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Résumé 

Dans cette thèse, un processus de conception est proposé pour réaliser le placement d’une structure propre à l'aide de 

placement de pôles bloc en utilisant un compensateur dynamique pour des systèmes MIMO linéaires et invariants dans 

le temps. Des systèmes représentés par des équations d’état sont transformés en systèmes décrits par des matrices 

polynomiales et pour ces derniers, les valeurs propres sont appelés valeurs latentes et les vecteurs propres sont appelés 

vecteurs latents. La méthode proposée ici permet de placer l'ensemble (et même plus) des valeurs latentes et vecteurs 

latents obtenus à partir d'une structure propre désirée. Un rappel de la théorie des matrices polynomiales a été réalisé et 

une méthode pour construire des racines bloc d'une matrice polynômiale à partir de valeurs et vecteurs latents a été 

développée. Ensuite, la représentation espace d’état et la représentation par matrices polynomiales, ont été étudiés. La 

relation entre structure propre et structure latente a été établi. En outre, un résultat conséquent a été obtenu: une 

méthode rapide et facile pour résoudre le problème du calcul de  valeurs propres pour les matrices polynômiales 

régulières. Une étude sur la commande par boucle fermée a été effectuée, qui comprend une étude de différentes 

configurations et le développement des équations de compensation associés. La commande par retour des entrées et des 

sorties a été choisi pour concevoir le compensateur qui permet le placement de pôles par bloc d'un dénominateur désiré 

construit à partir d'une structure latente désirée. Enfin, pour illustrer l’approche proposée, un compensateur pour 

système de commande de vol d'hélicoptère a été conçu. 

Mots clés : Placement de pôles bloc, Commande par boucle fermée, Représentation par matrices polynomiales, 

Placement de structure propre, Compensation dynamique. 

Abstract 

In this thesis a design process is proposed to achieve eigenstructure assignment using block poles placement with a 

dynamic compensator for linear invariant MIMO systems. Systems described in state space equations are transformed 

to systems in matrix fractions description and for such systems, eigenvalues are called latent values and eigenvectors 

are called latent vectors. The method proposed here allows the assignment of the whole set (and even more) of latent 

values and vectors obtained from a desired eigenstructure. A review of matrix polynomial theory has been achieved and 

a method to construct block roots of a matrix polynomial from latent values and vectors has been developed. Then the 

state space description and the matrix fraction description have been presented. The relationship between eigenstructure 

and latent structure has also been established. Additionally, a consequent result, consisting on a quick and easy method 

to solve the polynomial eigenvalue problem for regular matrix polynomials, has been obtained. Furthermore, a study on 

feedback control has been undertaken; this includes a study on different feedback configuration and the development of 

the associated compensator equations. The input-output feedback configuration has been chosen to design the 

compensator which allows the placement of block poles of a desired denominator constructed from a desired latent 

structure. Finally, to illustrate the proposed approach, a compensator for a helicopter flight control system has been 

designed.  

Keywords: Block poles placement, Feedback control, Matrix fraction descritpion, Eigenstructure assignment, 

Dynamic compensation. 
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Chapter 1

General Introduction

1.1 Introduction

In most applied mathematical research, the aim is to investigate and control a given system. A

system is defined to mean a collection of objects which are related by interactions and produce

various outputs in response to different inputs.

Examples of such systems are chemical plants, aircrafts, spacecraft, biological systems, or

even the economic structure of a country or region. The control problems associated with these

systems might be the production of some chemical product as efficiently as possible, automatic

landing of aircraft, rendezvous with an artificial satellite, regulation of body functions such as

heartbeat or blood pressure, and the ever-present problem of economic inflation.

To be able to control a system, we need a valid mathematical model. However practical

systems are inherently complicated and highly non-linear. Thus, simplifications are made, such

as the linearization of the system. Error analysis can then be employed to give information on

how valid the linear mathematical model is, as an approximation to the real system.

It is desirable that systems are controlled automatically, that is, they adapt to behave in

a specified manner, without direct intervention. To achieve automatic control, information

describing the system and the way it changes is needed. This is provided by a feedback control

system, which calculates the difference between the measured variables and the desired output

responses, and attempts to change the system to compensate for this.

Ideally, we would like to be able to measure all of the variables, or states of a system in order

to design a feedback. If this is the case, then we are performing state feedback. In practice,

not all of the system states are available: the feedback then has to use the outputs to control

the system. This is called output feedback.

1
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1.2 Problem positioning

In modelling systems or plants, a number of descriptions can be used to represent them. Two

commonly used model descriptions for linear time-invariant MIMO systems are the state space

description (SSD) and the transfer function matrix description (TFMD) or matrix fraction

description (MFD).

In this thesis we will consider a linear multi-variable time-invariant system described by the

following state space equations: {
ẋ = Ax + Bu
y = Cx + Eu

(1.2.1)

Where A is an n× n state matrix, B is an n×m input matrix, C is a p× n output matrix

and E is a p×m transmission matrix.

Such systems can be studied via the eigenstructure, eigenvalues and eigenvectors, of the state

matrix A. The eigenvalues and eigenvectors can determine system performance and robustness

far more directly and explicitly than other indicators. Hence their assignment should improve

feedback system performance and robustness distinctly and effectively.

Eigenstructure assignment (EA) is the process of applying negative feedback to a linear,

time-invariant system with the objective of forcing the eigenvalues and eigenvectors to become

as close as possible to a desired eigenstructure.

EA, in common with other multivariable design methodologies, is inclined to use all of the

available design freedom to generate a control solution. It is a natural choice for the design

of any control system whose desired performance is readily represented in terms of an ideal

eigenstructure. Many research works has been done on EA [1, 2, 3, 4, 5] and more specifically

on flight control systems [6, 7, 8].

The same system can be described by a m-inputs p-outputs transfer function G(s) in matrix

fractions as follows:

G(s) = NR(s)D−1
R (s) or G(s) = D−1

L (s)NL(s) (1.2.2)

Where DR(s) (DL(s)) and NR(s) (NL(s)) are matrix polynomials of degree less or equal

to r and of order m or p, r being the controllability or observability index. These matrix

polynomials are polynomials which coefficients are matrices of right dimensions.
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In recent years, MFDs have been used widely in linear control theory, example to define

poles and zeros of transfer function matrices [9], or to obtain controllable and observable state

space realizations of transfer functions [10]. Many authors have considered using matrix poly-

nomials and block roots for solving some linear algebra problems or control problems such as:

compensator design using numerical optimization techniques [11], block partial fraction expan-

sion of a matrix fraction description (MFD) with single and repeated poles [12], reduction of

the order of single-input single-output and multi-input multi-output robust controllers [13],

feedforward compensator in two degree-of-freedom controllers [14] etc.

The design of a control system is concerned with the arrangement, or the plan, of the

system structure and the selection of suitable components and parameters. Often the alter-

ation or adjustment of a control system, in order to provide a suitable performance, is called

compensation.

In redesigning a control system in order to alter the system response, an additional compo-

nent is inserted within the structure of the feedback system. It is this additional component or

device that equalizes or compensates for the performance deficiency.

Because the transient performance specifications are often cast in terms of closed loop pole

positions, it seemed that a pole placement technique would be an appropriate design approach

and be a direct method to design dynamic compensator for MIMO systems. Multivariable

compensator design has been a fertile research area for many years, in particular, the problem

of pole assignment which has been studied thoroughly [15, 16, 17, 18, 19, 20, 21, 22].

In our case, performance specifications are better expressed in terms of eigenvalues and

eigenvectors, and the best way to assign them is to design a compensator to place block poles

constructed with this desired eigenstructure.

Important remark: For SISO systems, computations involving transfer function are rela-

tively straight-forward; However, this is not the case for MIMO systems. So in this thesis, only

MIMO systems will be considered.

1.3 Objective

The initial objective of this research work was to find a method to assign a desired latent

structure, thus latent values and latent vectors, for systems described in MFD, using block



1.3. Objective 4

poles placement.

The idea is to construct desired block poles (and eventually block zeros) from a desired set

of latent values and linearly independent latent vectors.

From the block poles, we can construct a desired closed loop matrix polynomial.

Then we have to determine a compensator to assign this matrix polynomial as a denominator

of the closed loop system. The block zeros can, also, be placed through the denominator of the

compensator, or via a designed pre-compensator.

In literature, systems described in matrix transfer functions, to which a desired eigenstruc-

ture has been specified, do not exist. So the idea was to apply the method for systems described

in SSD with a desired eigenstructure.

So a method to transform the system into a MFD has been studied and then the eigen-

structure is transformed into a latent structure. A method to determine latent vectors from

eigenvectors has been elaborated, and consequently a method to compute the inverse of a matrix

polynomial has been proposed.

The conversion methods to transform a controllable or/and observable system in SSD gives

a proper, coprime and row or column reduced MFD system. These are the conditions to solve

the compensator equation or the Diophantine equation. So a study of methods to solve such

equation has been undertaken and an improvement, in the form of a parallelization, has been

proposed.

Finally, an application to validate the design process has to be done. After an internship in

the University of York, we agreed on the Helicopter flight control. Helicopters, being inherently

complex systems, required the development of control system technology before they could

become useful. Without feedback control, helicopters tend to be highly unstable and difficult to

fly. Many research works has been done on the helicopter flight control, and a linear state space

model has been elaborated to which a desired eigenstructure has been designed. Furthermore,

the system verifies the conditions of applicability of the proposed design approach.

The proposed design approach is more valuable for multi-variable systems so only MIMO

systems have been treated in this thesis.
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1.4 Thesis overview

To produce an accessible, readable document, the organization of this thesis is such that the

chapters form self-contained units. In each case an introduction to the chapter will be found

at the start, and a summary and list of references at the end. A number of appendices follow

the main body of the thesis, and contain supporting material which would otherwise break the

flow of the main text.

Chapter 2 introduces a review of matrix polynomials. The concept of latent values and

latent vectors are defined. The most important part is on solvents, and the particular case of a

complete set of solvents. Spectral factorization of matrix polynomials, block companion matrix

forms are also presented. As a first contribution, a method to construct solvents from a set of

latent values and latent vectors is presented, and conditions to the existence of such solvents

and the complete set of solvents are given. A consequent result is the development of a method

to compute the inverse of matrix polynomial, which is detailed in Appendix C.

The two main descriptions, used to represent MIMO systems, are given in chapter 3. In

the SSD, some notions as eigenstructure, controllability and observability, and transformations

into block companion forms are given. In the MFD, definition of poles and zeros of a system,

the block partial fraction expansion of a system transfer function, and some canonical forms

are given. Important properties of MFD are introduced which will be needed for the resolution

of the Diophantine equation. Methods to transform SSD into MFD are given. One of the

important contributions of this thesis is the establishment of the relationship between a latent

structure and an eigenstructure, and it is given with a consequent result, a solution to the

polynomial eigenvalue problem.

In chapter 4, the main methods of feedback control of systems described by state equa-

tions and matrix fraction description are given. We started by methods of poles placement

using state feedback, and output feedback for systems described in SSD, as well as methods of

eigenstructure assignment. Then, the different feedback configurations for systems described

in MFD are given with the development to determine the compensator equations. Designing

pre-compensators is also introduced in this chapter.

Chapter 5 details the main contribution of this thesis. The steps of the design process are

detailed with an illustrative example for more clarity. The last step of this design process is
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solving the Diophantine equations, and methods to achieve this are given in appendix A. An

improvement of this method, by parallelizing the row-searching algorithm is given in appendix

B.

As an example of compensator design application, the helicopter flight control has been

chosen. The details of this example are given in chapter 6. A presentation of some notions on

helicopters and helicopter flight are given, and then the design process is detailed following the

steps given in the precedent chapter.

Finally, a conclusion and a summary of suggested further work can be found in Chapter 7.
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Chapter 2

A Review on Matrix Polynomials

2.1 Introduction

Matrix polynomials, (or Polynomial matrices), also called λ-matrices, arise naturally when mod-

elling physical systems. They play a central role in mathematics, in mechanics and robotics

as hermitian quadratic matrix polynomials, in acoustics and fluid dynamics as quadratic ma-

trix polynomials, etc. In control engineering, matrix polynomials are used as a mathematical

description of the dynamics of multivariable systems. These representations are used as an

alternative to state-space representation when designing controllers for linear systems.

In this chapter, a recall of the notions of matrix polynomials will be presented, such as latent

values and latent vectors which, by analogy, are compared to eigenvalues and eigenvectors of

a rational matrix. The concepts of solvents (also called block roots), complete set of solvents,

and spectral factorization of matrix polynomials are also detailed. As a contribution, a method

to construct solvents from a set of latent values and latent vectors is presented, and conditions

to the existence of such solvents, and the complete set of solvents are given.

2.2 Literature review

Matrix polynomials play a central role in the mathematical description of the dynamics of

multivariable systems. This fact has led to an active research effort in matrix polynomials

theory [1].

A theoretical introduction based on spectral approach of matrix polynomial theory is given

in [2]. The same authors proposed an algorithm based on Jordan chains for the computation

of a solvent of a matrix polynomial.

9
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The algebraic theory of matrix polynomials has been investigated by Dennis et al.[3], Go-

hberg et al.[4, 5, 6], and in [7, 8, 9]. Spectral factors of a lambda matrix and right (left) solvents

for a right (left) matrix polynomial have been defined. The different transformations between

solvents and spectral factors are mainly proposed by Shieh and Tsay [8].

Various computational algorithms [3, 7, 4, 8, 10, 11] are available for finding the solvents and

spectral factors of a matrix polynomial. In [12] is proposed an algorithm for the computation of

the dominant solvents of a matrix polynomial. Methods and algorithms for numerical solutions

of spectral problems for one and two parameter polynomial and rational matrices are given in

[13].

Some mathematical theory of λ-matrices, in particular solvents and interpolating λ-matrices

are discussed in [1]. In this paper, the necessary and sufficient conditions for the existence of

solvents and the corresponding generalized Lagrange interpolating λ-matrices are given.

Several methods have been developed for solving the problem of a complete set of solvents

and spectral factors, without prior knowledge of the latent roots and latent vectors of a ma-

trix polynomial. For instance, Shieh et al. [11] have derived a generalized Newton’s method.

Dahimene [14] proposed a generalization of the Quotient-Difference algorithm for the computa-

tion of spectral factors of a matrix polynomial. Tsai et al. [9] have obtained several algorithms

for computing the complete set of solvents and spectral factors.

The relationship between solvents and spectral factors are explored by Shieh and Tsay

in [8] and various transformations have been proposed. The condition for the existence and

uniqueness of the complete set of solvents have been investigated by Lancaster [15], Dennis et

al. [3] and Gohberg et al. [16].

We will show that right and left solvents can be constructed from latent roots and corre-

sponding right and left latent vectors. It follows that each of the solvents contains a part of

the latent structure of the matrix polynomial. A particular case of interest is the one where we

can construct a set of solvents covering all the latent structure of a matrix polynomial. This

set is referred to as a complete set of block roots.

2.3 Definitions

We introduce some basic concepts and notations.
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2.3.1 Matrix polynomials

Definition 2.3.1. The following m×m matrix:

A(λ) =




a11(λ) a12(λ) · · · a1m(λ)

a21(λ) a22(λ) · · · am2λ)

...
... · · · ...

am1(λ) am2(λ) · · · amm(λ)




(2.3.1)

is called a polynomial matrix, of order m, where aij(λ) are scalar polynomials over the field

of complex numbers.

From a polynomial matrix we can construct a matrix polynomial and vice-versa.

Definition 2.3.2. An mth order, rth degree matrix polynomial is given by:

A(λ) = Arλ
r + Ar−1λ

r−1 + · · ·+ A1λ + A0 (2.3.2)

Where Ai are m × m real matrices, λ a complex number, and the degree r is equal to the

maximum of the degrees of the scalar polynomials of the polynomial matrix.

Definition 2.3.3. Let X be a m ×m complex matrix. A right matrix polynomial is defined

by:

AR(X) = ArX
r + Ar−1X

r−1 + · · ·+ A1X + A0 (2.3.3)

And a left matrix polynomial is defined by:

AL(X) = XrAr + Xr−1Ar−1 + · · ·+ XA1 + A0 (2.3.4)

The matrix polynomial A(λ) is called:

• monic if the leading matrix coefficient Ar is the identity matrix

• co-monic if the trailing matrix coefficient A0 is also an identity matrix

• regular if the leading matrix coefficient Ar is non-singular.

• co-regular if the trailing matrix coefficient A0 is also non-singular

• nonsingular if the determinant of A(λ) is not identically zero.
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• unimodular if the determinant of A(λ) is a nonzero constant (independent of λ). In this

case its inverse is also a matrix polynomial.

Remark 2.3.1. If the leading matrix coefficient Ar is non singular but not an identity matrix,

then A(λ) can be multiplied by A−1
r to get a monic matrix polynomial.

In case Ar is singular and, if det(A(λ)) 6= 0 for any λ, thus A0 is non-singular, then A(λ)

can be reversed to make Ar non-singular.

2.3.2 Latent values and vectors

Definition 2.3.4. The complex number λi is called a latent value of A(λ) if it is a solution

of the scalar polynomial equation det(A(λ)) = 0. The non-trivial vector vi, solution of the

equation A(λi)vi = 0, is called a primary right latent vector associated to the latent value λi.

Similarly the non trivial row vector wi, solution of the equation wiA(λi) = 0 is called a primary

left latent vector associated with λi [11].

Remark 2.3.2. From the definition we can see that the latent problem is a generalization of

the concept of eigenproblem for square matrices. We can consider that the classical eigen

value/vector problem is finding the latent value/vector of a linear polynomial λI − A.

We can also define the spectrum of a matrix polynomial as being the set of all its latent

roots noted σ[A(λ)].

Theorem 2.3.1. The number of latent roots of a regular matrix polynomial A(λ) in a domain

enclosed by a contour Γ is equal to:

1

2π

∮

Γ

trace[A−1(λ)A′(λ)]dλ (2.3.5)

Where A′(λ) is the first derivative of A(λ). Each latent root being counted according to its

multiplicity.

Proof : see [14]

A generalization of the latent root/vector is the Jordan chain which is defined by:

Definition 2.3.5. A set of vectors {x0, x1, ..., xk} in CΓ is called a right Jordan chain of length

k +1 associated with the latent root λ0 and primary latent vector x0 if they satisfy the relation

[14]:
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j∑
p=0

1

p!
A(p)(λ0)xj−p = 0, j = 0, ..., k (2.3.6)

Where A(p)(λ) is the pth derivative of A(λ).

2.3.3 Solvents of a matrix polynomial

Definition 2.3.6. A right solvent (or a block root) R of a matrix polynomial A(λ) is defined

by:

A(R) = ArR
r + Ar−1R

r−1 + · · ·+ A1R + A0 = 0m (2.3.7)

And the left solvent of a matrix polynomial A(λ) is defined by:

A(L) = LrAr + Lr−1Ar−1 + · · ·+ LA1 + A0 = 0m (2.3.8)

The relationship between a right and a left solvent is given by the following theorem:

Theorem 2.3.2. If A(λ) has n latent roots {λ1λ2 · · ·λn} and n corresponding right latent

vectors {v1v2 · · · vn} and n corresponding left latent vectors {w1w2 · · ·wn} then the right solvent

R is related to the left solvent L by:

R = V WL(V W )−1 (2.3.9)

where

Λ =




λ1 0 · · · 0

0 λ2 · · · 0

...
... · · · ...

0 0 · · · λn




,W =




w1

w2

...

wn




, V =

(
v1 v2 · · · vn

)
(2.3.10)

Proof : see [17]

More generally, if we consider a monic matrix polynomial A(λ), and vi (wi) a right (left)

latent vector associated to the latent root λi and if all latent vectors satisfy the following:

A(p)(λ)vj|s=λi
= 0m or wjA

(p)(λ)|s=λi
= 0m for p = 1...mi−1 and j = 1..m

then there exist a right (left) solvent Ri (Li) with multiplicity mi.

In this case the right (left) solvents satisfy the following:

A(p)Ri = 0m or A(p)(Li) = 0m for p = 0, 1, ...mi−1
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where (p) stand for the pth derivative [11].

Theorem 2.3.3. Given A(λ) as in equation 2.3.2 then:

• the remainder of the division of A(λ) on the right by binomial (λI−R) is equal to AR(R)

(equation 2.3.3).

• the remainder of the division of A(λ) on the left by binomial (λI − L) is equal to AL(L)

(equation 2.3.4).

Proof : see [18]

Corollary 2.3.4. A matrix R (respectively L) is a right (respectively left) solvent of A(λ) if

and only if (λI−R) (respectively (λI−L)) divides exactly A(λ) on the right (respectively left).

Proof : see [18]

Theorem 2.3.5. The generalized right (left) eigenvectors of a right (left) solvent are generalized

latent vectors of A(λ).

Proof : see [18]

In the following some important facts on solvents:

• If R is a right solvent (L a left solvent) , then there exist a λ-matrix Q(λ) of degree r− 1

such that A(λ) = Q(λ)(Iλ−R) (A(λ) = (Iλ− L)Q(λ)) [15].

• If A(λ) has m∗ r latent roots then the r eigenvalues of the solvent and the m(r− 1) roots

of Q(λ) are latent roots of A(λ) [3].

• Solvents of a λ-matrix do not always exist.

• W is called a week solvent if A(W ) is singular [3].

Remark 2.3.3. If A(λ) has mr distinct latent roots and the set of right (left) latent vectors

verify the condition that every m of them are linearly independent (Haar Condition) then there

are exactly




mr

r


different right (left) solvents [3].
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2.3.4 Block Vandermonde matrix

As for an eigenvalue system, a block Vandermonde matrix can be defined for solvents with

particular properties [11].

Given a set of r right solvents of a matrix polynomial A(λ) then the following rm × rm

matrix:

VR =




Im Im · · · Im

R1 R2 · · · Rr
...

... · · · ...
Rr−1

1 Rr−1
2 · · · Rr−1

r


 (2.3.11)

is a ”right” block Vandermonde matrix of order r.

And given a set of r left solvents of a matrix polynomial A(λ) then the following rm× rm

matrix:

VL =




Im L1 · · · Lr−1
r

Im L2 · · · Lr−1
r

...
... · · · ...

Im Lr · · · Lr−1
r


 (2.3.12)

is a ”left” block Vandermonde matrix of order r.

If a right solvent Ri with multiplicity mi exists then the corresponding general right block

Vandermonde matrix will be constructed as follows [19]:

VR =




Im · · · Im 0m 0m · · · 0m · · · Im

R1 · · · Ri Im 0m · · · ... · · · Rr

R2
1 · · · R2

i 2Ri Im · · · 0m · · · R2
r

... · · · ...
...

... · · · Im · · · ...

Rr−
1 · · · Rr−1

i

(
r − 1

1

)
Rr−2

i

(
r − 1

2

)
Rr−3

i · · ·
(

r − 1
mi − 1

)
Rr−mi

i · · · Rr−1
r




(2.3.13)

A similar left block Vandermonde matrix can be constructed with a left solvent Li with

multiplicity mi.

2.3.5 Complete set of solvents

The nodal point is the existence of a set of m linearly independent right latent vectors associated

with a set of m latent roots of D(λ). Existence of such a set insures the existence of a right

block root.

Theorem 2.3.6. A block Vandermonde matrix as defined in 2.3.11, 2.3.12 and 2.3.13 are non-

singular matrices if and only if the set of r solvents {R1...Rr} with multiplicities {m1, ..., mr}
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is a complete set.

Proof : see [3, 19]

Definition 2.3.7. If we let σ[A(λ)] denote the set of all latent roots of A(λ) and σ[Ri] the set

of eigenvalues of the right solvent Ri, then a complete set of right solvents is obtained if we can

find r right solvents such that [11]:





⋃r
i=1 σ(Ri) = σ(A(λ))

σ(Ri) ∩ σ(Rj) = ∅
(2.3.14)

and the block vandermonde matrix thus constructed is non-singular.

Just as for the right solvents, the existence of a left solvent depends on the existence of

a set of m linearly independent left latent vectors. A complete set of left solvents (covering

totally the latent structure of A(λ)) is obtained if we can find r left solvents where each solvent

involves a distinct set of m latent roots of A(λ). This in turn requires that for each such a

distinct set, we can find a corresponding set of linearly left latent vectors.

The following definition summarizes that:

Definition 2.3.8. The set of left solvents of A(λ), which satisfies the following properties,

r =
∑k

i=1 mi , σ[A(λ)] =
⋃k

i=1 σ[Li] and a nonsingular block vandermonde matrix, is called the

complete set of the left solvents of A(λ) [11].

Remark 2.3.4. A complete set of right or left solvents will then describe completely the latent

structure of A(λ).

2.3.6 Construction of coefficients of a matrix polynomial

If a complete set of r (right or left) solvents exist then we can determine, from this set, the

matrix coefficients (Ai i=0..r) of a monic matrix polynomial A(λ) of the corresponding solvents

[3].

1) For each right solvent Rj of A(λ) we have:

Rr
j + Ar−1R

r−1
j + · · ·+ A1Rj + A0 = 0m j = 1..r
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then:

Ar−1R
r−1
j + · · ·+ A1Rj + A0 = −Rr

j j = 1..r

Or

(
A0 A1 · · · Ar−1

)



Im

Rj
...

Rr−1
j


 = −Rr

j j = 1..r

So:

(
A0 A1 · · · Ar−1

)
= − (

Rr
1 Rr

2 · · · Rr
r

)
V −1

R (2.3.15)

2) For each left solvent Lj of A(λ) we have:

Lr
j + Lr−1

j Ar−1 + · · ·+ RjA1 + A0 = 0m j = 1..r

Then following the same development we obtain:




A0

A1
...

Ar−1


 = −V −1

L




Lr
1

Lr
2
...

Lr
r


 (2.3.16)

Theorem 2.3.7. Equation 2.3.15 and equation 2.3.16 are satisfied iff the set of r left or right

solvents is a complete set and VL and VR are respectively the left and right non-singular block

Vandermonde matrices.

Proof : See [3]

2.4 Spectral factorization of a matrix polynomial

Spectral factors and solvents are two close concepts. In the following some information on

spectral factors and the link with solvents are given.

Definition 2.4.1. Let A(λ) be a q × p matrix polynomial, then a q × q matrix polynomial

B(λ) is called a left divisor of A(λ) if there exist a q × p matrix polynomial X(λ) such that:

A(λ) = B(λ).X(λ). A(λ) is called a right multiple of B(λ).
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• If the elementary divisors of A(λ) are linear then A(λ) has a complete set of right and

left solvents [8].

• If the elementary divisors of A(λ) are linear, then A(λ) can be factored into the product

of r linear monic matrix polynomials:

A(λ) = (λIm − Sr)(λIm − Sr−1) · · · (λIm − S1) (2.4.1)

Where the m×m matrices Si are called spectral factors, and represent a complete spectral

factorization of A [8].

• Si is a right solvent of Fi where:

{
F1(λ) = A(λ)

Fi(λ) = Fi+1(λ)(λIm − Si) i = 1..r
(2.4.2)

and Sn+1−i is a left solvent of Bi where:

{
B1(λ) = A(λ)

Bi(λ) = (λIm − Sn+1−i)Bi+1(λ) i = 1..r
(2.4.3)

• In general, Si is a spectral factor of A(λ), S1 is a right solvent of A(λ) and Sr is a left

solvent of A(λ) [8].

Definition 2.4.2. If A(λ) = A1(λ)A2(λ) is a particular factorization of the monic matrix

polynomial A, with σ(A1) ∩ σ(A2) = ∅, then the monic matrix polynomials A1 and A2 are

called spectral divisors of A [14].

2.5 Block companion forms

The best form for the analysis of matrix polynomials is the block companion form matrix. In

this thesis, only two (needed) forms will be presented.

Given a monic rth degree matrix polynomial as in equation 2.3.2, the associated low block

companion form is:

Alb =




0m Im 0m · · · 0m

0m 0m Im · · · 0m
...

...
...

. . .
...

0m 0m 0m · · · Im

−A0 −A1 −A2 · · · −Ar−1




(2.5.1)
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And the associated right block companion form is:

Arb =




0m 0m · · · 0m −A0

Im 0m · · · 0m −A1

0m Im · · · 0m −A2
...

...
. . .

...
...

0m 0m · · · Im −Ar−1




(2.5.2)

with the following properties [3]:

• The eigenvalues of Alb (Arb) are latent roots of A(λ).

• det(Arb − λI) ≡ (−1)mrdet(A(λ)) ≡ det(Alb − λI)

• Arb is the block transpose of Alb.

• If λi is a latent root of A(λ) and vi and wi are the corresponding right and left latent

vectors respectively then:

–




vi

λivi
...

λr−1
i vi


 is a right eigenvector of Alb,

–




wi

λiwi
...

λr−1
i wi


 is a left eigenvector of Arb,

–




v
(r−1)
i
...

v
(1)
i

vi


 is a right eigenvector of Arb where

A(λ)vi

(λ− λi)
= viλ

r−1 + v
(1)
i λr−2 + · · ·+ v

(r−1)
i

–




w
(r−1)
i
...

w
(1)
i

wi


 is a left eigenvector of Alb where

A(λ)wi

(λ− λi)
= wiλ

r−1 + w
(1)
i λr−2 + · · ·+ w

(r−1)
i

Remark 2.5.1. The block companion forms of matrix polynomials are very important because

their forms are preferred in computations problems (latent roots and latent vectors, solvents,

etc.). Software tools dealing with matrices outnumber those dealing with matrix polynomials.
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2.6 Construction of right/left solvents

2.6.1 Introduction

A contribution (the first for this thesis) to the theory of matrix polynomials is given in this

section and has been published in [20]. The problem of constructing solvents is important and

many methods exist. In the following a method based on latent roots and latent vectors is

given. For the rest of the thesis, the knowledge of the latent roots and vectors of a system is

assumed, so a method based on this knowledge was necessary.

2.6.2 Theorem

The main result is summarized in the following theorem. Let A(λ) be an rth degree mth order

monic matrix polynomial.

Theorem 2.6.1. If A(λ) has m latent roots {λ1λ2 · · ·λm} and m corresponding right latent

(column) vectors {v1v2 · · · vm} and m corresponding left latent (row) vectors {w1w2 · · ·wm},
both of dimension m, then a right solvent R of dimension m×m is:

R =

(
v1 · · · vm

)



λ1 · · · 0

...
. . .

...

0 · · · λm




(
v1 · · · vm

)−1

(2.6.1)

And a left solvent L of dimension m×m is:

L =




w1

...

wm




−1 


λ1 · · · 0

...
. . .

...

0 · · · λm







w1

...

wm




(2.6.2)

2.6.3 Proof

Construction of right solvents:

Suppose that the set {λ1, λ2, · · · , λm} of m latent roots of A(λ) has a linearly independent set

of corresponding right latent vectors {v1, v2, · · · , vm}.
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Let V = (v1, v2, · · · , vm) be the m×m matrix whose columns are the linearly independent

right latent vectors and V −1 =




w1
...

wm


 be its inverse.

It follows that
∑m

i=1 viwi = Im and wivj = δij for i, j = 1, 2, · · · ,m, this is verified from

V V −1 = V −1V = Im.

In the following we will show that the m×m matrix R = V ΛV −1 where Λ = diag{λ1, λ2, · · · , λm}
is a right solvent of A(λ).

Let

AR(R) = Rr + Ar−1R
r−1 + · · ·+ A1R + A0

hence AR(R) can be rewritten as :

AR(R) = V ΛrV −1 + Ar−1V Λr−1V −1 + · · ·+ A1V ΛV −1 + A0

It can easily verified that

V ΛlV −1 =
m∑

i=1

λlviwi l = 1, .., r

which gives

AR(R) =
m∑

i=1

λrviwi + Ar−1

m∑
i=1

λr−1viwi + · · ·+ A1

m∑
i=1

λviwi + A0

or

AR(R) = [λr
1v1 + Ar−1λ

r−1
1 v1 + · · · + A1λ1v1]w1 + [λr

2v2 + Ar−1λ
r−1
2 v2 + · · · + A1λ2v2]w2 +

· · ·+ [λr
mvm + Ar−1λ

r−1
m vm + · · ·+ A1λmvm]wm + A0

Since {λi, vi} is a latent pair it follows that

λr
i vi + Ar−1λ

r−1
i vi + · · ·+ A1λivi + A0vi = 0m

or

λr
i vi + Ar−1λ

r−1
i vi + · · ·+ A1λivi = −A0vi

leading to

AR(R) = −A0v1w1 − A0v2w2 − · · · − A0vmwm + A0 = −A0Im + A0 = 0m

Hence showing that a matrix R constructed from a set of m latent roots and a corresponding

set of m linearly independent right latent vectors is a right solvent of the matrix polynomial

A(λ).
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It can easily be verified that the right latent vector vi of A(λ) associated with the latent

root λi is a right eigenvector of the right solvent R. Since λi is an eigenvalue of R, it follows

that the right eigenstructure of R captures a part of the right latent structure of A(λ).

