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Semi-Hurewicz spaces

Ljubi²a D.R. Ko£inac∗, Amani Sabah †, Moiz ud Din Khan ‡ � and Djamila Seba¶

Abstract

In this paper we study some covering properties in topological spaces
by using semi-open covers. We introduce and investigate the properties
of s-Hurewicz and almost s-Hurewicz spaces and their star versions.
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1. Introduction

The properties of Menger and Hurewicz, which are the basic and oldest selection
principles, take their origin in papers [12] and [6]. Both of them appeared as
counterparts of σ-compactness. A topological space X has the Menger (resp.
Hurewicz ) property, if for every sequence (Un : n ∈ N) of open covers of X there
exists a sequence (Vn : n ∈ N) such that every Vn is a �nite subset of Un and
the family

⋃
{V : V ∈ Vn, n ∈ N} is a cover of X (resp. each x ∈ X belongs to⋃

Vn =
⋃
{V : V ∈ Vn} for all but �nitely many n). Clearly, every σ-compact

space X has the Hurewicz property and every Hurewicz space has the Menger
property. Every Menger space is Lindelöf. As a generalization of Hurewicz spaces,
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the authors of [18] de�ned a topological space X to be almost Hurewicz if for each
sequence (Un : n ∈ N) of open covers of X there exists a sequence (Vn : n ∈
N) such that for each n ∈ N, Vn is a �nite subset of Un and for each x ∈ X,
x ∈

⋃
{Cl(V ) : V ∈ Vn} for all but �nitely many n. Clearly, the Hurewicz

property implies the almost Hurewicz property. The authors [18] showed that
every regular almost Hurewicz space is Hurewicz and gave an example that there
exists a Urysohn almost Hurewicz space that is not Hurewicz. On the study of
Hurewicz and almost Hurewicz spaces (and other weaker versions) the readers can
see the references [6, 7, 9, 16, 17, 18].

In 1963, N. Levine [11] de�ned semi-open sets in topological spaces. A set
A in a topological space X is semi-open if and only if there exists an open set
O ⊂ X such that O ⊂ A ⊂ Cl(O), where Cl(O) denotes the closure of the set O.
If A is semi-open, then its complement is called semi-closed [2]. The collection
of all semi-open subsets of X is denoted by SO(X). The union of any collection
of semi-open sets is semi-open, while the intersection of two semi-open sets need
not be semi-open. It happens if X is an extremally disconnected space [13]. The
intersection of open and semi-open set is semi-open. According to [2], the semi-
closure and semi-interior were de�ned analogously to the closure and interior: the
semi-interior sInt(A) of a set A ⊂ X is the union of all semi-open subsets of A; the
semi-closure sCl(A) of A ⊂ X is the intersection of all semi-closed sets containing
A. A set A is semi-open if and only if sInt(A) = A, and A is semi-closed if and
only if sCl(A) = A. Note that for any subset A of X

Int(A) ⊂ sInt(A) ⊂ A ⊂ sCl(A) ⊂ Cl(A).

The n-th power of a semi-open set in X is a semi-open set in Xn, whereas a semi-
open set in Xn may not be written as a product of semi-open sets of X. A subset
A of a topological space X is called a semi-regular set if it is semi-open as well as
semi-closed or equivalently, A = sCl(sInt(A)) or A = sInt(sCl(A)).

A mapping f : (X, τX)→ (Y, τY ) is called:

(1) semi-continuous if the preimage of every open set in Y is semi-open in X;
(2) s-open [1] if the image of every semi-open set in X is open in Y ;
(3) s-closed if the image of every semi-closed set in X is closed in Y ;
(4) quasi-irresolute if for every semi-regular set A in Y the set f←(A) is semi-

regular in X [4].

For more details on semi-open sets and semi-continuity, we refer to [2, 3, 11].
A space X is semi-regular if for each semi-closed set A and x /∈ A there exist

disjoint semi-open sets U and V such that x ∈ U and A ⊂ V [5].

1.1. Lemma. ([5]) The following are equivalent for a space X:

(i): X is a semi-regular space;

(ii): For each x ∈ X and U ∈ SO(X) such that x ∈ U , there exists V ∈
SO(X) such that x ∈ V ⊂ sCl(V ) ⊂ U ;

(iii): For each x ∈ X and each U ∈ SO(X) with x ∈ U , there is a semi-regular

set V ⊂ X such that x ∈ V ⊂ U .

The purpose of this paper is to investigate Hurewicz and almost Hurewicz spaces
(and their star versions) and their topological properties using semi-open covers.
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2. Preliminaries

A semi-open cover U of a space X is called;

• an sω-cover if X does not belong to U and every �nite subset of X is
contained in a member of U;

• an sγ-cover if it is in�nite and each x ∈ X belongs to all but �nitely many
elements of U;

• s-groupable if it can be expressed as a countable union of �nite, pairwise
disjoint subfamilies Un, n ∈ N, such that each x ∈ X belongs to

⋃
Un for

all but �nitely many n;
• weakly s-groupable if it is a countable union of �nite, pairwise disjoint sets
Un, n ∈ N, such that for each �nite set F ⊂ X we have F ⊂

⋃
Un for

some n.

