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Abstract—In this study we used the material elastic 

properties as a base. A tow dimensional cracked plate under 
traction is modelled by finite element method than a reduced 
model is built using the proper orthogonal decomposition 
method, for a cracked plate. The crack length is estimated as an 
inverse identification problem, basing on the deformation 
obtained from the boundary nodes of the structure considered as 
sensor points. A genetic algorithm and particle swarm 
optimization are used for the minimization of the error function 
which is expressed as the difference between displacement field of 
the boundaries caused by the calculated crack size and the field 
measured at the actual identity. The approach presented accurate 
results and could guess the real crack size in a precession less that 
1E-6 of the cost function. Aiming to help selecting the best 
optimization method for inverse crack identification problems, 
the accuracy of both optimization algorithms is put into question 
as result their performance is evaluated and compared. 

Keywords Particle swarm optimization, genetic algorithm, 

inverse problem, model reduction, crack size identification. 

I. INTRODUCTION 

Inverse problems particularly those used for crack detection 

and crack identification can be stated as an optimization task. 

They are defined as the problems where the output is known 

and the input or source of output remains to be determined [1]. 

In the case of the Inverse Elasto-Statics Problem (IESP) of 

internal defect identification, and the location, the orientation 

and the size of the crack are unknown but the displacements 

along the boundaries are known. In order to identify the crack, 

its corresponding boundary displacements data are compared 

with other data related to known cracks. 

In inverse identification problems, the optimization algorithm 

imposes respective computations performed by numerical 

model that should represent a compromise between high 

accuracy and short computational time. The boundary element 

method (BEM) is a well know structural analysis method for its 

low computational-cost [2,3], while the finite element method 

(FEM) is relatively a high computational-cost method. Model 

order reduction insures the advantages of FEM with lower cost 

[4]. 

Proper orthogonal decomposition (POD) is an model reduction 

techniques based on the results of simulations [5]. It has been 

used for damage identification [6-8]. Radial basis functions 

(RBF) is a powerful interpolation tools [9]. POD-RBD provide 

a high accuracy and widely improve the results of the reduced 

model [10-12]. 

The term optimization refers in most cases to minimize 

objective function by choosing values for its variables within a 

satisfactory range [13]. Particle swarm optimization (PSO) and 

Genetic algorithm (GA) are popular evolutionary optimization 

techniques used in mainly every optimization problem. They 

are suitable for crack identification, contrary to classical 

methods where the continuity of the objective function is 

essential. They also present a high possibility of converging to 

local optimum which is strongly dependent on choice of 

starting point [14,15]. 

The main purpose of this study is investigate and compare the 

performance and the efficiency of the two algorithms GA and 

PSO when applied to a crack size estimation problem. POD is 

used to build a reduced model of central cracked plate based on 

finite element results.  

II. MODEL REDUCTION 

A. Problem discription 

In the case of the elasticity, the crack is represented by a line 

segment. Thus, the parameters to be studied are the crack’s 

position, its length and orientation angle in the plane. In this 

work, the position and the orientation angle are fixed in the 

center of the plate by 0° angle, and the crack’s size is targeted. 

 

 
Figure 1:  Center crack tension specimen. 
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A plane strain plate is considered to be the 40 x 40 mm square. 

The Plate containing a single crack is subjected to a traction 

load (1mm displacement is imposed on both up and down 

sides) has been simulated using FE commercial code 

ABAQUS, where the displacement values of all nodes of 

external boundaries are collected for the construction of the 

reduced model, from applications of different crack sizes s 

belongs to the range 0 (no crack) to 12 mm. According to 

double symmetries, only a quarter of the plate has been 

modelled. 

B. POD-RBF 

POD is a powerful statistical method for data analysis 

employed as a model order reduction technique in many fields 

[16]. In our study, the POD is used to build a reduced model of 

a two dimensional cracked plate under traction, to determine 

the boundary displacement field corresponding to different 

crack sizes, based on the results of the finite element 

simulations, this known as the method of snapshots. The 

snapshot consists of the displacement vectors of the boundary 

nodes which are expected to be correlated.  They are stored in 

matrix U. 
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where N is the total number of nodes and S is the number of 

snapshot vectors Ui  or FEM simulations results, each one 

corresponding to a crack length value. Parameters matrix P 

stores the crack length valuesPi . The main purpose of POD is 

to construct a set Φ of orthogonal vectors called POD basis 

vectors, resembling the snapshot matrix U in an optimal way 

by exploiting the expected correlation between the results 

vectors expressed in the linear relationship: 