Construction of left solvents:

In a similar manner, we will establish that a left solvent L ∈ <m×m can be constructed from

a set {λ1, λ2, · · · , λm}of m latent roots and a corresponding set of m linearly independent

left latent (row) vectors {w1, w2, · · · , wm} as L = W−1ΛW where W =




w1
...

wm


 and Λ =

diag(λ1, λ2, · · · , λm). Let W−1 = (v1, v2, · · · , vm) which implies
∑m

i=1 viwi = Im and wivj = δij

for i, j = 1, .., m.

Evaluating

AL(L) = Lr + Lr−1Ar−1 + · · ·+ LA1 + A0

leads to

AL(L) = W−1ΛrW + W−1Λr−1WAr−1 + · · ·+ W−1ΛWA1 + A0

or

AL(L) = [
m∑

i=1

λrviwi] + [
m∑

i=1

λr−1viwi]Ar−1 + · · ·+ [
m∑

i=1

λviwi]A1 + A0

or

AL(L) = v1[λ
r
1w1 + λr−1

1 w1Ar−1 + · · ·+ λ1w1A1] + v2[λ
r
2w2 + λr−1

2 w2Ar−1 + · · ·+ λ2w2A1] +

· · ·+ vm[λr
mwm + λr−1

m wmAr−1 + · · ·+ λmwmA1] + A0

From wiA(λi) = 0 for i = 1..m it follows that:

λr
i wi + λr−1

i wiAr−1 + · · ·+ λiwiA1 = −wiA0

then

AL(L) = −v1w1A0 − v2w2A0 − · · · − vmwmA0 + A0 = 0m

indicating that L is indeed a left solvent of A(λ).

Here again, we can verify that the left latent vector of A(λ) associated with the latent root

λi is a left eigenvector of the left block root L. Since λi is an eigenvalue of L, it follows that

the left eigenstructure of L captures the left latent structure of A(λ).
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2.6.4 Illustrative example

Consider

A(λ) =

(
1 0
0 1

)
λ3 +

(
0 1
0 5

)
λ2 +

( −1 5
0 6

)
λ +

(
0 4
0 0

)

where the latent roots are {0, 1,−1,−2,−3} with 0 being a double root.

The right latent vectors corresponding to these latent roots are{ (
1
0

) (
1
0

) (
1
0

) (
1
−3

) (
1
−12

) }
respectively.

Each right block root being a 2 × 2 matrix, we form right solvents by pairing latent roots

with corresponding linearly independent right latent vectors such as:

{0, -2}, {0, -3}, {1, -2}, {1, -3}, {-1, -2}, {-1, -3} or {-2, -3}.
The right solvent, say involving the pair {1, -2}, is then:

R =

(
1 1
0 −3

)(
1 0
0 −2

)(
1 1
0 −3

)−1

=

(
1 1
0 −2

)

It can be checked that:A(R) = 02.

We cannot have in this case a complete set of right solvents since out of the seven possible

right solvents, we cannot obtain three disjoint spectra covering the whole spectrum of A(λ).

Left latent vectors associated with the latent roots are
{ (

0 1
) ( −6 5

) (
1 0

) (
0 1

) (
0 1

) }

The left solvent involving, say the latent root {1, -2}, is then:

L =

( −6 5
0 1

)−1 (
1 0
0 −2

)( −6 5
0 1

)
=

(
1 −2.5
0 −2

)

2.7 Conclusion

Matrix polynomials are important in the control of multivariable systems described in matrix

fraction. In this case the behavior of the system will be given by the latent structure of the

denominator and control can be designed using the solvents. We showed that solvents or

block roots of a matrix polynomial can be constructed from latent roots and latent vectors.

Conditions of their existence are discussed.

The importance of latent structure and block roots (solvents) of matrix polynomials will be

shown in the next chapter where the link between the latent structure of a system described by
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matrix fraction description and the eigenstructure of its corresponding state space description

is established.
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Chapter 3

State space description and matrix
fraction description

3.1 Introduction

The analysis and synthesis of complex engineering systems always start by building up models

which realistically describe their behaviour. Because of different used analytical methods, we

may set up different mathematical equations to describe the same system.

The transfer function that describes only the terminal property of a system is called the

input-output description of the system. The set of differential equations that describes the

internal as well as the terminal behaviour is called state variable description of the system [1].

Multiple inputs multiple outputs dynamical systems can be described with many represen-

tations: State space equations, transfer function, or matrix fraction description.

A matrix fraction description (MFD) is a decomposition of a given rational transfer function

matrix into two matrices D(s) and N(s). The entries of these matrices are polynomials of s,

so called matrix polynomials [2].

In this chapter we will deal with state space description and some needed notions will be re-

called as eigenstructure and block companion transformations. The Matrix fraction description

will also be presented with methods to transform an SSD to an MFD. Then the relationship

between latent structure and eigenstructure is established and as a consequent result a method

to solve the polynomial eigen problem is proposed.

26
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3.2 Literature review

The process of controlling a dynamic system starts with its modelling in terms of mathematical

equations [3]. In particular, in the case of linear time invariant systems, we have a set of p

differential equations of the type:

a1d1y
(d1)
1 (t) + · · ·+ a10y1(t) + a1 + · · ·+ apdpy

(dp)
p (t) + · · ·+ ap0yp(t) + ap =

b1f1u
(f1)
1 (t) + · · ·+ b10u1(t) + b1 + · · ·+ bmfmu

(fm)
m (t) + · · ·+ bm0um(t) + bm

(3.2.1)

where α(q)(t) represents the qth derivative of the scalar signal α(t) versus time.

The parameters aij and bkl for i = 1..p, j = 0..di, k = 1..m and l = 0..fk are constants.

By convention, all variables on which there is a control that will be used to control the system

are called the inputs ui(t), i = 1..m. Moreover, all the variables which can be observed on the

effect of the command are called outputs yi(t), i = 1..p.

There are different approaches to interact with this mathematical model. With each ap-

proach, the model is shown or reformulated in a particular way in which the different properties

of the system are more or less revealed. One can for example write each equation of type 3.2.1 as

a set of differential equations of order 1 with the inclusion of state variables [4]. After algebraic

manipulations, the system model can be written as follows:

{
ẋ(t) = Ax(t) + Bu(t)
y(t) = Cx(t) + Eu(t)

(3.2.2)

The vector x(t) ∈ <n is the state variable vector and thus is used to link the vector of inputs

u(t) ∈ <m and the vector of outputs y(t) ∈ <p. The matrices A ∈ <n×n, B ∈ <n×m, C ∈ <p×n

and E ∈ <p×m are constants. The representation 3.2.2 is used by the state-space approach

[4, 5].

In state space model, the modal decomposition of the state matrix into its eigenstructure

is very useful as it defines the stability and the dynamic behavior of a linear multi-variable

system.

The importance of the state space model comes from its causality (strictly causal if E = 0),

the fact that it is convenient for controller/filter/predictor design, and it is also convenient for

computation [2].

We note that by applying the Laplace transform on the representation 3.2.2 x(t) can be

eliminated and obtain the transfer function T (s) of the system [4] assuming zero initial condi-

tions.
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y(s) = [C(sI − A)−1B + E]u(s) = T (s)u(s)

Another way of rewriting the set of p equations of type (3.2.1) representing the dynamic

system is the matrix form. By grouping all inputs and outputs in the corresponding vectors u

and y we get:

D(s)y(s) = N(s)u(s) (3.2.3)

The matrices D(s) and N(s) are polynomial matrices in the variable s, and of dimensions

p×p and p×m respectively. These polynomial matrices can be rewritten as matrix polynomials

as defined in the precedent chapter (section 2.3.1).

We recall that in the continuous case, the variable s is the Laplace operator. If the system

is in discrete time, then the variable is the shift operator.

Since the transfer function of the system is unique [4], it is checked that:

T (s) = D−1(s)N(s) = C(sI − A)−1B + E (3.2.4)

Representation 3.2.3 is used by the polynomial approach [6] or by the behavioral approach

[7].

Each representation has its strengths and weaknesses, and involves a different way of looking

at the same system. Therefore every approach to control systems also has its peculiarities and

uses its own methods and mathematical tools. For some problems, the state space approach

will be more effective, for other problems the polynomial approach or behavioral approach will

be more appropriate.

Analysis and synthesis based on the matrix fraction description (MFD) of multivariable

systems have received a great deal of attention for the past few decades (Callier and Desoer

1982 [8]; Chen 1984 [9]; Kailath 1980 [4]; Wolovich 1974 [10]).

If a linear system is represented with matrix polynomials in the form (3.2.3), then the

locations of its zeros and poles, which determine the dynamics of the system, are contained in

the eigenstructure (latent structure) of matrix polynomials N(s) and D(s) [4].

In the problem of decoupling linear systems for example, infinite structural indices of a

suitable polynomial matrix are needed to determine if the system is decouplable [11], and

also to determine the structure that could have the decoupled closed loop system [3]. Model
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matching [12] and disturbance rejection [13] are other examples of control problems where

the eigenstructure of polynomial matrices plays a fundamental role. The zero structure of a

polynomial matrix is also instrumental to its spectral factorization which has applications in

several optimal and robust control problems [14, 15].

Many papers have considered using solvents (block roots of D(s)) for solving some linear

algebra problems or control problems such as: block partial fraction expansion of a matrix

fraction description (MFD) with single and repeated poles [16, 17], cascade decomposition and

realization of multivariable systems via block-pole and block-zero placement [18], state-feedback

decomposition of multivariable systems via block-pole placement [19].

The link between state space representation and matrix polynomials is well established in

the book of Rosenbrock [5]. Latent structure is, in some ways, analogous to eigenstructure but

its use and importance has still to be explored particularly in control theory. It is known and

has been verified that latent values of the MFD of a system and eigenvalues of the SSD of the

same system are the same, but the link between eigenvectors and latent vectors has not yet

been elaborated to my knowledge.

3.3 State space description

3.3.1 Introduction

The state space description of a system provides a complete picture of the system structure

showing how all the internal variables xi i = 1..n interact with one another, how the inputs

uk(t) k = 1..m affect the system states xi(t), and how the outputs yj(t) j = 1..p are obtained

from various combinations of the state variables xi(t) and the inputs uk(t).

The state variable representation of linear systems enables a large number of interconnected

simultaneous differential equations to be formed into a single matrix equation. If, for a given

system, enough information is known to permit the calculation of the unforced system output

for all future time, then the system’s state is known [20]. The state variable approach assigns

a set of independent variables to represent the system state, and considers the variation of the

state with time as the system response.

A linear state model is formed by a set of first order linear differential equations with
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constant coefficients and a set of linear equations.

{
ẋ(t) = Ax(t) + Bu(t)
y(t) = Cx(t) + Eu(t)

(3.3.1)

Where x(t) is the system state vector:x(t) =




x1(t)
...

xn(t)


 and xi(t) i = 1..n are the system

state variables

u(t) is the system input vector: u(t) =




u1(t)
...

um(t)




and y(t) is the system output vector:y(t) =




y1(t)
...

yp(t)




and (A,B,C,E) are real, constant, respectively n × n, n × m, p × n state system matrix,

input matrix, output matrix, and direct transmission matrix.

The first part of the system of equations describes the dynamic part of the behaviour of

a system and how the initial system state x(0) and system input u(t) will determine the new

state x(t). The second part describes how the system state x(t) and the system input u(t) will

instantly determine the system output y(t).

If p = 1 and m = 1 then the system is single input, single output (SISO) and if m > 1,

p > 1 then it is multiple input, multiple output (MIMO).

Definition 3.3.1. The state of a system at time t0 is the amount of information at t0 that,

together with u[t0,∞) determines uniquely the behavior of the system for all t ≥ t0 [9].

System analysis generally consists of two parts: quantitative and qualitative. In the quan-

titative study, it is dealt with the search for the exact response of the system to certain input

and initial conditions. In qualitative study, the general properties of a system are sought.

For more convenience we suppose that the input-output matrix is null in the rest of this

thesis.
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3.3.2 Eigenstructure

Definition 3.3.2. The eigenstructure of the system given by equation 3.3.1 consists in the set

of n eigenvalues and its corresponding eigenvectors of the state matrix A:

Aṽi = λiṽi , i = 1..n

w̃iA = λjw̃j , j = 1..n
(3.3.2)

where λi is the ith eigenvalue of A, ṽi ∈ <n×1 is the associated right eigenvector and w̃j ∈ <1×n

is the associated left eigenvector.

If Λ = diag{λ1 λ2 · · · λn} is the spectral matrix composed of the set of eigenvalues of A,

Ṽ the modal matrix composed of the right eigenvectors, and W̃ the modal matrix composed of

the left eigenvectors then we have the following equations [21]:





AṼ = Ṽ Λ

W̃A = ΛW̃

W̃ T = Ṽ −1

Λ = W̃ T AṼ

(3.3.3)

3.3.3 Time response

We consider a standard state space system as described by equation 3.3.1. The standard result

is the time response composed of a zero-input response and the zero-state response:

x(t) = eAtx(0) +

∫ t

0

eA(t−τBu(τ)dτ (3.3.4)

The vector x(t) defines the trajectory of the system time response in state space. The

matrix eAt is called the state transition matrix.

If the state vector is considered as describing a direction in a space (or a hyperspace), then

the state transition matrix describes the trajectory of the state vector through the state space.

The state transition matrix, although useful for determining a time response, is not particularly

informative. It is not clear how changing the system matrix A will affect the time response of

the resulting system.

If Λ, Ṽ and W̃ are as defined previously, then the time response will be:

x(t) = Ṽ eΛtW̃ T x(0) + Ṽ

∫ t

0

eΛ(t−τ)W̃ T Bu(τ)dτ (3.3.5)
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Where eΛt = diag{eλ1t, · · · , eλnt}.
So the state transition matrix has been decoupled into its n constituent modes. Theses

modes are mapped into the state space by eigenvectors.

Hence the eigenvalues of A correspond directly to the system poles, if no pole-zero cancel-

lation occurs. Secondly, the matrices Ṽ and W̃ of the right and left eigenvectors respectively

have a physical interpretation as well. The initial state vector x(0) acts to excite the system

modes via W̃ , and the modal response manifests itself in the time-varying state vector x(t)

via Ṽ . Hence, for a given mode, the associated left eigenvector describes the way in which

state disturbances excite the system modes, and the associated right eigenvector describes the

coupling of the system modes into the state vector [20].

Zero-Input Response:

We suppose no forcing function (u(t) = 0). The time response will be:

x(t) = Ṽ eΛtW̃ T x(0) =
n∑

i=1

ṽie
λitw̃T

i x(0) (3.3.6)

The value w̃T
i x(0) is a scalar quantity which magnitude is given by w̃i and direction is given

by ṽi. Thus if the initial condition excitation is orthogonal to one of the vectors then the related

mode is not excited in the states and hence in the outputs.

So the role of the eigenstructure in the zero-input response is the following:

• Eigenvalues: determine the decay or growth rate of each natural mode eλit

• Right eigenvectors: fix the shape of the response of each natural mode.

• Left eigenvectors: determine the proportion of each natural mode that is present in the

time response when excited by a forcing function.

For the zero state response: the value of W̃ T B shows the extent to which a particular input

excites certain modes.

Remark 3.3.1. These facts underpin the idea of Eigenstructure Assignment: If a control sys-

tem can be designed that affects the eigenstructure of A in a predictable manner, then the

system poles may be placed and the coupling between the system modes and the states may

be influenced [20].
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3.3.4 Controllability and Observability

Controllability and observability have an important role in both theoretical and practical as-

pects of modern control. Before the control system designer can apply a particular design

method, it is necessary to establish to what extent the available inputs influence the system

behaviour, and to what extent the available outputs indicates the system behaviour. The extent

to which the inputs influence the system is defined as the controllability of the system, and the

extent to which the outputs shows the system behaviour is defined as the observability of the

system [1]

Controllability of linear time invariant system:

Definition 3.3.3. For the system given in 3.3.1, if there exists an input u[0, t) which transfers

the initial state x(0) = x0 to the zero state x(t1) = 0 in a finite time t1, the state x0 is said

to be controllable. If all initial states are controllable then the system is said fully controllable

[22].

If the system is controllable, i.e. there exists an input to make x(t1) = x1 = 0 at a finite

time t = t1 then after pre-multiplying the time response, given by equation 3.3.4, by e−At the

solution yield:

x0 =

∫ t1

0

e−AτBu(τ)dτ (3.3.7)

Therefore any controllable state satisfies 3.3.7 and for a fully controllable system every state

x0 ∈ <n satisfies t1 > 0 and u[0,t1). It is found that full controllability of a system depends on

matrix A and B but independent of the output matrix C.

Theorem 3.3.1. The n dimensional linear time invariant state equation is controllable if and

only if any of the following equivalent conditions is satisfied:

i) all rows of [e−AtB] are linearly independent on [0,∞) over the field of complex numbers.

ii) W (0, t1) =
∫ t1

0
e−AtBBT e−AT tdt is non-singular for any t1 > 0.

iii) the n× nm controllability matrix has full rank.

Cn =

(
B AB A2B · · · An−1B

)
(3.3.8)

Proof : see [9].
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Observability of linear time invariant system:

Dual to controllability, observability studies the possibility of estimating the state from the

output. If a dynamical system of equations is observable then all the modes of the system can

be observed and measured from the outputs.

Definition 3.3.4. When using the input of the system measured from time zero to time t1,

if the initial state x(0) = x0 is uniquely determined then x0 is said to be observable when the

input is assumed to be completely known. When all states are observable the system is said to

be fully observable [22].

The output of the system is determined by:

y(t) = CeAtx0 +

∫ t

0

CeA(t−τ)Bu(τ)dτ + Eu(t) (3.3.9)

Theorem 3.3.2. The n dimensional linear time invariant dynamical equation is observable iff

any of the following equivalent conditions is satisfied:

i) all columns of [CeAt] are linearly independent on [0,∞) over the field of complex numbers.

ii) W (0, t1) =
∫ t1

0
eAT tCT CeAtdt is non-singular for any t1 > 0.

iii) the np× n observability matrix has full rank:

O =




C

CA

...

CAn−1




(3.3.10)

Proof : see [9]

Controllability and observability are often given as preconditions for forming multivariable

control systems. If a system has uncontrollable modes, either these modes are important to

the system response or they are not; if they are not, a reduced model may be formed that does

not include these dynamics. Similarly, if unobservable modes are present then further sensors

should be added to the system to allow detection of these modes, lest they become unstable

under feedback.
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Interestingly, it is possible for the controllability or observability test matrices to be full rank

but ill-conditioned; this implies either a nearly-uncontrollable mode, requiring large control

efforts to affect it, or a nearly-unobservable mode, whose effect is hard to detect in the output

vector. For this reason Mehrmann and Xu [23] define the concept of ’distance to controllability’

and use it as a system analysis tool [20].

3.3.5 Block companion forms

The system as described in 3.3.1 can be put in different forms (controller form, observer form,

diagonal form, etc.). We are interested in block controller form and block observer form, which

will be needed in the rest of the thesis. For other canonical forms, their use and their utility

see [4, 2].

Consider the n-dimensional linear time-invariant multivariable dynamical equations as in

3.3.1, and we suppose E equal to the null matrix:
{

ẋ = Ax + Bu
y = Cx

(3.3.11)

Block controllability:

Definition 3.3.5. The system (3.3.11) is block controllable iff [24]:

i) the number n/m = µ is an integer and

ii) the controllability matrix of degree µ has full rank n:

Cnµ =

(
B AB · · · Aµ−1B

)
(3.3.12)

Remark 3.3.2. µ is the controllability index.

Block controller form:

If the system (3.3.11) is block controllable of index µ then it can be transformed to block

controller form:

Let xc = Tcx where:

Tc =




Tc1

Tc1A
...

Tc1A
µ−1


 and Tc1 =

(
0m · · · 0m Im

) Cn−1
µ (3.3.13)



3.3. State space description 36

In the new coordinates, the state space equations will become:

{
ẋc = Acxc + Bcu

y = Ccxc
where





Ac = TcAT−1
c

Bc = TcB
Cc = CT−1

c

or

Ac =




0m Im 0m · · · 0m

0m 0m Im · · · 0m
...

...
...

. . .
...

0m 0m 0m · · · Im

−A0 −A1 −A2 · · · −Aµ−1




; Bc =




0m

0m
...

0m

Im




; Cc =
(

C0 C1 · · · Cµ−1

)

(3.3.14)

Block observability:

Definition 3.3.6. The system as in equation 3.3.11 is block observable iff [24]:

i) the number n/p = ν is an integer and

ii) the observability matrix of degree ν has full rank

Oν =




C

CA

...

CAν−1




(3.3.15)

Remark 3.3.3. ν is the observability index

Block Observer form:

If the system is block observable of index ν then it can be transformed to block observer form.

Let us make a change of coordinates: xo = T−1
o x where

To =
(

To1 ATo1 · · · Aν−1To1

)
and To1 = O−1

ν




0p
...
0p

Ip


 (3.3.16)

In the new coordinates we have:

{
ẋo = Aoxo + Bou

y = Coxo
where





Ao = T−1
o ATo

Bo = T−1
o B

Co = CTo
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or

Ao =




0p 0p · · · 0p −A0

Ip 0p · · · 0p −A1

0p Ip · · · 0p −A2
...

...
. . .

...
...

0p 0p · · · Ip −Aν−1




; Bo =




B0

B1

B2
...

Bν−1




; Co =
(

0p · · · 0p Ip

)
(3.3.17)

Block diagonal form:

Once we have the block controller (observer) form, we can transform it into a block diagonal

from using the similarity transformation [17]:

xd = V −1
R xc or xd = V −1

L xo (3.3.18)

where VR (VL) is a ”right” (left) block Vandermonde matrix (defined in chapter 2 section

2.3.4). The conditions are, of course, block controllability and block observability.

In the new coordinates, the system will be:

{
ẋd = Adxd + Bdu

y = Cdxx
where





Ad = V −1
R AcVR

Bd = V −1
R Bc

Cd = CcVR

or





Ad = VLAoV
−1
L

Bd = VLBo

Cd = CoV
−1
L

(3.3.19)

which gives:

Ad =




R1 0m · · · 0m

0m R2
. . .

...
...

. . . . . . 0m

0m · · · 0m Rµ


 ; Bd =




Bd1
...

Bdµ


 ; Cd =

(
Ip · · · Ip

)
(3.3.20)

or

Ad =




L1 0p · · · 0p

0p L2
. . .

...
...

. . . . . . 0p

0p · · · 0p Lν


 ; Bd =




Im
...

Im


 ; Cd =

(
Cd1 · · · Cdν

)
(3.3.21)

Remark 3.3.4. .

• The set {R1, · · · , Rµ} or {L1 · · · , Lν} is a complete set of solvents of the corresponding

system described in MFD.

• As it can be seen, this is a block decoupled system. Thus it can be decoupled into µ or

ν independent subsystems.

• The eigenvalues of Ad are the union of the sets of eigenvalues of each Solvent.
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3.4 Matrix fraction description

3.4.1 Generation of a MFD

Matrix fraction description provides a natural generalization of the scalar rational transfer

function, though in multivariable case we have to distinguish between right and left descriptions.

In linear time-invariant single-input single-output system, the transfer function is a ratio of two

scalar polynomials. The system modelling of physical, linear time-invariant multi-input multi-

output control systems, results in high degree coupled differential equations or an rth degree

mth order differential equation of the form:

X(r)(t) + Dr−1X
(r−1)(t) + · · ·+ D1X

(1)(t) + D0X(t) = u(t) (3.4.1)

Where Di are m ×m real matrices, X(i) of dimension m × 1 represents the ith derivative

of the vector X(t) and u(t) of dimension m × 1 being the input vector. The output y(t) of

dimension p× 1 is generally given by a differential equation in the form:

y(t) = Nr−1X
(r−1)(t) + Nr−2X

(r−2)(t) + · · ·+ N1X
(1)(t) + N0X(t) (3.4.2)

where Ni are p×m real matrices.

The Laplace transformation with zero initial conditions results in:

srX(s) + Dr−1s
r−1X(s) + · · ·+ D0X(s) = U(s)

and

Y (s) = Nr−1s
r−1X(s) + Nr−2s

r−2X(s) + · · ·+ N0X(s)

which yields:

Y (s) = [Nr−1s
r−1 + Nr−2s

r−2 + · · ·+ N0][Imsr + Dr−1s
r−1 + · · ·+ D0]

−1U(s) (3.4.3)

So the p×m transfer function matrix is:

T (s) = NR(s)D−1
R (s) (3.4.4)

Where NR and DR are p×m and m×m numerator and denominator matrix polynomials

defined by:

NR(s) = Nr−1s
r−1 + Nr−2s

r−2 + · · ·+ N1s + N0 (3.4.5)
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and

DR(s) = Imsr + Dr−1s
r−1 + · · ·+ D1s + D0 (3.4.6)

The equation 3.4.4 is the right matrix fraction description (RMFD) of the MIMO system

defined by equations 3.4.1 and 3.4.2 [4].

An alternative factorization of T (s) is the left matrix fraction description (LMFD) defined

by:

T (s) = D−1
L (s)NL(s) (3.4.7)

Where DL is a p× p denominator matrix polynomial and NL is a p×m numerator matrix

polynomial.

The latent roots of the denominator are called latent values with their corresponding latent

vectors and the solvents will be called block roots (block poles for the denominator and block

zeros for the numerator).

Remark 3.4.1. .

• The degree of a MFD {D(s), N(s)} is defined as the degree of the determinant of D(s),

and the characteristic polynomial of T (s) is defined as the determinant of D(s) [2].

• There exists a certain duality between right and left MFD’s [4].

3.4.2 Poles and Zeros of systems in MFD

It is known that the poles and zeros of a SISO system are those values of s which cause the

transfer function T (s) to equal ∞ or 0, respectively.

The system poles of a MIMO system are those values {λ} for which T (λ) = ∞. Such a

definition is possible because all the entries in the transfer function matrix share a common

denominator [20].

Since the entries of the transfer function matrix do not share a common numerator, such a

simple definition will not suffice for multivariable zeros. Instead, we may define any constant z

such that T (z) = 0 as a blocking zero. The response of a system with a blocking zero z to an

input u(t)ezt is zero for any u(t) [25].

However, this definition tells us only when a value of s causes every element in T (s) to

become zero. It is also useful to characterize those values of s which cause any element in T (s)
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to become zero, and hence represent a null in the response of a subset of the input-output

paths. Such values are known as transmission zeros, and they may be identified as those values

of z for which rank(T (s)) < min(m, p) for a system with m inputs and p outputs.

3.4.3 Block partial fraction expansion

A large-scale multivariable control system described by high degree matrix fraction descriptions

(MFD’s) is often decomposed into parallel subsystems with low degree MFD’s for less sensitivity,

good reliability, and simple simulations and designs [16].

In the rest of the sections the MFD of a MIMO system will be noted G(s) which can be in

RMFD or LMFD form.

We consider a MIMO system G(s) described in RMFD then G(s) can be written as [19]:

G(s) =
r∑

i=1

Gi(sIm − Li)
−1 (3.4.8)

This is a block partial fraction expansion where the Li are the block poles of G(s) (left

solvents of D(s)) and the Gi are called the residues of the block partial fraction expansion

Gi =
∑r

j=1 CjJiL
r−j
i for i = 1..r.

The m×m Ji matrices can be determined from:

(
J1 J2 · · · Jr

)
=

(
0m · · · 0m Im

)
V −1

L (3.4.9)

Where VL is the left Vandermonde matrix constructed from the full set of left solvents.

By analogy, if we consider a MIMO system G(s) described in LMFD then it can be factorized

as follows:

G(s) =
r∑

i=1

(sIm −Ri)
−1Hi (3.4.10)

Where the Ri are the block poles of G(s) (right solvents of D(s)) and the Hi are called

the residues of the block partial fraction expansion Hi =
∑r

j=1 Rr−j
i J ′iBj for i = 1..r and the

matrices K ′
i are as follows:

(
J ′1 J ′2 · · · J ′r

)
= V −1

R




0p
...
0p

Ip




Where VR is the right Vandermonde matrix constructed from the full set of right solvents.
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In case of multiple block roots of the denominator, the following equation gives the block

partial fraction expansion. We consider a matrix polynomial described in LMFD. As before we

can write the block partial fraction expansion as follows:

G(s) =
k∑

i=1

mi∑
j=1

(sIm −Ri)
−jHij (3.4.11)

Ri are the block poles of G(s) and Hij are the matrix residues of the block partial fraction

expansion, k is the number of distinct block poles with multiplicity mi [17].

Remark 3.4.2. Conditions of existence of block roots (solvents) or repeated block roots, and a

full set of solvents are given in the previous chapter (see section 2.3.5).

3.4.4 Important properties of MFD

The following properties are important for the notions developed in the rest of the thesis.

Properness:

Definition 3.4.1. A rational matrix G(s) is said to be proper (strictly proper) if G(∞) is a

finite constant (zero) matrix.

If G(s) is described in RMFD or LMFD such that the degree of the numerator is less than

the degree of the denominator, then G(s) is strictly proper [4].

Remark 3.4.3. From [[9], p.91], it is stated that a transfer function obtained from a state space

description of a system is proper, and if its input-output direct transmission is zero then it is

strictly proper.

Row/column reduceness

Definition 3.4.2. A non singular matrix polynomial D(s), as in equation 3.4.6 , is said column

reduced if deg(detD(s)) =
∑p

i=1 γci where γci are the max column degrees of D(s), and it is

said row reduced if deg(detD(s)) =
∑p

i=1 γri where γri are the max row degrees of D(s) [9].

Theorem 3.4.1. Let D(s) = DhcHc(s) + Dlc(s) where Hc=diag{higher column degrees on s of

D(s)}, Dhc is a constant matrix of coefficients with higher column degrees of D(s) and Dlc is

the rest of D(s). Then D(s) is said column reduced iff Dhc is non singular.
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By duality, let D(s) = Hr(s)Dhr +Dlr(s) where: Hr=diag{higher row degrees on s of D(s)},
Dhr is a constant matrix of coefficients with higher row degrees of D(s) and Dlr is the rest of

D(s). Then D(s) is said row-reduced iff Dhr is non singular.

Proof : See [[9] page 601].

Remark 3.4.4. From the previous theorem, we can deduce that a monic matrixpolynomial is

row and column reduced.

Coprimeness

Definition 3.4.3. A system described in RMFD (as in equation 3.4.4) has the following prop-

erties:

• N(s) and D(s) are right-coprime if they have only unimodular common right divisors.

• N(s) and D(s) are right coprime if




N

D


has full rank for any s.

If N(s) and D(s) are right coprime then G(s) is said irreducible.

The same definitions can be applied for left-coprimeness for systems described in LMFD.

Irreducible MFDs

Definition 3.4.4. If the transfer function matrix G(s) = N(s)D−1(s) is irreducible then:

• The poles of G(s) are the roots of the determinant of D(s).

• If N(s) is square and non-singular then its zeros are the roots of the determinant of N(s).

• otherwise the zeros of the non-square G(s) are the frequencies at which the rank of N(s)

drops below its normal rank.

• N(s) and D(s) are right (left) coprime (i.e. D(s) and N(s) have no greatest common left

(right) divisor).
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3.4.5 Canonical forms

Irreducible MFD with no further constraints are not unique. We have to impose extra con-

straints in order to single out unique MFD. to describe MIMO systems. One way of doing this

is by using so called canonical MFD. model types.

Definition 3.4.5. Two MFD.’s {Da(s),Na(s)} and {Db(s),Nb(s)} are equivalent if they give

rise to the same transfer function [2].