For a topological space X we denote:

• sO the family of semi-open covers of X;
• sΩ the family of sω-covers of X;
• sOgp the family of s-groupable covers of X;
• sOwgp the family of weakly s-groupable covers of X.

For notation and terminology, we refer the reader to [10, 17].
Let A be a subset of X and U be a collection of subsets of X, then St(A,U) =⋃
{U ∈ U : U ∩A 6= ∅}. We usually write St(x,U) for St({x},U).
Let A and B be the sets whose elements are covers of a space X.

2.1. De�nition. ([8]) Sfin
∗(A,B) denotes the selection hypothesis:

For each sequence (Un : n ∈ N) of elements of A there is a sequence (Vn : n ∈ N)
such that for each n ∈ N, Vn is a �nite subset of Un, and

⋃
n∈N{St(V,Un) : V ∈ Vn}

is an element of B.

2.2. De�nition. ([8]) SSfin
∗(A,B) denotes the selection hypothesis:

For each sequence (Un : n ∈ N) of elements of A there is a sequence (Kn : n ∈ N)
of �nite subsets of X such that {St(Kn,Un) : n ∈ N} is an element of B.

2.3. De�nition. ([8]) S1
∗(A,B) denotes the selection hypothesis:

For each sequence (Un : n ∈ N) of elements of A there is a sequence (Un : n ∈ N)
such that for each n, Un ∈ Un and {St(Un,Un) : n ∈ N} is an element of B.

2.4. De�nition. ([8]) Ufin
∗(A,B) denotes the selection hypothesis:

For each sequence (Un : n ∈ N) of elements of A there is a sequence (Vn : n ∈ N)
such that for every n, Vn is a �nite subset of Un and {St(

⋃
Vn,Un) : n ∈ N} ∈ B.

2.5. De�nition. A space X is said to have:

• [15] star s-Menger property if it satis�es Sfin
∗(sO, sO).

• [15] star s-Rothberger property if it satis�es S1
∗(sO, sO).

For the de�nitions of star-Hurewicz and strongly star-Hurewicz spaces see [10].

3. Semi-Hurewicz and related spaces

3.1. De�nition. Call a space X:
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• semi-Hurewicz (or shortly s-Hurewicz ) if it satis�es: For each sequence
(Un : n ∈ N) of elements of sO there is a sequence (Vn : n ∈ N) such that
for each n ∈ N, Vn is a �nite subset of Un and for each x ∈ X for all but
�nitely many n, x ∈

⋃
Vn;

• almost s-Hurewicz if for every sequence (Un : n ∈ N) of semi-open covers
of X, there exists a sequence (Vn : n ∈ N) such that for every n ∈ N, Vn
is a �nite subset of Un and each x ∈ X belongs to sCl(

⋃
Vn) for all but

�nitely many n.

Evidently, we have

Hurewicz⇐ s−Hurewicz⇒ almost s−Hurewicz.

3.2. Example. (1) Every semi-compact space is s-Hurewicz. The converse is not
true. The real line R with the cocountable topology is a T1 semi-Hurewicz space
which is not semi-compact.

(2) The Sorgenfrey line S and the space of irrationals with the usual metric
topology are not semi-Hurewicz (because they are not Hurewicz, as it is well
known).

3.3. Example. There is a Hurewicz space which is not s-Hurewicz,
The real line with the usual metric topology is a Hurewicz space. On the other

hand, it is not an s-Hurewicz space, because from a sequence of covers whose
elements are sets of the form [a, b), a, b ∈ R, one cannot choose �nite subfamilies
whose union covers R. It follows from the fact that the sets [a, b), a, b ∈ R, form
a base for the Sorgenfrey line S which is not a Hurewicz space.

3.4. Theorem. Let X be a semi-regular space. If X is an almost s-Hurewicz
space, then X is s-Hurewicz.

Proof. Let (Un : n ∈ N) be a sequence of semi-open covers of X. Since X is a
semi-regular space, by Lemma 1.1, there exists for each n a semi-open cover Vn
of X such that {sCl(V ) : V ∈ Vn} forms a re�nement of Un. By assumption,
applied to the sequence (Vn : n ∈ N), there exists a sequence (Wn : n ∈ N)
such that for each n, Wn is a �nite subset of Vn and each x ∈ X belongs to⋃
{sCl(W ) : W ∈ Wn}. For every n ∈ N and every W ∈ Wn we can choose

UW ∈ Un such that sCl(W ) ⊂ UW . Let U′n = {UW : W ∈ Wn}. Then U′n is a
�nite subset of Un, n ∈ N. It is easy to see that each x ∈ X belongs to

⋃
U′n all

but �nitely many n, which means that X is s-Hurewicz. �

3.5. Theorem. A space X is almost s-Hurewicz if and only if for each sequence

(Un : n ∈ N) of covers of X by semi-regular sets, there exists a sequence (Vn : n ∈
N) such that for every n ∈ N, Vn is a �nite subset of Un and each x ∈ X belongs

to
⋃
Vn for all but �nitely many n ∈ N.