U = Φ ⋅ A                              (2) 

Where A is the matrix collecting the coefficients of the new 

basis combination. It is called the amplitude matrix. Referring 

to the orthogonality of Φ, it can be computed from: 

A =  ΦT ⋅ U                              (3) 

Optimal basis vectors are defined by the performance of the  

proper orthogonal decomposition (POD): 

Φ = U ⋅ V ⋅ Λ−
1

2       (4)  

Matrix V stores the normalized eigenvectors of the covariance 

matrix C  and Λ is a diagonal matrix storing its eigenvalues: 

C =  UT ⋅ U               (5) 

A high accuracy Φ  low dimensional approximation is extracted 

from Φ constructed as a POD basis. This is accomplished by 

preserving only K (K ≪ S) columns of Φ that correspond to the 

largest eigenvalues; consequently the amplitude matrix A  is 

specified by: 

A =  Φ T ⋅ U             (6) 

Since, 

U = Φ ⋅ A                                         (7) 

The use of RBF interpolation different sets of parameters can 

be generalized not already included in the initial selection P. 

The amplitudes matrix A  is defined by the combination of 

interpolation functions of the parameter vector  P gathered in 

the matrix G. The matrix B gathers the unknown coefficients of 

this combination: 

A = B ⋅ G                                     (8) 

The interpolation functions are stated by [17]: 

gi = gi( P − Pi ) =
1

  P−Pi  
2+c2

                 (9) 

Pi  is the parameter corresponding to Ui  (for i=1,2,…,S). The 

argument of the i-th RBF is the distance  P − Pi  between its 

current parameter  Pi  and the reference parameter P.  c  is the 

RBF smoothing factor. As the vector  P  is normalized, c  is 

defined in the range from 0 to 1.  

After the coefficient matrix B is evaluated, a reduced model of 

(8) can be put under vector form: 

a(P) = B ⋅ g(P)                                (10) 

By defining the amplitude vector as a function of parameters, 

the equation (7) can be expressed as the approximation of the 

snapshot u corresponding to a new parameter vector P: 

u(P) = Φ ⋅ a(P)                               (11) 

This reduced model is referred to as the trained POD-RBF 

network. It is completely able to reproduce unknown boundary 

displacement field of the structure corresponding to any set of 

crack parameter (length) P. It is noted that extrapolation outside 

the range of P leads to poor precision of the model. Also if the 

knot points Pi are very close to each other, the matrix G could 
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be singular, which can be avoided by reducing the c value. 

III. OPTIMIZATION ALGORITHMS 

A. Genetic Algorithm 

The genetic algorithm is an evolutionary optimization method, 

widely used in last decade [18]. 

In a genetic algorithm, individuals are the feasible solutions 

randomly generated in the design space. They evolve toward 

better solution iteratively in a process inspired from the natural 

evolution. Each individual has a set of properties represented in 

binary encoding or other encoding called chromosomes. They 

are allowed to reproduce and cross among themselves in order 

to obtain favorable solutions. The fitness is the objective 

function value, as the objective function plays the role of the 

environment. The best feasible solutions are given a higher 

probability of being chosen as parent to new individuals, where 

the properties of the parents are combined by exchanging 

chromosomes parts, producing two new designs. The mutation 

is then preformed on the resulting individuals, by randomly 

replacing the digits inside a randomly selected chromosome. 

These basic operators are repeated to create the next 

generations, until the stopping criterion is satisfied, i.e. 

generally when reaching a maximum number of generations or 

when a satisfactory fitness value has been achieved [19].  

The identification process is implemented in MATLAB. The 

chosen genetic parameters are: crossover rate = 0.8 and 

mutation rate = 0.01.  

The specific implementation is structured as follow: 

1. Creation of a starting population of N individuals 

randomly. Each individual has one chromosome, 

corresponding to the crack length. 

2. Evaluation of each individual, that correspond through the 

reduced model to a boundary displacement vector u P , 

then calculate the fitness value which is the error between 

the resulting vector and the reference displacement cause 

by the real crack parameters u P0  expressed as:  

 
F P =

 u P0 − u P  2

 u P0  
2

F Poptimal  = min⁡[F P ]

                        (12) 

                

3. Terminate the algorithm if the stopping criteria is reached. 

Else continue.  