Under the condition of non-singularity of the matrix denominator D(s) and aiming some

properties, MFD of a multivariable system {D(s), N(s)} can be transformed into a canonical

form. Table 3.1 gives a list of these forms[2]:

Table 3.1: Canonical model types

Canonical form Properties

Hermite Column proper, irreducible

Echelon Column proper, row proper, irreducible

Guidorzi Column proper, row proper, irreducible

Diagonal Row proper, column proper

Remark 3.4.5. It is sometimes easier to solve a control problem if the MFD of the system is

transformed into one of these canonical forms. For more informations see [2, 4, 26, 27].

3.5 Transformation between models

Transformations between the three main descriptions of MIMO (SSD, TF, MFD) systems is

possible. Several methods exist to obtain MFDs from SSD and mainly TF [28, 29, 30, 2]. In

[30] detailed methods to obtain MFD forms are given. In this section a method to convert SSD

into MFD is given. Other methods are given in Appendix D.
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3.5.1 Conversion Methods from SSD to MFD

Let a multi-variable continuous dynamic linear system described by the following state space

equations: {
ẋ = Ax + Bu

y = Cx
(3.5.1)

with the following dimensions: A : n× n, B : n×m, C : p× n.

To convert this SSD description to a MFD (left or right) description such that:

G(s) = NR(s)D−1
R (s) or G(s) = D−1

L (s)NL(s)

where NR, DR, NL and DL are matrix polynomials, two conversion approaches can be used,

using the transformation in a block controller form to get Right MFD or in a block observer

form to get left MFD.

3.5.2 Block controller form

If the system described as in equation 3.5.1 is block controllable with index µ (as defined in

section 3.3.5) the system is transformed into a block controller form as follows:

Ac =




0m Im 0m · · · 0m

0m 0m Im · · · 0m
...

...
...

. . .
...

0m 0m 0m · · · Im

−A0 −A1 −A2 · · · −Aµ−1




; Bc =




0m

0m
...

0m

Im




; Cc =
(

C0 C1 · · · Cµ−1

)

(3.5.2)

Then the right matrix fraction description (RMFD) of the system is given by: G(s) =

NR(s)D−1
R (s) Where :





Aµ = Im

DR(s) =
∑µ

i=0 Ais
i

NR(s) =
∑µ−1

i=0 Cis
i

(3.5.3)

Remark 3.5.1. The obtained MFD is strictly proper, row-reduced and right coprime.
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3.5.3 Block observer form

By duality, if the system described as in equation 3.5.1 is block observable with index ν (as

defined in section 3.3.5) the system is transformed into a block observer form as follows:

Ao =




0p 0p · · · 0p −A0

Ip 0p · · · 0p −A1

0p Ip · · · 0p −A2
...

...
. . .

...
...

0p 0p · · · Ip −Aν−1




; Bo =




B0

B1

B2
...

Bν−1




; Co =
(

0p · · · 0p Ip

)
(3.5.4)

then the left matrix fraction description (LMFD) of the system is given by: G(s) =

D−1
L (s)NL(s)

Where 



Aν = Ip

DL(s) =
∑ν

i=0 Ais
i

NL(s) =
∑ν−1

i=0 Bis
i

(3.5.5)

Remark 3.5.2. The obtained MFD is strictly proper, column-reduced and left coprime.

In general, it is not difficult to obtain an MFD from a SSD, but the difficulty is in obtaining

a coprime least order MFD. A number of methods to derive the coprime MFD exist in the

literature [31, 32], a comparative summary of which is presented in [29].

3.5.4 Relation between latent structure and eigenstructure

From the block diagonal canonical form of a system described in SSD, as developed in section

3.3.5, we have:

Ad =




R1 0m · · · 0m

0m R2
. . .

...
...

. . . . . . 0m

0m · · · 0m Rµ


 or Ad =




L1 0p · · · 0p

0p L2
. . .

...
...

. . . . . . 0p

0p · · · 0p Lν


 (3.5.6)

Let Ṽ be the modal matrix of A and Ṽd be the modal matrix of Ad. So we have:





A = Ṽ −1ΛṼ

Ac = Tc ∗ Ṽ −1ΛṼ ∗ T−1
c

Ad = V −1
R ∗ TcṼ

−1ΛṼ T−1
c ∗ VR

Ad = Ṽ −1
d ΛṼd

(3.5.7)

So:

Ṽd = V −1
R ∗ Tc ∗ Ṽ −1 (3.5.8)
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Knowing that Ad is a diagonal matrix of right solvents (left), let Ṽi be the modal matrix of

solvent Ri so we can write: Ri = ṼiΛiṼ
−1
i such that Λi is a diagonal matrix of eigenvalues of

Ri then we have this result:

Ad =




Ṽ1Λ1Ṽ
−1
1 0m · · · 0m

0m Ṽ2Λ2Ṽ
−1
2

. . .
...

...
. . . . . . 0m

0m · · · 0m ṼµΛµṼ
−1
µ




(3.5.9)

This establishes a first step to the relationship between the eigenstructure of a system

described in SSD and the latent structure of its corresponding MFD.

3.6 Relation between latent vectors and eigenvectors

In this section we present an important result and contribution to the theory of MFD which is

published in [33]. The relationship between eigenstructure and latent structure is the core of

the proposed compensator design approach presented in chapter 5.

3.6.1 Block controller form

Let a system be described in block controller form as in equation 3.5.2. Let (λi,v̄i) be an

eigenvalue and its corresponding right eigenvector of the matrix Ac, hence Acv̄i = λiv̄i . Let

(λi,vi) be a latent pair of DR(λ), hence DR(λi)vi = 0m.

Theorem 3.6.1. The latent vector vi is obtained from the eigenvector v̄i by using the following

equation:

vi = v̄i1 (3.6.1)

where v̄i1 is composed of the first m components of v̄i.

Proof. DR(λi)vi = 0m ⇒ [Imλµ
i + Aµ−1λ

µ−1
i + · · ·+ A1λi + A0]vi = 0m.

So the latent vector vi satisfies

λµ
i vi + λµ−1

i Aµ−1vi + · · ·+ λiA1vi + A0vi = 0m (3.6.2)
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On the other hand Acv̄i = λiv̄i leads to:




0m Im 0m · · · 0m

0m 0m Im · · · 0m

...
...

. . . . . .
...

0m 0m 0m · · · Im

−A0 −A1 −A2 · · · −Aµ−1







v̄i1

v̄i2

...

v̄iµ−1

v̄iµ




= λi




v̄i1

v̄i2

...

v̄iµ−1

v̄iµ




(3.6.3)

Where v̄ijwith j = 1..µ are the block elements of the eigenvector v̄i of dimension m. Hence

the following set of equations may be obtained:





v̄i2 = λiv̄i1

v̄i3 = λiv̄i2 = λ2
i v̄i1

...

v̄iµ = λiv̄iµ−1 = λµ−1
i v̄i1

(3.6.4)

The last equation can be rewritten as:

−A0v̄i1 − A1v̄i2 − · · · − Aµ−1v̄iµ = λiv̄iµ

or

−A0v̄i1 − λiA1v̄i1 − · · · − λµ−1
i Aµ−1v̄i1 = λµ

i v̄i1

then

λµ
i v̄i1 + λµ−1

i Aµ−1v̄i1 + · · ·+ λiA1v̄i1 + A0v̄i1 = 0m (3.6.5)

Comparing equations 3.6.2 and 3.6.5, we conclude that vi = v̄i1 or

vi =

(
Im 0m · · · 0m

)




v̄i1

v̄i2

...

v̄iµ




(3.6.6)

That is: the latent vector vi of DR(λ) is constituted from the first m components of the

eigenvector v̄i of Ac corresponding to the same latent root/eigenvalue λi.

Conversely we can state the consequent result as a corollary:
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Corollary 3.6.2. The eigenvector v̄i of Ac can be constructed from the latent vector vi using:

v̄i =




vi

λivi

λ2
i vi

...

λµ−1
i vi




(3.6.7)

Proof : The result is obtained from equations 3.6.4 and 3.6.6.

3.6.2 Block observer form

By duality we can show the relationship between left eigenvectors and latent vectors. So for a

system described in block observer form as in equation 3.5.4.

Let (λi, w̄i) be an eigenvalue and its corresponding left eigenvector of the state matrix Ao.

Hence w̄iAo = λiw̄i. Let (λi, wi) be a latent pair of DL(λ). Hence wiDL(λi) = 0p.

Theorem 3.6.3. The latent vector wi is obtained from the eigenvector w̄i by using the following

equation:

wi = w̄i1 (3.6.8)

where w̄i1 is composed of the first p components of the eigenvector w̄i.

Proof. wiDL(λi) = 0p ⇒ wi[Ipλ
ν
i + Aν−1λ

ν−1
i + · · ·+ A1λi + A0] = 0p

So wi satisfies:

λν
i wi + λν−1

i wiAν−1 + · · ·+ λiwiA1 + wiA0 = 0p (3.6.9)

On the other hand w̄iAo = λiw̄i leads to:




w̄i1

w̄i2

w̄i3

...

w̄iν




T 


0p 0p · · · 0p −A0

Ip 0p
. . . 0p −A1

0p Ip
. . . 0p −A2

...
...

. . .
...

...

0p 0p · · · Ip −Aν−1




= λi




w̄i1

w̄i2

w̄i3

...

w̄iν




T

(3.6.10)
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Where w̄ij with j = 1..ν are the block elements of dimension p of the eigenvector w̄i. Hence

the following set of equations may be obtained:





w̄i2 = λiw̄i1

w̄i3 = λiw̄i2 = λ2
i w̄i1

...

w̄iν = λiw̄iν−1 = λν−1
i w̄i1

(3.6.11)

The last equation can be rewritten as:

−w̄i1A0 − w̄i2A2 − · · · − w̄iνAν−1 = λiw̄iν

or

−w̄i1A0 − λiw̄i1A1 − · · · − λν−1
i w̄i1Aν−1 = λν

i w̄i1

then:

λν
i w̄i1 + λν−1

i w̄i1Aν−1 + · · ·+ λiw̄i1A1 + w̄i1A0 = 0p (3.6.12)

Comparing equations 3.6.9 and 3.6.12, we conclude that wi = w̄i1 or

wi =

(
w̄i1 w̄i2 · · · w̄iν

)




Ip

0p

...

0p




(3.6.13)

So the latent vector wi of DL(λ) is composed of the first p components of the eigenvector

w̄i of Ao, corresponding to the same latent root/eigenvalue λi.

Conversely a consequent result is stated as a corollary.

Corollary 3.6.4. the eigenvector w̄i of Ao can be constructed from the latent vector wi using:

w̄i =

(
wi λiwi · · · λν−1

i wi

)
(3.6.14)

Proof : The result is straight forward from equations 3.6.11 and 3.6.13.
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3.6.3 General state matrix

If (λi,ṽi) is an eigenvalue and right eigenvector of the general state matrix A, and let (λi,vi)

be a right latent pair of the matrix DR(λ) of the corresponding right MFD then the following

theorem states the relationship:

Theorem 3.6.5. The latent vector vi can be obtained from the eigenvector ṽi by using the

following equation:

vi = Tc1ṽi (3.6.15)

where Tc1 is given by equation 3.3.13.

Proof. Recalling that the block controller SSD is generated from a general SSD via the similarity

transformation Ac = TcAT−1
c , we have AcTc = TcA.

If (λi, ṽi) is a right eigenpair of the general state matrix A then Aṽi = λiṽi. Hence AcTcṽi =

TcAṽi = λiTcṽi. Thus (λi, Tcṽi) is a right eigenpair of Ac and

v̄i = Tcṽi (3.6.16)

It follows from the equation 3.3.13 that:

vi =

(
Im 0m · · · 0m

)
Tcṽi (3.6.17)

Since Tc =




Tc1

Tc1A

...

Tc1A
µ−1




we have

vi = Tc1ṽi =

(
0m · · · 0m Im

) (
B AB · · · Aµ−1B

)−1

ṽi (3.6.18)

The reverse identity, determining eigenvectors from latent vectors is established in a corol-

lary:
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Corollary 3.6.6. The eigenvector ṽi is obtained from its corresponding latent vector vi by using

the following equation:

ṽi = T−1
c




vi

λivi

...

λµ−1
i vi




(3.6.19)

Proof : From v̄i = Tcṽi (equation 3.6.16) we have ṽi = T−1
c v̄i then using equation 3.6.7 we

obtain the precedent result.

We now establish the dual results.

If (λi,w̃i ) is an eigenvalue and left eigenvector of the general form of a matrix A, and

let (λi,wi) be a left latent pair of the matrix DL(λ) of the corresponding left MFD then the

following theorem states the relationship:

Theorem 3.6.7. The latent vector wi can be obtained from the eigenvector w̃i by using the

following equation:

wi = w̃iTo1 (3.6.20)

where To1 is given by equation 3.3.16.

Proof. From Ao = T−1
o ATo we have ATo = ToAo.

If (λi, w̃i) is a left eigen-pair of the general form of a matrix A, then w̃iA = λiw̃i. Hence

w̃iATo = w̃iToAo = λiw̃iTo.

Thus (λi,w̃iTo) is an eigenpair of Ao and

w̄i = w̃iTo (3.6.21)

Thus wi = w̃iTo




Ip

0p

...

0p




.
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Since To =

(
To1 ATo1 · · · Aν−1To1

)
we have:

wi = w̃iTo1 = w̃i




C

CA

...

CAν−1




−1 


0p

...

0p

Ip




(3.6.22)

Again, the reverse identity, determining eigenvectors from latent vectors, is given by the

following corollary:

Corollary 3.6.8. The eigenvector w̃i is obtained from its corresponding latent vector wi by

using the following equation:

w̃i =

(
wi λiwi · · · λν−1

i wi

)
T−1

o (3.6.23)

Proof : from w̄i = w̃iTo (equation 3.6.21) we have w̃i = w̄iT
−1
o and using equation 3.6.14 we

obtain the precedent result.

To summarize:

• If we have the eigenstructure of a system: (λi,ṽi ) or (λi,w̃i), then we can determine the

latent vectors by using:

vi =
(

Im 0m · · · 0m

)
Tcṽi or wi = w̃iTo




Ip

0p
...
0p




• If we have the latent structure of a system: (λi,vi) or (λi,wi), then we can determine the

eigenvectors by using: ṽi = T−1
c vi or w̃i = wiT

−1
o

3.6.4 Numerical example

Consider: 



ẋ =




0 1 −1 1
0 1 1 −1
0 0 2 1
0 0 0 −1


 x +




1 0
0 1
1 0
0 1


u

y =

(
0 1 0 1
1 0 1 0

)
x
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1) Obtaining latent vectors from eigenvectors using the block controller form:

Using: Tc1 =

( −0.25 0.25 0.25 −0.25
0.25 0.75 −0.25 −0.75

)

We obtain the following block controller form:




ẋc =




0 0 1 0
0 0 0 1
−1 −1 2 1
1 1 1 0


 xc +




0 0
0 0
1 0
0 1


 u

y =

( −1 −1 0 2
−3 1 2 0

)
xc

Then the corresponding RMFD is:




DR(λ) = I2λ
2 +

( −2 −1
−1 0

)
λ +

(
1 1
−1 −1

)

NR(λ) =

(
0 2
2 0

)
λ +

( −1 −1
−3 1

)

We can check that:

- The latent roots are: {0, 1, -1, 2} with corresponding latent vectors:

V =

{ (
1
−1

) (
0
1

) (
1
−2

) (
1
1

) }

- Eigenvalues of A: {0, 1, -1, 2}

- Right eigenvectors are the columns of Ṽ =




1 1 6 0
0 1 −2 1
0 0 1 1
0 0 −3 0




- The latent vectors vi can be obtained from the eigenvectors ṽi by using vi = Tc1ṽi

v1 = Tc1




1
0
0
0


 =

( −0.25
0.25

)
;

v2 = Tc1




1
1
0
0


 =

(
0
1

)
;

v3 = Tc1




6
−2
1
−3


 =

( −1
2

)
;

v4 = Tc1




0
1
1
0


 =

(
0.5
0.5

)

It can be verified that the computed vectors are indeed latent vectors of DR(λ).

2) Obtaining eigenvectors from latent vectors using block observer form:

Using To =




−0.25 −0.75 −0.25 −0.75
0.25 −0.25 0.75 0.25
0.25 0.75 0.25 1.75
−0.25 0.25 0.25 −0.25



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We obtain the following block observer form:




ẋo =




0 0 −2 0
0 0 −2 1
1 0 0.5 2.5
0 1 1.5 1.5


 xo +




−4 −2
−2 0
0 2
2 0


 u

y =

(
0 0 1 0
0 0 0 1

)
xo

Then the corresponding LMFD is:




DL(λ) = I2λ
2 +

( −0.5 −2.5
−1.5 −1.5

)
λ +

(
2 0
2 0

)

NL(λ) =

(
0 2
2 0

)
λ +

( −4 −2
−2 0

)

We can check the following:

- For the same set of eigenvalues {0, 1, -1, 2} the left eigenvectors of the system are given

by the rows of W̃ = Ṽ −1 =




1 −1 1 3
0 1 −1 −1
0 0 0 1
0 0 3 1




- The left latent vectors of the system are:W =





( −1 1
)

(
1 −5

)
(

1 −1
)

( −1 −5
)





- The left eigenvectors of Ao are obtained by: w̄i =
(

wi λiwi

)
and the left eigenvectors

of A are obtained by using: w̃i = w̄iT
−1
o to get:

w1 =
( −1 1

) ⇒ w̄1 =
( −1 1 0 0

) ⇒ w̃1 =
(

1 −1 1 3
)

w2 =
(

1 −5
) ⇒ w̄2 =

(
1 −5 1 −5

) ⇒ w̃2 =
(

0 4 −4 −4
)

w3 =
(

1 −1
) ⇒ w̄3 =

(
1 −1 −1 1

) ⇒ w̃3 =
(

0 0 0 −4
)

w4 =
( −1 −5

) ⇒ w̄4 =
( −1 −5 −2 −10

) ⇒ w̃4 =
(

0 0 −6 −2
)

It can be verified that the computed vectors are the left eigenvectors of the state matrix A.

3.7 The Polynomial Eigenvalue Problem

The Polynomial eigenvalue problem (PEP) consists of computing the eigenvalues and eigenvec-

tors of a matrix polynomial(which are called latent roots and latent vectors in this thesis).

In [34], the authors solve for the latent roots by using matrices in controller companion

form, but they do not consider the left or right latent vectors.

Here we exploit the relationships we have established between eigenstructure and latent

structure to extend that work. The idea is to construct a low (right) block companion form



3.7. The Polynomial Eigenvalue Problem 55

matrix from the matrix polynomial and then compute the eigenvalues and right left eigenvectors

of these normal matrices. Then, using the relationship established between these eigenvectors

and latent vectors, we can directly obtain the latent roots and right left latent vectors of the

matrix polynomial.

3.7.1 Introduction

We consider an rth degree order n matrix polynomial given by :

D(λ) = Drλ
r + Dr−1λ

r−1 + · · ·+ D1λ + D0

where Di are n× n real matrices and either D0 or Dr is non-singular. If Dr is singular and D0

is non-singular then D(λ) can be rewritten such that D0 = In and D(λ) will be monic.

The polynomial eigen problem is how to determine the latent values and the latent vectors

of a matrix polynomial such that: D(λ)v = wT D(λ) = 0 with v and w nonzero vectors.

The authors in [35] propose a method which consists of:

i) transforming D to a regular matrix using pencils matrices

ii) then using a classical method to compute the eigenvalues of this regular matrix.

They validated their method by using ”backward stability”.

The classical approach to investigating or numerically solving the polynomial eigenvalue

problem is linearization, in which D is transformed into a matrix pencil P (λ) = λX + Y that

satisfies: E(λ)P (λ)F (λ) =

(
D(λ) 0

0 I(k−1)n

)
where E and F are unimodular real matrices.

In [36], the authors adapted this method to be applied for palindromic and even matrix

polynomials, they propose pencil spaces which preserve the structure of the given matrix poly-

nomials. As in the previous paper, the authors in [37] propose two forms of matrix pencils P (λ)

to compute classically its eigenvalues and eigenvectors.

In the preceding section we have established a relationship between the eigenstructure of

a general matrix and a block controller matrix and the latent structure of the corresponding

matrix polynomial. So this relationship may be used to solve the polynomial eigen problem.

To solve the PEP, in [34], matrices in companion forms (Controller) are proposed to deter-

mine the eigenvalues of a matrix polynomial but without referring to eigenvectors either right
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or left. The idea here is to construct from the matrix polynomial a low block companion form

or a right block companion form matrix and then compute the eigenvalues and right or left

eigenvectors of these ”normal” matrices. Then using the relationship established between these

eigenvectors and latent vectors, we can directly obtain the latent values and vectors, either

right or left, of the matrix polynomial. These results have been published in [33].

Matlab uses two matrices as a linearization to compute the eigenvalues and latent vectors

of a matrix polynomial through the function polyeig()

3.7.2 Algorithm

Let an rth degree nth order monic matrix polynomial be rewritten as:

D(λ) = Inλr + Dr−1λ
r−1 + · · ·+ D1λ + D0

step1: Construct the low block companion form matrix Alb as in equation 2.5.1:

Alb =




0n In 0n · · · 0n

0n 0n In · · · 0n
...

...
...

. . .
...

0n 0n 0n · · · In

−D0 −D1 −D3 · · · −Dr−1




or the right block companion form matrix Arb as in Equation 2.5.2:

Arb =




0n 0n · · · 0n −D0

In 0n · · · 0n −D1

0n In · · · 0n −D3
...

...
. . .

...
...

0n 0n · · · In −Dr−1




step2: Compute the eigenvalues and the right (left) eigenvectors of the block companion matrix.

In accordance with (Edelman 1995), the eigenvalues are the latent roots of D(λ).

step3: Using Equation 3.6.1 or Equation 3.6.8 compute the right (left) latent vectors.

3.7.3 Illustrative example

Consider D(λ) = I2λ
3 + D2λ

2 + D1λ + D0 where:

D2 =

(
0 1
0 5

)
D1 =

( −1 5
0 6

)
D0 =

(
0 4
0 0

)
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1) Right latent structure

The latent roots are {0, 0, 1, -1, -2, -3}.
The right latent vectors corresponding to these latent roots are respectively:

{ (
1
0

) (
1
0

) (
1
0

) (
1
0

) (
1
−3

) (
1
−12

) }

Remark 3.7.1. Using the MATLAB function polyeig(D0,D1,D2,eye(2)),

we obtain the latent roots =




0

1.0000

0.0000

−1.0000

−3.0000

−2.0000




and the latent vectors =



−1.0000 1.0000 −1.0000 −1.0000 −0.0830 0.3162

0 −0.0000 −0.0000 −0.0000 0.9965 −0.9487




These all have the correct directions.

2) Left latent structure

For the latent roots {0, 0, 1, -1, -2, -3}, the associated left latent vectors are:

{ (
0 1

) (
0 1

) ( −6 5
) (

1 0
) (

0 1
) (

0 1
) }

Remark 3.7.2. Using the same function polyeig(D′
0,D

′
1,D

′
2,eye(2)) to compute the left latent

vectors we obtain the following:

Latent roots=




−3.0000

−2.0000

0.0000

0.0000

−1.0000

1.00000




And latent vectors=



−0.0000 −0.00000 0.00000 0.0000 −1.0000 0.7682

−1.0000 1.0000 −1.0000 1.0000 0.0000 −0.6402




Again these all have the correct directions.
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3) Latent roots and right latent vectors:

First we construct the low block companion form of this matrix polynomial:

Alb =




02 I2 02

02 02 I2

−D0 −D1 −D2




Its eigenvalues and right eigenvectors are the following (computed using MATLAB by using

the function eig(Alb):

Eigenvalues=




0 0 0 0 0 0
0 −1.0000 0 0 0 0
0 0 0 0 0 0
0 0 0 1.0000 0 0
0 0 0 0 −2.0000 0
0 0 0 0 0 −3.0000




Eigenvectors=




1.0000 0.5774 1.0000 −0.5774 −0.0690 −0.0087
0 −0.0000 −0.0000 0.0000 0.2070 0.1045
0 −0.5774 −0.0000 −0.5774 0.1380 0.0261
0 0 0 0 −0.4140 −0.3134
0 0.5774 0.0000 −0.5774 −0.2760 −0.0783
0 0 0 0 0.8281 0.9402




The latent roots are the eigenvalues. The right latent vectors are computed using equation

3.6.1:

Latent vectors=

(
1.0000 0.5774 1.0000 −0.5774 −0.0690 −0.0087

0 −0.0000 −0.0000 0.0000 0.2070 0.1045

)

It is easy to verify that the latent vector directions are correct, through appropriate scaling.

4) Latent roots and left latent vectors

The right block companion form of D(λ) is the following:

Arb =




02 02 −D0

I2 02 −D1

02 I2 −D2




The eigenvalues and left eigenvectors are (computed using MATLAB by using the function

eig(A′
rb):

Eigenvalues=




0 0 0 0 0 0
0 0 0 0 0 0
0 0 −3.0000 0 0 0
0 0 0 −2.0000 0 0
0 0 0 0 1.0000 0
0 0 0 0 0 −1.0000



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Eigenvectors=




0 −0.0000 0.0000 0.0000 0.4435 −0.5774
1.000 −1.0000 −0.1048 −0.2182 −0.3696 0

0 0 0 0 0.4435 0.5774
0 0.0000 0.3145 0.4364 −0.3696 0
0 0 0 0 0.4435 −0.5774
0 −0.0000 −0.9435 −0.8729 −0.3696 0.0000




The latent roots are the eigenvalues. The left latent vectors are computed using equation

3.6.8:

Latent vectors=




0 1.0000
−0.0000 −1.0000
0.0000 −0.1048
0.0000 −0.2182
0.4435 −0.3696
−0.5774 0




Again, it is easy to verify that the latent vector directions are correct, through appropriate

scaling.

3.8 Conclusion

The importance of both MFD and SSD in control theory is well known. The MFD provides a

very natural way of expressing desired zero/pole positions, whereas the eigenstructure of the

SSD is a natural way of describing a desired multivariable system time response. At the onset

of this work, we privately postulated that, if we could establish the structural links between

them, then we would be able to combine design methodologies and get the benefits of both

descriptions.

We have achieved this very important initial result and have been able to utilize it in

proposing a new algorithm for solving the polynomial eigenvalue problem for any regular matrix

polynomial. The proposed algorithm is easier and requires less computing time and memory to

determine the eigenvalues and eigenvectors of block controller/observer form state matrix than

pencil matrix. The proposed method is similar to the one used by the Control system toolbox

of Matlab, but the latter uses two matrices.
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Chapter 4

Feedback control

4.1 Introduction

Before the approaches to control can be considered, it is important to understand the form of

the systems to which control is to be applied. Firstly, a mathematical model of a system is

formed. This model is then cast into a useful form (matrix fraction description or state space

description) for the purposes of applying control, and finally some function of the output is fed

back to the input in order to affect the behaviour of the system.

The problem of eigenstructure assignment (EA) and poles placement has a long history

going back to Rosenbrock in 1960’s [1]. And it has attracted much research interest over many

years; see for instance the survey paper of White [2].

Pole placement (also called Pole Assignment or Pole Allocation) is placing the poles or

eigenvalues of the closed-loop system at specified locations.

Eigenstructure assignment is the process of applying negative feedback to a linear, time-

invariant system with the objective of forcing the eigenvalues and eigenvectors (the eigenstruc-

ture) to become as close as possible to a desired eigenstructure.

The eigenvalues and eigenvectors can determine system performance and robustness far

more directly and explicitly than other indicators. Hence their assignment should improve

feedback system performance and robustness effectively.

There exists, in the literature, a fair amount of confusion between the terms ’eigenstructure

assignment’ and ’pole placement’. If eigenvector assignment is not considered, or if the eigen-

vectors are implicitly assigned to meet a goal that does not form part of the design specification,

then such an algorithm constitutes pole placement and not EA.

In this chapter, a review of the control techniques of multi-variable time-invariant linear

63
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systems to achieve pole placement and eigenstructure assignment is presented. The chapter is

decomposed in two parts: Part 1 is dedicated to control methods for systems described in state

space equations and Part2 is dedicated to matrix polynomials control methods. We consider

MIMO systems with n states, m inputs and p outputs described in state space equations (SSD)

or in transfer function as matrix fractions (MFD).

4.2 Literature review

One of the most popular and well known techniques used to assign the eigenvalues of a closed

loop system to desired locations is state feedback. In the case of multivariable systems, the

feedback gain matrix permitting the assignment of the desired set of poles is not unique.

The fundamental result on pole placement by state feedback in linear time-invariant con-

trollable systems was presented in the 1960’s by Wonham [3] who states that the closed loop

eigenvalues of any controllable system may be arbitrarily assigned by state feedback control.

Davison in 1970 generalized Wonham’s result and showed that if the number of output variables

p is less than the order of the system n, then it is always possible, by a constant feedback gain

matrix, to assign p poles of the closed-loop system matrix [4]. Song and Ishida developed a

method to assign the poles of the system, only one output and only one input in system was

used to create the feedback controller [5]. Many different aspects of pole placement via feedback

have been studied [6, 7]

Historically, computer tools use state space methods to calculate compensators in the fre-

quency domain because of numerical reasons. Nowadays, a more direct approach through trans-

fer functions and matrix polynomials seems to be more adequate [8]. A number of frequency

domain philosophies have been advanced in which appealing analytic solutions are obtained for

the classical asymptotic design problems: stabilization, regulation, tracking and disturbance

rejection, robust design, etc.

But the pole placement problem is typically still formulated in the time domain. Interest-

ingly, however, in the frequency domain design formulation, one may control the number as

well as the placement of the poles via the use of an appropriate dynamic compensator.

In [9] an algorithmic procedure is proposed for the computation of a proper compensator
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to achieve internal stability by assigning a desired closed loop denominator obtained through

Euclidean divisions of matrix polynomials.

Hippe and O’Reilly [10] proposed a solution to the problem of parametric eigenvalue assign-

ment using general dynamic output feedback compensator of order l (0 ≤ l ≤ n). They showed

that n + l eigenvalues are assignable by a dynamical compensator of order l = r− 1 where r is

either the system controllablity index or the system observability index.

The famous book by Kailath [11] documents the aspect of system theory in matrix fractions

thoroughly, and in [12] the numerical aspect of polynomial matrices and their use in control

theory (closed loop system compensator design) has been detailed and illustrated with many

design examples.

In [13] a direct pole placement algorithm is introduced for dynamical systems having a

block companion state matrix. The algorithm utilizes well established properties of matrix

polynomials. Pole placement is achieved by appropriately assigning coefficient matrices of the

corresponding matrix polynomial then computing the state feedback allowing the placement.

A large-scale MIMO system described by state equations in general coordinates is often

decomposed into small subsystems, from which the analysis and design of the MIMO system can

be performed. In [14] a new block-pole placement for the state-feedback block decomposition

of a class of MIMO systems is derived.

In [15] a matrix fraction description for the development of a compensator for a linear

system using a state feedback law and estimator design for that system is presented and in [16]

a new approach to compute the coprime MFD and the state feedback gains of MIMO systems

is presented.

In state space description, the modal decomposition of the state matrix into its eigenstruc-

ture is very useful as it defines the stability and the dynamic behavior of a linear multi-variable

system. In general, the speed of response is determined by the eigenvalues whereas the shape

of the response is furnished by the eigenvectors. If, through feedback, we are able to assign the

eigenvalues to predetermined values and we are able to align the closed loop eigenvectors along

predetermined directions, we will be able to control the behaviour of a linear multivariable

system in both speed of response and shape of the response, achieving design objectives such

as input and output decoupling, reducing sensitivity to perturbations in dynamic structure as
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well as appropriate stability criteria [17].

Eigenstructure assignment is a design methodology that facilitates control system design

by synthesizing a feedback gain matrix that exactly places the closed loop eigenvalues whilst

matching the closed loop eigenvectors as closely as possible to a desired set [18]. Such technique

can be related to the design objectives as well as the final performance through its clear links

with the time domain response [19].

Eigenstructure assignment is an excellent method for incorporating classical specifications

on damping, settling time, and mode decoupling into a modern multivariable control framework

[18], and has been shown to be a useful tool for flight control design [20, 21].