Proof. Let X be an almost s-Hurewicz space and let (Un : n ∈ N) be a sequence
of covers of X by semi-regular sets. Since every semi-regular set is semi-open,
(Un : n ∈ N) is a sequence of semi-open covers of X. By assumption, there exists
a sequence (Vn : n ∈ N) such that for every n ∈ N, Vn is a �nite subset of Un and
each x ∈ X belongs to

⋃
Vn for all but �nitely many n.
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Conversely, let (Un : n ∈ N) be a sequence of semi-open covers of X. Let
(U′n : n ∈ N) be the sequence de�ned by U′n = {sCl(U) : U ∈ Un}. Then elements
of each U′n are semi-regular sets and thus, by assumption, there exists a sequence
(Vn : n ∈ N) such that for every n ∈ N, Vn is a �nite subset of U′n and each x ∈ X
belongs to

⋃
Vn for all but �nitely many n. For each n ∈ N and V ∈ Vn there

exists UV ∈ Un such that V = sCl(UV ). Hence, x ∈ sCl(
⋃
{UV ) : V ∈ Vn} for all

but �nitely many n. So X is an almost s-Hurewicz space. �

3.6. Theorem. Every semi-regular subspace of an s-Hurewicz (almost s-Hurewicz)
space is s-Hurewicz (almost s-Hurewicz).

Proof. Because the proofs for both case are similar, we consider only the almost
s-Hurewicz case. Let A be a semi-regular subset of an almost s-Hurewicz space
X and let (Un : n ∈ N) be a sequence of semi-open covers of A. Each semi-open
subset of A is semi-open in X [14], so that Vn = Un

⋃
{X \A} is a semi-open cover

for X for every n ∈ N. Since X is almost s-Hurewicz, there exist �nite subsets
Wn of Vn, n ∈ N, such that each x ∈ X belongs to sCl(

⋃
Wn) for all but �nitely

many n ∈ N. By semi-regularity of A, sCl(X \ A) = X \ A and thus each a ∈ A,
belongs to sCl(

⋃
(Wn \ (X \ A))) for all but �nitely many n, i.e. the sequence

(Wn \ (X \A) : n ∈ N) witnesses for (Un : n ∈ N) that A is almost s-Hurewicz. �

Now we consider preservation (in the image or preimage direction) of the prop-
erties we consider under some kinds of mappings.

The proof of the next theorem is easy, obtained by applying de�nitions, and
thus is omitted.

3.7. Theorem. Let f : X → Y be a semi-continuous surjection. If X is an

s-Hurewicz space, then Y is a Hurewicz space.

3.8. Corollary. Let f : X → Y be a continuous surjection. If X is an s-Hurewicz
space, then Y is a Hurewicz space.

We de�ne now the notion of (strong) θ-semi-continuity which is an important
slight generalization of semi-continuity.

A mapping f : X → Y is θ-semi-continuous (resp. strongly θ-semi-continuous)
if for each x ∈ X and each semi-open set V ⊂ Y containing f(x) there is a semi-
open set U ⊂ X containing x such that f(sCl(U)) ⊂ sCl(V ) (resp. f(sCl(U)) ⊂
V ).

Evidently, each strongly θ-semi-continuous mapping is θ-semi-continuous.
Call a space X an almost semi-γ-set if for each sequence (Un : n ∈ N) of s-ω-

covers of X there is a sequence (Un : n ∈ N) such that Un ∈ Un for each n ∈ N
and {Un : n ∈ N} is an s-γ-cover of X.

3.9. Theorem. A θ-semi-continuous image of an almost semi-γ-set is an almost

semi-Hurewicz space.

Proof. Let f : X → Y be a θ-semi-continuous mapping of a semi-γ-setX to a space
Y . Let (Vn : n ∈ N) be a sequence of semi-open covers of Y and x ∈ X. For each
n ∈ N there is a set Vx,n ∈ Vn containing f(x). Since f is θ-semi-continuous there
is a semi-open set Ux,n ⊂ X containing x such that f(sCl(Ux,n)) ⊂ sCl(Vx,n). For
each n let Un be the set of all �nite unions of sets Ux,n, x ∈ X. Evidently, each Un
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is an s-ω-cover of X. As X is an almost semi-γ-set there is a sequence (Un : n ∈ N)
such that for each n, Un ∈ Un and for each x ∈ X the set {n ∈ N : x /∈ sCl(Un)}
is �nite.

Let Un = Ux1,n

⋃
Ux2,n

⋃
. . .

⋃
Uxin ,n

. To each Uxj ,n, j ≤ in, assign a set
Vxj ,n ∈ Vn with f(sCl(Uxj ,n)) ⊂ sCl(Vxj ,n). Let y = f(x) ∈ Y . Then from x ∈
sCl(Un) for all n ≥ n0 for some n0 ∈ N, we get x ∈ sCl(Uxp,n) for some 1 ≤ p ≤ in
which implies y ∈ f(sCl(Uxp,n)) ⊂ sCl(Vxp,n). If we put Wn =

⋃
{Vxj ,n : j =

1, 2, . . . , in}, we obtain the sequence (Wn : n ∈ N) of �nite subsets of Vn, n ∈ N,
such that each y ∈ Y belongs to all but �nitely many sets

⋃
{sCl(W ) : W ∈Wn}.

This just means that Y is an almost semi-Hurewicz space. �

3.10. Theorem. A strongly θ-semi-continuous image Y of an almost semi-Hurewicz

space X is a semi-Hurewicz space.

