
Abstract : 

Secure elements store and manipulate assets in a secure way. The most attractive 
assets are the cryptographic keys stored into the memory that can be used to 
provide secure services to a system. For this reason, secure elements are prone to 
attacks. But retrieving assets inside such a highly secure device is a challenging 
task. This paper presents the process we used to gain access to the assets in the 
particular case of Java Card secure element. In a Java Card, the assets are stored 
securely, i.e., respecting confidentiality and integrity attributes. Only the native 
layers can manipulate these sensitive objects. Thus, the Java interpreter, the API 
and the run time act as a firewall between the assets and the Java applications 
that one can load into the device. Finding a vulnerability into this piece of 
software is of a prime importance. Finding a vulnerability into a software is often 
not enough to develop a complete exploit. Here, we demonstrate at the end that a 
Java Card applet can call the hidden native functions used to decipher the secure 
container that encapsulates a key. Some previous attacks have shown the ability 
to get access to the application code area. But the Java Card intermediate byte 
code detected in the dumps has shown several differences with regard to the 
specification, which prevents the reverse engineering of the applicative code. 
Thus, to avoid the execution of shell code by a hostile applet, a part of the byte 
code stored into the card is unknown. The transformation is done on-the-fly 
during the upload of an application. We present in this article a new approach 
for reversing the unknown instruction set of the intermediate byte code which in 
turn has led to reverse engineering of the Java classes of the attacked card. We 
discovered during the reverse that some method calls have an unusual signature. 
Without having access to the native code, we have inferred the semantics of the 
called methods and their calling convention. These methods have access to the 
assets of the card without being restricted by security mechanisms like the 
firewall. We exploit this knowledge to set up a new attack that provides a full 
access to the cryptographic material and allows to reset the state of the card to 
the initial configuration. We demonstrate the ability to call these methods at the 
Java level in an application to retrieve sensitive assets whatever the protections 
are. Then, we suggest several possibilities to mitigate these attacks. 