4. Ranking the population according their fitness value. Then 

select a proportion for reproducing a new generation. The 

top ranked are favorable to be selected. 

5. Performance of the crossover operation. 

6. Mutation of an indicated percentage of the resulting 

individuals. 

7. Replacement of the old population by new one and go to 

step 2. 

B. Particle Swarm Optimization 

The Particle Swarm Optimization (PSO) is a population‐ based 

optimization method inspired from the behavior of bird flocks, 

which is characterized by distinct social and psychological 

principles. This method has drawn the wider attention of 

several researchers, in recent years. It can be used in both 

simple and large-scale structural optimization problems. 

The algorithm was first proposed by Kennedy and Eberhart 

[20], and has been modified to handle several optimization 

problems with presence or absence of constraints. PSO requires 

a relatively small number of parameters, which facilitates the 

implementation of the algorithm and reduces the computational 

cost. 

The main idea of PSO is that the candidate solution is 

considered as a particle moving through the design space, 

searching for the global optimum position. Initiated as a group 

of random particles, each particle is characterized by its 

position in the multidimensional space and its speed of 

movement. The particles cooperate with each other to achieve 

the solution based on their personal previous experience and 

that of their colleagues over iterations, by remembering the best 

position corresponding to the best fitness they had crossed so 

far called personal best (Pbest) and the best position that any of 

other particle of the swarm has crossed so far called global best 

(Gbest). Iteratively the speed of each particle is updated 

stochastically, then the positions are updated using the new 

speed vectors. 

The speed and the position of the particles are updated as 

follows: 

 vi t + 1  = w vi t  + c1 r1 ∙   x
Pb ,j −  xj(t)  +

c2 r2 ∙   x
Gb  −  xj(t)                            (13) 

 xi t + 1  =  xi t  + vi t + 1                    (14) 

 

The weight inertia parameter w is multiplied by the value of 

the particle speed at every iteration to control the acceleration 

of the particle in its original direction. 

Equal to 0.95 in this application, it can also be updated during 

iterations. c1 is a positive constant called cognitive parameter 

and controlling the step size toward the particle’s personal best
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position. c2  is the social parameter that control the step size 

toward the global best position. In this study c2 = c1 = 2.  r1  

and  r2  are vectors containing random numbers within the 

interval [0,1].  xj(t)  is the vector of the current positions of 

particles.  xPb ,j  is the vector  of  the  personal  best  position  

found  by  the  particle j.  xGb   is the vector of the global best 

position found by the entire swarm.  

The algorithm’s structure is described as follows:  

 

1. Initialization of the algorithm by randomly generating the 

particle’s position vectors within the design space and 

calculating their corresponding speed vectors.  

2. Evaluation of the fitness value for current positions of the 

particles corresponding to boundary displacement 

vector u P  given by POD-RBF (Eq.  (12)). 

3. Personal  best setting:  for each j particle, set the current 

position as the new xPb,j. If the current fitness value is 

better than the best fitness value in the particle’s history, it 

is set as the new Pbest. 

4. Global best setting: set as Gbest the best fitness value of all 

the particles. 

5. Updating:  Calculate particle velocity from Eq.(13)  and  

update  particle  position from Eq. (14).  

6. Feasibility check:  for any dimension i, if xi ≤ xmin  or 

xi ≥ xmax  then xi = xmin  and xi = xmax  respectively and 

vi = 0. 

7. Ending:  If the maximum number of iterations or a defined 

fitness value is reached, the algorithm is terminated; else, 

the steps 2 to 6 are repeated. 

IV. RESULTS AND DISCUSSION 

The inverse problem is formulated as a comparison between 

two vectors; one represents the boundary displacement 

proposed by the optimization processes at each evaluation, the 

second is the reference displacement field caused by the crack 

we want to predict its size. It is solved by GA and PSO.  

Because both methods are based on random initiation, 5 

applications of crack size estimation are made for real crack 

size equal 2 mm, giving different results in each application. A 

number of 100 iteration (generations for GA) and fitness value 

of 1E-06 are considered as a stopping criteria. Population size 

and particles number is equal to 10. 