Proof. Let (Vn : n ∈ N) be a sequence of semi-open covers of Y . Let x ∈ X.
For each n ∈ N there is a set Vx,n ∈ Vn containing f(x). Since f is strongly
θ-semi-continuous there is a semi-open set Ux,n ⊂ X containing x such that
f(sCl(Ux,n)) ⊂ Vx,n. Therefore, for each n the set Un := {Ux,n : x ∈ X}
is a semi-open cover of X. As X is almost semi-Hurewicz, there is a sequence
(Fn : n ∈ N) of �nite sets such that for each n, Fn ⊂ Un and each x ∈ X belongs
to sCl (

⋃
Fn) for all but �nitely many n. To each F ∈ Fn assign a set WF ∈ Vn

with f(sCl(F )) ⊂ WF and put Wn = {WF : F ∈ F}. We obtain the sequence
(Wn : n ∈ N) of �nite subsets of Vn, n ∈ N, which witnesses for (Vn : n ∈ N) that
Y is a semi-Hurewicz space, as it is easily checked. �

A mapping f : X → Y is called contra-semi-continuous if the preimage of each
semi-open set in Y is semi-closed in X . f is said to be pre-semi-continuous if
f←(V ) ⊂ sInt(sCl(f←(V ))) whenever V is semi-open in Y .

3.11. Theorem. A contra-semi-continuous, pre-semi-continuous image Y of an

almost semi-Hurewicz space X is a semi-Hurewicz space.

Proof. Let (Vn : n ∈ N) be a sequence of semi-open covers of Y . Since f is
contra-semi-continuous, for each n ∈ N and each V ∈ Vn the set f←(V ) is semi-
closed in X. On the other hand, because f is pre-semi-continuous f←(V ) ⊂
sInt(sCl(f←(V ))), so that f←(V ) ⊂ sInt(f←(V )), i.e. f←(V ) = sInt(f←(V )).
Therefore, for each n, the set Un = {f←(V ) : V ∈ Vn} is a cover of X by semi-
open sets. As X is an almost semi-Hurewicz space there is a sequence (Gn : n ∈ N)
such that for each n, Gn is a �nite subset of Un and each x ∈ X belongs to⋃
{sCl(G) : G ∈ Gn}. Then Wn = {f(G) : G ∈ Gn} is a �nite subset of Vn for

each n ∈ N and each z ∈ Y belongs to sCl(
⋃
Wn) for all but �nitely many n. This

means that Y is a semi-Hurewicz space. �

A mapping f : X → Y is called weakly semi-continuous if for each x ∈ X and
each semi-open neighbourhood V of f(x) there is a semi-open neighbourhood U
of x such that f(U) ⊂ sCl(V ).

3.12. Theorem. A weakly semi-continuous image Y of a semi-Hurewicz space X
is an almost semi-Hurewicz space.
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Proof. Let (Vn : n ∈ N) be a sequence of open covers of Y . Let x ∈ X. Then
for each n ∈ N there is a V ∈ Vn such that f(x) ∈ V . Since f is weakly semi-
continuous there is a semi-open set Ux,n in X such that x ∈ Ux,n and f(Ux,n) ⊂
sCl(V ). The set Un := {Ux,n : x ∈ X} is a semi-open cover of X. Apply the
fact that X is a semi-Hurewicz space to the sequence (Un : n ∈ N) and �nd a
sequence (Fn : n ∈ N) of �nite sets such that for each n, Fn ⊂ Un and each x ∈ X
belongs to

⋃
Fn for all but �nitely many n. To each n and each U ∈ Fn assign

a set VU ∈ Vn such that f(U) ⊂ sCl(VU ) and put Wn = {VU : U ∈ Fn}. Then
each z ∈ Y belongs to sCl(

⋃
Wn) for all but �nitely many n, i.e. Y is an almost

semi-Hurewicz space. �

4. Star semi-Hurewicz property

4.1. De�nition. Call a space X:

• star s-Hurewicz (shortly denoted SsH) if it satis�es: For each sequence
(Un : n ∈ N) of elements of sO there is a sequence (Vn : n ∈ N) such that
for each n ∈ N, Vn is a �nite subset of Un, and each x ∈ X belongs to
St(

⋃
Vn,Un) for all but �nitely many n;

• strongly star s-Hurewicz (denoted SSsH) if it satis�es: For each sequence
(Un : n ∈ N) of elements of sO there is a sequence (An : n ∈ N) of �nite
subsets of X, and each x ∈ X belongs to St(An,Un) for all but �nitely
many n.

Recall that a space X is star semi-compact, denoted SsC, (star semi-Lindelöf,
denoted SsL) if for each semi-open cover U of X there is a �nite (countable)
V ⊂ U such that St(

⋃
V,U) = X. X is strongly star semi-compact, shortly SSsC,

(strongly star semi-Lindelöf, SSsL) if for each semi-open cover U of X there is a
�nite (countable) A ⊂ X such that St(A,X) = X.

Evidently, we have the following diagram:

SSsC ⇒ SSsH ⇒ SSsL

⇓ ⇓ ⇓
SsC ⇒ SsH ⇒ SsL

Call a space X σ-strongly star semi-compact if it is union of countably many
strongly star semi-compact spaces.

