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3 Centre de Recherche Nucléaire d’Alger, 2 Bd. Frantz Fanon, BP. 399 Alger-Gare, Algiers,
Algeria.

Abstract. A systematic study of the isovector neutron-proton (np) pairing effect on the
moment of inertia is performed at zero temperature. This study is based on a recently established
expression obtained using the framework of the quantum perturbation theory and the Inglis
cranking method, at the limit when the temperature is nil.

We considered even–even proton-rich nuclei such as 30 ≤ Z ≤ 40 and N − Z = 0, 2, 4
using the single-particle energies and eigen-states of a deformed Woods-Saxon mean-field. The
obtained results are compared to their homologues of the conventional BCS theory (i. e. when
only the pairing between like-particles is considered).

1. Introduction
The nuclear moment of inertia plays a very important role in the description of rotating nuclei.
Indeed, this observable being sensitive to the deformation, its measurement indirectly provides
significant information about the shape of the nuclei. The study of the moment of inertia has
been the subject of several works taking into account the pairing correlations between like-
particles at zero and finite temperature [1, 2, 3, 4]. It has been also calculated at zero and finite
temperature with inclusion of isovector pairing correlations [5, 6, 7, 8, 9].
The aim of the present work is to carry out a systematic study of the isovector pairing effect on
the moment of inertia of proton-rich nuclei in the region 30 ≤ Z ≤ 40.

2. Formalism
Let us consider a heated nucleus constituted by N neutrons and Z protons. The symmetry axis
being Oz, the system is cranked around the Ox axis of a rotating frame. The grand-partition
function is given by [8, 9]:

Z = Tr

{
exp(−β[H −

∑
t

λtNt − ~ωJx])

}
(1)
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where β is the inverse of the temperature T and H is the Hamiltonian of the system given, in
the second quantization and isospin formalism, in the isovector pairing case, by [10]:

H =
∑

ν>0,t

ενt

(
a†νtaνt + a†eνtaeνt

)
−

∑

tt′
Gtt′

∑

νµ>0

(
a†νta

†
ν̃t′aµ̃t′aµt + a†νta

†
ν̃t′aµ̃taµt′

)
(2)

The subscript t corresponds to the isospin component (t = n, p), a†νt and aνt respectively
represent the creation and annihilation operators of the particle in the state |νt〉, of energy
ενt ; |ν̃t〉 is the time-reverse of |νt〉, Gtt′ characterizes the pairing-strength. The neutron and
proton are supposed to occupy the same energy levels. In all that follows, it is assumed that the
single-particle energies are independent from the temperature [11]. λt(t = n, p) are the Fermi
level energies and Nt are the particle-number operators given by:

Nt =
∑

ν>0

(
a†νtaνt + a†ν̃taν̃t

)
t = n, p (3)

ω is the rotation frequency and Jx is the projection over the Ox axis of the angular momentum.
The usual Inglis [12] expression of the energy may be easily generalized in order to include the
temperature effects as well as the np pairing correlations. The energy E is then given by [4]:

E =
(
−∂ lnZ

∂β

)

λtβ=cte

(4)

The expansion to the second order in ω of expression (4) is given by:

E ' E0 − ω2~2

β∫

0

〈Jx (β) Jx (χ)〉0 dχ (5)

where

Jx (κ) = eκH′
Jxe−κH′

and 〈Jx (β) Jx (χ)〉 =
Tre−βH′

Jx (β) Jx (χ)
Tre−βH′ κ = β, χ (6)

Jx(κ) is the Heisenberg transform of Jx and the thermal average in Eq. (5) is evaluated using
the grand-canonical ensemble associated to the Hamiltonian without rotation H ′ given by:

H ′ = H −
∑

t=n,p

λtNt (7)

This thermal average value may easily be determined using the quasiparticle representation.
In the latter, the auxiliary Hamiltonian has been approximately diagonalized by means of the
Feynman path integral technique and using the Hubbard-Stratonovich transformation [10]. In
fact, the diagonal form of the Hamiltonian H ′ becomes:

H ′ =
∑

ν>0, τ=1,2

Eντ

(
α†νταντ − αν̃τα

†
ν̃τ

)
+

∑

ν>0,t

ε̃νt (8)

where we set
ε̃νt = (ενt − λt)− (Gtt + Gnp) /2 t = p, n (9)
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α†ντ (respectively αντ ) is the creation (respectively annihilation) operator of a quasiparticle of
τ (τ = 1, 2) type, given by the generalized Bogoliubov-Valatin transformation [10]:

α†ντ =
∑

ν>0, t

(
uντta

†
νt + vντtaν̃t

)
τ = 1, 2 (10)

The corresponding energies Eντ are defined in Ref. [10]. The perpendicular moment of inertia,
is then defined by [8, 9]:

=np
⊥ = 2~2

β∫

0

〈Jx (β) Jx (χ)〉0 dχ (11)

One has, after some algebra,

=np
⊥ = ~2

∑

νµττ ′tt′
〈νt |Jx|µt〉 〈µt′ |Jx| νt′

〉





[
vντtuµτ ′t − vµτ ′tuντt

] [
vντt′uµτ ′t′ − vµτ ′t′uντt′

]

tanh

(
βEντ

2

)
+ tanh

(
βEµτ ′

2

)

Eντ + Eµτ ′




+
[
uντtuµτ ′t + vντtvµτ ′t

] [
uντt′uµτ ′t′ + vντt′vµτ ′t′

]

tanh

(
βEµτ ′

2

)
− tanh

(
βEντ

2

)

Eµτ ′ − Eντ








(12)

If the np pairing effects vanish, expression (12) reduces to the sum of the moments of inertia of
the neutron and proton systems considered separately in the framework of the pairing between
like-particles approach [4, 13, 14].