 

A. Preformence of the identification algorithms 

Figure 2 and Figure 3 depicts respectively the fitness 

convergence and crack size convergence of GA and PSO from 

five applications. Table 1 illustrates the results issued from 

GA and  PSO, where minimum iterations is the minimum 

number of iteration taken until reaching the convergence 

criteria. Maximum iterations is the highest number of iteration 

taken until the stopping criterion is reached. The standard 

deviation  of the crack size result is calculated to show the 

sharpness of the methods. The average number of iterations 

and average time are measured from all five applications 

showing the power of each method. 

 

 
Figure 2:  Fitness convergence of GA and POD 

 

 

 
Figure 3:  Estimated size convergence for GA and POD 

TABLE 1: Crack size identification results from GA and PSO applications. 

 

 

 

 

 

 

 

 

 

 

Maximum 

iterations 

Minimum 

iterations 

average 

number of 

iterations 

average 

time (sec) 
Best fitness 

Best result 

(mm) 

standard 

deviation 

GA 100 6 73.8 430.8 2.44E-07 2.000207 0.0335 

PSO 55 5 39 228.8 3.66E-08 2.000102 0.0003 
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The results demonstrate that both algorithms provides results 

close to real crack size, but it is clearly shown the PSO 

technique is more adoptable for the crack size estimation 

problem, as it is very quick compared to GA, it take less 

iterations. PSO have successfully led to the real solution at 

every application, before the 55th iteration, unlike the GA 

which seemed to fail to attend the solution before the 100th 

iteration.  

It is noted that the PSO insure the convergence to the real 

result in every application which is expressed by their standard 

deviation equal to 0.031% which is far less than the one 

calculated from GA result 3.35%. 

In terms of computational time, there is big advantage for PSO 

when comparing the average needed time for all application. 

The GA tends to stagnate depending on the closeness of fist 

generation to the real solution. There is no big difference in 

minimum iteration number; 5 iterations by PSO and 6 

generations by GA, it took 31.9 second and 43.8 second 

respectively. 

B. Noise effect 

In order to study the stability of the inverse identification to 

measurements noise, four levels of perturbation has been 

added to the exact input deformation vector, for crack with 

size equal to 10 mm. Table. 2 illustrate the performance of 

both optimization algorithms for the noise levels: 1%, 2% 5% 

and 10% respectively, compared to the results of a noise-free 

application (0%). The noise is determined by the White 

Gaussian law. Noise level is indicated by a percent value 

which is linked to the standard deviation of the noise. In the 

table, equivalent to each noise level, the results of crack length 

and its corresponding fitness value are presented respectively.  

 

TABLE 2: testing noise effect on the accuracy of the 

optimization methods for crack size equal to 10 mm. 

 

Noise GA PSO 

0% 9.993 ; 2.2E-5 9.999 ; 7E-8 

1% 10.005 ; 1.5E-4 9.986 ; 5.5E-5 

2% 10.059 ; 2.6E-4 9.974 ; 1.1E-4 

5% 10.894 ; 3.4E-3 9.931 ; 2.6E-4 

10% 9.862 ; 5.4E-4 9.864 ; 5.4E-4 

 

The variations obtained in the crack identity are in good 

agreement with the noise levels. It is noted that 1% of noise 

level does not affect the results, both optimization methods 

presented good accuracy, with a slightly difference for the 

advantage of PSO approach, it is in ahead of GA by giving a 

minimum fitness value at each level.    

V. CONCLUSION 

In this paper a comparative study has been made using Particle 

Swarm Optimization and Genetic Algorithm for crack size 

identification by mean for model reduction. Overall the 

simulation results indicate that both GA and PSO can be used 

to identify  the size parameters accurately. With respect to 

minimizing the objective function Integral Square Error, the 

PSO determines a minimal value than does the GA. In terms 

of computational time, the PSO approach is faster than GA, 

although it is noted that neither algorithm takes what can be 

considered an acceptable time to determine the results. The 

stability of both optimization algorithms to measurement noise 

is tested by introducing a white Gaussian noise. 

The algorithms like GA and PSO are inspired by nature, and it 

has been proved that they lead to effective solutions in 

optimization problems. These techniques possess apparent 

robustness. There are various control parameters, and 

appropriate setting of these parameters is a key point for 

success. The possibility of performing hybrid approaches 

should be considered. Additionally for both approaches the 

major issue in implementation is based on the selection of an 

appropriate objective function. 
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