4.2. Theorem. Every σ-strongly star semi-compact space is strongly star s-Hurewicz.

Proof. Let X be σ-strongly star semi-compact space. Let X =
⋃
n∈NXn, where

each Xn is strongly star semi-compact. Suppose that X1 ⊃ X2 ⊃ . . . ⊃ Xn ⊃ . . .,
because the union of �nitely many strongly star semi-compact spaces is strongly
star semi-compact. Let (Un : n ∈ N) be a sequence of covers of X by semi-open
sets. For each n let An be a �nite subset of Xn such that St(An,Un) ⊃ Xn. It
follows that each point of X belongs to all but �nitely many sets St(An,Un). That
is, the sequence (An : n ∈ N) shows that X is strongly star s-Hurewicz space. �

4.3. Theorem. Let X be an extremally disconnected space, X is star s-Hurewicz
space if and only if X satis�es Ufin

∗(sO, sOgp).



60

Proof. Let (Un : n ∈ N) be a sequence of covers of X by semi-open sets. Since X
is star s-Hurewicz space, there exists a sequence (Vn : n ∈ N) such that for each
n ∈ N, Vn is a �nite subset of Un, and each x ∈ X belongs to St(

⋃
Vn,Un) for all

but �nitely many n. This implies that {St(
⋃

Vn,Un) : n ∈ N} is an sγ-cover of
X. Since each countable sγ-cover is s-groupable, {St(

⋃
Vn,Un) : n ∈ N} ∈ sOgp.

Conversely, let (Un : n ∈ N) be a sequence of covers of X by semi-open sets.
Let

Hn =
∧

i≤n
Ui.

Then (Hn : n ∈ N) is a sequence of semi-open covers of X since X is extremally
disconnected. Use now Ufin

∗(sO,sOgp) property of X. For each Hn and for each
n ∈ N select a �nite set Vn ⊂ Hn such that the set {St(

⋃
Vn,Hn) : n ∈ N}

is an s-groupable cover of X. Let n1 < n2 < ... < nk < . . . be a sequence of
natural numbers which witnesses this fact, i.e. for each x ∈ X, x belongs to⋃
{St(

⋃
Vi,Hi) : nk < i ≤ nk+1} for all but �nitely many k. Put

Wn =
⋃
i<n

Vi, for n < n1;

Wn =
⋃

nk<i≤nk+1

Vi, for nk ≤ n < nk+1.

Then the sequence (Wn : n ∈ N) shows that X satis�es star s-Hurewicz property
because each x ∈ X belongs to all but �nitely many St(

⋃
Wn,Un). �

4.4. De�nition. A space X is said to satisfy SsH≤n if for each sequence (Un : n ∈
N) of elements of sO there is a sequence (Vn : n ∈ N) such that for each n ∈ N,
Vn ∈ [Un]≤n, and the set {St(

⋃
Vn,Un) : n ∈ N} is an sγ-cover.

4.5. Theorem. Let X be an extremally disconnected space satisfying SsH≤n. Then

X satis�es S1
∗(sO, sOgp).

Proof. Let (Un : n ∈ N) be a sequence of semi-open covers of X. For each n de�ne

Vn =
∧
{Ui : (n− 1)n/2 < i ≤ n(n+ 1)/2}.

As X is extremally disconnected, each Vn is a semi-open cover of X. By applying
SsH≤n to the sequence (Vn : n ∈ N), we can �nd a sequence (Wn : n ∈ N) such that
for each n, Wn is a subset of Vn having ≤ n elements, and {St(

⋃
Wn,Vn) : n ∈ N}

is an sγ-cover of X. Write Wn = {Wi : (n − 1)n/2 < i ≤ n(n + 1)/2}, and each
Wi ∈Wn as the intersection of some elements from Uj , (n−1)n/2 < j ≤ n(n+1)/2.
For each Wi take also the set Uj ∈ Uj which is a term in the above representation
of Wi. The set {St(Un,Un) : n ∈ N} is a semi-open groupable cover of X. For,
consider the sequence n1 < n2 < . . . < nk < . . . in N, where nk = k(k − 1)/2.
Then, as it is easily checked, for each x ∈ X the fact x ∈

⋃
nk<i≤nk+1

St(Wi,Ui) for

all but �nitely many k, implies that the cover {St(Un,Un) : n ∈ N} is s-groupable,
i.e. that X satis�es S1

∗(sO, sOgp). �

In a similar way we prove the following theorem.
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4.6. Theorem. Let an extremally disconnected space X satis�es the condition

SSsH≤n: For each sequence (Un : n ∈ N) of semi-open covers of X there is

a sequence (Sn : n ∈ N) of subsets of X such that for each n |Sn| ≤ n and

{St(Sn,Un) : n ∈ N} is an s-γ cover of X. Then X satis�es SS1
∗(sO, sOgp).

Proof. Let (Un : n ∈ N) be a sequence of semi-open covers of X. For each n, as in
the proof of the previous theorem, let

Vn =
∧

(n−1)n
2 <i≤n(n+1)

2

Ut.