3. Numerical results-Discussion
The previously described formalism has been numerically applied using the single-particle
energies and eigen-states of a deformed Woods-Saxon mean-field [15]. We used the parameters
of Ref. [16] with a maximum number of shells Nmax = 12. The ground state deformations
are those of the Möller table [17]. We considered even-even nuclei such as N − Z = 0, 2, 4.
Indeed, in such nuclei, it has been shown that np pairing effects are not negligible [18, 19]. In
the present work, we considered only nuclei with a deformed ground-state such as 30 ≤ Z ≤ 40.
The pairing-strength values Gpp, Gnn and Gnp have been deduced from the ∆pp, ∆nn and ∆np

values at zero temperature. The latter are obtained using the odd-even mass differences [20].
It appears that the inclusion of the np pairing effect clearly modifies the values of the moment
of inertia obtained within the framework of usual BCS theory. Indeed, the relative discrepancy
between the previsions of the present model and those of the BCS one varies from one nucleus
to another and is about 15.57% on average for all the studied nuclei. In addition, the relative
discrepancy between the theoretical values and the experimental data for N = Z nuclei is
on average 28.60% and 23.15% respectively with and without inclusion of the np pairing.
With regard to other nuclei, this discrepancy is, with and without inclusion of the np pairing,
respectively 27.11% and 37.73% for nuclei such as (N − Z) = 2 and 39.57% and 45.56% for
nuclei such as (N − Z) = 4.
It is thus necessary to take into account this type of correlations in the evaluation of the moment
of inertia of proton rich nuclei like those considered in this work.
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Figure 1. Variation of the moment of inertia as a function of the proton number Z, for nuclei
such as N = Z (a), N−Z = 2 (b) and N−Z = 4 (c) and whose experimental values are known;
with (−¥−) and without (−¤−) inclusion of np pairing. (− • −) represent the experimental
values [21, 22].

Figure 2. Points (−¥−) are our results and (−¤−) those of the BCS approximation .
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Table 1. Moment of inertia of even-even proton-rich nuclei evaluated without (column 2) and
with (column 3) inclusion of np pairing. The last column deals with the relative discrepancy.

Nucleus =FTBCS(~2MeV −1) =np
⊥ (~2MeV −1)

∣∣∣=
np
⊥ −=FTBCS

=FTBCS

∣∣∣%
60Zn 3.66 3.91 6.80
62Zn 4.09 3.90 4.78
64Zn 4.17 4.12 1.14
64Ge 3.48 3.27 5.96
66Ge 3.96 3.98 0.71
68Ge 4.73 4.20 11.23
68Se 4.47 5.10 13.93
70Se 5.78 4.36 24.52
72Se 4.76 4.39 7.68
72Kr 6.19 7.12 15.15
74Kr 8.91 6.23 30.06
76Kr 8.51 5.95 30.09
76Sr 8.23 9.21 12.03
78Sr 9.19 6.25 32.00
80Sr 2.12 1.76 16.60
80Zr 11.35 10.96 3.48
82Zr 2.00 2.97 48.50
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[6] Gerceklioğlu M and Calik A. E, 2005 Acta Phys. Slo. 55 197.
[7] Calik E, Deniz C and Gercelioglu M, 2009 Pramana-J. Phys. 73 847.
[8] Ami I, Fellah M, Benhamouda N, Allal N. H and Belabbas M, 2012 J. Phys.: Conf. Series 338 012019.
[9] Ami I, Fellah M, Allal N.H, Benhamouda N, Belabbas M and Oudih M.R, 2011 Int. J. Mod. Phys. E 20

1947.
[10] Fellah M, Allal N.H, Belabbas M, Oudih M.R and Benhamouda N, 2007 Phys. Rev. C 76 047306.
[11] Brack M and Quentin P, 1981 Nucl. Phys. A 361 35.
[12] Inglis D. R, 1954 Phys. Rev. 96 1059; 1955 Phys. Rev.97 701.
[13] Brack M et al., 1972 Rev. Mod. Phys. 44 320.
[14] Brack M et al., 1974 Nucl. Phys. A 234 185.
[15] Woods R. D and Saxon D. S, 1954 Phys. Rev. 95 577.
[16] Allal N.H and Fellah M, 1994 Phys. Rev. C 50 1404.
[17] Moller P, Nix J. R, Myers W. D and Swiatecki W. J, 1995 Atomic Data and Nuclear Data Tables 59 185.
[18] Civitarese O, Reboiro O, 1997 Phys. Rev. C 56 1179.
[19] Civitarese O, Reboiro M and Vogel P, 1997 Phys. Rev. C 56 1840.
[20] Simkovic F, Moustakidis Ch. C, Pacearescu L and Faessler A, 2003 Phys. Rev. C 68 054319.
[21] Firestone R. B and Shirley V. S, Table of isotopes (John and Wiley & Sons, New York,1999).
[22] Fischer S.M, Lister C. J and Balamuth D. P, 2003 Phys. Rev. C 67 064318.

Int. Summer School for Advanced Studies ‘Dynamics of open nuclear systems’ (PREDEAL12) IOP Publishing
Journal of Physics: Conference Series 413 (2013) 012032 doi:10.1088/1742-6596/413/1/012032

5

View publication statsView publication stats

https://www.researchgate.net/publication/258799819