In the past 30 years, techniques for eigenstructure assignment have been widely investigated

and applied to many problems. Eigenstructure assignment has been achieved using both state

and output feedback [22].

Eigenstructure assignment is a natural choice for the design of any control system whose

desired performance is readily represented in terms of an ideal eigenstructure [17].

The degrees of freedom available in eigenstructure assignment using state-feedback control

are well known. In 1976, Moore [23] described the freedom available to assign eigenvectors for

an arbitrary self-conjugate set of eigenvalues using state feedback. He gives both necessary and

sufficient conditions for a full-state feedback matrix K to exist. Furthermore, if such a feedback

matrix K exists and the input matrix B is of full rank, then K is unique.

If B is full rank, a maximum of n eigenvectors can be partially assigned with a minimum of

m entries in each eigenvector arbitrarily chosen. For a particular problem, it may be desirable

to consider more than the minimum number of entries in a given eigenvector. In this case, the

set of basis vectors which span the allowable subspace must be determined and a best possible

achievable eigenvector chosen [24].

The authors of the interesting paper [19] discussed the conditions for the number of reachable

eigenvectors, and presented the different techniques to assign them, via full state feedback,

output feedback and constrained output feedback.

In more recent papers, the authors of [25] proposed an iterative algorithm, based on alter-

nating projections ideas. Given n subsets of the complex plane, the algorithm is used to find a

static output feedback that places a pole for each subset. Kimura’ condition (m + p > n) [26]



4.3. State space description 67

is generally considered as the best sufficient condition for a problem of EA to always have a

solution, and Wang’s condition (mp > n) is less restrictive but the solution if it exists is not

easily obtained. In [27] a simple non-iterative technique is proposed, it is based on eigenstruc-

ture assignment, which places, by static output feedback, m + p poles when mp > m + p. So if

m + p = n and mp > n then the method assigns the whole desired spectrum.

In [28] a two-stage design process is used to formulate the gain matrix. In the first stage

a subset of desired eigenvectors is assigned, then, in the second stage, a dual set is assigned if

necessary and sufficient conditions are met. In [29] an algorithm is presented which exploits

unused design freedom to introduce structure to the resulting gain matrix without affecting the

assigned eigenstructure by output feedback. Magni, in [30], proposed a control design approach

based on EA by dynamic feedback to handle simultaneously robustness against real parameter

variations, and the use of structured gain including scheduled gains.

It has been shown that, in the multivariable case, there is a great deal of freedom in the

choice of the feedback gain matrix to achieve a given set of closed-loop modes, and that transfer

function analysis leads to a unique characterization of this feedback gain matrix in terms of the

eigenvalues and the eigenvectors of the closed loop system [11].

4.3 State space description

4.3.1 Pole placement using state feedback

Consider the following state feedback system:

ẋ = Ax + Bu (4.3.1)

u = Kx + z (4.3.2)

where A is n× n, B is n×m, K is m× n and rank(B) = m. Let z be the reference input

vector and K is a real constant matrix called the feedback gain matrix.

The closed loop system is generated by substituting Equation 4.3.2 into Equation 4.3.1 as

follows:

ẋ = Ax + B(Kx + z) = (A + BK)x + Bz (4.3.3)

It has been shown that if the system is controllable then the eigenvalues of (A + BK) can
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be arbitrarily assigned by a proper choice of K, provided that complex conjugate eigenvalues

appears in pairs [31, 11].

Many methods exist to solve for the gain matrix K. In [11] a method based on transforming

the system {A, B} into a controller form, and another direct method based on cyclic state

matrix, are given.

In this thesis we choose to give the algorithm of the method which consists in solving a

Lyapunov equation [31], and summarized in the following steps:

1) Choose an arbitrary n× n matrix F with no common eigenvalues with the state matrix

A.

2) Choose an arbitrary n× n matrix K ′ such that {F , K ′} is observable.

3) Solve for a unique matrix T such that the Lyapunov equation is satisfied: AT − TF =

−BK ′.

4) If T is non-singular, then we have K = K ′T−1 and the closed loop state matrix (A−BK)

has the same eigenvalues as the matrix F . If T is singular, then choose a different matrix

F to get a different matrix K ′ and repeat the process.

4.3.2 Pole placement using output feedback

The state feedback problem assumes that all the states are measurable. Unfortunately, this

is impractical for most systems. To solve this, either an observer is designed to estimate the

states, or it is usually required to use output feedback.

The equivalent output feedback system is as follows:

ẋ = Ax + Bu; y = Cx (4.3.4)

u = Ky + z (4.3.5)

where A is n× n, B is n×m, C is p× n, K is m× p, rank(B) = m and rank(C) = p.

The closed loop system is:

ẋ = (A + BKC)x + Bz; y = Cx (4.3.6)



4.3. State space description 69

So the closed loop system eigenvalues is the set of eigenvalues of the matrix (A + BKC)

and thus can be set by choosing the right gain matrix K.

If the system {A, B, C} is both controllable and observable and satisfies m + p > n, then

it is pole-assignable, i.e., for any given desired eigenvalue (λi) there exists K such that the

eigenvalues of (A + BKC) is in arbitrary neighborhood of (λi) [19, 32].

Many methods exist, among them the pseudo-inverse matrix method [33].

The eigenvalues of the closed loop system can be written as: Λ = diag{eig(A − BKoC)}
where Ko is the output feedback gain matrix. Let Ks be the state feedback gain matrix, then

Λ = {eig(A− BKs)}. From these two equations we can deduce: Ko = KsC
+ where C+ is the

pseudo-inverse of the output matrix C.

4.3.3 Block pole placement using state feedback

Given a MIMO system described by the state equations:

{
ẋ = Ax + Bu

y = Cx
(4.3.7)

With n states, m inputs and p outputs.

Let the system be block controllable and µ = n/m being an integer. Let Df (λ) be a desired

matrix polynomial, find an m×n gain matrix K such that under state feedback: u = z−Kx the

matrix (A−BK) in the new state equation: ẋ = (A−BK)x+Bz has the desired characteristic

matrix polynomial Df (λ). The desired matrix polynomial Df (λ) is constructed from a desired

set of block poles (see section 2.3.6 of chapter 2).

1) Block controller form:

Let a system described by equations 4.3.7 be block controllable and n = µ ∗ m, then it is

transformed into a block controller form {Ac, Bc, Cc} (as shown in chapter 3). The method

consists in the computation of the state feedback gain matrix Kc such that the closed loop

matrix Ac −BcKc has a desired right characteristic matrix polynomial Df (λ) [34].

Let the state feedback control law be: u = zc −Kcxc where zc is the new reference input,

and Kc =
(

Kcµ Kcµ−1 · · · Kc1

)
is a m × µm block gain matrix where Kci (i = 1..µ) are

m×m matrices.



4.3. State space description 70

Then the closed loop state equations become:

{
ẋc = Âcxc + Bcxc

y = Ccxc
(4.3.8)

Where the closed-loop system matrix Âc is given by:

Âc =




0m Im 0m · · · 0m

0m 0m Im · · · 0m
...

...
...

. . .
...

0m 0m 0m · · · Im

−Â0 −Â1 −Â2 · · · −Âµ−1




where Âi = Âi + Kci for i = 1..µ hence Kci = Âi − Ai.

The closed loop right characteristic matrix polynomial is:

DR(λ) =

µ−1∑
i=0

Âiλ
i; Âµ = Im (4.3.9)

2) General form:

If a system is controllable, but n/m is not an integer, then the previous method cannot be

applied. One solution is to enlarge the system by adding a set of non-dominant eigenvalues

[14].

Another method is proposed by [35] which consist in using a similarity transformation to

obtain another block decomposition of the system. The method is summarized in the following

steps:

1) Let a system be described by state equation as in equation 4.3.7, controllable but n/m is

not an integer, then we can write: n = µ ∗m + k with k < m.

Let {λ1, λ2,· · · , λn} be the set of eigenvalues of the state matrix A.

2) From this set, choose k eigenvalues and let ṽi i = 1..k its corresponding right eigenvectors

and let w̃i i = 1..k, its corresponding left eigenvectors such that the following matrix is

non-singular:

Φ =
(

B AB · · · Aµ−1B ṽ1 ṽ2 · · · ṽk

)
(4.3.10)

3) Use the similarity transformation which transforms x to xc: xc = Tcx where Tc =


Tc1
...

Tcµ

Tcµ+1


 and Tci (i = 1..µ) are m × n matrices and Tcµ+1 is a k × n matrix to ob-
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tain a new system:

{
ẋc = Acxc + Bcu

y = Ccxc
where





Ac = TcAT−1
c

Bc = TcB
Cc = CT−1

c

(4.3.11)

and: Ac =




0m Im · · · 0m | 0m×k
...

...
. . .

... | ...
0m 0m · · · Im | 0m×k

−A0 −A1 · · · −Aµ−1 | 0m×k

−− −− −− −− | −−
0m×k 0m×k · · · 0m×k | Λk




with Λk = diag{λ1, λ2, · · · , λk}

and Bc =




0m
...

Im

Bmk




The result can be rewritten as:




Ac =

(
Ac1 0µm×k

0k×µm P

)

Bc =

(
Bc1

Bc2

) (4.3.12)

3) Compute a state feedback gain Kc1 to place the desired block poles of (Ac1 −Bc1Kc1) at

the desired µ ∗m desired locations using:

Kc1 =
(

Kµ · · · K1

)
(4.3.13)

Where Ki = Di − Ai i = 1..µ are m×m matrices, Ai are obtained from equation 4.3.12

and Di are the matrix coefficients of the desired closed loop denominator Df (s).

4) Compute a k × µm matrix L satisfying the following Lyapunov equation:

L(Ac1 −Bc1Kc1)− ΛkL = Bc2Kc1 (4.3.14)

5) Compute a feedback gain matrix Kc2 that places the k poles of Λk − (Bc2 + LBc1)Kc2 at

the k remaining desired locations.

6) Construct the general state feedback gain matrix as: Kc =
(

Kc1 + Kc2L Kc2

)
and

transform it back into its original coordinates as: K = KcTc.
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4.3.4 Eigenstructure assignment using state feedback

Given a controllable state space system (A, B) as in equation 4.3.1, find a real gain matrix K

that assigns a desired set of self conjugate eigenvalues (λi) and right eigenvectors (vi) .

Consider the following state feedback system:

ẋ = Ax + Bu (4.3.15)

u = Kx + z (4.3.16)

where A is n×n, B is n×m, K is m×n and rank(B) = m. z is the reference input vector.

The closed loop system is given by:

ẋ = (A + BK)x + Bz (4.3.17)

So the closed loop system eigenstructure is the set of eigenvalues and associated eigenvectors

of the matrix (A + BK).

Moore in 1976 [23] shows that for the assignment to succeed, the selected eigenvectors {ṽi}
must be linearly independent and that λi = λ∗i must imply ṽi = ṽ∗i .

4.3.5 EA using output feedback

Given a controllable and observable system and an output control system, the equivalent output

feedback system:

ẋ = Ax + Bu; y = Cx (4.3.18)

u = Ky + z (4.3.19)

where A is n× n, B is n×m, C is p× n, K is m× p, rank(B) = m and rank(C) = p (full

rank).

The closed loop system is:

ẋ = (A + BKC)x + Bz; y = Cx (4.3.20)

The output feedback problem is defined as follows: Given the state space system (A, B,

C) defined by equations 4.3.18, find a real gain matrix K that assigns a desired set of n

self-conjugate eigenvalues (λi) and a total of n right or left eigenvectors (ṽi) or (w̃i) to the

closed-loop system matrix (A + BKC).
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It has been shown that for a self-conjugate set of eigenvalues {λ1,λ2,· · · ,λn} with a corre-

sponding set of eigenvectors {ṽ1,ṽ2,· · · , ṽn} there exist a matrix K such that [36]:

(A−BKC)ṽi = λiṽi

as long as the following conditions are satisfied:

• vectors ṽi are linearly independent in Cn.

• ṽi = ṽ∗j wheneverλi = λ∗j .

• ṽi belongs to the span of allowable eigenvector subspace.

It is therefore possible, by considering either the right or left eigenvector subspaces, to spec-

ify max(m, p) eigenvalues and min(m, p) elements of each corresponding eigenvector, a result

found by Srinathkumar (1978)[37]. However, by imposing more stringent constraints on the

eigenvector subspaces, it is possible to assign both a ≤ m eigenvalues and right eigenvectors,

and b ≤ r eigenvalues and left eigenvectors (though usually not if a = m and b = p); hence, if

m + p > n, it is possible to assign all n eigenvalues [29].

Let Λ be the diagonal matrix of desired eigenvalues and let Ṽ be the right eigenvector matrix

and W̃ the left eigenvector matrix, then the gain matrix K must satisfy the following three

equations:



W̃ (A−BKC) = ΛW̃

(A−BKC)Ṽ = Ṽ Λ

W̃ Ṽ = I

or in another form:





W̃A− ΛW̃ = W̃BKC = K ′C
AṼ − Ṽ Λ = BK ′

W̃ Ṽ = I
In [38] a detailed algorithm is given to solve for the gain matrix which consist in two major

steps.

4.3.6 Dynamic compensation

Dynamic compensation increases the available design freedom and can therefore achieve design

goals that are not possible using static feedback alone. Dynamic compensation methods yield

controllers with dynamic rather than static gains, which can result in an augmented system

with improved design freedom. For a system given as in equation 4.3.7 the compensator can

be described by the following state equations:

ẋco = Acoxco + Bcou
y = Ccoxco + Dcou

(4.3.21)
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The closed loop system is an augmented system, and the problem becomes for which ar-

bitrarily assignable eigenvalues of the compensator the assignment of desirable eigenvalues of

the plant is achieved [30]. In general classical techniques such as washout filters and lead-lag

networks for integration into the augmented system are used.

Using a dynamic compensator instead of a static feedback network increases the number

of DoF available for the design of a control system. It has been seen that the distribution of

this additional freedom is not simple, and its exploitation fraught with difficulties; the system

order is increased, transmission zeros are added, and no additional freedom over the coupling of

modes into the original system states is gained. Although the additional DoF can be exploited

for other means [10], their use for EA is very limited [29].

4.4 Matrix fraction description

For systems described in transfer function where the denominator and the numerator are matrix

polynomials, the following are methods to design compensators.

4.4.1 Introduction

The poles and zeros of the transfer function of a system define its dynamic response to any given

input. Manipulation of the location of these poles and zeros is therefore the aim of classical

feedback control system design. Feedback can take many forms. In each case the system output

is taken, modified and used to augment the input, leading to a modified system response.

The lack of design freedom offered by the simple gain controllers can be overcome by choosing

a more complex transfer function for the controller.

Many different configurations exist. Their application and design is the choice of the control

engineer, and although tools exist for assessing the likely impact of the use of a compensator,

such design decisions must ultimately come from experience. The most used feedback config-

urations are: unity feedback, output feedback and input-output feedback depending on where

the compensator is placed in the closed loop system.

The design process finishes with the resolution of a compensator equation, also called Dio-

phantine equation. Conditions for a solution to exist and methods to solve this equation are
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detailed in Appendix A. So the main objective in this section is to find the best feedback

configuration to solve this Diophantine equation.

4.4.2 Problem formulation

Figure 4.1 shows a simple form of feedback control known as unity negative feedback. The

output is subtracted from the input, leaving an error signal which is fed to the system input.

The overall input to the closed-loop system is now a demand for a particular output, and while

the system output does not match the demand, the error signal will be nonzero. A controller

is added and in the simplest case, Gc(s) would be a simple gain. Only for this section, we will

deal with single-input single output (SISO) systems. The effect on the system transfer function

is simple to deduce.

G(s)

Controller System
+

−

yu(s) e(s) Gc(s)

Figure 4.1: Unity negative feedback

The transfer function Gcl(s) of the equivalent unity negative feedback closed-loop system

can now be found:

Gcl(s) =
y

u
=

G(s)Gc(s)

1 + G(s)Gc(s)
(4.4.1)

The poles and zeros of this closed-loop system are interesting to investigate. If the open

loop transfer function G(s) is defined as:

G(s) = Z(s)/P (s) (4.4.2)

and the controller C(s) as:

Gc(s) = Zc(s)/Pc(s) (4.4.3)

then by substitution,

Gcl(s) =
Z(s)Zc(s)

P (s)Pc(s) + Z(s)Zc(s)
(4.4.4)

Examination of equation 4.4.4 shows that any root of Z(s) is a root of the numerator of

the closed-loop transfer function Gcl(s). This shows that the zeros of G(s) are invariant under
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feedback, though any zeros present in the controller Gc(s) will manifest themselves as additional

zeros in Gcl(s).

An alternative feedback structure is shown in figure 4.2. Now the controller Gc(s) is placed

in the feedback path. Note that in the absence of an external input u(s), the structure is

identical to that of the system in figure 4.1. Consequently it would be expected that the

natural response would be the same, and hence that the closed loop system poles would also

be the same.

The role of the external input u(s) has changed, however. In the system of figure 4.1, it

acted to demand a particular output response; this is no longer the case, since the summing

junction appears after the feedback signal has been modified by the controller Gc(s). For the

same reason, it is no longer strictly accurate to refer to the signal e(s) as the error signal,

though the notation will be retained for convenience.

y
G(s)

u e+

−

System

Controller

Gc(s)

Figure 4.2: Alternative negative feedback

Analysis of figure 4.2 allows the construction of the closed loop transfer function:

e(s) = u(s)−Gc(s)y(s) and

y(s) = G(s)e(s) = G(s)u(s)−G(s)Gc(s)y(s) ⇒ (1 + G(s)Gc(s))y(s) = G(s)u(s)

Then the transfer function is given by:

Gcl(s) =
y(s)

u(s)
=

G(s)

1 + G(s)Gc(s)
(4.4.5)

Substitution of equations 4.4.2 and 4.4.3 now gives:

Gcl(s) =
Z(s)Pc(s)

P (s)Pc(s) + Z(s)Zc(s)
(4.4.6)

Comparison with equation 4.4.4 shows that the poles are indeed identical as predicted. The

zeros of this alternative closed loop system, however, are composed not of the zeros of the plant

and controller, but of the plant zeros and the controller poles.
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Determining the gain, or controller transfer function, necessary to place the system poles

at the required locations is not a trivial task. Even before this, however, comes the problem of

determining suitable pole locations to satisfy a given set of design criteria.

For the design of feedback systems many configurations exist and the challenge is to find

the best for particular multivariable systems. Let G(s) a MIMO system with m inputs and p

outputs be described in right or left matrix fraction description as follows:

G(s) = NR(s)D−1
R (s) (4.4.7)

or

G(s) = D−1
L (s)NL(s) (4.4.8)

4.4.3 Unity feedback configuration

The closed loop transfer function of a feedback system as shown in figure 4.1 is given by:

y = Gu = G[Gc(r − y)] ⇒ y + GGcy = GGcr ⇒ [I + GGc]y = GGcr ⇒ Gcl = [I + GGc]
−1GGc

Gcl(s) = [I + G(s)Gc(s)]
−1G(s)Gc(s) (4.4.9)

From the matrix identity: A(I + BC)−1 = (I + CB)−1A

We have :

Gcl(s) = G(s)[I + Gc(s)G(s)]−1Gc(s) (4.4.10)

Case 1:

For a p ×m system G(s) described by a RMFD as in equation 4.4.7 the m × p compensator

Gc(s) will be described by a LMFD (see figure 4.3):

Gc(s) = D−1
c (s)Nc(s) (4.4.11)

where DR(s), NR(s), Dc(s) and Nc(s) are matrix polynomials with parameters: DRi, Dci

are m×m real matrices, NRi are p×m real matrices, and Nci are m× p real matrices.

So replacing equations 4.4.7 and 4.4.11 in 4.4.10 we have :

Gcl = NRD−1
R [I + D−1

c NcNRD−1
R ]−1D−1

c Nc ⇒ Gcl = NR[DcDR + NcNR]−1Nc
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+

−
r e yuNc D NDc

−1 −1
R R

Figure 4.3: Unity feedback: Case 1

+

−
r e yu N D−1Dc

−1 Nc L L

Figure 4.4: Unity feedback: Case 2

Let Df (s) = Dc(s)DR(s)+Nc(s)NR(s) be the ”right” Diophantine equation or compensator

equation and its poles are the poles of the closed loop system. So the closed loop system is

given by:

Gcl(s) = NR(s)D−1
f (s)Nc(s) (4.4.12)

To determine the compensator which will assign the desired poles (or block poles) we have

to solve the Diophantine (compensator) equation.

Case 2:

For a system described in LMFD as in equation 4.4.8 the compensator will be described by a

RMFD:

Gc(s) = Nc(s)D
−1
c (s) (4.4.13)

Where, like before, DL, Dc , NL and Nc are matrix polynomials whose coefficients are: DLi

and Dci p× p real matrices; NLi are p×m real matrices and Nci are m× p real matrices.

The closed loop transfer function of the feedback system of figure 4.4 can be rewritten as :

Gcl(s) = [I + G(s)Gc(s)]
−1G(s)Gc(s) (4.4.14)

And replacing equation 4.4.8 and 4.4.13 in 4.4.14 we have:

Gcl = [I + D−1
L NLNcD

−1
c ]−1D−1

L NLNcD
−1
c

or:

Gcl = Dc[DLDc + NLNc]
−1NLNcD

−1
c
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Figure 4.5: Output feedback: Case 1

Let Df (s) = DL(s)Dc(s) + NL(s)Nc(s) be the ”left” Diophantine equation. So:

Gcl = Dc[Df ]
−1NLNcD

−1
c (4.4.15)

If we replace NLNc = Df −DLDc in the precedent equation then we have:

Gcl = DcD
−1
f (Df −DLDc)D

−1
c (4.4.16)

So the closed loop transfer function is given by:

Gcl(s) = Iq −Dc(s)D
−1
f (s)DL(s) (4.4.17)

Like before the poles of Df are the poles of the closed loop system, and the compensator is

determined by solving the Diophantine equation.

4.4.4 Output feedback configuration

In this case the controller is put on the feedback line as in figure 4.2.

Case 1:

For a system described in RMFD as in equation 4.4.7 and the compensator described in LMFD

as in equation 4.4.11 the closed loop transfer function of the system of figure4.5 is given by:

Gcl(s) = G(s)[I + Gc(s)G(s)]−1 (4.4.18)

with G(s) and Gc(s) matrix polynomial parameters: DRi, Dci are m×m real matrices, NRi

are p×m real matrices, and Nci are m× p real matrices.

So Gcl = NRD−1
R [I + D−1

c NcNRD−1
R ]−1 or Gcl = NR[DcDR + NcNR]−1Dc

If we let Df = DcDR + NcNR be the right Diophantine equation then:

Gcl(s) = NR(s)D−1
f (s)Dc(s) (4.4.19)
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Figure 4.6: Output feedback: Case2

And the poles of Df are the poles of the closed loop system, and as before the compensator

is fully determined by solving the Diophantine equation.

Case 2:

For a system described by LMFD as in 4.4.8, the compensator is described by a RMFD as in

4.4.13, and the closed loop system of figure 4.6 will be rewritten as :

Gcl(s) = [I + G(s)Gc(s)]
−1G(s) (4.4.20)

where the matrix parameters are: DLi, Dci are p × p real matrices, NLi are p × m real

matrices and Nci are m× p real matrices.

So Gcl = [I + D−1
c NcNLD−1

L ]−1NLD−1
c or Gcl = Dc[DLDc + NLNc]

−1NL

Let Df (s) = DL(s)Dc(s) + NL(s)Nc(s) be the left Diophantine equation then :

Gcl(s) = NL(s)D−1
f (s)Dc(s) (4.4.21)

The poles of the closed loop system are fully defined by the poles of Df and the compensator

can be determined.

4.4.5 Input-Output feedback configuration

Here a compensator is placed on the feedback path and another takes its inputs from the input

references (figure 4.7).

Case1:

Let G(s) described in RMFD as in equation 4.4.7, then the compensators are LMFD such that:

Gc0(s) = D−1
c (s)L(s) and Gc1(s) = D−1

c (s)M(s) (4.4.22)
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Figure 4.7: Input-output feedback configuration

From figure 4.7 we have the following developments:

y = G(s)e
e = r − (Gc0(s)e + Gc1(s)y)

}
⇒ e + Gc0e = r −Gc1Ge ⇒ e[I + Gc0 + Gc1G] = r

then e = [I + Gc0 + Gc1G]−1r ⇒ y = G[I + Gc0 + Gc1G]−1r

The closed loop transfer function will thus be given by:

Gcl(s) = G(s)[Ip + Gc0(s) + Gc1(s)G(s)]−1 (4.4.23)

If we replace equation 4.4.7 and equation 4.4.22 in 4.4.23 then the closed loop system transfer

function will be:

Gcl = NRD−1
R [Ip + D−1

c L + D−1
c MNRD−1

R ]−1 (4.4.24)

where: DRi, Dci and Li are m ×m real matrices, NRi are p ×m real matrices and Mi are

m× p real matrices.

Or

Gcl = NR[DcDR + LDR + MNR]−1Dc (4.4.25)

Let

Df (s) = Dc(s)DR(s) + L(s)DR(s) + M(s)NR(s) (4.4.26)

The poles of the closed loop system are fully defined by the poles of Df .

Let

E(s) = Df (s)−Dc(s)DR(s) = L(s)DR(s) + M(s)NR(s) (4.4.27)

The second part of the equation is a ”right” Diophantine equation which solution will

determine the compensator numerators.

In order to determine the compensators, the compensators denominators must be the same

(Dc) and may be assigned. Then the Diophantine equation can be resolved to determine M(s)

and L(s).
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So the closed loop system will be:

Gcl(s) = NR(s)D−1
f (s)Dc(s) (4.4.28)

Case2:

Let us have the same feedback configuration as in figure 4.7. If G(s) is in LMFD (equation

4.4.8) and the two compensators are in RMFD:

Gc0(s) = L(s)D−1
c (s) and Gc1(s) = M(s)D−1

c (s) (4.4.29)

Then the following development is obtained:

y = G(s)e
e = r −Gc0(s)e−Gc1(s)y

}
⇒ e[I + Gc0] = r −Gc1y ⇒ Ge[I + Gc0] = G(r −Gc1y)

or y[I + Gc0 + GGc1] = Gr

then the closed loop transfer function will be given by:

Gcl(s) = [I + Gc0(s) + G(s)Gc1(s)]
−1G(s) (4.4.30)

So if we replace equation 4.4.7 and equation 4.4.29 in equation 4.4.30 then we get:

Gcl = [I + LD−1
c + D−1

L NLMD−1
c ]−1D−1

L NL

where: DLi, Dci and Li are p × p real matrices, NLi are p × m real matrices and Mi are

m× p real matrices.

Or:

Gcl = Dc[DLDc + DLL + NLM ]−1NL (4.4.31)

Let us define Df (s) = DL(s)Dc(s) + DL(s)L(s) + NL(s)M(s) as the desired closed loop

denominator and let

E(s) = Df (s)−DL(s)Dc(s) = DL(s)L(s) + NL(s)M(s) (4.4.32)

As before, the second part of the equation is the compensator equation which can be solved

if the compensator denominator is fixed arbitrarily.
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Figure 4.8: Feedback compensation with a pre-compensator

4.4.6 Using a pre-compensator

Although the problem of pole placement has received enormous attention, the problem of

zeros placements has been relatively neglected. The latter, however, could be of substantial

importance in some design problems, such as actuators and sensors positioning as in [39] and

closed loop system transient response as in [40].

In general, zeros are placed via a pre-compensator. Pre-compensators are used in mul-

tivariable control systems to reduce (or eliminate) open loop system interactions. Classical

methods for the design of pre-compensator are traditionally based on static designs. Static

pre-compensators are preferred for their simplicity, but in many applications, only the more

powerful dynamic pre-compensators are able to deliver the desired behaviour.

In [41] the author proposes a new method for the design of dynamic pre-compensators based

on a Quadratic Programming (QP) optimization to achieve diagonal dominance for decoupling.

In [42] a pre-compensator is designed to minimize the eigenvector matrix condition number and

a defined measure of normality in order to apply the characteristic locus method effectively.

In figure 4.8 an example of a feedback configuration with a dynamic pre-compensator to

place eventual desired zeros, where Gp(s) is p× q, G(s) is q × p and Gc(s) is p× q.

Case1:

If G(s) is in RMFD so Gp(s) is in LMFD then the closed loop system will be as follows:

y = Ge = G[Gpr −Gcy] then

Gcl = GGp[I + GGc]
−1 = G[I + GcG]−1Gp (4.4.33)

If we replace equation 4.4.7 and equation 4.4.11 in equation 4.4.33 then the closed loop
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transfer function will be:

Gcl = NRD−1
R [I + D−1

c NcND−1
R ]−1Gp

where: DRi, Dci and Ki are m×m real matrices and NRi are p×m real matrices.

Or

Gcl = NR[DcDR + NcNR]−1DcGp (4.4.34)

If Df (s) = Dc(s)DR(s) + Nc(s)NR(s) then the closed loop transfer function will be:

Gcl(s) = NR(s)D−1
f (s)Dc(s)Gp(s) (4.4.35)

Case2:

If G(s) is in LMFD (as in equation 4.4.8) so Gc(s) is in RMFD (as in equation 4.4.13) then the

closed loop system will be as follows: y = Ge = G[Gpr −Gcy] then

Gcl = [I + GGc]
−1GGp (4.4.36)

If we replace equation 4.4.8 and equation 4.4.13 in equation 4.4.36 then the closed loop

system transfer function will be:

Gcl = [I + D−1
L NLNcD

−1
c ]−1D−1

L NLGp

where: DLi, Dci are p × p real matrices, NLi are p ×m real matrices and Gpi are m ×m real

matrices.

So

Gcl = Dc[DLDc + NLNc]
−1NLGp (4.4.37)

If Df (s) = DL(s)Dc(s) + NL(s)Nc(s) then:

Gcl(s) = Dc(s)D
−1
f (s)NL(s)Gp(s) (4.4.38)

Remark 4.4.1. From equations 4.4.35 and 4.4.38 we conclude that the poles of Df are the poles

of the closed loop system and the zeros of the closed loop system will be constituted by the

zeros of the plant (that cannot be moved), the poles of the compensator denominator, and the

zeros of the pre-compensator that we can chose in order to achieve a certain goal.



4.5. Conclusion 85

4.5 Conclusion

In this chapter a review of feedback control techniques is presented for MIMO systems described

in state space equations or in matrix fractions. Static and dynamic compensation and examples

of feedback configurations are presented which lead to the Diophantine equation. Techniques

to solve this compensator equation are detailed in appendix A with a small contribution for a

better performing resolution process.

In the next chapter, the proposed design method will be presented. This method is based on

systems described in MFD, so that dynamic compensators are simple to design, then a desired

eigenstructure (and even more) can be assigned using block poles placement, finally desired

block zeros can be placed simultaneously using a compensator and a pre-compensator.

The choice of desired eigenvalues depends highly on the performance criteria such as the rise

time, settling time, overshoot, largest magnitude of the actuating signals and so forth [31]. One

way to proceed is by computer simulation, or by minimizing a quadratic performance equation,

and this problem is not considered in this thesis but is a natural further step in the research

undertaken.

Chapter Bibliography

[1] H.H. Rosenbrock, ”Distinctive problems of process control”, Chem. Eng. Prog., Vol. 58, pp.

43-50, 1962.

[2] B. A. White, ”Eigenstructure Assignment: A Survey”, in Proceedings of the I Mech E Part

I: Journal of Systems and Control Engineering, Vol. 209, pp. 1-11.1995.

[3] W. M. Wonham, ”On pole assignment in multi-input controllable linear systems”, IEEE

Trans. Autom. Contr., Vol. AC-12, pp. 660-665, 1967.

[4] E. J. Davison, ”On Pole Assignment in Linear Systems with Incomplete State Feedback”,

IEEE Trans. Autom. Contr., Vol. AC-15, pp. 348-351, 1970.

[5] J. B. Song and Y. Ishida, ”The pole placement for linear multivariable system using the

single feedback controller”, 34th SICE Conference, Japan, 1995.