Apply now SSsH≤n to the sequence (Vn : n ∈ N), and �nd a sequence (Fn : n ∈ N)
of subsets of X such that for each n, |Fn| ≤ n and {St(Fn,Vn) : n ∈ N} is
an sγ cover of X. For every x ∈ X there exists positive integer n0 such that

x ∈ St(Fn,Vn) for all n > n0. Write for each n, Fn = {xj : (n−1)n
2 < j ≤ n(n+1)

2 }.
The sequence n1 < n2 < . . . < nk < . . . of natural numbers de�ned by nk = k(k−1)

2 ,
witnesses for (Un : n ∈ N) that X satis�es SS1

∗(sO, sOgp). Indeed, it is evident
that each x ∈ X belongs to

⋃
nk<j≤nk+1

St(xj ,Uj) for all but �nitely many k. �

4.7. Theorem. If a space X satis�es Ufin
∗(sO, sOwgp), then any open, semi-closed

subset of X satis�es Ufin
∗(sO, sΩ).

Proof. Let A be an open and semi-closed subset of X and let (Hn : n ∈ N)
be a sequence of semi-open covers of A. Because A is open, hence semi-open,
for each n and each H ∈ Hn the set H is semi-open in X. Therefore, setting
Sn = Hn

⋃
(X \ A), we get a sequence (Sn : n ∈ N) of semi-open covers of X.

Applying Ufin
∗(sO, sOwgp) for X we �nd a sequence (Wn : n ∈ N) such that for

each n, Wn is a �nite subset of Sn and {St(
⋃

Wn, Sn) : n ∈ N} is an s-weakly
groupable cover of X, i.e. there is a sequence n1 < n2 < · · · < nk < · · · of natural
numbers such that for each �nite set F in X one has

F ⊂
⋃
{St(∪Wi, Si) : nk < i ≤ nk+1}

for some k. For each n ∈ N put Kn = Wn \ {X \ A}. Then each Kn is a �nite
subset of Hn. De�ne now

Gn =
⋃
i<n

Ki, for n < n1,

Gn =
⋃

nk<i≤nk+1

Ki, for nk < n ≤ nk+1.

Each Gn is a �nite subset ofHn and for each �nite E ⊂ A we have E ⊂ St(∪Gi,Ui).
Hence, A satis�es Ufin

∗(sO, sΩ). �

4.8. Theorem. For an extremally disconnected space X the following are equiv-

alent:

(1) X has the strongly star-s-Hurewicz property;
(2) X satis�es SSfin

∗(sO, sOgp).

Proof. (1) ⇒ (2): It is obvious because countable sγ-covers are s-groupable and
SSfin

∗ is monotone in the second variable.
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(2) ⇒ (1): Let (Un : n ∈ N) be a sequence of covers of X by semi-open sets.
Let for each n,

Wn =
∧

i≤n
Ui.

Each Wn is a semi-open cover of X. Apply SSfin
∗(sO, sOgp) to the sequence (Wn :

n ∈ N). We �nd a sequence (Bn : n ∈ N) of �nite subsets of X such that
{St(Bn,Wn) : n ∈ N} is an s-groupable cover of X. Let n1 < n2 < · · · < nk < · · ·
be sequence of natural numbers such that for every y in X, we have

y ∈
⋃

nk≤n<nk+1

St(Bi,Wi)

for all but �nitely many k ∈ N. For each n, let

Sn =
⋃
i<n1

Bi, for n < n1;

Sn =
⋃

nk≤i≤nk+1

Bi, for nk ≤ n < nk+1.

Each Sn is a �nite subset of X. We claim that the set {St(Sn,Wn) : n ∈ N} is an
sγ-cover of X.

Let x ∈ X. There exist t ∈ N such that x ∈
⋃
nk≤n<nk+1

Bi for all k > t. Since

St(Bi,Wi) ⊂ St(Si,Ui) for all i with nk ≤ i < nk+1, we have that for each k > t,
x ∈ St(Sk,Uk), that is {St(Sn,Un) : n ∈ N} is an sγ-cover of X. �

Another characterization of strongly star s-Hurewicz spaces is given in the next
theorem.

4.9. Theorem. A space X is a strongly star s-Hurewicz space if and only if

for every sequence (Un : n ∈ N) of semi-open covers of X there is a sequence

(Sn : n ∈ N) of �nite subsets of X such that for every x ∈ X, St(x,Un) ∩ Sn 6= ∅
for all but �nitely many n.

Proof. Let (Un : n ∈ N) be a sequence of covers of X by semi-open sets. There
exists a sequence (Fn : n ∈ N) of �nite subsets of X such that each x ∈ X belongs
to St(Fn,Un) for all but �nitely many n. In other words, for each x ∈ X there
exists n0(x) ∈ N such that x ∈ St(Fn,Un) for all n > n0. St(Fn,Un) is the union
of those elements of Un which intersect Fn. St({x},Un) is the union of those
elements of Un which contains x. This implies St({x},Un)∩Fn 6= ∅ for all n > n0.

