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Abstract— One aim of controlling a manipulator robot is to 

maximize its performances such as accuracy, speed, time etc…. 

However, limiting the power of actuators causes a limitation of 

their generalized accelerations and velocities; this is due to the 

high inertial forces, which create dangerous voltages at the 

machines elements. 

This paper propose an algorithm to solve the problem of 

maximizing the manipulator performances considering that the 

end-effector position and orientation is characterized by a 6x1 

vector i.e., six degrees of freedom; moreover, the need to move 

the end-effector from the start position to the target with a 

minimum time, without violating its boundaries. 

The presented solution is well suited to this context. It is optimal 

with respect to time constraints, and it allows a direct calculation.  

 

Keywords— manipulator robot; optimization algorithm; speed, 

acceleration ; minimal time. 

I. INTRODUCTION 

One aim of controlling a manipulator robot is to maximize 

its performances (accuracy and speed). However, limiting the 

power of actuators causes a limitation of their generalized 

accelerations iq  (1) and their generalized velocities iq  (2); 

this is due to the high inertial forces, which create dangerous 

voltages at the machines elements, and very high friction 

forces (bearings wear) that actuators cannot support. 

maxii qq         (1) 

maxii qq       (2) 

In 2D coordinate system  iqiq  , , we have a permissible 

range of complex form, where we can satisfy the above 

inequalities as shown in Fig. 1. 

The papers [1, 2, 3] present some essential works to 

determine the relative positions of the robot manipulator links. 

These positions are used to develop the algorithm and the 

optimization program of the motion. 

Several works have addressed the optimization problem 

such as [4, 5, 6]. However, this problem is far from being 

exhausted due to the different realizations of mechanical 

system models. Among the problems in this area we have: the 

calculation of geometric models of facilities and technological 

equipment with numerical control (CNC), the possibilities of 

hold-put of pieces, the use of kinematic and dynamic models 

of manipulator robots used in these facilities and equipment, 

the mobile robotics equipment etc.. 

Posing the problem of maximizing the manipulator 

performances considering that the end-effector position and 

orientation is characterized by a 6x1 vector i.e., six degrees of 

freedom (three for positioning and three for the orientation); 

moreover, the need to move the end-effector from the start 

point to the target with a minimum time, without violating the 

limits. At boundary conditions (start and target position), the 

speed of the manipulator robot links is zero. 

The formulation of the problem in this way is very difficult 

to solve, because virtually the manipulator admits limitations 

on the generalized coordinates iq  (we cannot get all the 

positions of the end-effector). To facilitate the task we assume 

that except for the start and target positions any position can 

be achieved. 

I. OPTIMAL MOTION OF A MANIPULATOR 

ROBOT IN STATIC ENVIRONMENT 

 

The accurate data for determining the optimal motions of 

a manipulator are: 

The accuracy of the permissible positioning  P  ; 

 The boundary positions of the joints; 

 The initial and target positions of the manipulator 

movements; 

 
Fig. 1. Description of the speed, acceleration relationship. 
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Fig. 2. The configuration of the cell and of the coordinate systems. 

 The transition matrices, defining the layout of equipment 

according to the relative coordinate systems of the 

manipulators; 

 The matrices giving the positions of pieces according to 

the equipment; 

 The possible cases of the motion vector direction 

approaches in the vicinity of the workspace and of loading 

and unloading;  

 The boundary points belonging to the contours of 

geometrical shapes, of trajectories, and the boundaries on 

the generalized coordinates of the robot manipulator; 

 The kinematic or dynamic model of the manipulator; 

 

The problem is to find the positions of the crossing points 

constituting the trajectory, relative to the n
th

 workspace of the 

manipulator. Solving this problem is done by the computer-

aided design and modeling of the manipulator movement 

based on the kinematic or dynamic model of the mechanical 

structure. 

 

The crossing points of the trajectory corresponding to the 

minimum time to describe the trajectory of the robot 

manipulator are chosen based on the calculations of the overall 

crossing time corresponding to different grid points (the grid 

built in the manipulator workspace from the start to the end 

point). 

 

The main theoretical and methodological steps, used 

during the construction of the algorithm are: 

We assign to each set up equipment a coordinate system 

oeixeiyeizei and for the robot system orxryrzr (see Fig. 2). 

oeixeiyeizei: Coordinate system corresponding to the i
th

 

equipment. 

For the transition between systems we used the following 

4X4 matrices. 