Chapter Bibliography 86

[6] G. S. Miminis and C. C. Paige, ”A direct algorithm for pole assignment of time invariant

multi-input linear systems using state feedbacdk”, Automatica, Vol.24, pp. 343-356, 1988.

[7] D. Baksi, K.B. Datta and G.D. Roy, ”Parallel algorithm for pole assignemtn of multivariable

input system”, IEE-proc. Contr. Theo. App., pp. 367-372, 1994.

[8] W. C. Haas and J. K. Weinhofer, ”Multivariable compensator design using polynomial

matrices and interval arithmetic”, in Proc. of the IEEE Int. Symposium on Computer-

Aided Control System Design, Dearborn, MI, USA, 1996.

[9] A. I. G. Vardulakis and C. Kazantzidou, ”Denominator assignment, invariants and canonical

forms under dynamic feedback compensation in linear multivariable systems”, in Proc. of

the 17th Mediterranean Conference on Control and Automation, Greece, pp. 336-341, 2009.

[10] P. Hippe and J. O’Reilly, ”Parametric compensator design”, Int. J. Control, Vol. 45, No.4,

pp. 1455-1468, 1987.

[11] T. Kailath, Linear systems, Englewood Cliffs, Prentice-Hall, NJ, USA, 1980.

[12] P. Stefanidis, A. P. Paplinski and M. J. Gibbard, Numerical operations with polynomial

matrices: application to multivariable dynamic compensator design, Lectures notes in con-

trol and information sciences, Vol. 171, Springer-Verlag, Berlin, 1992.

[13] B. Shafai and L. H. Keel, ”New pole placement algorithm: polynomial matrix approach”,

in Proc. of 9th American Control Conference, SanDiego, Vol. 2, pp. 1684-1685, 1990.

[14] L. S. Shieh, Y. T. Tsay and R.E. Yates, ”State-feedback decomposition of multivariable

systems via block-pole placement”, IEEE Trans. Autom. Contr., Vol. AC-28, No. 8, pp.

850-852, 1983.

[15] B. D. O. Anderson and V. Kucera, ”Matrix fraction construction of linear compensators”,

IEEE Trans. Autom. Contr., Vol. AC-30, No. 11, pp. 1112-1114, 1985.

[16] J. D. Wang, Y. T. Juang, ”A new approach for computing the state feedback gains of

multivariable systems”, IEEE Trans. Autom. Contr., Vol. AC-40, No.10, pp. 1823-1826,

1995.



Chapter Bibliography 87

[17] K. M. Sobel and E. J. Lallman, ”Eigenstructure assignment for the control of highly

augmented aircraft”, J. of Guidance, Control, and Dynamics, Vol. 12, No.3, pp. 18-324,

1989.

[18] T. Clarke, S.J. Griffin and J. Ensor, ”Output feedback eigenstructure assignment using a

new reduced orthogonality condition”, Int. J. Contr., Vol. 76, No.4, pp. 1-13, 2002.

[19] A. N. Andry, E. Y. Shapiro and J. C Chung, ”Eigenstructure assignment for linear sys-

tems”, IEEE Trans. on Aerospace and Electronic Systems, Vol. 19, No. 5, pp. 711-727,

1983.

[20] K. M. Sobel, E.Y. Shapiro and A. N. Andry, ”Eigenstructure assignment”, Int. J. Contr.,

Vol. 59, No. 1, pp. 13-37, 1994.

[21] J. Farineau, ”Lateral Electric Flight Control Laws of Civil Aircraft based on Eigenstruc-

ture Assignment Technique,” Paper 89-3594 in AIAA Guidance Navigation and Control

Conference, Boston, MA, pp.1-15, August 1989.

[22] D. M. Littleboy, Numerical Techniques for Eigenstructure Assignment by Output Feedback

in Aircraft Applications, PhD thesis, University of reading, UK, 1994.

[23] B. C. Moore, ”On the flexibility offered by state feedback in multivariable systems beyond

closed loop eigenvalue assignment”, IEEE Trans. Automat. Contr., Vol. AC-21, No.5, pp.

689-692, 1976.

[24] C. A. Harvey and G. Stein, ”Quadratic weights for asymptotic regulator properties”, IEEE

Trans. Automat. Contr., Vol. 23, No.3, pp. 378-387, 1978.

[25] K. Yang and R. Orsi, ”Pole placement via output feedback: a methodology based on

projections”, in Proc. of the 16th IFAC World Congress, Praha, Czech Republic, Vol.16,

No.1, pp. 534-539, 2005.

[26] H. Kimura, ”Pole Assignment by Gain Output Feedback”, IEEE Trans. Autom. Contr.,

Vol. AC-20, No.8, pp. 509-515, 1975.

[27] O. Bachelier, J. Bosche and D. Mehdi, ”On pole placement via eigenstructure assignment

approach”, IEEE Trans. Autom. Contr., Vol. AC-51, No.9, pp. 1554-1558, 2006.



Chapter Bibliography 88

[28] T. Clarke, S.J. Griffin and J. Ensor, ”Output feedback eigenstructure assignment using a

new reduced orthogonality condition”, Int .J. Contr., Vol.76, No.4, pp. 390-402, 2003.

[29] A. J. Pomfret, Eigenstructure assignment for helicopter flight control, PhD thesis, univer-

sity of York, UK, 2006.

[30] J.-F. Magni, ”Multi-model eigenstructure assignment in flight-control design”, Aerosp. Sci.

Technol., Vol. 3, pp. 141-151, 1999.

[31] C. T. Chen, Linear system theory and design, Holt, Rinehart and Winston, New York,

1984.

[32] A. Pomfret and T. Clarke, ”An extension to output-feedback eigenstructure assignment:

Structuring controllers by exploiting unused design freedom”, Int. J. Contr., Vol. 82, No.2,

pp. 207-216, 2009.
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Chapter 5

Eigenstructure assignment using block
poles placement

5.1 Introduction

The important identities obtained in chapter 3 open up some interesting possibilities. The

link between an SSD eigenstructure and that of an MFD opens an issue for a direct way of

combining traditional eigenstructure assignment objectives with polynomial methods, moving

beyond traditional fixed state or output feedback gains, but enabling dynamic compensators

to be incorporated into the controller structure in a very natural way.

We have developed an approach that allows us to design dynamic compensators and pre-

compensators that place block poles and block zeros. This enables latent structure, hence

eigenstructure, assignment possible, not only for poles but for zeros as well. The approach can

therefore be used to improve the behaviour of MIMO systems and resolving control problems

such as: sensitivity, robustness, decoupling, and disturbance rejection.

The use of dynamic compensation allows additional degrees of freedom in the design process,

enabling a designer to achieve closer matches to a closed loop time domain specification than in

using simple gain output feedback of conventional eigenstructure assignment. This contribution

has been published in [1].

From chapter 4 we can conclude that transfer function analysis described in MFD is a

better choice to design a feedback compensator to achieve assignment of both eigenvalues and

eigenvectors of the closed loop system, and, to the author knowledge, using block poles and

block zeros placement to achieve this EA has not yet been done.

In [2] desired poles have been used to construct block poles in different canonical forms (di-

agonal form, controller form and observer form) in order to achieve some desired specifications

90
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(small settling time, better time response, less sensitivity etc.). In our case block poles are

constructed from a desired set of latent values and latent vectors, so the form is of no-concern

here.

5.2 Introduction to the contribution

The main contribution of the thesis is a new method based on MFD and matrix polynomials

to achieve eigenstructure assignment by block poles placement using a dynamic compensator.

For a system described in SSD, the first step consists in converting it to MFD, then converting

the desired eigenstructure into a latent structure, and construct desired block poles. A desired

denominator of the closed loop system is thus obtained and the compensator to achieve this

placement is computed by solving a Diophantine equation.

So for an m-input, p-output, n-state system with a controllability index (or observability

index) equal r, the proposed method can place r block poles of dimension m×m (or p×p), thus

assigning n eigenvalues and latent vectors (right or left) using a static compensator. But more

important , we can determine a dynamic compensator of degree l ≥ 1 by placing a number

r + l block poles, thus assigning a number n + l ∗ m (or n + l ∗ p) of eigenvalues and their

corresponding latent vectors, as long as the following conditions are satisfied:

(i) the system is block controllable (or block observable),

(ii) there exist in the set of n + l ∗ m (or n + l ∗ p) latent vectors, r subsets of linearly

independent vectors,

(iii) the conditions for the resolution of the obtained Diophantine equation are met,

(iv) and finally the computed compensator is stable.

If the computed compensator is not stable, its degree is increased by increasing the number

of the desired eigenvalues and its corresponding latent vectors.

However, the issue of minimal compensator degree is less important, in that increased degree

provides additional useful degrees of design freedom beyond arbitrary eigenvalue assignment

[3].
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The design process offers a larger degree of freedom (more than the set of original desired

eigenvalues can be assigned) and the algorithm is direct and allows assigning desired eigen-

structure through block poles but block zeros can also be placed simultaneously.

Compared to the previous works and to the best of the author’ knowledge nobody con-

sidered using block poles placement for systems described by matrix fractions to assign an

eigenstructure using dynamic compensators.

In the following an algorithm which summarizes the proposed approach to eigenvector as-

signment is given. All the steps will be detailed in the following sections, and assuming that the

most of the theoretical notions and literature review has been done in the precedent chapters.

Let a system be described in state space equations as follows:

{
ẋ = Ax + Bu
y = Cx + Eu

(5.2.1)

Where A is n × n, B is n ×m, C is p × n and E is p ×m (but considered null for more

clarity). And we suppose that a set of desired eigenvectors and eigenvectors have already been

specified to achieve a certain requirement.

Proposed Algorithm

To assign a set of desired eigenvalues and a set of corresponding eigenvectors using feedback

compensation, the following steps are proposed:

Step1: Convert the SSD system into a RMFD or LMFD system, depending if it is block control-

lable or block observable.

Step2: Convert the desired eigenstructure into a latent structure.

Step3: Construct the desired block poles (block zeros).

Step4: Construct the desired matrix polynomial (denominator or numerator of the closed loop

system).

Step5: Choose the fixed denominator of the compensation system arbitrarily or as to meet some

desired specification if an input-output feedback configuration is used.

Step6: Solve the Diophantine equation to determine the numerators of the two compensators.
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Remark 5.2.1. The compensation configuration chosen is the input-output feedback system

which has been presented in Chapter 4, and an illustrative example will be given throughout

the steps for more clarity. Systems described in matrix transfer functions or directly in matrix

fractions can be treated, but for the sake of generality, the design process is applied for systems

in SSD, to include the, possibly needed, conversion.

5.3 Proposed approach

In this section the first steps of the design process are given, then in the following section the

design of the compensator is presented.

5.3.1 Conversion methods

The first step is to convert the system described in SSD to a system in MFD as explained in

chapter 3 section 3.5. If the system in 5.2.1 verifies the conditions, then it can be transformed

into a right MFD or a left MFD as follows.

1. System description:

If the system is block controllable of degree µ then the block controller form will be as follows:

Ac =




0m Im 0m · · · 0m

0m 0m Im · · · 0m
...

...
...

. . .
...

0m 0m 0m · · · Im

−A0 −A1 −A2 · · · −Aµ−1




; Bc =




0m

0m
...

0m

Im




; Cc =
(

C0 C1 · · · Cµ−1

)

(5.3.1)

And the transfer function in right MFD is given by:

G(s) = NR(s)D−1
R (s) (5.3.2)

Where

NR(s) = Cµ−1s
µ−1 + Cµ−2s

µ−2 + · · ·+ C1s + C0 (5.3.3)

DR(s) = Imsr + Aµ−1s
µ−1 + · · ·+ A1s + A0 (5.3.4)
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And if the system is block observable of degree ν then the block observer form will be as

follows:

Ao =




0p 0p · · · 0p −A0

Ip 0p · · · 0p −A1

0p Ip · · · 0p −A2
...

...
. . .

...
...

0p 0p · · · Ip −Aν−1




; Bo =




B0

B1

B2
...

Bν−1




; Co =
(

0p · · · 0p Ip

)
(5.3.5)

and the transfer function in left MFD is given by:

G(s) = D−1
L (s)NL(s) (5.3.6)

Where

DL(s) = Ips
ν + Aν−1s

ν−1 + · · ·+ A1s + A0 (5.3.7)

NL(s) = Bν−1s
ν−1 + Bν−2s

ν−2 + · · ·+ B1s + B0 (5.3.8)

2. Example:

The system treated by the example and its desired eigenstructure is taken from ((Ensor 2000,

pages146-147)[4], but slightly modified to have a block controllable system.

Let a 2 input 2 output system be described by state space equations as in equation 5.2.1

where:

A =




1 2 −3 5
0 3 −1 7
5 8 1 −9
2 6 3 8


 ; B =




1 0
2 3
9 −2
5 2


 ; C =

(
7 3 0 2
1 −1 0 1

)

We can verify that the system is block controllable and block observable. For this case we

chose to transform it in a matrix transfer function in RMFD using equations 5.3.3 and 5.3.4.

We obtain the following: G(s) = N(s)D−1(s) with D(s) = I2s
2 + D1s + D0 and N(s) =

N1s + N0 where:

D1 =

( −4.4369 −2.3091
−25.4220 −8.5631

)
; D0 =

(
55.5957 −4.6843
−3.8866 10.1124

)

And

N1 =

(
23 13
4 −1

)
; N0 =

( −153.5351 120.5706
59.6745 24.3268

)
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3. Eigenstructure:

The second step is to convert the desired eigenstructure into a desired latent structure using

the method developed in chapter 3 section 3.6. Instead of assigning an eigenstructure, we will

assign its corresponding latent structure (latent values and corresponding latent vectors).

For each eigenvector ṽi (i = 1..n) its corresponding latent vector is:

vi = Tc1ṽi (5.3.9)

where Tc1 is given by equation 3.3.13 of chapter 3.

By duality, for each left eigenvector w̃i (i = 1..n), we can compute its corresponding left

latent vector:

wi = w̃iTo1 (5.3.10)

where To1 is given by equation 3.3.16 of chapter 3.

Remark 5.3.1. Only single eigenvalues (latent values) are considered. The condition for solvents

to exist is the possibility to find from a set of n latent vectors, subsets of p (or m) linearly

independent vectors, so multiplicity of the latent values is not a problem here.

4. Example:

The following is the desired eigenstructure [4]:

Desired eigenvalues: dλ = {−1− 3− 5− 6} then Λ = diag{−1,−3,−5,−6}

Desired eigenvectors (right): dṼ =




0.707 0.707 0 0
0.707 0 1 0

0 0 0 0.707
0 0.707 0 0.707


 and dW̃ = dV −1.

From this desired eigenstructure a desired state matrix is constructed (dA = dṼ ΛdW̃ ), then

a desired latent structure (to construct desired block poles) is obtained using equation 5.3.9

where Tc1 is computed using the desired state matrix and the input matrix B.

Desired latent values: dλ = {−1− 3− 5− 6}
And the desired latent vectors: dV =

( −0.1713 0.2383 0.4678 0.0352
−0.2680 0.2930 0.6578 0.0664

)

5.3.2 Construction of desired block roots

The proposed process consists in assigning a desired latent structure by placing block poles or

block zeros. So the third step consists in constructing a block root (a block pole or a block
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zero) from a desired latent structure using the method proposed in chapter 2 section 2.6.

For a set of m×µ (m, µ integers) desired latent roots (λ1,...,λmµ) and a set of corresponding

desired latent vectors (left or right) (v1,...,vmµ) we can construct µ block roots if there exist µ

groups of m linearly independent latent vectors.

Let an ith set (i = 1..µ) of m linearly independent latent vectors be: (vi1,...,vim) and its

corresponding latent values:(λi1,...,λim) then we can determine a right block root using the

following equation:

Ri =
(

vi1 · · · vim

)



λi1 · · · 0
...

. . .
...

0 · · · λim




(
vi1 · · · vim

)−1
(5.3.11)

Let a jth set (j = 1..ν) of p linearly independent left latent ‘row’ vectors be: (wj1,...,wjp)

and its corresponding latent values: (λj1,...,λjp) then we can determine a left block root using

the following equation:

Lj =




wj1
...

wjp




−1 


λj1 · · · 0
...

. . .
...

0 · · · λjp







wj1
...

wjp


 (5.3.12)

Example:

From the latent structure obtained previously, desired ”right” block roots (poles) are con-

structed using equation 5.3.11.

With latent values: (-1 -3) and its corresponding latent vectors we get:

dR1 =

(
12.9285 −11.3285
19.5842 −16.8285

)

And with latent values : (-5 -6) and its corresponding vectors we have:

dR2 =

( −0.1768 −3.0829
9.1105 −10.8232

)

5.3.3 Construction of a desired matrix polynomial

From the desired block poles we can construct the denominator of the closed loop system using

the method presented in chapter 2 section 2.3.6, which represents the fourth step.

From a set of µ m ×m matrices Ri (i = 1..µ) we can construct a right matrix polynomial

of degree µ:

Imsµ + Dµ−1s
µ−1 + · · ·+ D1s + D0 (5.3.13)
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using the following equation:

(
D0 D1 · · · Dµ−1

)
= − (

Rµ
1 Rµ

2 · · · Rµ
µ

)
V −1

R (5.3.14)

where VR is the ‘right’ block Vandermonde matrix of degree µ defined in chapter 2 section

2.3.4.

From a set of ν p × p matrices Lj (j = 1..ν) we can construct a left matrix polynomial of

degree ν as in equation 5.3.13 using the following equation:



D0

D1
...

Dν−1


 = −V −1

L




Lν
1

Lν
2
...

Lν
ν


 (5.3.15)

where VL is a ‘left’ block Vandermonde matrix of order ν.

In the following, an important theorem which states the condition to satisfy in order to

achieve the compensator design.

Theorem 5.3.1. The set of µ, m ×m, matrices Ri (or ν, p × p matrices Li) are block roots

(solvents) of the matrix polynomial as defined in equation 5.3.13 if and only if the right (left)

block Vandermonde matrix constructed from these matrices is non-singular.

Proof The proof is straight forward from the fact that: A block Vandermonde matrix

constructed from a full set of solvents of a particular matrix polynomial is non singular [5].

Remark 5.3.2. The singularity or non-singularity of the block Vandermonde matrix, therefore,

provides an excellent check as to the reasonableness of the chosen latent vectors.

The matrix polynomial, thus obtained, will be the desired denominator of the closed loop

system. If the block roots constructed represents desired block zeros of the closed loop system

then the matrix polynomial thus constructed is the numerator of a pre-compensator.

Example:

With two solvents, as constructed previously, we can construct a matrix polynomial of degree

2 using equation 5.3.14:

Dcl = I2s
2 + dD1s + dD0 where

dD1 =

( −6.8232 11.0829
−19.1105 21.8232

)
; dD0 =

( −74.1215 65.0055
−101.9834 88.2265

)
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5.4 Dynamic compensator design

The final step of the design process is to determine a compensation system to assign the desired

denominator obtained in the previous section for a p outputs m inputs system G(s).

5.4.1 Choice of the feedback configuration

In general, output feedback compensation is used for pole placement, and feedforward compen-

sation (unity feedback) is used for better sensitivity (see chapter 4).

The input output feedback is generally used in the presence of non observable states [6].

In this chapter we preferred to detail the input-output feedback configuration, because it is

general, and the denominator of the two compensators is fixed and may be chosen arbitrarily.

Remark 5.4.1. The roots of the fixed denominator of the compensator become the zeros of the

closed loop system, so it can be used to place desired zeros.

5.4.2 Compensator equations

The following is a recall of the notions detailed in chapter 4 section 4.4.5. In the input-output

feedback configuration a compensator is placed on the feedback path and another takes its

inputs from the input references (figure 5.1).

r yG(s)+

−

e

0Gc Gc1

Figure 5.1: Input-Output feedback configuration

The closed loop transfer function will be given by [7]:

Gcl(s) = G(s)[Im + Gc0(s) + Gc1(s)G(s)]−1 (5.4.1)

Let G(s) be described in RMFD as : G(s) = NR(s)D−1
R (s) With NR and DR are matrix

polynomials with NRi and DRi (i = 1..µ) their matrix coefficients.
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Then the compensators are in LMFD such that: Gc0(s) = D−1
c (s)Lc(s) and Gc1(s) =

D−1
c (s)Mc(s) where Dc, Lc, Mc are respectively m×m , m×m and m× p matrix polynomials

with Mci, Dci and Lci their matrix coefficients (figure 5.2).

yr

ML

cD−1

−

+ +

+ D NR
−1

R

Figure 5.2: Detailed Input-Output feedback configuration

Then the closed loop system will be given by:

Gcl = NRD−1
R [Im + D−1

c Lc + D−1
c McNRD−1

R ]−1 (5.4.2)

Where DRi, Dci and Lci are m×m real matrices, NRi are p×m real matrices and Mci are

m× p real matrices.

Then:

Gcl = NR[DcDR + LcDR + McNR]−1Dc (5.4.3)

Let Df be the closed loop desired denominator given by:

Df (s) = Dc(s)DR(s) + Lc(s)DR(s) + Mc(s)NR(s) (5.4.4)

then the closed loop system transfer function is:

Gcl(s) = NR(s)D−1
f (s)Dc(s) (5.4.5)

and its poles are fully defined by the poles of Df .

The desired matrix polynomial (generated in the previous section) will be a desired closed

loop mth order µth degree denominator Df .

Let:

E(s) = Df (s)−Dc(s)DR(s) = Lc(s)DR(s) + Mc(s)NR(s) (5.4.6)

be a ‘right’ Diophantine equation. If Dc and Df are known then the resolution of the

Diophantine equation will determine the numerators of the two compensators.
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Remark 5.4.2. The system G(s) obtained by transformation verifies the conditions of solvability

of the Diophantine equation (see Appendix A) thus obtained: strictly proper, column-reduced

and right co-prime.

5.4.3 Degree of the compensator

Let the plant be described in RMFD, where the denominator DR is a mth order µth degree matrix

polynomial, and the numerator with degree less than µ. To assign n desired latent values and

corresponding latent vectors, the desired matrix polynomial (generated in the previous section)

will be a desired closed loop mth order nth degree denominator. But equation 5.4.4 imposes that

if the degree of the compensator is 1 (at least), then the degree of the closed loop denominator be

at least equal to µ+ 1. So the number of latent values that can be assigned with a compensator

of degree l is equal to n + (l ∗m). The least value of the degree would be in this case (µ+1).

To get a higher degree compensator, other solvents can be added with non-dominant latent

values (as far as possible in the left half s-plane) in order to not interfere with the behaviour of

the closed loop system. A higher degree compensator will allow higher useful degree of design

freedom.

• For a desired closed loop denominator matrix polynomial Df , the degree is determined

by the number of desired block poles to assign.

• The zeros of the closed loop system will be fully defined by the zeros of the plant and the

latent roots of the compensator denominator constructed from the bock zeros. So we can

specify desired zeros which will be assigned to the fixed compensator mth order lth degree

denominator Dc.

5.4.4 Example

With a closed loop denominator of degree 2 (constructed previously using only 2 solvents), only

a static compensator can be determined. So to determine a dynamic first-degree compensator

another solvent is added with arbitrary latent values as large as possible in order to not interfere

with the behaviour of the closed loop system. If the first-degree compensator obtained after

solving the Diophantine equation is not proper or stable, a second-degree will be computed
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using the same method (etc.).

Adding a solvent with latent values: (-30 -31) and unity vectors we have:

dR3 =

( −30 0
0 −31

)

Using equation 5.3.14 we construct the desired closed loop denominator with degree 3 using

3 solvents: Dcl = I2s
3 + dD2s

2 + dD1s + dD0 where:

dD2 =

(
23.4315 10.5259
−19.4513 52.5685

)
; dD1 =

( −269.9112 388.1594
−687.2149 755.4090

)

and dD0 =

( −2185.723 1917.583
−3110.243 2690.390

)

Using the function ‘polyeig’ of Matlab we obtained the following latent values and latent

vectors of the desired denominator:

dλ =
( −31.0000 −30.0000 −1.0000 −3.0000 −6.0000 −5.0000

)

dW =

(
0.0000 −1.0000 0.6310 −0.5796 0.4679 −0.5386
1.0000 0.0000 0.7758 −0.8149 0.8838 −0.8426

)

Remark 5.4.3. We have verified that the desired solvents are the block roots of the closed loop

denominator.

The input output feedback configuration needs to fix the compensator denominator. So let

us assign the following block root to Dc: Dc0 =

(
20 0
0 2

)

Then Dc will be equal to: Dc = I2s + Dc0.

The resolution of the compensator equation 5.4.6 will lead to the following numerators of

the compensator:

Lc = Lc0 where Lc0 =

(
33.4830 −42.2452
−29.9267 −41.5775

)

Mc = Mc1s + Mc0 where

Mc1 =

(
2.5961 −21.3311
5.8498 −24.6619

)
and Mc0 =

(
26.0177 −22.2659
19.6701 23.7922

)

The two compensators are: Gc0(s) = D−1
c (s)Lc(s) and Gc1(s) = D−1

c (s)Mc(s).

5.5 Design of a pre-compensator

In an input-output configuration, the zeros of the closed loop system will be fully defined by

the zeros of the plant and the poles of the compensator denominator.
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r Gp

Gc

G
e y+

−

Figure 5.3: Feedback compensation with a pre-compensator

So, if desired zeros (block zeros) are needed to be placed, we can use the compensators

denominator. But if these zeros are positive, we need to design a pre-compensator to place

them.

In this section, it is shown how to use the proposed method to design a pre-compensator to

assign eventual desired block zeros.

5.5.1 Compensator equations:

So the new feedback configuration is shown in figure 5.3 and the closed loop transfer function

will be the following:

Gcl(s) = G(s)[Ip + Gc0(s) + Gc1(s)G(s)]−1Gp(s) (5.5.1)

Let the pre-compensator be described by a LMFD:

Gp(s) = D−1
c (s)Np(s) (5.5.2)

where Dc is the denominator of the compensator and the other components of the closed

loop system are as defined previously.

The desired zeros or block zeros will be assigned (using equations 5.3.14 or 5.3.15) to the

numerator Np(s).

Then the closed loop transfer function is:

Gcl = NRD−1
R [Ip + D−1

c L + D−1
c MNRD−1

R ]−1D−1
c )Np (5.5.3)

After some simplifications we get:

Gcl = NR[DcDR + LDR + MNR]−1Np (5.5.4)

Or

Gcl(s) = NR(s)D−1
f (s)Np(s) (5.5.5)
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where Df is defined as previously (equation 5.4.4) and the compensator numerators will be

determined by resolving the compensator equation as defined in equation 5.4.6.

Remark 5.5.1. If no desired zeros are present, then we have to choose arbitrarily the poles of

the compensator (zeros of the system). In general the zeros are chosen in the left half s-plane

(not on the imaginary axis) and far from the desired poles, to not annihilate the effect of the

poles.

5.5.2 Example

To show how to assign a block zero, the zeros of the closed loop system, which would be

obtained if a state feedback controller has been used, are determined. These zeros are chosen

to construct a desired block zero: dZ0 =

( −10.5 0
0 2.5

)
which will allow placing a positive

zero 10.5 and a negative zero 2.5 through a pre-compensator.

So the numerator of the pre-compensator will be equal to: Np(s) = I2s + dZ0.

5.5.3 Validation

To validate the results obtained for the illustrative example, first we verified that the latent

values and vectors of the closed loop denominator computed as in equation 5.4.4 are exactly

the same as the latent values and vectors of the desired denominator.

Second, we used the function ”pzmap” of Matlab on the transfer function matrix of the

closed loop system (obtained from equation 5.5.5), we found that the poles are equal to the

desired poles (-31,-30, -6,-5,-3 -1) and that the zeros are equal to the zeros of the plant (-3.6333

+11.5123i, -3.6333 -11.5123i), that we cannot replace, and the desired zeros (10.5, -2.5).

5.6 Conclusion

The chapter summarizes a method to assign a desired eigenstrutcure using block poles place-

ment. In this case a transformation from a SSD to a MFD is undertaken for some MIMO

systems, then an exact assignment of n (and even more) eigenvalues and its eigenvectors is

always possible for these systems as long as the latent vectors composing the block pole are

linearly independent. Of course these latent vectors must be specified and chosen.
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An MFD can be obtained from any representation so we can also rethink the problem of

eigenstructure assignment using the proposed approach described in the chapter. The condi-

tions of the proposed design process make its application limited to a certain class of systems

(right/left coprime and column/row reduced) but the similarity transformation, used here,

generates directly MFD systems which verify these conditions.

The method has been applied to design a compensator for a helicopter flight control and

the results are given in the next chapter.
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Chapter 6

Application: Helicopter flight control

6.1 Introduction

In the precedent chapter, a method to design a compensator is given with an illustrative ex-

ample. This chapter presents a design example for attitude stabilisation of a Lynx helicopter

in hover. The example is not intended as a definitive solution, but is to illustrate and validate

the proposed method. Helicopters are inherently unstable, very non-linear and highly cross

coupled, and thus must be augmented with feedback control to reduce the pilot workload to an

acceptable level. A linear description has already been achieved and a desired behaviour (eigen-

structure) has been elaborated [1]. The objective is to compute a compensator and eventually

a pre-compensator to achieve the assignment of a set of desired eigenvalues and eigenvectors.

The state feedback and the output feedback control of the helicopter using eigenstructure

assignment have already been done [1, 2, 3] which will allow comparison.

Although state feedback is not realistic for helicopter control law design but it does have a

role to play in the development of the more practical fixed gain output feedback solution. The

state feedback solution illustrates the best that one can hope to achieve with output feedback.

If an acceptable state feedback solution can not be found then progression to output feedback

is pointless and one should instead re-examine the synthesis technique and design objectives

[1].

The open loop system, even though complex and large, satisfies the conditions of the pro-

posed method, which justifies the choice of this system to be an application for the proposed

method.

105
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6.2 Literature review

All high performance aircraft employ feedback control to achieve the desired level of perfor-

mance, handling and stability. Helicopters are inherently unstable, highly cross coupled and

very non-linear. Hence feedback control is particularly important. Flight control has been

thoroughly studied and many published works deal with feedback control of aircraft and a

more complex case study would be the helicopter flight control. Flight control based on state

feedback, or compensators for systems described in MFD has been studied but the best choice

was the one based on eigenstructure assignment [1].

In [4] the questions related to the matrix fraction descriptions (MFDs) and the minimal

realizations of the transfer matrix of a spinning satellite system and control system design

using output feedback are considered, and a new approach using interval analysis for design of

a robust compensator for jet engine is proposed in [5].

An investigation into the application of eigenstructure assignment to aircraft problems is

detailed in [6] and confirmed that feedback is used to ensure stability, a satisfactory response

and good decoupling in the closed loop system.

The authors of the interesting paper [7] gave the importance of the eigenstructure assignment

in linear control systems with an extensive flight control example. They discussed the conditions

for the number of reachable eigenvectors, and presented the different techniques to assign them,

via full state feedback, output feedback and constrained output feedback.

The eigenstructure assignment flight control design methodology is extended to include

dynamic compensator synthesis in [8]. Dynamic compensators are designed via eigenstructure

assignment by utilizing a composite system structure and the method has been applied on the

lateral dynamics of an L-1011 aircraft.

In [9] a method for computing allowable eigenvector subspaces using singular value decom-

position for both real and complex eigenvalues is illustrated and used to design a stability

augmentation system for the lateral motion of a light aircraft.

Magni et al., in 1999, presented a control design approach based on eigenstructure assign-

ment by dynamic feedback for a flight control which permits the designer to handle simultane-

ously robustness against real parameter variations and the use of structured gain [10].

Helicopter flight control is complex and so not frequently used for illustration unless the
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helicopter is the subject of the research as in [1, 3]. A new method, based on simple pole-

placement considerations, for active control of vibrations in helicopter A129 of Agusta S.P.A

and taking into account the specific features of the A129 rotor, has been presented in [11].

The eigenstructure necessary to achieve a good short-term attitude command response in a

generic single-rotor helicopter has been elaborated by Clarke et al. [12]. It achieves appropriate

mode decoupling and is consistent with the physical relationships between the state variables.

This eigenstructure translates exactly into ideal transfer functions for use with a variety of

control design methodologies.