Conversely, let (Un : n ∈ N) be a sequence of covers of X by semi-open sets.
Then, by assumption, there is a sequence (An : n ∈ N) of �nite subsets of X such
that for every x ∈ X there exists n0 ∈ N such that St({x},Un) ∩ An 6= ∅ for all
n > n0 . This implies x ∈ St(An,Un) for all but �nitely many n. Therefore,
x ∈ St(An,Un) for all but �nitely many n, i.e. X is strongly star s-Hurewicz. �

Now we consider preservation of (stronly) star s-Hurewicz property under usual
topological operations.

4.10. Theorem. A semi-open Fσ-subset of a strongly star s-Hurewicz space is

strongly star s-Hurewicz.



63

Proof. Let X be a strongly star s-Hurewicz space and let A =
⋃
{Mn : n ∈ N}

be a semi-open Fσ-subset of X, where each Mn is closed in X for each n ∈ N.
Without loss of generality, we can assume that Mn ⊂Mn+1 for each n ∈ N. Now
we show that A is strongly star s-Hurewicz space. Let (Un : n ∈ N) be a sequence
of semi-open covers of A. We need to �nd a sequence (Fn : n ∈ N) of �nite subsets
of A such that for each a ∈ A, a ∈ St(Fn,Un) for all but �nitely many n. For each
n ∈ N, let Vn = Un

⋃
{X \Mn}. Then (Vn : n ∈ N) is a sequence of semi-open

covers of X. There exists a sequence (F ′n : n ∈ N) of �nite subsets of X such that
for each x ∈ X, x ∈ St(F ′n,Vn) for all but �nitely many n, since X is a strongly
star s-Hurewicz space. For each n ∈ N, let Fn = F ′n ∩ A. Thus (Fn : n ∈ N) is
a sequence of �nite subsets of A. For every a ∈ A, there exists k ∈ N such that
a ∈ Fn and a ∈ St(F ′n,Vn) for each n > k. Hence a ∈ St(Fn,Un) for n > k, which
shows that A is strongly star s-Hurewicz. �

4.11. Theorem. If each �nite power of a space X is star s-Hurewicz, then X
satis�es Ufin

∗(sO, sΩ).

Proof. Let (Un : n ∈ N) be a sequence of covers of X by semi-open sets. Let N =
N1

⋃
N2

⋃
· · · be a partition of N into in�nitely many in�nite pairwise disjoint sets.

For every k ∈ N and every t ∈ Nk let Wt = {U1×U2×· · ·×Uk : U1, . . . Uk ∈ Ut} =
Ukt . Then (Wt : t ∈ Nk) is a sequence of semi-open covers of Xk, and since Xk is a
star s-Hurewicz space, we can choose a sequence (Ht : t ∈ Nk) such that for each t,
Ht is a �nite subset of Wt and

⋃
t∈Nk
{St(H,Wt) : H ∈ Ht} is a semi-open cover of

Xk. For every t ∈ Nk and everyH ∈ Ht we haveH = U1(H)×U2(H)×· · ·×Uk(H),
where Ui(H) ∈ Ut for every i ≤ k. Set Vt = {Ui(H) : i ≤ k,H ∈ Ht}. Then for
each t ∈ Nk, Vt is a �nite subset of Ut.

We claim that {St(
⋃
Vn,Un) : n ∈ N} is an sω-cover of X. Let F = {x1, ..., xp}

be a �nite subset of X. Then y = (x1, ..., xp) ∈ Xp so that there is an n ∈ Np such
that y ∈ St(H,Wn) for some H ∈ Hn . But H = U1(H)× U2(H)× · · · × Up(H),
where U1(H), U2(H), . . . , Up(H) ∈ Vn. The point y belongs to some W ∈ Wn of
the form V1×V2×· · ·×Vp, Vi ∈ Un for each i ≤ p, which meets U1(H)×U2(H)×
· · · × Up(H). This implies that for each i ≤ p, we have xi ∈ St(Ui(H),Un) ⊂
St(

⋃
Vn,Un), that is, F ⊂ St(

⋃
Vn,Un). Hence, X satis�es Ufin

∗(sO, sΩ). �

In a similar way one proves the following theorem.

4.12. Theorem. If all �nite powers of a space X are strongly star s-Hurewicz,
then X satis�es SSfin

∗(sO, sΩ).

Proof. Let (Un : n ∈ N) be a sequence of covers of X by semi-open sets. Let
N = N1

⋃
N2

⋃
... be a partition of N into in�nite pairwise disjoint sets. For every

k ∈ N and every t ∈ Nk let Wt = Ukt . Then (Wt : t ∈ Nk) is a sequence of semi
open covers of Xk. Applying strongly star s-Hurewicz property of Xk we can get
a sequence (Vt : t ∈ Nk) of �nite subsets of Xk such that each x ∈ Xk belongs
to St(Vt,Wt) : t ∈ Nk, for all but �nitely many t. For each t consider At a �nite
subset of X such that Vt ⊂ Akt .

We show that {St(An,Un) : n ∈ N} is an sω-cover of X. Let F = {x1, ..., xp}
be a �nite subset of X. Then (x1, ..., xp) ∈ Xp such that there is n ∈ Np and
(x1, ..., xp) ∈ St(Vn,Wn) ⊂ St(Apn,Wn). Consequently, F ⊂ St(An,Un). �
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The following two theorems give relations between strongly star s-Hurewicz
spaces and s-Hurewicz and s-Lindelöf spaces.

