-
gested. Given the extremely complex dynamics othlemal plant, it is of big interest to con-
struct moderately complex models with flexible sture that can capture the key dynamical
properties of the plant over a wide operating rafigreese models are to be used as a basement
for a new way to analyze the system dynamics ardksign monitoring and control systems,
for instance. The experimental study conductecherréal plant demonstrates the good perfor-
mance of the proposed multivariable fuzzy modelide-range operation and under varying
operating conditions. Emphasizing different operatmodes of heat exchangers may help in
building more reliable representations for bettearecterization of the complex distributed dy-
namics that still remain a complex issue in engingeproblems.
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