6.3 Flight Control

Fly-by-wire (FBW) describes aircraft in which the mechanical links between the pilot controls

and the control surfaces have been replaced by electrical connections (Optical connections may

also be employed this is sometimes called Fly-by-Light (FBL)). The two major benefits of FBW

are weight reduction, due to omission of the mechanical control runs, and the ability to use a

full authority Automatic Flight Control System (AFCS).

Flying a helicopter without the assistance of a stability augmentation system (SAS) or au-

tomatic flight control system (AFCS) is a taxing task for any pilot. The AFCS is a complicated

and challenging system to develop since it must resolve a wide range of implementations and

control problems. Some of the requirements on a modern AFCS are listed below [1]:

• Reduced pilot work load through improved handling qualities.

• Be fully integrated with the navigation system, mission management computer, and en-

gine management system and sensor units.

• Must be fault tolerant, incorporating self verification, multiple redundant systems and

limited authority.

• Should provide a range of autopilot functions from simple heading, height and speed hold

to more complicated functions such as auto-land and course following.

The progression of the helicopter industry towards FBW has far reaching implications for

control law design, some of which are highlighted below [1]:
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• Improved handling qualities with command interpretation will require more sophisticated

control laws.

• Integration with subsystems and the need for more sensor data to implement load reduc-

tion and suppression of flexure modes will increase the number inputs and outputs. This

will lead to larger control laws.

• The increased dependence upon the control law to meet performance goals and the grow-

ing impact of the airframe and rotor designs on the control law solution will require the

control law design to be initiated earlier as a parallel task that forms an integral part of

the vehicle design.

• Multi-mode AFCSs will be needed for mission tailored handling qualities this will require

more control laws. Furthermore, gain scheduling will be needed to maintain performance

across the flight envelope and extend it into non-linear regions. Each schedule implies an

additional control law. Thus an increased number of control laws will be needed.

• The complete AFCS will use switching logic and scheduling algorithms to combine all the

control laws. Efficient integration will place constraints on the control law structure.

• A multi-objective approach to control law design will be needed to achieved the array

of benefits that a full authority AFCS can bring. Inevitably, objectives will have to be

traded-off and the design process should make the trade-offs evident and facilitate fast

design iterations.

Consideration of the above points, in particular robustness, fast design iterations, increased

complexity, difficulty and size, indicates that large sophisticated, cross-coupled control laws are

needed to exploit the opportunities of FBW. Only multivariable techniques can deliver this.

The problem of eigenstructure assignment is of great importance in control theory and

applications because the stability and dynamic behaviour of a linear multivariable system are

governed by the eigenstructure of the system [13]. In [1] many design techniques have studied

and the authors concluded that eigenstructure is the best tool for helicopter flight control.

Eigenstructure assignment is the only technique that addresses the two issues important

to bridging the practice-theory gap: design parameter visibility and controller structure. The
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eigenstructure can not only be related to the design objectives but, through its clear links with

the time domain response [7], it can also be related to the final performance.

Working with the eigenstructure has further benefits. It is a natural representation for the

system dynamics, and its analysis is an established branch of aeronautical engineering [14].

Thus the eigenstructure facilitates a free flow of information between analysis and design, by

allowing both control engineers and aerodynamicists to work with familiar concepts. This

should aid an integrated approach to vehicle design.

Eigenstructure assignment does not inherently encompass dynamic compensation but simple

extensions have been developed [15] that give complete control over the dynamic compensator

order and some ability to determine its structure through the choice of input/output variables.

Eigenstructure assignment is a very flexible technique. It provides access to all the available

design freedom and a range of add-ons has been developed [16] to exploit this.

6.4 On Helicopters

Due to the operating characteristics of the helicopter -its ability to take off and land vertically,

and to hover for extended periods of time, as well as the aircraft’s handling properties under

low airspeed conditions- it has been chosen to conduct tasks that were previously not possible

with other aircraft, or were time- or work-intensive to accomplish on the ground.

Today, helicopter uses include transportation of people and cargo, military uses, construc-

tion, firefighting, search and rescue, tourism, medical transport, aerial photography and obser-

vation, and reflection seismology, among others.

In order to effect control of a system so complex as a helicopter, it must first be understood

from a theoretical standpoint. Once the general characteristics have been identified by exam-

ining the physics of the system, a controller can be developed which will specifically address

the problems found.

A helicopter is a type of rotorcraft in which lift and thrust are supplied by rotors. This

allows the helicopter to take off and land vertically, to hover, and to fly forward, backward,

and laterally. These attributes allow helicopters to be used in congested or isolated areas where

fixed-wing aircraft and other forms of vertical takeoff and landing aircraft cannot perform [3].

It should be noted that the vast majority of helicopters currently in service are in the same
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configuration: a main rotor on top of the aircraft and a tail rotor mounted vertically at the

rear.

6.4.1 Helicopter components

A Helicopter is composed, mainly, of the following components:

• Rotor system: The rotor system, or more simply rotor, is the rotating part of a helicopter

that generates lift. A rotor system may be mounted horizontally, as main rotors are,

providing lift vertically, or it may be mounted vertically, such as a tail rotor, to provide

horizontally thrust to counteract torque from the main rotors. The rotor consists of a

mast, hub and rotor blades.

• Flight controls: The pilot must be given a large amount of control over the helicopter.

He must be able to control its height, its velocity in both horizontal axes, and its yaw

rate at the very least. A helicopter has four flight control inputs. These are the cyclic,

the collective, the anti-torque pedals, and the throttle.

• The cyclic control is usually located between the pilot’s legs and is commonly called the

cyclic stick or just cyclic. On most helicopters, the cyclic is similar to a joystick. The

control is called the cyclic because it changes the pitch of the rotor blades cyclically. The

result is to tilt the rotor disk in a particular direction, resulting in the helicopter moving

in that direction.

• The collective pitch control or collective is located on the left side of the pilot’s seat

with a settable friction control to prevent inadvertent movement. The collective changes

the pitch angle of all the main rotor blades collectively (i.e. all at the same time) and

independently of their position. Therefore, if a collective input is made, all the blades

change equally, and the result is the helicopter increasing or decreasing in altitude.

• The anti-torque pedals are located in the same position as the rudder pedals in a fixed-

wing aircraft, and serve a similar purpose, namely to control the direction in which the

nose of the aircraft is pointed.

• The throttle controls the power produced by the engine, which is connected to the rotor

by a fixed ratio transmission. The purpose of the throttle is to maintain enough engine
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power to keep the rotor RPM (revolutions per minute) within allowable limits so that the

rotor produces enough lift for flight. A swash plate transmits the pilot commands to the

main rotor blades for articulated rotors.

6.4.2 Helicopter Flight

There are three basic flight conditions for a helicopter: hover, forward flight and the transition

between the two.

• Hover : Hovering is the most challenging part of flying a helicopter. This is because a

helicopter generates its own gusty air while in a hover, which acts against the fuselage

and flight control surfaces. The end result is constant control inputs and corrections by

the pilot to keep the helicopter where it is required to be.

• Transition from hover to forward flight: As a helicopter moves from hover to forward

flight it enters a state called translational lift which provides extra lift without increasing

power.

• Forward flight : In forward flight a helicopter’s flight controls behave more like those of a

fixed-wing aircraft. Coordinating these two inputs, down collective plus aft cyclic or up

collective plus forward cyclic, will result in airspeed changes while maintaining a constant

altitude.

Helicopters are inherently extremely complex machines, and detailed analysis of their oper-

ation is consequently very involved. However, various simplifications can be made to the flight

model, allowing a variety of compromises between complexity and accuracy.

A full description of helicopter dynamics may be found in a number of texts [17, 18, 19],

and useful summaries are also available [1, 2, 3].

6.4.3 The pilot controls

In the cockpit, the pilot has a collective lever and cyclic stick. These are generally connected

to a swash-plate assembly. This transfers the body-fixed controls to the rotating rotor system.

It consists of both a fixed and a rotating plate. The rotating plate is connected to the blades

and determines their pitch. The swash-plate is moved vertically to provide collective control

and tilted to provide cyclic control.
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The pilot also has two foot pedals to control the tail rotor collective (θt). Depressing the

left or right pedal decreases or increases the tail rotor thrust and is used to balance the main

rotor torque reaction or control heading and side slip at low speeds.

The pilot uses the main rotor collective to vary the collective pitch (θ0) of the main rotor

blades and thus the amount of thrust developed. The blades rotate to change the angles of

pitch on all blades simultaneously and equally. This rotation is often called feathering and is

accomplished through a feathering hinge.

By using the lateral and longitudinal cyclic controls (A1 and B1 respectively), the pilot can

vary the angle of incidence of the rotor blades as a function of their rotational position about

the main rotor shaft. The blades respond to the cyclically-changing angles of pitch by moving

out of their plane of rotation (flapping). This provides control over the distribution of lift across

the rotor disk and effectively enables the main rotor thrust to be tilted away from the vertical.

A pilot principal task while flying is to maintain a desired flight condition by holding the

forces and moments about the three airframe axes at equilibrium. When equilibrium is achieved

the helicopter is said to be trimmed. Common trim conditions are [3]:

• Hover: all resultant forces, moments and translational velocities are zero. To hold this

trim condition the helicopter will have to adopt starboard roll attitude to balance the tail

rotor thrust and often a nose-up pitch attitude to accommodate the main rotor shaft tilt

and an aft center of gravity.

• Straight and level flight: again all angular and linear accelerations are zero and the forward

velocity is constant. At low speeds the pilot will trim for zero side slip and accept a small

roll attitude.

• Coordinated turn: the helicopter turns with a fixed bank angle while holding all linear

accelerations and pitch rate at zero. Roll and yaw rate are adjusted via the tail rotor

thrust such that the fuselage side force is zero. This ensures passengers and pilot are not

swept from side to side as the helicopter turns.

• Steady climb: the helicopter is trimmed to a fixed climb angle and rate.

Mathematically, a trim condition is a set of constraints that, when applied to the equations

of motion and flapping, enables the control angles and other parameters to be determined. For
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a unique solution to a given trim condition, the number of constraints must equal the number

of variables.

6.4.4 Flight equations

The mathematical description of a helicopter can ultimately be expressed in the following

generic form:

ẋ = f(x, u, t) (6.4.1)

Where f(x, u, t) is a vector of functions thus [f1(x, u, t), · · · , f2(x, u, t)]T , x is the state vector,

u is the input vector and t denotes time.

Typical definitions of the state and input vectors, for a simple standard model, are:

xT =̂[u, v, w, p, q, r, φ, θ, ψ, a1s, b1s] (6.4.2)

uT =̂[A1, B1, θ0, θt] (6.4.3)

Where the states and inputs are as follows and some of them are shown on figure 6.1 [1]:

• u: Forward speed,

• v: Lateral speed (side-slip velocity),

• w: Vertical speed (heave velocity),

• p: Roll rate,

• q: Pitch rate,

• r: Yaw rate,

• φ: Roll angle,

• θ: Pitch angle,

• ψ: Yaw angle,

• a1s, b1s: Longitudinal and lateral blade flapping angles,

• θ0: Collective pitch input,
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Figure 6.1: Conventional body fixed axis set for a helicopter

• θt: Tail rotor pitch input,

• A1, B1: Lateral and longitudinal Cyclic pitch inputs

6.5 Helicopter flight compensator design

In this section the steps of the design process established in the precedent chapter will be used

to control the flight of a helicopter. Like previously, at each step a recall of the step will be

given.

6.5.1 Helicopter open loop system

The following state, input and output matrices are the 8th order linearization of the Westland

Lynx helicopter model [2]. The states are, respectively, sideslip velocity (v), roll rate (p), roll

angle (φ), forward velocity (u), pitch rate (q), pitch angle (θ), vertical velocity (w) and yaw
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rate (r), and the inputs to the system are lateral (A1) and longitudinal (B1) cyclic, main rotor

collective (θ0) and tail rotor collective (θt). The measurable outputs form a subset of the system

states. p, q, r, θ and φ are commonly measured directly, whilst ḣ may be estimated in place of

w (h measures the height and ḣ measures the rate of change in height). The following provides

a measure for ḣ with θ = 3.4◦ and φ = 3.3◦ for the hover trim condition [1]:

ḣ = sin(θ)u− cos(θ)sin(φ)v − cos(θ)cos(φ)w

So the outputs are the following: vertical speed in inertial frame (ḣ), roll rate (p), pitch rate

(q), yaw rate (r), pitch angle (θ) and roll angle (φ).

The Helicopter Continuous-time model with 8 states, 4 inputs and 6 outputs is as follows:

{
ẋ = Ax + Bu

y = Cx
(6.5.1)

where A, B, C are 8×8, 8×4 and 6×8 rational matrices:

A =




−0.0384 −0.2890 3.2064 0.0494 −0.0678 0.0110 0 0.0354
−0.5643 −9.7105 0 1.16778 4.5094 0 0.01167 −0.0260

0 1 0 0 −0.0034 0 0 0.0596
0.0002 −0.0411 0 −0.0337 0.2883 −3.2117 0.0157 0
−0.0010 −0.7938 0 0.1580 −1.5223 0 −0.0104 0

0 0 0 0 0.9984 0 0 0.0572
0 −0.0029 0.4836 0.0278 0.0147 −0.1914 −0.3230 0

−0.0150 −1.7137 0 0.02979 0.8642 0 0.0481 −0.2208




B =




37.28 0.5602 −1.415 12.89
128.3 1.928 6.723 −0.9451

0 0 0 0
−0.5570 37.50 17.90 0
0.2920 −19.66 −1.523 0

0 0 0 0
−0.0389 2.618 −299.4 0
23.12 0.3475 14.28 −8.030




C =




0.057 0 0 0.06 0 0 −1 0
0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0




Remark 6.5.1. For more convenience we suppose the input output matrix null.
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Table 6.1: Desired eigenvalue locations
λp λv λq λu λw λr

-1.5± 1.6j -0.004 -1.5±1.6j -0.002 -0.33 -1.75

Table 6.2: Desired eigenvectors
ṽp ṽ∗p ṽv ṽq ṽ∗q ṽu ṽw ṽr
1

(λv−λp)
1

(λv−λ∗p)
1 0 0 0 0 0

1
λ∗p

1
λp

0 0 0 0 0 0

1 1 0 0 0 0 0 0
0 0 0 1

(λu−λq)
1

(λu−λ∗q)
1 0 0

0 0 0 1
λ∗q

1
λq

0 0 0

0 0 0 1 1 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

6.5.2 An existing ideal eigenstructure

The formulation of an ideal eigenstructure was considered in detail by Griffin (1997) and Clarke

et al. (2003) [1, 12], in order to satisfy the Def-Stan Level 1 handling qualities criteria for

attitude command at hover [20]. Eigenvalues and eigenvectors were treated separately and the

eigenvectors were formulated for the case where the cyclic pitch inputs control the attitude of

the helicopter. Level 1 handling qualities are achievable only in hover using this type of control

response.

The desired eigenvector sets may be considered in small decoupled subsystems since one

requirement was that coupling between the responses in different axes should be minimal.

Clarke et al. (2003) derive the ideal eigenvector set by using a transfer function approach

[12]. In this way kinematic constraints are introduced early on, ensuring the correct integral

relationship between q and θ, for example. Combining these kinematic constraints with the

mathematical constraint of orthogonality of the left and right eigenvector sets leads to the result

given by tables 6.1 and 6.2.

6.5.3 Conversion from SSD to MFD

The helicopter model is block controllable (i.e. controllable), the number of states is a multiple

of the number of inputs, n/m = µ with µ, the controllability index, equal to 2, and the

controllability matrix of degree 2 is of full rank (i.e. rank=n).

Remark 6.5.2. The system is not block observable.
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The block controller form of the SSD is obtained first then the right MFD form is obtained.

The results obtained (using Matlab) with a precision of 4 digits are the following:

So the RMFD form of the helicopter model with 4 inputs and 6 outputs is given by :

G(s) = D−1(s)N(s) (6.5.2)

where

D(s) = I4s
2 + D1s + D0 (6.5.3)

with the following matrix coefficients:

D1 =




9.3784 0.6955 0.3870 −0.0062
−1.0635 3.4029 0.4206 0.0380
−18.3850 −13.4559 −1.4574 −0.1090
−144.1628 −48.7963 −11.1223 0.5248




D0 =




−5.6566 −2.0288 −0.5544 0.0394
0.5609 −1.3436 −0.0131 −0.0366
−5.8876 −4.3651 −0.5733 −0.0363
−23.5351 2.7859 −0.8893 0.2704




And

N(s) = N1s + N0 (6.5.4)

with the following matrix coefficients:

N1 =




2.1304 −0.3361 300.3933 0.7347
128.3000 1.9280 6.7230 −0.9451
0.2920 −19.6600 −1.5230 0
23.1200 0.3475 14.2800 −8.0300

0 0 0 0
0 0 0 0




N0 =




−5610.395 −4077.754 −542.8364 −32.4198
−52.9843 −12.4292 −3.1425 0.1616
−50.7662 −11.9089 −3.0110 0.1548
886.1016 207.8647 52.5552 −2.7021
1.6140 −19.6087 −0.7037 −0.4593

129.6770 2.0156 7.5793 −1.4237



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6.5.4 Desired latent structure

The desired eigenstructure for the helicopter model [2] is given by:

dΛ = diag
{ −1.5− 1.6j −1.5 + 1.6j −0.004 −1.5− 1.6j

−1.5 + 1.6j −0.002 −0.33 −1.75
}

dṼ =




0.31 + 0.33i 0.31− 0.33i 1 0 0 0 0 0
−0.31 + 0.33i −0.31− 0.33i 0 0 0 0 0 0

1 1 0 0 0 0 0 0
0 0 0 0.31 + 0.33i 0.31− 0.33i 1 0 0
0 0 0 −0.31 + 0.33i −0.31− 0.33i 0 0 0
0 0 0 1 1 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1




(6.5.5)

This desired eigenstructure has to be converted into a desired latent structure.

From this desired eigenstructure a desired state matrix is constructed (dA = dṼ dΛdṼ −1),

then a desired latent structure is obtained using equation 6.5.6 where Tc1 is computed using

the desired state matrix and the input matrix B.

vi = Tc1ṽi (6.5.6)

Where

Tc1 =
(

04 I4

) (
B dAB

)
(6.5.7)

Then the desired latent values are:

{-0.004, -0.002, -1.5+1.6j, -1.5-1.6j, -1.5+1.6j, -1.5-1.6j, -0.33, -1.75}
And the corresponding desired latent vectors are:

dV =




0.0003 −0.0083 0.0014 0.0014
0 −0.0159 0 0
0 0.2033 0 0

0.0435 0.2847 0.0087 + 0.0050i 0.0087− 0.0050i

−0.0062− 0.0068i −0.0062 + 0.0068i −0.0004 0.0005
−0.0210− 0.0129i −0.0210 + 0.0129i −0.0008 0
0.1551 + 0.1657i 0.1551− 0.1657i 0.0102 0
0.2172 + 0.2321i 0.2172− 0.2321i 0.0169 0.0729




Remark 6.5.3. The desired latent values are equal to the eigenvalues.

6.5.5 Desired block poles

With only two block roots we can get only a static compensator.
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To get a dynamic compensator the desired system is augmented, so to the previous desired

eigenvalues we added 4 new eigenvalues with a high magnitude (to lower its effect on the system

response): {-10, -11, -12, -13} and four unity latent vectors chosen such that three solvents can

be constructed from the desired set using equation 6.5.8:

Ri = dVidΛidWi (6.5.8)

Where Λdi is a diagonal matrix of four latent values, dVi, and dWi is the matrix of corresponding

linearly independent right latent vectors and its dual matrix of left latent vectors.

• From the set of complex latent values {-1.5000 + 1.6000i, -1.5000 - 1.6000i, -1.5000

+,1.6000i, -1.5000 - 1.6000i} and its corresponding latent vectors:

dR1 =




−4.4203 −2.3122 −1.0309 0.4790
0.0432 −7.3664 −0.6689 0.0071
−0.8311 55.9568 4.3320 0
−24.7284 78.0120 3.0376 1.4546




• From the set {-0.0040, -0.0020, -10, -11} and its corresponding latent vectors:

dR2 =




−10.0000 0 −0.5121 0.0736
0 −11.0000 −0.8603 0.0012
0 0 −0.0020 0
0 0 0.0028 −0.0040




• From the set {-0.3300, -1.7500, -12, -13} and its latent vectors:

dR3 =




−1.7606 0.7143 0 0
−0.0212 −0.3194 0 0
2.2375 −150.6449 −12 0

1543.016 −1040.608 0 −13




6.5.6 Desired closed loop denominator

From the 3 desired block roots we can construct the denominator of the closed loop system

using equation 6.5.9:

(
dD0 dD1 dD2

)
= − (

dR3
1 dR3

2 dR3
3

)
V −1

R (6.5.9)

where VR is the ‘right’ block Vandermonde matrix of degree 3.

The following desired denominator of the closed loop system is thus obtained:

Df (s) = I4s
3 + dD2s

2 + dD1s + dD0 (6.5.10)
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where

dD2 =




13.0735 2.2190 0.2644 −0.0081
−0.0764 18.6579 0.5241 −0.0001
1.0918 −65.0579 7.7115 −0.0001
20.8985 −98.7786 −8.7255 14.6431




dD1 =




35.7827 25.2594 3.4496 −0.1338
−0.7912 90.6892 6.7505 −0.0021
11.3864 −740.4158 −53.2180 −0.0014
254.9963 −1101.375 −103.8139 21.1080




dD0 =




50.4734 9.3514 3.3160 −0.3722
−0.2721 70.9814 5.5382 −0.0058
4.6804 −272.5657 −21.0743 −0.0046

460.1159 −162.9178 10.6996 −3.2796




Remark 6.5.4. .

• The block Vandermonde matrix VR has been verified non-singular so the desired latent
vectors satisfy the design process conditions.

• Df has been verified by generating its latent values and latent vectors which match the
desired latent structure.

• The design process in this case (deriving MFD models from SSD models of the plant and
the desired one) gives always a column reduced D (open loop system denominator), right
(left) coprime D and N (open loop system numerator) and column and row reduced Df

(desired closed loop system denominator). So all the conditions, for the existence of a
solution to the Diophantine equation, are satisfied.

6.5.7 Input-Output feedback compensation

The final step of the design process is to choose the compensator feedback configuration, which

in our case will be the input-output feedback.

In this configuration, we recall that the common denominator of the two compensators Dc

is fixed and solving the compensator equation will determine the two numerators.

Dc is assigned arbitrarily with arbitrary poles to get a stable compensator as follows:

Dc(s) = I4s + Dc0 (6.5.11)

where:

Dc0 =




0.0049 0 0 0
0 0.0049 0 0
0 0 0.0022 0
0 0 0 0.0022




Here we chose to assign the zeros {-0.0049, -0.0022} of the closed loop system obtained by

Griffin using state feedback [1] as the poles of the compensator. Its poles will become, anyway,

the zeros of our closed loop system.
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Then the Diophantine equation to solve is the following:

E(s) = Df (s)−Dc(s)D(s) = Lc(s)D(s) + Mc(s)N(s) (6.5.12)

and we obtain Lc (degree 0):

Lc =




14.1767 0.4138 1034.261 2.5045
301.4866 −7.1840 22001.38 52.6916
−1449.037 57.8403 −107353.5 −257.1875
−2320.307 130.5896 −177906.8 −411.8570




And a first degree Mc:

Mc(s) = Mc1s + Mc0 (6.5.13)

Where

Mc0 =




−1.1137 −0.2249 −0.7990 −0.0420 −0.0613 0.1181
−23.6730 −11.7747 1.5520 −0.7480 −3.2043 −1.5971
115.5086 57.4007 5.3439 3.5875 0.5300 14.2470
191.4321 105.9956 −12.3045 3.3359 −43.9868 48.0997




and

Mc1 =




−3.4429 −0.0246 0 0 0 0
−73.2164 −1.1264 0 0 0 0
357.2835 5.5132 0 0 0 0
592.0405 9.5406 0 0 0 0




The two compensators are of course stable.

6.6 Validation

6.6.1 Handling qualities specification

When designing any controller for any plant it is vitally important to have a detailed specifica-

tion of the desired final performance of the system. In the case of a helicopter, however, these

specifications are hard to characterize. The final performance of the helicopter in a mission

role is dependent on both the machine and its pilot, and consequently the pilot’s feel for the

aircraft is vital.

The short- and long-term modes that form the responses of the helicopter to the pilot inputs

are well defined in [1, 21, 20]. They are defined in terms of time-domain criteria, which are

more intuitive than the frequency-domain criteria; qualitative descriptions of handling qualities

tend to be described in the time domain, using words such as speed, overshoot and sensitivity.

The derivation of an ideal eigenstructure in [1] used these criteria directly.
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The short term stability criteria defined in [20] are summarized in template form in Figure

6.2. They are specified in terms of the helicopter’s response to a one-second pulse at 10%

maximum control deflection.

These parameters are defined with, time referenced from the point at which the peak re-

sponse occurs, and magnitude is measured relative to the peak response. All the parameters

including the peak response are defined and justified below [1]:

1. The peak response is the maximum value reached by the time response. The peak response

is a measure of control responsiveness that must be greater than a minimum value for

adequate responsiveness and less than some maximum to avoid over-sensitivity.

2. The initial delay; is the value of the response (Y1) at a specified time (T1=0.5sec) from

the initiation of the control input and it must be greater than a lower limit (30%). This

parameter prevents the control response from exhibiting excessive sluggishness due to

delays and lags.

3. To avoid over-sensitivity the value of Y1 must be less than an upper limit (70%-80%).

Furthermore the response build up should possess no obtrusive hesitation.

4. To achieve the desired stability the transient response must decay rapidly. This is verified

using the following parameters:

a) The time taken (T30) to decay to less the 30% of the peak value must be less than

an upper limit (1 sec for level 1).

b) The minimum value of the first trough (X1) must be less than an upper limit (15%

for level 1). The limit is expressed as a percentage of the peak value.

c) The maximum of the second peak (X2) must be less than an upper limit (10%for

level 1).

5. The accuracy with which the helicopter returns to the original datum after the pulse

input, is specified as a percentage of the peak value (XF ≈ 10%) and must be achieved

before 3s ≤ TF ≤ 5s seconds.

6. Experience has shown that pilots find a small amount of overshoot desirable. For level

1 handling qualities it is therefore necessary to pass through the original datum. This
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point (T01) must fall between an upper and lower bound (1s < T01 < 2s), and the second

crossing point (T02) must be greater than a lower limit T02 > 2s. For level 2 compliance

this overshoot criterion is replaced with a simpler one. This states that the time (T10) at

which the response reaches 10% of the peak value must lie between an upper and lower

limit. To ensure the overshoot is discernible, the parameter X1 requires a lower bound in

addition to the upper bound. A value of ≈1% was used in practice.

So the parameters T1 and Y1 confine the initial response delay, while TF and XF do the

same for the final settling time. T30 and T10 help define the shape of the response decay after

the initial peak, and T01, T02, X1 and X2 put bounds on the damping of the response [3].

Figure 6.2: A typical transient response

The template shown on figure 6.2 will be used to evaluate the proposed method results.
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6.6.2 Results validation

To validate our results, first the poles of the closed loop system have been verified to be in the

neighborhood of the desired poles, then a verification of some responses to the desired shapes

of a helicopter flight are obtained. The shape of the response and some parameters are verified

using the previous template, finally some responses are compared directly to the responses

obtained from a state feedback and an output feedback law performed in [1].

1) Closed loop poles:

The closed loop transfer function is:

Gcl(s) = N(s)D−1
f (s)Dc(s) (6.6.1)

Where

Df (s) = Dc(s)D(s) + Lc(s)D(s) + Mc(s)N(s) (6.6.2)

The latent values and latent vectors of the closed loop denominator Df computed, as in

equation 6.6.2, have been verified using the function ”polyeig” of Matlab:

[dv,de]=polyeig(dD0,dD1,dD2,dD3);

and the results are:

de =
( −13.0000 −10.0000 −12.0000 −11.0000 −1.7500 −0.3300 −0.0040 −0.0020

−1.5000 + 1.6000i −1.5000− 1.6000i −1.5000 + 1.6000i −1.5000− 1.6000i
)

dv =




0.0000 −1.0000 0.0000 0.0000 0.0074 −0.0200 0.0074 0.0237
0.0000 0.0000 0.0000 1.0000 0.0001 −0.0402 0.0001 0.0453
0.0000 0.0000 1.0000 0.0000 0.0000 0.5145 0.0000 −0.5805
−1.0000 0.0000 0.0000 0.0000 1.0000 0.8563 1.0000 −0.8127

0.1659 + 0.1002i 0.1659− 0.1002i −0.0097− 0.0278i −0.0097 + 0.0278i
0.0336 + 0.0097i 0.0336− 0.0097i −0.0314− 0.0571i −0.0314 + 0.0571i
−0.2574− 0.1497i −0.2574 + 0.1497i 0.1403 + 0.5825i 0.1403− 0.5825i
0.2851 + 0.8895i 0.2851− 0.8895i 0.1837 + 0.7760i 0.1837− 0.7760i




From these latent values, if we compute the block roots, we verified that they are equal to

the desired ones. For example the first block root ddR1 computed as follows:

dE =




−1.5000 + 1.6000i 0 0 0
0 −1.5000− 1.6000i 0 0
0 0 −1.5000 + 1.6000i 0
0 0 0 −1.5000− 1.6000i


;
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dV =




0.1659 + 0.1002i 0.1659− 0.1002i −0.0097− 0.0278i −0.0097 + 0.0278i
0.0336 + 0.0097i 0.0336− 0.0097i −0.0314− 0.0571i −0.0314 + 0.0571i
−0.2574− 0.1497i −0.2574 + 0.1497i 0.1403 + 0.5825i 0.1403− 0.5825i
0.2851 + 0.8895i 0.2851− 0.8895i 0.1837 + 0.7760i 0.1837− 0.7760i


;

ddR1 = real(dV ∗ dE ∗ dV −1) to get

ddR1 =




−4.4203 −2.3122 −1.0309 0.4790
0.0432 −7.3664 −0.6689 0.0071
−0.8311 55.9568 4.3320 0
−24.7284 78.0120 3.0376 1.4546




is equal to the desired first block root dR1 and the same thing for the two other block roots.

Moreover, the poles of the closed loop transfer function, computed as in equation 6.6.1, have

been verified, using the function ”pzmap” of Matlab, to be equal to the desired latent values.

2) Verification of some responses

The following figures shows the response of the proposed approach closed loop system as desired

for a helicopter flight.

- Pitch angle (θ) and roll angle (φ) responses to the lateral (blue continuous line) and

longitudinal (green dashed line) one second pulse input signal are shown in figures 6.3 and 6.4.

The roll angle should respond to the lateral stick input but not the longitudinal stick input and

the inverse for the pitch angle. The first figure is rather good but not the second figure is not

and the reason is the cross coupling of the state variables.

- Figure 6.5 shows the roll rate (p) (in blue continuous line) and roll angle (φ) (in green

dashed line) to the lateral stick input (A1), and figure 6.6 shows the pitch rate (q) (in blue

continuous line) and the pitch angle (θ) (in green dashed line) responses to the longitudinal

stick input. The shapes of the responses of the roll rate to the roll angle should correspond and

the same thing for the pitch angle and the pitch rate.

- Figure 6.7 shows the yaw rate (r) response to the tail rotor collective (θt) pulse input

signal and figure 6.8 shows the heave velocity (ḣ) response to the main rotor collective (θ0) step

input signal. The responses exhibit the desired first order characteristic.
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Figure 6.3: Roll angle (φ) response to the lateral (A1) and longitudinal (B1) stick input
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Figure 6.4: Pitch angle (θ) response to the lateral (A1) and longitudinal (B1) stick input
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Figure 6.5: Roll rate (p) and roll angle (φ) responses to the A1 input
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Figure 6.6: Pitch rate (q) and pitch angle (θ) responses to the B1 input
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Figure 6.7: Yaw rate (r) response to a tail rotor collective θt impulse input
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Figure 6.8: Heave velocity (ḣ) response to a main rotor collective θ0 step input
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3) Comparison with template:

The responses of the closed loop system to a pulse of 1 second are compared to the template

given previously (figure 6.2). The following figure shows the roll angle response (φ) to a lateral

stick 1 second pulse input (A1).