A space X is called meta semi-compact if every semi-open cover U of X has a
point-�nite semi-open re�nement V (that is, every point of X belongs to at most
�nitely many members of V).

4.13. Theorem. Every strongly star s-Hurewicz meta semi-compact space is s-
Hurewicz space.

Proof. Let X be a strongly star s-Hurewicz meta semi-compact space. Let (Un :
n ∈ N) be a sequence of semi-open covers of X. For each n ∈ N, let Vn be a point-
�nite semi-open re�nement of Un. Since X is strongly star s-Hurewicz, there is
a sequence (Fn : n ∈ N) of �nite subsets of X such that each x ∈ X belongs to
St(Fn,Vn) for all but �nitely many n.

Since Vn is a point-�nite re�nement and each Fn is �nite, elements of each
Fn belong to �nitely many members of Vn say Vn1 , Vn2 , Vn3 , . . . , Vnk

. Let V′n =
{Vn1 , Vn2 , Vn3 , . . . , Vnk

}. Then St(Fn,Vn) =
⋃
V′n for each n ∈ N. We have that

each x ∈ X belongs to
⋃
V′n for all but �nitely many n. For every V ∈ V′n choose

UV ∈ Un such that V ⊂ UV . Then, for every n, {UV : V ∈ V′n} = Wn is a �nite
subset of Un and each x ∈ X belongs to

⋃
Wn for all but �nitely many n, that is

X is an s-Hurewicz space. �

4.14. De�nition. ([15]) A space X is said to be meta semi-Lindelöf if every
semi-open cover U of X has a point-countable semi-open re�nement V.

4.15. Theorem. Every strongly star s-Hurewicz meta semi-Lindelöf space is a

semi-Lindelöf space.

Proof. Let X be a strongly star s-Hurewicz meta semi-Lindelof space. Let U be a
semi-open cover of X then there exists V, a point-countable semi-open re�nement
of U. Let Vn = V for each n ∈ N. Since X is strongly star s-Hurewicz, there
exists a sequence (Fn : n ∈ N) of �nite subsets of X such that for each x ∈ X,
x ∈ St(Fn,Vn) for all but �nitely many n.

For every n ∈ N denote by Wn the collection of all members of V which intersect
Fn. Since V is point-countable and Fn is �nite, Wn is countable. So, the set
W =

⋃
n∈N Wn is a countable subset of V and is a cover of X. For every W ∈ W

pick a member UW ∈ U such that W ⊂ UW . Then {UW : W ∈W} is a countable
subcover of U. Hence, X is a semi-Lindelöf space. �

We end this section with few observations on almost star s-Hurewicz spaces.

4.16. De�nition. Call a space X almost star s-Hurewicz if for each sequence
(Un : n ∈ N) of semi-open covers of X there exists a sequence (Vn : n ∈ N) such
that for every n ∈ N, Vn is a �nite subset of Un and each x ∈ X belongs to
sCl(St(

⋃
Vn,Un)) for all but �nitely many n.

4.17. Theorem. A space X is an almost star s-Hurewicz space if and only if

for each sequence (Un : n ∈ N) of covers of X by semi-regular sets there exists a

sequence (Vn : n ∈ N) such that for every n ∈ N, Vn is a �nite subset of Un and

each x ∈ X belongs to sCl(St(
⋃

Vn,Un)) for all but �nitely many n ∈ N.
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Proof. (=⇒) Since every semi-regular set is semi-open, it is obvious.

(⇐=) Conversely, let (Un : n ∈ N) be a sequence of semi-open covers of X.
Let U′n = {sCl(U) : U ∈ Un}. Then U′n is a cover of X by semi-regular sets.
By assumption there exists a sequence (Vn : n ∈ N) such that for every n ∈ N,
Vn is a �nite subset of U′n and each x ∈ X there is n0(x) ∈ N such that x ∈
sCl(St(

⋃
Vn,U

′
n)) for all n ≥ n0(x).

For each V ∈ Vn we can �nd UV ∈ Un such that V = sCl(UV ). Let V′n =
{UV : V ∈ Vn}. It is easy to see now that x belongs to sCl(

⋃
V′n,Un) for all

n ≥ n0(x). �

4.18. Theorem. A quasi-irresolute image of an almost star s-Hurewicz space is

an almost star s-Hurewicz space.

Proof. Let X be an almost star s-Hurewicz space and Y be a topological space.
Let f : X → Y be a quasi-irresolute surjection and let (Un : n ∈ N) be a sequence
of covers of Y by semi-regular sets. Let U′n = {f←(U) : U ∈ Un}. Then each U′n is
a cover of X by semi-regular sets since f is quasi-irresolute. Since X is an almost
star s-Hurewicz space, there exists a sequence (V′n : n ∈ N) such that for every
n ∈ N, V′n is a �nite subset of U′n and each x ∈ X belongs to sCl(St(

⋃
V′n,U

′
n))

for all but �nitely many n.
It is not hard to verify that setting Vn = {f(V ) : V ∈ V′n}, each y ∈ Y belongs

to all but �nitely many sets sCl(St(
⋃

Vn,Un)) which means that Y is an almost
s-Hurewicz space. �
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