Mrp: The transition matrix from piece system to robot system, 

Mrm: The transition matrix from the machine system relative to 

that of the robot, 

Mmp: The transition matrix from the piece system relative to 

that of the machine, 

Mrp=MrmMmp,   (3) 

The position of the piece in the coordinate system of the 

robot end-effector is: 

OpMnnMMMrpM ,1...1201  . (4) 

The coordinates of any point of a manipulator link is given 

by: 

[x0]=M01M12…Mk-1,n[xk];  (5) 

where: Mk-1,p the transition matrix of the p
th

 coordinate system 

to the (k-1)
th

 system.. 

 

The environment of the robotized site is given as a set of 

points in space, limited by planes or surfaces of the second 

degree. [7] 

 

The approach vector which describes the movement 

direction of the piece, during the loading and unloading of the 

machine, is given in the form of a set of points, arranged in 

line segments. 

 

The figure below (Fig.3) describes the algorithm for 

optimizing the performances of different manipulators robot 

types used for positioning and orientation in an environment 

cluttered by static objects. 

 

In block 4 of Fig. 3, the triage of the different 

combinations of the starting and target point coordinates is 

performed. These combinations give the possible trajectories 

variants from the beginning to the end configuration. 

Block 5 gives the grid in configuration space. Some points of 

the grid point set are used for crossing points possible 

trajectories. 

In block 7 the movement of the manipulator is modeled i.e. the 

generalized coordinates variations are calculated basing on the 

kinematic or dynamic model. 

 

In the case of using the kinematic model of the current 

coordinates are calculated using the formula (6):  

t
j

iq
j

iq
j

iq 


1
  (6)                             

 
 

 i : is the step number along the time axis, 

jq : generalized velocity of the j
th

 coordinate system. 

In case the dynamic model is used in block 7, the already 

developed motion equation of the manipulator is integrated. In 

this same block, the Cartesian coordinates of feature points are 

calculated. 

In block 8, the N feature points of the curve are organized. 

Whereas, the coordinates of feature points are compared with 

those of boundary points in block 9. Two types of boundaries 

are used: i) the boundaries applied to the geometry of the 

machine and, ii) the boundaries applied on the end-effector 

position. 

In the following section we present an algorithm with 

considering the dynamic position of the obstacles. 

II. OPTIMAL MOTION OF A ROBOT 

MANIPULATOR IN DYNAMIC ENVIRONMENT. 

In this section, using the algorithm presented in section 2 

allowed us to expand its capabilities to be used in dynamic 

environment. So in this algorithm, by subdividing the 

modeling of the movement in some portions and a verification 



 
Fig. 3. Optimal algorithm with static obstacles. 

of the presence of dynamic obstacles is carried out, which 

allows to naturally increase the performance of the algorithm. 

The algorithm is divided into three parts: 

• Identification of the trajectory over time regardless of the 

dynamic obstacles; 

• Travel time optimization of the manipulator end-effector 

from the initial point to the target point by using the dynamic 

programming method; 

• Motion modelling by taking into account the obstacles 

dynamics. 

The diagram of the modified algorithm of the manipulator 

robot motion is presented in Figure 4. The first part i.e. the 

identification of the trajectory over time is presented in the 

following. Based on the kinematic or dynamic model of the 

manipulator, for given crossing points, the travel time from the 

initial point to the target point is calculated regardless of 

obstacles dynamics. 

Kinematic model for the travel time this calculation with 

the formulas: 

  iq
H
iq

k
iq

i
t /max 

  (7)
 

In block 8 of Fig. 4, the second sub-problem i.e. the travel 

time optimization problem of the manipulator robot from the 

initial point to target point is solved, using the dynamic 

programming method. 

 

The configuration space of the manipulator is divided into 

k area. In each k
th

 area, the point of n dimension configuration 

space is chosen, from which arises the crossing point 

examination. 

 

In the case of motion with only one crossing point, block 8 

pick through the points cloud, i.e. distributing the elements of 

this set in increasing order. 

 

In blocks 9, 10 and 11, the modelling is performed with 

considering the dynamic obstacles and the searching for the 

optimal trajectory. 

In block 9, after each step as function of time the transition 

to block 10 is carried out, in which the end-effector point and 



the feature points are moved by checking the case which does 

not correspond to the boundary points, the applied shapes 

geometric of the equipment and the characteristics of the 

manipulator robot. In case it corresponds to the obstacle go to 

block 8, where we chose the following trajectory with a higher 

travel time. 

 

Calculations following the given algorithm (shown in Fig. 