Figure 6.9: Roll angle (φ) response to a lateral stick input (A1)

From figure 6.9, the following results have been obtained:

• Peak response=2.75 at t=0.738s.

• at T1=0.5s the response Y1≈2.32

• T30≈0.53s is under the limit of 1s (T30<1s).

• T10≈0.6s, T01≈0.62s, and T02≈2.57s.

• X1=-2.14.

• X2/XF≈0.114 for TF=3.89s is less than the limit of 10% of peak=1.33.

Y 1 is over 30% of peak=0.83 which will avoid sluggishness but it is over the upper limit

80% of peak=2.2, i.e. the responses will be over-sensitive. The T02 measure has also limits

(T02 > 2s) which is rather a good result, but the measures T01 and T10 are not (1s < T01 < 2s,

1.5s < T10 < 3s) because the peak of the response is not as high as it should be. The measure
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X1 is over the lower limit (X1>15%) but X2 and XF are under the limit of 10% of peak for TF

which is within the limits (3s < TF < 5s). So finally, the overall measures are rather good.

4) Comparison with state feedback and output feedback responses:

The responses of the closed loop system to a pulse of 1 second are compared to the responses

obtained from a state feedback closed loop system generated by [1] with the following gain

matrix:

K =




−0.0013 0.0004 0 0.0525 −0.0361 −0.0002 −0.0383 −0.0034
0.0008 −0.0001 −0.0398 0.0743 0.0058 −0.0015 0.2450

0 0 0 0 0.0007 −0.0002 0.0062 −0.0052
0.0001 0.0011 0.0004 −0.0576 0.0154 0.1911 −0.0807 0.0103




The responses are also compared to an output feedback closed loop system generated by

Griffin [1] with the following gain matrix:

K =




0.0084 0.0534 −0.0336 −0.0715 −0.0384 −0.0031
0.0004 −0.0403 0.0732 0.0564 −0.0012 0.2435
−0.0001 0.0004 0.0001 0.0007 0.0059 0.0027
0.0221 −0.0554 0.0072 −0.0008 −0.0930 0.0714




Where the eigenvectors (r, w) are assigned as input vectors in stage1 and the rest of the

eigenvectors are assigned as right eigenvectors in stage2.

For the following figures, the proposed method closed loop system responses are in (blue)

continuous lines and the state feedback closed loop system responses are in (green) dashed lines,

and the output feedback closed loop system responses are in (red) dotted lines, for the rest of

figures the responses are separated for more clearness.

In general state feedback law responses represent the optimal response we could obtain.

- Roll angle responses: Figure 6.10(b) shows a good result (the output signals should ap-

proach zero), and figure 6.10(a) shows that the amplitude of the proposed approach is not

satisfying. In the rest of figures the output signals should also approach zero which is obtained

by the proposed approach responses.

- Pitch angle responses:figures 6.11(a) shows a good response of the proposed approach, but

figure 6.11(b) shows a response with too low amplitude.

- Yaw rate responses: Figure 6.12 shows the yaw rate responses. The response to the θt

seems very good, but it is not the case for the responses to the other three inputs.

- Pitch rate responses: The overall responses are rather good unless in figure 6.13(b) where

the amplitude of the proposed approach response is not satisfying as in the figure 6.11(b).
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- Roll rate responses: Like in figure 6.10, figure 6.14(b) shows a good result (the output

signals should approach zero), and figure 6.14(a) shows that the amplitude of the proposed

approach is not satisfying. In the rest of figures the output signals should also approach zero

which is obtained by the proposed approach responses.

- Heave velocity responses in figure 6.15: even though this output has not been measured

in the state feedback closed loop system in [1], but it has been included for comparison. The

overall responses seem better than the output feedback responses.

6.7 Conclusion

Using the parameters defined on the template we can conclude that the proposed method result

has better parameters: a better peak angle, the initial response delay is more confined, and

presents a better damping and shaping of the response.

From the shapes of the overall figures, the results are rather good, compared to a state

feedback law, which is supposed the most performing and were not far from meeting the level

1 handling qualities criteria.

It was shown that the input-output feedback configuration was able to retain the perfor-

mance of a state-feedback solution while using only measurable information.

The main objective is to validate the proposed design method by designing a compensator

for the helicopter flight control system and, from the results, it has been seen that it is a suitable

mechanism for the design of compensators for helicopters. A state feedback solution, provided

for reference, has been matched in performance by the input-output feedback solution.

The Helicopter control system was a good design example because the open loop system

verifies the resolution conditions of the Diophantine equation and conversion method, and the

choice of input-output feedback allows us to design a stable compensation system and a pre-

compensator to assign, simultaneously, an eigenstructure for the denominator and zeros for the

numerator of the closed loop system. If desired eigenvectors for the block zeros of the closed

loop system were known, then an eigenstructure would have been assigned for the numerator

as well.

Specification of eigenvalues and eigenvectors for both poles and zeros of the helicopter system

described in matrix fraction description will be a natural future step for this thesis.
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(a) Response to A1 input
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(b) Response to B1 input
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(c) compared to state feedback response to θ0 input
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(d) compared to output feedback response to θ0

input

0 1 2 3 4 5 6 7 8 9 10
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Linear Simulation Results

Time (sec)

A
m

pl
itu

de

(e) compared to state feedback response to θt input
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Figure 6.10: Roll angle (φ) responses
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(a) Response to A1 input
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(b) Response to B1 input
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(c) Response to θ0 input
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(d) Response to θt input

Figure 6.11: Pitch angle (θ) responses
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(a) Response to A1 input
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(b) Response to B1 input
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(c) Response to θ0 input
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(d) Response to θt input

Figure 6.12: Yaw rate (r) responses
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(a) Response to A1 input
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(b) Response to B1 input
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(c) Response to θ0 input
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(d) Response to θt input

Figure 6.13: Pitch rate (q) responses
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(a) Response to A1 input
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(b) Response to B1 input
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(c) compared to state feedback response to θ0 input
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(d) compared to output feedback response to θ0

input
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(e) compared to state feedback response to θt input
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Figure 6.14: Roll rate (p) responses
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(a) Response to A1 input
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(b) Response to B1 input
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(c) Response to θ0 input
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(d) Response to θt input

Figure 6.15: Heave velocity (ḣ) responses

Chapter Bibliography

[1] S. J. Griffin, Helicopter Control Law Design Using Eigenstructure Assignment. DPhil Thesis,

Department of Electronics, University of York, 1997.

[2] J. E. Ensor, Subspace Methods for Eigenstructure Assignment, PhD Thesis, University of

York, UK, 2000.

[3] A. J. Pomfret, Eigenstructure assignment for helicopter flight control, PhD thesis, university

of York, UK, 2006.

[4] A. Iyer and S. N. Singh, ”MFDs Of Spinning Satellite and Attitude Control Using Gyro-

torquers”, IEEE Trans. Aero. Electr. Syst., Vol. 25, No. 5, pp. 611-620, 1989.

[5] P. J. Deore and B. M. Patre, ”Design of Robust Compensator for Jet Engine: An Interval



Chapter Bibliography 138

Analysis Approach”, in Proc. IEEE Conference on Control Applications, Toronto, Canada,

August 28-31, pp. 376-381, 2005.

[6] D. M. Littleboy, Numerical Techniques for Eigenstructure Assignment by Output Feedback

in Aircraft Applications, PhD thesis, University of reading, UK, 1994.

[7] A. N. Andry, E. Y. Shapiro, and J. C. Chung. ”Eigenstructure assignment for linear sys-

tems”, IEEE Trans. on Aerospace and Electronic Systems, Vol. 19, No.5, pp. 711-727, 1983.

[8] K. Sobel and E. Y. Shapiro, ”Dynamic Output Feedback Flight Control Law Using Eigen-

structure Assignment”, in Proc. the 5th American Control Conference, Vol. 1, Seattle, WA,

pp. 605-610, 1986.

[9] S. K. Mudge and R. J. Patton, ”Analysis of the technique of robust eigenstructure assign-

ment with application to aircraft control”, IEE PROCEEDINGS, Vol. 135, Pt. D, No. 4,

1988.

[10] J. -F. Magni, ”Multimodel eigenstructure assignment in flight-control design Aerospace

Science and Technology”, No. 3, pp. 141-151, 1999.

[11] S. Bittanti and L. Moiraghi, ”Active Control of Vibrations in Helicopters via Pole Assign-

ment Techniques”, IEEE Trans. Contr. Syst. Techn., Vol. 2, No. 4, pp. 343-351, 1994.

[12] T. Clarke, J. Ensor and S. J. Griffin, ”Desirable eigenstructure for good short-term heli-

copter handling qualities: the attitude command response case”, J. Aerospace Engineering,

Vol. 217, pp. 43-55, 2003.

[13] J. Lu, H. D. Chiang and J. S. Thorp, ”Eigenstructure assignment by decentralized feedback

control”, IEEE Trans. Autom. Contr., Vol. AC-38, No.4, pp. 587-594, 1993.

[14] R. W. Prouty. Helicopter Performance Stability and Control, Robert E. Krieger Publishing

Company, 1990.

[15] H. Kimura, ”Pole assignment by gain output feedback”, IEEE Trans. Autom. Contr., Vol.

AC-20, pp. 509-516, August 1975.

[16] K. M. Sobel, E. Y. Shapiro and A. N. Andry, ”Eigenstructure assignment”, Int. J. of

Control, Vol. 59, No.1, pp. 13-37, 1994.



Chapter Bibliography 139

[17] A. R. S. Bramwell, Helicopter Dynamics, Edward Arnold Edt., London, 1976.

[18] J. Seddon, Basic Helicopter Aerodynamics, BSP Professional Books, Oxford, 1990.

[19] G. D. Padfield, Helicopter Flight Dynamics, Blackwell Science Ltd, Oxford, 1996.

[20] B. Pitkin, Military Defence Specification DEF-STAN 00-970, British Ministry of Defence,

1989.

[21] T. Clarke and P. Taylor, Helicopter design manual, Technical report, Department of Elec-

tronics, University of York, UK, 1999.



Chapter 7

General Conclusion

The aim of this thesis is to design a compensator for systems described in MFD or SSD, by

placing block poles, thus performing an eigenstructure assignment. The author asserts that this

aim has been met, although further work must be undertaken to improve the design process.

In this chapter remarks on the achieved results and some future works are presented. After

a summary of the contents of this thesis, a section on the contributions is given, then the

comments and problems encountered while achieving this research work is presented in the

third section. Finally future research works which are deduced from the problems are given in

the fourth section.

7.1 Introduction

The main contribution presented in this thesis is a design process to assign an eigenstructure

for a system described in state space equations by using block poles placement constructed

from a desired latent structure, itself obtained from the desired eigenstructure.

The same design process can be applied for systems described in matrix transfer functions,

as long as the obtained system in MFD is proper, and can, of course, be applied directly on

systems described in matrix fractions.

The steps of the proposed method are as follows:

• A system described by state space equations (SSD), to which a desired eigenstructure has

been designed, can be transformed to a system in right or left matrix fraction description

(MFD), and the desired eigenstructure can be transformed to a desired latent structure.

The condition is (block) controllability or (block) observability of the system. If the

system is both block controllable and block observable, then either transformation is

140



7.1. Introduction 141

chosen depending on the number of inputs or the number of outputs, to get the smallest

size MFD.

• Block poles (solvents) and eventually block zeros can be constructed from this desired

latent structure. Conditions of existence of such solvents have been established.

• These block poles are used to construct the desired closed loop denominator. The con-

dition here is the non-singularity of the block Vandermonde matrix composed of block

poles which is guaranteed if the set of solvents is a complete set.

• A feedback configuration is to be chosen such that the obtained compensator is proper,

stable with least degree. Using the input-output feedback configuration gives more design

freedom, in fixing the compensator denominator (so the compensator is stable) and using

this denominator to place the eventual desired block zeros.

• The placement of the denominator is done by a dynamic compensator determined by solv-

ing the corresponding Diophantine equation (for unity, output or input-output feedback

configuration). Conditions of the solvability of the equation are properness, coprimeness

and row or column reduceness. Generally, the transformation of the system generates

directly a suitable MFD system!

• We know that zeros of the plant cannot be replaced, but we can modify the behavior of

a system by designing zeros and add them to the closed loop system. In the case of unity

and output feedback configuration, a pre-compensator is added to the closed loop system

to place the desired block zeros.

In order to obtain these results, a review on matrix polynomials has been given, and two

methods to construct solvents from a set of latent values and latent vectors, and to obtain the

inverse of a matrix polynomial have been developed. Then the two needed system descriptions,

SSD and MFD, have been presented. As a result the relationship between eigenvectors and

latent vectors has been established and as a consequence, a method to solve the polynomial

eigenvalue problem has been obtained. The feedback control approaches for systems either in

SSD or MFD have been detailed, then the proposed design approach has been presented. As

an application, an input-output feedback compensator, to assign a desired eigenstructure for a

helicopter flight control, has been designed.
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7.2 Contributions

To the best of the author’s knowledge, the list below describes the novel contributions of this

work:

1. A method to construct right and left solvents of a matrix polynomial from a set of latent

values and latent vectors has been developed. The conditions have been summarized in

a theorem.

2. The inverse of a matrix polynomial is given as a particular case of the block partial

fraction expansion of the related rational matrix.

3. The relationship between the eigenstructure of the state matrix of a system described in

state space equations and the latent structure of the denominator of a matrix fraction

description of the same system has been established by two theorems and two corollaries.

4. As a consequence of this relationship, a method to determine the latent values (eigenval-

ues) of a matrix polynomial has been developed.

5. A method to design a compensator for systems described in MFD by assigning a set of

desired latent values and latent vectors has been developed.

6. The same method can be used for systems described in SSD, by starting with a conversion

of the SSD into a MFD and the conversion of a desired set of eigenvalues and eigenvectors

(eigenstructure) into a desired latent structure, thus achieving an eigenstrucure assign-

ment for systems described in matrix polynomials.

7. Finally, a matrix fraction description for a helicopter flight system has been developed

and a compensation system, by assigning a desired eigenstructure, has been obtained.

7.3 Comments and problems

In the following some comments on the results obtained during this research work and the

questions generated but not yet answered.

• The input-Output feedback configuration allows placing block zeros using the fixed com-

pensator denominator so for some applications, this configuration will be preferred.
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• The degree of compensator will depend on the degree of the desired closed loop denomina-

tor. The latter depends on the number of desired block roots (poles or zeros) to place. If

the solution of the Diophantine equation gives a non-proper, or a non-stable compensator

(for other configurations than the input-output) the degree of the compensator may be

increased, by increasing the degree of the closed loop denominator! The latter can be

increased by placing arbitrary block roots

• If the set of desired latent values and latent vectors is not suitable (linearly independent

vectors), then other arbitrary latent values with corresponding latent vectors may be

chosen so that compensation is possible.

• The arbitrary roots may be chosen to improve the performance of the closed loop system

behavior (robustness and sensitivity) or simply to not interfere on it.

• We can only place (additional) zeros but not replace some zeros by other desired ones.

• Some closed loop configurations allow zeros placement (Input-Output). The poles of the

compensator or the pre-compensator become the zeros of the closed loop system.

• If a latent root is complex it must be composed with its conjugate and their corresponding

complex latent vectors. Block roots are real.

• If the system is both block controllable and block observable, we will chose either RMFD

or LMFD depending on the smallest value between the two dimensions number of inputs

or number of outputs.

• The difficulty of the proposed method (if adequate latent roots and latent vectors exist)

is in the inversion of the block Vandermonde matrix, and in solving the Diophantine

equation. For the first, a recursive algorithm has been developed, and a future paper on

block Vandermonde matrices (including this algorithm and others) is under realization.

For the second, the conversion method used in this approach results in systems satisfying

the conditions of existence of a solution, furthermore a parallelization of the Gaussian

elimination algorithm, used to search for linearly dependent vectors in a matrix, has been

developed and it is presented in Appendix B.
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• The conversion method used in the proposed design process guaranteed that the Dio-

phantine equation will have a solution. Many works have concerned the resolution of the

Diophantine equation to get solutions which are proper. But, we found that the reso-

lution of the Diophantine equation does not always give solutions which are stable, i.e.,

the poles of the solution (the denominator of the compensator in our case) are not in the

open left half s-plane. It is obvious that the stability of the compensator is required. One

solution to this problem is to determine compensators with higher degrees, which means

increasing the degree of the desired closed loop denominator by adding arbitrary latent

values (block poles) to be assigned with the desired ones.

• It is stated that, unless the dynamic compensator is required and explicitly defined by

the closed loop system specification, such structures do not currently represent a flexible

way of increasing the design freedom available for EA, but we showed that even for a

system described in SSD, we can design a stable dynamic compensator and achieve the

assignment of the whole set of desired eigenvalues and eigenvectors easily and efficiently.

7.4 Future works

Assigning latent structure opens a wide area of research; all the results obtained through eigen-

structure assignment may be applied in the frequency domain to systems described in either

representation (SSD, MFD, TF). The results obtained during this research work generated

many questions and problems for which solutions are to be explored:

• If the number of eigenvalues to assign is not suitable (to make compensation), or we

need to increase the degree of the closed loop denominator (to have stable compensator),

the idea is to add block roots to assign and thus increase the design freedom to achieve

performance specifications (sensitivity, robustness, etc.)

• Now that zeros (block zeros) may be determined from latent roots and latent vectors their

effect on a closed loop system may be better studied.

• Many research works have been done on the specification of eigenvalues and eigenvectors

for multivariable systems to achieve a certain desired behaviour or performance of the

system, but (to my knowledge) nothing has been done for latent structure specifications.
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• Robustness and sensitivity of the closed loop system can be studied and explored through

either: latent values/eigenvalues, latent values and vectors of the block poles, or block

poles themselves.

• In State space description, we have seen that eigenvectors are used to shape the sys-

tem responses, so what will be the role of latent vectors for systems in matrix fraction

description?

• Many feedback configurations exist, and the idea is to choose the right configuration for

a particular closed loop system. The choice criteria have to be explored.

• Explore the problem of the resolution of the Diophantine equation and determine the

conditions for which a solution is stable.

• Because of the diversity of fields of application of the first degree Diophantine equation,

a future task will be the parallelization of the totality of its resolution.

• Dynamic compensation has been shown to offer additional design freedom to the eigen-

structure assignment problem, but it is clear from the literature that methods for ex-

ploiting this freedom are not well developed. Therefore, a significant area of further

study would be to develop a meaningful description of the additional benefits available

to the control system designer via the specification of compensator eigenvectors as well

as eigenvalues.

Finally, parallelization may be a good option to improve the efficiency and performances of

resolution methods in many fields, more precisely in control theory and systems engineering.



Appendix A

Diophantine equation and its solutions

The polynomial Diophantine matrix equation (PDME) plays a very important role in the

analysis and design of control systems such as compensators design [1], multivariable adaptive

feedback systems [2], predictive control, robust controllers design [3], etc.

In this thesis, we showed that to place block poles using feedback for systems in matrix

fraction description, the design method leads to the resolution of a Diophantine equation, called

also compensator equation, to determine the compensator’s numerator and denominator.

Because of the great use of PDME, finding solutions to this kind of equations has received

much attention in the past several decades. Generally speaking, all the methods can be classified

into three main categories: the state-space related approaches [4, 5], the Taylor series treatment

[6, 7], and methods involving coefficient matching [1, 8, 9].

In [10] a global parametrization of the solutions to the PDME has been given.

Lai, in [7], presented a procedure involved in solving a set of linear equations which will result

in a unique solution if the solution exists, and in [4], based on the state-space concepts, Fang

proposed a simple approach to find all solutions of the PDME and all solutions are expressed

in explicit formula forms.

In the category of methods based on coefficient matching, Chen’s method [1] uses a numerical

QR algorithm to look for a nonsingular matrix as a solution, and the method in [11] sets up

equations in a different way such that an analytical method can be used to guarantee the

non-singularity of the square system thus formed.

In [12] the problem is firstly transformed into solving a class of Stein equations, one of whose

coefficient matrices are nilpotent, thus obtaining explicit solutions in a finite summation form,

and an exhaustive literature review on methods to solve the PDME is also given.
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A.1 Introduction

Diophantine equations are the best example of matrix problems, their resolution is not an easy

task since a direct resolution method is difficult to find. Several methods of resolution exist,

and most of them seek to determine linear dependent rows in a resultant matrix [7].

A.1.1 Definition

Diophantine equation is of the form P (x, y, z, ...) = 0 where P is a polynomial with integer

coefficients (or rational). We look for the roots in N (natural integers) or Q (rational numbers).

A set of p-tuples (a1,a2, ..., ap) is called Diophantians if the Diophantine equation P (x, y, z, ...) =

0 with coefficients (a1,a2, ..., ap) has at least one solution.

Some classical examples of Diophantine equations are: the study of the general shape of the

Pythagoreans triplets, Bezout theorem, the general solution of the integer equation ax+by = c,

the famous theorem of Fermat, Pell’s equation, etc. [13].

A.1.2 Fields of application

There are various fields which use the Diophantine equation such as biology, chemistry, control,

computer science, mathematics and others. The following are examples:

• Computer: In 2007, an ID-based digital signature scheme based upon the difficulty of

elliptic curve discrete logarithm problem (ECDLP) has been proposed. However, a secu-

rity flaw has been found and a feasible attack is proposed by [14]. This attack enables an

attacker to easily obtain the signer’s secret key without facing the difficulty of ECDLP

by using the technique of solving the linear Diophantine equation.

• Systems Engineering: An application of simple continuous-time robust regulators of PI

and PID type is designed through general solutions of Diophantine equations, in the ring

of proper and stable rational functions, to control temperature in a laboratory model of a

hot-air tunnel, whose mathematical model is supposed to include parametric uncertainty

[15].

• Biology: A method for the inverse design of small ligands has been developed in [16].

A key step in this method involves computing the Hilbert basis of a system of linear
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Diophantine equations.

• Control theory: Feedback compensation in systems described by matrix polynomials lead,

in general, to solving a first degree Diophantine equation (see Chapter 4).

A.1.3 Resolution of the second degree Diophantine equation

Such an equation is in the form:

ax2 + bxy + cy2 + dx + ey + f = 0 (A.1.1)

where a, b, c, d, e and f are integers, and at least one of the numbers a, b, c is different

from zero.

The solution of such equation is a task much more complicated than the resolution of the

linear system of equations. A complete solution exists and is due to Joseph-Louis Lagrange

(1769) [13].

The following techniques have been proposed:

• Modular Arithmetics: It can be employed to show that a solution of a given Diophantine

equation does not exist. Specifically, if the equation in question is proven to be never

true for a certain integer m, then it is proven that the equation is false. However, this

technique cannot be employed to prove that the solutions exist [13].

• Induction: When some solutions were found, induction can be employed to find a family

of solutions. The techniques such as the infinite descent can also prove that the solution

of a particular equation does not exist, or that the solution apart from particular family

does not exist [13].

A.2 Polynomial Diophantine matrix equation

In this thesis we are interested in solving the polynomial Diophantine matrix equation.

A.2.1 Definition

Let a p-inputs q-outputs system be described in RMFD or LMFD as follows:

G(s) = N(s)D−1(s) (A.2.1)
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or

G(s) = D−1(s)N(s) (A.2.2)

The famous Diophantine equation is stated as follows:

Definition A.2.1. Given matrix polynomials H(s), D(s) and N(s), we need to determine
X(s) and Y (s), both matrix polynomials with convenient dimensions, by solving the following
equation:

”right” : H(s) = X(s)D(s) + Y (s)N(s) (A.2.3)

”left” : H(s) = D(s)X(s) + N(s)Y (s) (A.2.4)

such that X(s) and Y (s) have a minimum degree.

Remark A.2.1. In this thesis, H is the desired closed loop system denominator (Df ), D and N
are the plant transfer function, and X and Y are the numerator and denominator of a unity or
output feedback compensator, or the two numerators of an input-output feedback compensators
(see chapters 4 and 5).

A.2.2 Existence of a solution

We start with some recalls.

Definition A.2.2. A rational matrix G(s) is said to be proper (strictly proper) if G(∞) is a
finite constant (zero) matrix.

Definition A.2.3. A non singular p × p polynomial matrix M(s) is said column reduced if
deg(detM(s)) =

∑p
i=1 δciM(s) and it is said row reduced if deg(detM(s)) =

∑p
i=1 δriM(s)

where δciM(s) and δriM(s) are respectively the max column degrees and the max row degrees
of M(s).

Definition A.2.4. Let a polynomial matrix M(s) = MhcHc(s)+Mlc(s) where Hc=diag{higher
column degrees of M(s)}, Mhc is a constant matrix of coefficients with higher column degrees
of M(s), and Mlc is the rest of M(s). Then M(s) is said column-reduced iff Mhc is nonsingular.

And, by duality, let M(s) = Hr(s)Mhr + Mlr(s) where: Hr=diag{higher row degrees of
M(s)}, Mhr is a constant matrix of coefficients with higher row degrees of M(s) and Mlr is the
rest of M(s). Then M(s) is said row-reduced iff Mhr is non singular.

Theorem A.2.1. Let N(s) and D(s) be q × p and p× p polynomial matrices and let D(s) be
column reduced, then the rational function N(s)D−1(s) is proper (strictly proper) iff δci(N(s)) 6
δci(D(s)) (δci(N(s)) < δci(D(s))) for i = 1..p.

Proof : see [1]

A similar theorem exist for the row-reducedness [1].

The following theorem states the condition for the existence of a solution to the Diophantine

equation:

Theorem A.2.2. Let G(s) = N(s)D−1(s) being a proper system, ki i = 1..p being the column
degrees of D(s) and γ the row index of G(s). If for l ≥ γ−1 ∀H(s) with column degrees ≤ l+ki

∃X and Y of row degrees ≤ l such that (X, Y ) verifies equation A.2.3 iff D and N are right
co-prime and D(s) is column reduced.
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Proof : see [1].

By analogy, Let G(s) = D−1(s)N(s) being a proper system, ki i = 1..q being the row degrees

of D(s) and µ be the column index of G(s). If for l ≥ µ− 1 ∀ H(s) with row degrees ≤ l + ki

then ∃X and Y of column degrees ≤ l such that (X,Y ) verifies equation A.2.4 iff D and N are

left co-prime and D(s) is row reduced.

Remark A.2.2. It has been stated that if a solution exists then it is unique [7].

A.3 Resolution methods

Many authors proposed methods to solve the Diophantine equation. Two simple methods

(Chen’s method [1] and Lai’s method [7]) have been adopted for this research work and will be

presented.

A.3.1 Chen’s Method

The following solving method is detailed and proved in [1].

Let

D(s) =
∑n

i=0 Dis
i

N(s) =
∑n

i=0 Nis
i (A.3.1)

X(s) =
∑m

i=0 Xis
i

Y (s) =
∑m

i=0 Yis
i (A.3.2)

And

H(s) =
n+m∑
i=0

His
i (A.3.3)

where n is the highest column degree of D(s) (or its degree)

So equation A.2.3 will become:

(
X0Y0 X1Y1 · · · XmYm

)
Sm =

(
H0 H1 · · · Hn+m

)
(A.3.4)

Where

Sm =




D0 D1 · · · Dn 0 0 · · · 0
N0 N1 · · · Nn 0 0 · · · 0
0 D0 · · · Dn−1 Dn 0 · · · 0
0 N0 · · · Nn−1 Nn 0 · · · 0
· · · · · · · · · · · · · · · · · · · · · · · ·

. . . . . .

· · · · · · · · · · · · · · · · · · · · · · · ·
0 0 · · · 0 D0 D1 · · · Dn

0 0 · · · 0 N0 N1 · · · Nn




(A.3.5)
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where 0 stands for a null matrix of right dimensions and Sm is a matrix which consists of

m + 1 blocks of p ”D” rows and q ”N” rows. If ND−1 is proper then each ”D” row is linearly

independent from the previous ”D” rows. But the N rows are not. Let n be the degree of G(s)

and γ the row index of G(s), it is also the observability index of any irreducible realization of

G(s), then the following theorem states the condition for equation A.3.4 to have a solution.

Theorem A.3.1. Let a (strictly) proper rational matrix G(s) = N(s)D−1(s) with deg(D) = n
and let γ the row index of G(s). For any H(s) of degree n + m there exist a (strictly) proper
solution X−1(s)Y (s) with deg(X) = m for equation A.2.3 iff (m > γ) m ≥ γ and D and N
are right co-prime and D(s) is column- reduced.

Proof : see [1]

The same development can be done for equation A.2.4. If we replace equations A.3.1, A.3.2

and A.3.3 into equation A.2.4 we obtain:

Tm




X0

Y0

X1

Y1
...

Xm

Ym




=




H0

H1
...

Hn+m


 (A.3.6)

where

Tm =




D0 N0 0 0
...

... 0 0

D1 N1 D0 N0
...

...
...

...
...

...
...

...
...

... 0 0

Dn Nn Dn−1 Nn−1
...

. . .
... 0 0

0 0 Dn Nn
...

. . .
... D0 N0

0 0 0 0
...

... D1 N1
...

...
...

...
...

...
...

...

0 0 0 0
...

... Dn Nn




(A.3.7)

Here 0 stands for a null matrix of right dimensions.

Matrix Tm has m + 1 block columns formed from the matrix coefficients of D(s) and N(s).

This matrix is searched for linearly dependent columns from left to right. Let γ be the column

index of G(s) or the controllability index of any realization of G(s), then a similar theorem

states the condition for equation A.3.6 to have a solution, and if a solution exists then it is

unique.

Theorem A.3.2. Let a (strictly) proper rational matrix G(s) = D−1(s)N(s) with deg(D) = n
and let γ the column index of G(s). For any H(s) of degree n+m there exist a (strictly) proper



A.3. Resolution methods 152

solution Y (s)X−1(s) with deg(X) = m for equation A.2.4 iff (m > γ ) m ≥ γ and D and N
are left co-prime and D(s) is row- reduced.

Proof : see [1]

A.3.2 Lai’s Method

The author in [7] proposed an improvement of the previous method, and showed the uniqueness

of a solution if it exists.

Equation A.2.3 may be written in the following form:

(
X(s) Y (s) I

)



D(s)
N(s)
−H(s)


 = 0 (A.3.8)

where D(s) and N(s) are as defined in equation A.3.1 and H(s) =
∑l

i=0 His
i , n is the

highest degree of s in D(s) and N(s) and l ≥ n the highest degree in H(s). All the elements

of D, N and H are real constant matrices not necessarily all non-zero.

Given D(s), N(s) and H(s), if a solution exists, then a matrix
(

X(s) Y (s) I
)

can

always be found to satisfy equation A.3.8 such that the highest degree of X(s) and Y (s) is

m = l−n. In this case, equation A.3.8 is transformed into a system of algebraic equations with

X(s) and Y (s) as defined in equation A.3.2.

The resulting system of equations is of the form:

(
X0 Y0 I X1 Y1 · · · Xm Ym

)
Zm = 0 (A.3.9)

Where 0 stands for the null matrix of right dimensions and

Zm =




D0 D1 · · · Dn 0 0 · · · 0
N0 N1 · · · Nn 0 0 · · · 0
−H0 −H1 · · · · · · −Hl 0 · · · 0

0 D0 · · · Dn−1 Dn 0 · · · 0
0 N0 · · · Nn−1 Nn 0 · · · 0
...

. . . . . .
...

...
. . . . . .

...
0 0 · · · 0 D0 D1 · · · Dn

0 0 · · · 0 N0 N1 · · · Nn




The solution of equation A.3.9 consists in determining the null space of the resultant matrix

Zm.
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A.4 Illustrative example

The example is from ([1], page 484).

Let a system be described by this RMFD:

G(s) = N(s)D−1(s) =

(
s2 + 1 s

0 s2 + s + 1

)(
s2 − 1 0

0 s2 − 1

)−1

And let the desired matrix H(s) be equal to:

H(s) =

(
(s + 1)4 0

0 (s + 1)2(s2 + s + 1)

)

Then we can rewrite N(s) and D(s) as follows:

N(s) =

(
1 0
0 1

)
s2 +

(
0 1
0 1

)
s +

(
1 0
0 1

)

D(s) =

(
1 0
0 1

)
s2 +

( −1 0
0 −1

)

And H(s) as follows:

H(s) =

(
1 0
0 1

)
s4 +

(
4 0
0 3

)
s3 +

(
6 0
0 4

)
s2 +

(
4 0
0 3

)
s +

(
1 0
0 1

)

The degree of the solution in this case is 2.

Then we can rewrite X(s) and Y (s) as follows:

{
X(s) = X2s

2 + X1s + X0

Y (s) = Y2s
2 + Y1s + Y0

Then equation A.3.4 becomes:

(
X0Y0 X1Y1 X2Y2

)
S2 =

(
1 0 4 0 6 0 4 0 1 0
0 1 0 3 0 4 0 3 0 1

)
(A.4.1)

Where the 12×10 matrix S2 is given by:

S2 =




−1 0 0 0 1 0 0 0 0 0
0 −1 0 0 0 1 0 0 0 0
1 0 0 1 1 0 0 0 0 0
0 1 0 1 0 1 0 0 0 0
0 0 −1 0 0 0 1 1 0 0
0 0 0 −1 0 0 0 0 0 0
0 0 1 1 0 1 1 1 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 −1 0 0 0 1 0
0 0 0 0 0 −1 0 0 0 1
0 0 0 0 1 0 0 1 1 1
0 0 0 0 0 1 0 1 0 0



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Then using the row-searching algorithm to find the linearly independent rows of S2 and

solving equation A.4.1 (using Matlab for example) we obtain the following results:

X(s) =

( −1 0
0 −1

)
s2 +

(
0 −1.3333
0 −1

)
s +

( −3 1.3333
0 −1

)

Y (s) =

( −4 1.3333
0 −2

)
s +

( −4 1.3333
0 −2

)

Or in a better form:

X(s) =

(
s2 + 3 4(s−1)

3

0 s2 + s + 1

)
and Y (s) =

(
4s + 4 −4(s+1)

3

0 2(s + 1)

)

A.5 Conclusion

Many methods exist to search for linear independent vectors but the row-searching algorithm

is the most used for its feasibility and efficiency. That is why we chose it to be parallelized and

the results are presented in the next appendix.
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Appendix B

Row searching algorithm

Looking for linearly independent vectors in a set of vectors is an important step in solving the

Diophantine equation and, in determining the controllability and observability indices. The

row searching algorithm is the most used algorithm for looking for linearly dependent rows of

a matrix. The principle is to be found in [1].

The following result have been communicated and published in [2].

B.1 Introduction

Parallel programming techniques, which are not very well used in the world of scientific com-

putation, start to be democratized. All the great control software applications must be recon-

sidered in terms of parallel (and distributed) tasks in order to exploit the performance of the

new-coming processors as much as possible.

Searching for linear dependent vectors (in a matrix) is one of the problems which require

parallelism; it is a fundamental aspect in linear algebra. In this kind of problem one has often

to deal with large systems of matrices, which requires much time and memory capacity, in

addition to the fact that the methods of resolution are in general iterative.

The present study aims to parallelize the row searching algorithm to make an improvement

in the resolution of the Diophantine equation then its implementation (of the algorithm) using

Message Passing Interface [3, 4], because standard MPI provides a parallel programming en-

vironment and a synchronization between the various tasks using communications by message

transfer.

The sequential algorithm and its two proposed parallel forms are implemented and evaluated

using algorithmic complexity.
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B.2 Description of the Row-Searching algorithm

The row-searching algorithm, also called Gaussian elimination, consists in searching for linearly

independent rows of a n× n matrix A from top to bottom. So initially the first row is verified

if not zero, then it checks if the second row is linearly independent of the first one. At the kth

step we check if the kth row of matrix A is linearly independent of its (k-1) preceding ones. If

a row is linearly dependent on the rows which precede it, it must be eliminated according to

this consideration, moreover the coefficients of the linear combination of the dependent row are

determined [1].

This algorithm has as input the square matrix A whose treatment to be carried out consists

of two distinct but not independent phases.

Phase I

In this phase matrix A is evaluated so as to detect and eliminate the linear dependencies

between its various rows. To be done, we need a vector K of dimension equal to the

number of rows of matrix A and construct a matrix F . Phase I is carried out in a

recursive way for all the rows of A.

step1: First we need to compute the pivot. The pivot is often selected according to a defined

criterion; if not, a computing formula will be necessary.

step2: The vector Ki is initialized to the elementary vector ei (ei is the vector whose ith

element is 1 and the rest 0);

step3: The vector Ki is determined according to the pivot and column of A of the associated

iteration as follows: 



for j = 1 + 1 to n

Ki(j) = −Ai(i,j)
pivoti

endfor

At iteration i, the first step consists in choosing the pivot. According to the value of pivot

two cases arise: If the pivot is null then the calculation of the new vector Ki is impossible

and this means that row i is dependent on all the linearly independent lines preceding it

in A. Else, at step two, the vector Ki is initialized then will be calculated at step three.

At the ith iteration the computed vector Ki is allotted to ith column of a matrix F , which

is initialized at the beginning of phase I to the matrix identity. After each calculation of
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Ki, the product Ki ∗ Ai−1 = Ai is calculated, where each iteration depends on the result

of its preceding one.

The result of Phase I is a matrix F containing all the vectors Ki (concatenated) and the

matrix resulting from the last iteration applied to A, where the rows linearly dependent

on their preceding ones are null.

Phase II

The second phase consists in determining the coefficients of combination between each

dependent row identified in Phase I and its preceding ones using the matrix F = [fij],

this treatment gives as output a matrix B = [bij] whose diagonal is all 1’s. For example

to determine the jth row of B:




B(j, j) = 1
for k = j − 1 to 1

B(j, k) =
∑j

p=k+1 bjp ∗ fpk

endfor

The resolution steps are summarized in algorithm 1.

Algorithm 1 Sequential Algorithm

for i=1 to n do
choose a pivot;
if (pivot 6=0) then

compute elements of Ki;
Put Ki in F (i, ∗);
prod(Ki, Ai−1);

else
ith row is linearly dependent;

end if
end for
for i=1 to n do

if Lin Dep(i) = 0 then
compute elements of B(i, ∗)

end if
end for

B.3 Parallelization

B.3.1 Working frame

The working environment used is MPI (Message Passing Interface). It gives the opportunity

for parallel application programmer to develop portable applications while exploiting the per-
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formances of the parallel machines as much as possible [3, 4].

This library offers routines to programmers to parallelize a sequential application which will

be executed on various processes and even on various machines (distributed). The number of

processes must be fixed at the beginning (at the start of the environment), that is why the

parallelization given here concerns a fixed number of processes (that we can generalize).

For the data distribution the following functions of MPI are used:

• MPI Scatter: To distribute data on several processes.

• MPI Gather: To allow a master process to gather results from its slave processes.

• MPI Bcast: To perform a complete diffusion (of all data on all processes) and synchronize

the slave processes.

B.3.2 Parallelization approaches

A first parallelization approach is the reduction of the matrix structure of K into a vector

structure, implying some changes in the method of calculation of Phase I only, and a second

approach will represent a real data decomposition parallelization.

Approach 1

This solution comes from the fact that the vision of the data structure in which must be

represented K changed into a vector. This approach allows to implement a parallel row-

searching by giving more flexibility to computations, the different matrices Ai i = 1..n, are not

seen any more like fixed entities but as structures to be easily divided between various processes

for treatment, The computation of the matrix Ai in function of K and Ai−1 is not done any

more by one single process, but by several.

The changing of the data structure of K produced several changes in the implementations

of the parallel row-searching algorithm.

• The ordinary matrix product was replaced by a matrix-vector product which implies a

new computation formula of elements of Ai:



for j = 0 to n
for k = 0 to n

Ai(j, k) = Ki(j) ∗ Ai−1(i, k) + Ai−1(j, k)
endfor

endfor
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• The distribution of data between the various processes contributing to calculation becomes

possible.

The function MPI Scatter is used first, then it is followed by MPI Gather, which respectively

carries out the distribution and the collect of the data of the process master (PID=0) towards

the others and inversely.

MPI Scatter is used to decompose the matrices Ai between the different processes, by

allotting to each one a portion of Ai. It implies that each process receives a certain number of

entire rows from the process master (included).

After each treatment, each process will have to return the same recomputed rows to the

master for the recovery and the reconstruction of the new matrix Ai by using MPI Gather.

The distribution of data on several processes is illustrated in figure B.1.

P3

P2

P1

P0
calcul

calcul

calcul

calcul

MPI_Scatter MPI_Gather

Figure B.1: Data distribution of approach 1

At each ith iteration: the process P0 only makes the selection of the pivot and initializes

the vector Ki, then all the processes (P0,P1,P2,P3) executes the diffusion routine MPI Bcast()

whose contents are Ki, the function of distributing data MPI Scatter() whose contents is Ai−1

and a parallel execution of the procedure Prod() to multiply the local vector Ki of each process

and the received portion of the matrix Ai−1 which in the figure 1 is represented by ”calcul”.

Phase I is finished with the shared execution of the procedure of collection of the calculated

data. Then the process P0 only deals with calculations necessary to the completion of phase II.

The resolution method is summarized in algorithm 2.

Approach 2

This second approach goes further in the division of data between the computing processes

belonging to a communicator. A communicator defines a space of communication between only

the processes belonging to it. The communicator by default, MPI Comm world, encompasses all

the processes and thus defines a communication space for all of them.
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Algorithm 2 Parallel Algorithm of approach1

Partition A to determine part;
for i=0 to n do

if PID=0 then
choose pivot;

end if
if pivot 6= 0 then

if PID=0 then
compute elements of Ki;
Put Ki in F (i, ∗);

end if
MPI Bcast(Ki, n, MPI INT, 0, MPI COMM World);
MPI Scatter(Ai−1, m∗part, MPI INT, 0, MPI COMM WORLD);
Prod(Ki, AA));
MPI Gather(Ai, m∗part, MPI INT, AA, m∗part, MPI INT, 0, MPI COMM WORLD);

else
Row i is linearly dependent;

end if
end for
for i=0 to n do

if PID=0 then
if Lin Dep(i) = 0 then

Compute elements of B(i, ∗)
end if

end if
end for
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MPI_Scatter

portion
portion

P4

MPI_Scatter MPI_Scatter

P0

P1

P2

P3

calcul
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Figure B.2: Data distribution of approach 2

A first distribution of portions of whole columns, between a certain number of processes

belonging to communicators which are two by two distinct, is carried out.

After this decomposition of the initial matrix, inside each of the communicator the processes

will apply an MPI Scatter similar to that of approach 1 followed by an MPI Gather also, as

illustrated in figure B.2.

The total space is decomposed in three communicators (respectively Com0, Com1, Com2)

containing each four processes where a local process master is designed (respectively P0, P4,

P8). Each one of them will carry out the procedure of data distribution Portion(), which makes

a distribution of columns.

Inside each communicator the same algorithm of approach 1 is performed: Sharing of Ki

and the portion obtained by the execution of the procedure Portion() to which is applied
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MPI Scatter(), so as to have a block per process to carry out Prod() in parallel, then collecting

data local to each communicator by MPI Gather() for the reconstruction of the matrix resulting

from the iteration by a re-execution of Prod(), until the treatment of all the iterations of phase

I. Finally the process P0, only, does the calculations of phase II.

Algorithm 3 summarizes the precedent steps.

Algorithm 3 Parallel Algorithm of Approach2

for i=0 to n do
if PID=0 then

Choose pivot;
end if
if pivot 6= 0 then

if PID=0 then
Compute elements of Ki;
Put Ki in F (i, ∗);

end if
MPI Bcast(Ki, n, MPI INT, 0, MPI COMM WORLD);
for id=0 to p do

process=id MOD SQRT(p);
if process=0 then

Portion(Ai), racine=id;
end if
MPI Scatter(Ai−1,n ∗ m/SQRT(p), MPI INT, AA, n ∗ m/SQRT(p), MPI INT, racine,
Commid);
Prod(Ki, AA);
MPI Gather(Ai, n ∗ m/SQRT(p),MPI INT, AA, n∗m/SQRT(p), MPI INT, racine,
Commid);
if process=0 then

portion(Ai);
end if

end for
else

Row i is linearly dependent;
end if

end for
for i=0 to n do

if PID=0 then
if Lin Dep(i) = 0 then

Compute elements of B(i, ∗);
end if

end if
end for
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Table B.1: Algorithmic Complexities
Sequential Algorithm θ(n2 ×m)
Parallel Algorithm 1 θ(n2 ×m/p)

Parallel Algorithm 2 θ(n2 ×m/p3/2)

B.4 Evaluation

To evaluate the parallel algorithms, a distributed implementation is realized on a two comput-

ers running a Debian GNU/Linux and an MPI implementation: MPICH [5]. Of course the

sequential row-searching algorithm and the two parallel algorithms (Approaches 1 and 2) are

implemented, and the following evaluation concerns a number of p processors.

The algorithmic complexity of the sequential row-searching algorithm and the two proposed

parallelization approaches will be approximated using the notation θ in function of the entry

matrix A(n,m), the vector K(n), the coefficients matrix B(n,m), the matrix of the Ki’s (i

indicates iteration) F (n, n) and the number of used processors p.

The approximate algorithmic complexities of the various implemented approaches are sum-

marized in table B.1.

B.5 Conclusion

The obtained parallel algorithms show better performances compared to the sequential one. If

a cluster of computers (or a grid computer system) is used, the computations will be divided

by the number of processors constituting the cluster. But increasing this number may increase

the quantity of exchanged messages (but not their size).

It will be interesting to find out the right number of processors to meet optimal perfor-

mances. Also, with regard to the distribution of data per blocks, the case of the identical blocs

or null blocs must be taken into account to improve the performances of the third approach.
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Appendix C

A method to compute the inverse of a
matrix polynomial

The inverse of a matrix polynomial is crucial in control theory where multi-variable systems are

described by matrix fractions. From the block partial fraction expansion of a system described

in matrix fraction description, the inverse of a matrix polynomial is obtained.

The following results are published in [1].

C.1 Introduction

Computing the inverse of a matrix polynomial is very important in all the fields dealing with

matrix polynomials and has been treated by many researchers.

In [2] an algorithm, which requires the matrix polynomial to be column-proper, is proposed.

Zhang, in [3], addressed the case of column reduced matrix polynomials to obtain an irreducible

inverse. Schuster and Hippe, in [4], computed matrix polynomial inverses by interpolation, but

the efficiency of the proposed algorithm is very dependent on the interpolating points which

are to be chosen. An appropriate Sylvester resultant matrix has been used by Stefanidis et al.,

in [5], to generate a real matrix to compute its inverse. In [6] an algorithm to obtain a minimal

state-space representation is given then Leverrier’s algorithm is used to determine the transfer

function representation of the inverse.

Many authors have considered using block roots for solving some linear algebra problems

or control problems such as: block partial fraction expansion of a matrix fraction description

(MFD) with single and repeated poles [7, 8], cascade decomposition and realization of multi-

variable systems via block-pole and block-zero placement [9], state feedback decomposition of

multivariable systems via block pole placement [10] etc.
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C.2 Block partial fraction expansion

The block partial fraction expansion is obtained for systems described in left matrix fraction

descitpion (MFD) and in right MFD.

C.2.1 Left MFD

We consider the transfer function H(s) of an m inputs and p outputs rth degree system described

by the following left matrix fraction description as :

H(s) = D−1(s)N(s) = [sr + Dr−1s
r−1 + · · ·+ D1s + D0]

−1[Nr−1s
r−1 + · · ·+ N1s + N0] (C.2.1)

and {L1, L2,· · · , Lr} a complete set of left solvents of D(s).

It can be verified that the state space description of this system in block observer form is:

{
ẋo = Aoxo + Bou

y = Coxo
(C.2.2)

where

Ao =




0 0 · · · 0 −D0

I 0 · · · 0 −D1

0 I · · · 0 −D2
...

...
. . .

...
...

0 0 · · · I −Dr−1




, Bo =




N0

N1
...

N1

N0




, Co =
(

0 · · · 0 I
)

(C.2.3)

satisfies

H(s) = Co(sI − Ao)
−1Bo (C.2.4)

Using the similarity transformation xd = VLxo, where VL the left Vandermonde matrix

assumed non-singular, we obtain:

{
ẋd = Adxd + Bdu
y = Cdxd

(C.2.5)

where





Ad = VLAoV
−1
L

Bd = VLBo

Cd = CoV
−1
L

with Ad =




L1 (0)
. . .

(0) Lr


 , Bd =




Bd1
...

Bdr


 =




N0 + L1N1 + · · ·+ Lr−1
1 Nr−1

...
N0 + LrN1 + · · ·+ Lr−1

r Nr−1




and Cd =
(

Cd1 · · · Cdr

)
=

(
0 · · · 0 I

)
V −1

L

Cd is the last block row of V −1
L .
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Then H(s) will be:

H(s) = Cd(sI − Ad)
−1Bd =

r∑
i=1

Cdi(sI − Li)
−1Bdi (C.2.6)

Hence a block partial fraction expansion of H(s) about a complete set of left solvents is

obtained.

C.2.2 Right MFD

We consider the transfer function of the same system described in Right MFD as follows:

H(s) = N(s)D−1(s) = [Nr−1s
r−1 + · · ·+ N1s + N0][s

r + Dr−1s
r−1 + · · ·+ D1s + D0]

−1 (C.2.7)

with {R1, R2,· · · , Rr} a complete set of right solvents of D(s).

The corresponding state space description in block controller form as follows:

{
ẋc = Acxc + Bcu

y = Ccxc
(C.2.8)

with Ac =




0 I 0 · · · 0
0 0 I · · · 0
...

...
. . . . . .

...
0 0 0 · · · I

−D0 −D1 −D2 · · · −Dr




, Bd =




0
...
0
I




and Nd =
(

N0 N1 · · · Nr−1

)

Satisfies

H(s) = Cc(sI − Ac)
−1Bc (C.2.9)

Using the similarity transformation xc = VRxd, with VR is the right Vandermonde matrix

assumed non-singular, we obtain

{
ẋd = Adxd + Bdu
y = Cdxd

(C.2.10)

where





Ad = V −1
R AcVR

Bd = V −1
R Bc

Cd = CcVR

with Ad =




R1 (0)
. . .

(0) Rr


,

Cd =
(

Cd1 · · · Cdr

)
=




N0 + N1R1 + · · ·+ Nr−1R
r−1
1

...
N0 + N1Rr + · · ·+ Nr−1R

r−1
r




and Bd =




Bd1
...

Bdr


 = V −1

R




0
...
0
I


 which is the last block column of V −1

R .
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It follows that :

H(s) = Cd(sI − Ad)
−1Bd =

r∑
i=1

Cdi(sI −Ri)
−1Bdi (C.2.11)

leading to a block partial fraction expansion of H(s) about a complete set of right solvents.

C.2.3 Expansion of the inverse of D(s)

From the block partial fraction expansion of the left MFD (equation C.2.6), a particular case

of interest is obtained if Nr−1 = · · · = N1 = 0 and N0 = I, in which case we obtain the

decomposition of D−1(s).

Since Bd =




I
...
I


 and Cd is the last block row of V −1

L , hence equation C.2.6 becomes:

D−1(s) =
r∑

i=1

Cdi(sI − Li)
−1 (C.2.12)

Like previously, from the block partial fraction expansion of the right MFD, given by equa-

tion C.2.11, and if Nr−1 = · · · = N1 = 0 and N0 = I, the decomposition of D−1(s) follows.

Since Cd =
(

I · · · I
)

and Bd is the last block column of V −1
R , it follows that equation

C.2.11 becomes:

D−1(s) =
r∑

i=1

(sI −Ri)
−1Bdi (C.2.13)

The following remark states the conditions to obtain the expansion of the inverse of a matrix

polynomial.

Remark C.2.1. The inverse of a matrix polynomial D(s) is obtained using equations C.2.12 or
C.2.13 iff D(s) presents a complete set of right or left solvents. The reason is that the condition
for the previous development to be possible is the fact that the right (left) block Vandermonde
matrix is non-singular, and this is verified only if a complete set of solvents of D(s) exist.

C.3 Illustrative example

Let D(s) = s2 +

( −1 1
0 −1

)
s +

(
0 −1
0 −2

)

with the following left solvents: L1 =

(
1 0
0 −1

)
, L2 =

(
0 1
0 2

)

Hence the left vandermonde matrix: VL =

(
I2 L1

I2 L2

)
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and its inverse is: V −1
L =




0 1/3 1 −1/3
0 2/3 0 1/3
1 −1/3 −1 1/3
0 −1/3 0 1/3




It follows that: D−1(s) = Cd1(sI2 − L1)
−1 + Cd2(sI2 − L2)

−1

or D−1(s) =

(
1 −1/3
0 −1/3

)(
s− 1 0

0 s + 1

)−1

+

( −1 1/3
0 1/3

)(
s −1
0 s− 2

)−1

then

D−1(s) =

(
1/s(s− 1) −1/s(s + 1)(s− 2)

0 1/(s + 1)(s− 2)

)

C.4 Conclusion

The block partial fraction expansion of a matrix transfer function expressed as a matrix fraction

description is obtained. From this expansion, the inverse of a matrix polynomial is determined

and it involves the knowledge of a complete set of solvents and the computation of the inverse

of a block Vandermonde matrix.
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Appendix D

Conversion methods

In chapter 3, a conversion method to transform a system in State Space Description (SSD) into

a system in Matrix fraction description (MFD), right or left, is given and used in the design

process. The condition was that the system must be block controllable (or block observable),

which means that the number of states n must be a multiple of the number of inputs m (or the

number of outputs p), i.e. n = µ ∗m (or n = ν ∗ p) where µ is the controllability index (or ν

the observability index).

If the dimensions of the system do not verify the previous condition then, according to Shieh

et al. [1], the system can be enlarged by adding a set of non-dominant stable eigenvalues on

the diagonal entries of the state matrix so that the condition is satisfied.

Conversion methods to transform a Transfer function (TF) description into an SSD descrip-

tion and from an MFD to a Transfer function description exist (see [2], [3], etc.)

In the following another more general method of conversion, proposed by Stefanidis et al.

in [2], is presented.

D.1 Introduction

Several methods are available for obtaining MFDs [4, 5, 6, 7, 8]. In general it is not difficult

to construct a rational function matrix as a product of a polynomial matrix and the inverse

of another polynomial matrix. The difficulty arises when one is interested in a co-prime (least

order) MFD. In engineering applications, the underlying system can be assumed finite and it is

often important to obtain a least-order model, particularly if the model is to be used to design

a compensator.

An approach used by Rosenbrock [3] requires elementary row-operations on the matrix

172
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[G(s)−I] which involves multiplication and division by polynomials. The method is numerically

unstable and is difficult to implement on a computer. In [4, 5, 6, 7, 9] the method of determining

a proper (causal) rational function matrix searches for a minimal polynomial basis for the right

or left null space of a polynomial matrix. In [2, 5, 6] numerically robust computational methods

have been developed, and these methods are attractive for computer software development.

D.2 Preliminaries

We start by defining the following needed terms.

D.2.1 Column and Row structure

A n×n polynomial matrix L(λ) of order m can be decomposed in two n×n polynomial matrices

L(λ) = Pc(λ) + Ec(λ) (D.2.1)

such that δcj(|Pc|) > δcj(Ec) where δcj stands for degree of the jth column.

Pc is called the column structure of L(λ) and Ec is called the column residue.

Similarly, the n × n polynomial matrix L(λ) can be decomposed in 2 n × n polynomial

matrices:

L(λ) = Pr(λ) + Er(λ) (D.2.2)

such that δrj(|Pr|) > δrj(Er) where δrj stands for the degree of the jth row.

Pr is called the row structure of L(λ) and Er is called the row residue.

In general we write:

Pc(λ) = Γc.diag{λν1λν2 , · · · , λνn} and Pr(λ) = Γr.diag{λµ1λµ2 · · ·λµn} (D.2.3)

Where Γc and Γr are rational n×n matrices of the highest column and row degree coefficients,

and diag{λ} is a diagonal matrix of highest degrees on λ of L(λ).

Example:

Let L(λ) =




5λ + 1 λ2 + 3λ + 2 4λ + 5
3λ + 1 2λ + 1 λ3 + λ2 + 2
λ + 7 3 3




The column decomposition of L(λ) is:

L(λ) =




5 1 0
3 0 1
1 0 0







λ 0 0
0 λ2 0
0 0 λ3


 +




1 3λ + 2 4λ + 5
1 2λ + 1 λ2 + 2
7 3 3



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And the row decomposition of L(λ) is:

L(λ) =




0 1 0
0 0 1
1 0 0







λ2 0 0
0 λ3 0
0 0 λ


 +




5λ + 1 3λ + 2 4λ + 5
3λ + 1 2λ + 1 λ2 + 2

7 3 3




Here Γc =




5 1 0
3 0 1
1 0 0


 and Γr =




0 1 0
0 0 1
1 0 0




Remark D.2.1. If Γc (Γr) is non-singular then L(λ) is column (row) proper.

D.2.2 Skeleton block matrix

Let an unknown n×n non-singular L(λ) of order m and degree r for which its column structure

Pc is specified but not its residue Ec. The information contained in Pc is sufficient to construct

the row block-matrix description Ls called the skeleton row block-matrix of L.

Ls is defined as having the following properties:

i) The degree of Ls is the degree of column structure matrix: δ(Ls) = δ(Pc) = r. Thus the

skeleton row block-matrix can be written as: Ls =
(

Ls0 · · · Lsr

)
.

ii) The dimension of Ls is: n× n(r + 1).

iii) The columns of Ls are composed of columns associated to the column structure matrix

Pc and columns associated to the column residue matrix Ec:

a) Columns associated to Pc: These columns are called the active columns of Ls (which

coefficients are known) the others are called inactive (null columns).

b) Columns in Ec: these are the columns indicated by ”?”. The number of the inactive

columns is nr−m and the number of the columns in Ec is equal to the order m but

if L(λ) is regular then the number of inactive columns will be m.

Example1:

Let Pc =




8 0 0
0 2 0
0 0 1


 diag{λ2λ3λ}

Then L(λ) can be written as:

L(λ) =




8λ2 0 ∗ λ2+? 0 ∗ λ2+?
0 ∗ λ3+? 2 ∗ λ3+? 0 ∗ λ3+?
0 ∗ λ+? 0 ∗ λ+? λ+?




And its Skeleton row block-matrix:

Ls =




0 0 0
... 8 0 0

... ? ? ?

0 2 0
... ? ? ?

... ? ? ?

0 0 0
... 0 0 1

... ? ? ?



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Example2:

Let Pr =




8 0 0
0 2 0
0 0 1


 diag{λ2λ3λ}

Then L(λ) can be written as: L(λ) =




8λ2+? 0 ∗ λ2+? 0 ∗ λ2+?
0 ∗ λ3+? 2λ3+? 0 ∗ λ3+?
0 ∗ λ+? 0 ∗ λ+? λ+?




And the transpose of its Skeleton column block-matrix:

LsT =




0 0 0
0 2 0
0 0 0
8 0 0
? ? ?
0 0 0
? ? ?
? ? ?
0 0 1
? ? ?
? ? ?
? ? ?




D.2.3 Resultant of a polynomial matrix

Let a nr × nc polynomial matrix L(λ) of degree r such that L =
(

L0 · · · Lr

)
.

Definition D.2.1. The resultant of order h of L is denoted < L >h and is defined by:

< L >h =̂
r∑

i=0

Ri ⊗ Li (D.2.4)

Where ⊗ denotes the Kronecker product and Ri
.
=

(
0((h+1)×i) Ih+1 0(h+1)×(m−i)

)

Example:

Let L =
(

L0 L1 L2

)

Then < L >2=




L0 L1 L2 0 0
0 L0 L1 L2 0
0 0 L0 L1 L2




where 0 stands for zero matrices of right dimensions.

D.3 Conversion algorithms

We consider a MIMO system described in state space equation as follows:

{
ẋ = Ax + Bu
y = Cx + Eu

(D.3.1)

Where A is an n × n state matrix, B is n ×m input matrix, C is an p × n ouput matrix and

E is an p×m transmission matrix.
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D.3.1 Conversion to a Right MFD

Using the previous notions of skeleton block matrix, the following algorithm converts a system

described in SSD to a right MFD: N(s)D−1(s).

We suppose the system controllable.

The following steps summarize the algorithm:

1. Determine the controllability indices of the state space system, let r be its highest index.

2. Construct the row structure matrix of the denominator D of degree r.

3. Construct the (unknown) skeleton block transpose column block-matrix DsT of D.

4. Solve for residue rows of the skeleton block matrix by solving the equation:

AB ∗DsT = 0 (D.3.2)

where:

AB =
(

ArB · · · AB B
)

(D.3.3)

5. Determine the block numerator:

NT =




CB 0 · · · 0

CAB CB
. . .

...
...

. . . . . . 0
CAr−1B · · · CAB CB


 ∗




D0

D1
...

Dr


 (D.3.4)

where 0 are null matrices of dimension p×m

6. If the transmission matrix E of the SSD is not a zero matrix then the numerator is

modified to: (
0p×m

NT

)
+ < E >T

δ(D) .DT (D.3.5)

Where < E > is the block resultant matrix of E of order the degree δ(D).

D.3.2 Conversion to a Left MFD

A similar algorithm can be used to transform the system in SSD to a left MFD: D−1(s)N(s)

and we suppose the system observable.

The algorithm is given by the following steps:
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1. Determine the observability indices of the state space system, let r be the highest index.

2. Determine the column structure of the denominator D of degree r.

3. Construct the (unknown) skeleton row block-matrix DsT of D.

4. Solve for residue rows of the skeleton block matrix by solving the equation:

D ∗ CA = 0 (D.3.6)

Where

CA =




CAr

...
CA
C


 (D.3.7)

5. Determine the block numerator:

NT =
(

D0 · · · Dr

)



CB CAB · · · CAr−1B

0
. . . . . .

...
...

. . . CB CAB
0 · · · 0 CB


 (D.3.8)

6. If the transmission matrix E of the SSD is not a zero matrix then the numerator is

modified as previously.

D.3.3 Illustrative example

Let the following be an SSD of a controllable and observable system with n=4 states, m=2

inputs and p=3 outputs (from [2] page 73).

{
ẋ = Ax + Bu
y = Cx + Eu

Where A =




−1 0 3 −1
4 −2 1 2
3 0 −3 4
−4 −2 −3 −4


, B =




2 1
0 2
1 −1
−1 0


,

C =



−1 2 1 −2
0 −1 −2 0
1 1 0 −2


 and E = [03×2]

Following the steps of the first algorithm to get a RMFD N(s)D−1(s) we have:

1. The controllability indices of the SSD system is: µ1 = 2 and µ2 = 2 (computed using the

row-searching algorithm for example).

2. The row structure matrix of D(s) is: Pr(s) = diag{sµ1 , sµ2} ∗ I2 or equivalently: Pr(s) =(
s2 0
0 s2

)
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3. The skeleton column block-matrix of D(s) is: Ds =




1 0
0 1
e1 e1

e2 e2

e3 e3

e4 e4




There are m=2 active structure rows and n=4 residue rows noted here ei to distinguish

them.

4. Solve the following equation for residue rows:
(

A2B AB B
)
Ds = 0

or :




2 −4 2 1
7 −1 0 2
−1 6 1 −1
−7 −5 −1 0







e4 e4

e3 e3

e2 e2

e1 e1


 =




2 27
−21 −18
−19 −50
9 20




To obtain D per blocs: DT =




1 0
0 1

−3.81 −7.13
6.64 13.81
2.51 0.83
27.18 40.86




5. Then the numerator is obtained as follows:

NT =

(
CB 0

CAB CB

)



1 0
0 1

−3.81 −7.13
6.64 13.81


 =




−1 2
−2 0
4 3

34.46 38.50
2.63 3.26
27.65 17.92




6. E = 0 then no need to modify the obtained numerator.

So the RMFD form of the system is:

N(s)D−1(s) =



−s + 34.46 2s + 38.5
−2s + 2.63 3.26
4s + 27.65 3s + 17.92




(
s2 − 3.81s + 2.51 −7.13s + 0.83

6.64s + 27.18 s2 + 13.81s + 40.86

)−1

D.4 Conclusion

The given conversion method is efficient and more general but more complex than the method

adopted in the design process. The method is well conditioned due to the use in step 2 of a

numerically robust routine to compute the inverse of a real matrix.
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