4) showed a significant reduction in loss of computer time in 

comparison with the previous algorithm (shown in Fig. 3). 

 

III. CALCULATING THE TIME CORRESPONDING 

TO EACH TRAJECTORY POINT 

 

Considering, L the number of segments describing the 

trajectory positions. Thus, we have the vectors 
Lxxx


,...,1,0

 

through which the path passes (
0x

 : start position vector, 
Lx

 : 

end position vector) as shown in Fig. 5. 

 

In the following, the method allowing calculation of the 

sequence of vectors
L

q
 corresponding to the generalized 

coordinates q1L, q2L,…, q6L of the L
th

 point is presented.  

With this result we can describe the trajectory of the 

manipulator robot in the generalized coordinate space. The 

problem lies in determining the time corresponding to the time 

of transition of the end-effector by the set of points of the 

trajectory. 

Consider the parameter s monotonically varying along the 

trajectory. This parameter may be one of the generalized 

coordinates, any Cartesian coordinate or curvilinear coordinate 

system with respect to the absolute coordinates system. The 

following formulas: 
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And while replacing time by its corresponding parameter s, 

the first and second derivatives of the generalized coordinates 

with respect to the parameter s can be calculated as follows: 

;
'

L
ds

jdq

jLq 














L
ds

jqd

jLq















2

2
'' )...,,1,0( ML       (9) 

L: represents the point number on the trajectory described by 

the end-effector. 

 

Consider also the average of the first and second 

derivatives: 
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;           (10) 

Through these values we can express the generalized 

velocities and generalized accelerations as follows: 

 ;
'

sjq
dt

ds

ds

jdq

jq  

  

(11)        

)
2

(
'''

)
'

( sjqsjqsjq
dt

d

jq        (12) 

For the L
th

 point belonging to the range of the trajectory, 

the corresponding generalized speeds and accelerations will 

be: 

;
'

LsLjqLjq                          (13) 

;
2

)
2

1
2

(''
1,1,

'
1,1,




LsLs

LLjqLLsLLjqLLjq


 (14)

 

   

We can express the acceleration 1, LLs
 as function of speed 

Ls
 by using (15): 

)
2

(

2
s

ds

d
s

s

sd

dt

sd
s





                (15) 

Or by its finite difference: 

)1(2

22
1

1,
LsLs

LsLs

LLs






                (16)

     

 

For this, instead of (13) and (14) yields: 

;
22

)
'

(
2

LsjLqjLq      (17)

                    

 
Figure 4. Optimal algorithm considering dynamic obstacles. 
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(18)   

And considering the boundaries applied to the generalized 

velocities and accelerations (1) and (2) and by examining the 

formula (18) we observe that it is a function of speed Ls : 
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In the extreme points of the manipulator robot trajectory we 

have: 

         02

0 s      (21)   and  02 Ms         (22) 

To obtain the minimal displacement, 
2

Ls
   is taken so 

that the conditions (19) and (22) are satisfied. Travel time can 

be expressed by the speed ls
 
as follow:  

2/)
22

1(

1
1

2
1

LsLs

LsLsL
s

L
s s

ds
LtLt

 






      (23)           







1

0
)1(0

M

L
LtLttMt      (24)

    The required objective to achieve the best choice of the 

value of 
2

Ls
 can be solved using dynamic programming [8]. 

 
Considering 

L
 the minimum time for which the end-

effector of the manipulator robot can be moved from the point 

Ls   (the speed 
Ls is given) to the target position, while 

satisfying the conditions (19), (20) and (22). And considering 

 the accuracy parameter, i.e. it is the 2

Ls size variation step. 

The intervals (sL, sL+1) are successively examined, by starting 

with the last interval for which    L=M-1. In each interval, two 

functions 2

1 optL
s


 2

Ls and )(
2

LL s  are arranged, and the 

array changes with the step  .  

 

Supposes that the function )( 1
2

1  LL s  is known. For an 

optimal movement of the manipulator, the size corresponding 

to 2

1 optL
s


  for reaching its target with time 

L
is 2

1Ls .  

For the last interval, where 2

1Ls cannot be reached, in 

accordance with (1), any size except the zero value satisfies 

0)0( M
. 

The array for L<M, is constructed as follow: The argument 
2

Ls successively increases with the step  , starting from zero. 

For each value of 2

Ls in the array 
L

, at the beginning a high 

value of 
L

is inserted. Further, by examining the array for the 

functions )( 1
2

1  LL s  and for each item in this array we 

verify the fulfilment of the inequality (19) and (20). If 

0
2
Ls and 02

1 Ls   , all these inequalities are met without 

conditions. For a high value of 
Ls , the inequality does not 

fulfilled for any size of 2

1Ls . 

Suppose, the inequality is fulfilled for any 

couple 2

Ls , 2

1Ls  thus it is calculated as follows: 

2/)
22

1(

1
)

2
1(1)

2
(

LsLs

LsLs

LsLLs
preal
L








       (25)                                                                     

The obtained values  are compared with those written on 

the array 
L

 with the value )(
2

LL s obtained before. If the 

new value of preal

L
  is smaller than the previous one, we 

insert it to the array, otherwise we retain the oldest value. If 

the array 
L

 is renewed, we reset the value of 2

1Ls , for which 

the value of preal

L  
is smaller than that found before, in the 

array 2

1 ortL
s


 . Ones, all the arrays )(

2

1 LL s  are examined, 

we find the minimum value of 
l
 and the best value of 2

1Ls , 

for which this minimum is reached, for the point 2

Ls . As 

already said, for high value of 2

Ls the inequality will not be 

met; as established, )(
2

LL s  and  22

1 LortL
ss 

  

requires a 

finite number of operations. Successively, the function 

)( 2

11  LL s , )( 2

22  LL s and so on are arranged, finally we 

get the array )(
2

LL s ; with its help we can construct the 

array )(
2

00 s . However, agree with (21), from this array 

only a single point 02

0 s  is needed, and it is enough to 

calculate )0(0
. It will be the minimal time for which the 

manipulator robot stabilizes at the point s0 , and we can go to 

the point sM with zero speed. 

 
Figure 5. The vector positions of the trajectory. 



To be able to see how the speed 
0s  varies along the 

trajectory, the interval ),( 1LL ss  for which L=0 must be 

successively examined. At the beginning of each interval 2

Ls , 

the known value (on the first interval)  is zero. For this known 

value 2

Ls , the best value of 2

1Ls on the array  22

1 LortL
ss 



 

must be taken, and go to the next interval. This is how we 

must deal to find the best value of 2

Ls  meeting the 

performance. At the same time from the array *2
)( LL s  the 

values of 
L

will be normally known, 
LL tt   00

, since 

the known speed 
Ls had to be reached at the known time tL. 

Generalized velocities and accelerations are determined by 

formulas (13). 

 

The calculations with the described algorithm demonstrate 

the following:  

If the limits of speed and acceleration of a generalized 

coordinate qL and lower limits according to the generalized 

coordinates, among other things are chosen, these optimal 

motion laws are formalized through three stages:  

- Dispersion with acceleration limits 
maxLq ,  

- Motion with speed limit
maxLq ,  

- Limit the rapid suffocation speed with minimization of 

maxLq . 

In this case, the manipulator robot works as a system with 

one DOF (degree of freedom). 

If the limits following the speed and acceleration in 

generalized coordinates are stiffened, the optimal motion 

character will be complicated. For example, we obtained the 

following law: dispersion with limit for q3 with the 

acceleration 
max3

q , motion with limitation of 
Lq and speed 

maxL
q , stifling the speed with the minimum limit of 

max3
q . 

 

IV. CONCLUSION AND PERSPECTIVES 

An algorithm considering the dynamic obstacles and a 

program to solve the problem of optimizing the performance 

of cyclo-gram manipulator robots, used in technological 

processes, were developed.  

The use of this algorithm has developed a robot learning 

map with position control system. These maps present the 

partition of the robot workspace with statement on its grid; the 

overall time of the manipulator robot trajectory, from the 

beginning to the target position, is shown in the nodes.  

Learning maps enable the choice of the intermediate 

transition points of the robot trajectory corresponding to the 

minimum travel time, from the start position to the target, was 

developed. This algorithm is easily adapted to be used on the 

control robots working with NC machine tools (machine tools 

with Numerical Control) and allows achieving optimal 

performance in the movement of the studied process.  

Through what is seen, the motion optimal laws react so 

that one of the boundary intervals (along 
Lq or 

Lq ) arranges 

for one of the  generalized coordinates becomes active (the 

inequality becomes equality). 

The presented solution is well suited to this context. It is 

optimal with respect to time constraints, it allows a direct 

calculation.  

As perspective we plan to achieve:  

- A GUI of the experimental platform;  

- A simulation in computer aided design and 

manufacturing software (SolidWorks);  

- A simulation of the robotized cell.  

- Create an application comparing the theoretical and 

practical results. 
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