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Abstract

An effective design and optimum production strategof a well depend on the
accurate prediction of its bottom hole pressure RBHvhich may be calculated or
determined by several methods. However, it ispnattical technically or economically to
apply for a well test or to deploy a permanent gues gauge in the bottom hole to predict
the BHP. Consequently, several correlations andhargstic models based on the known
surface measurements have been developed. Unftatynall these tools (correlations &
mechanistic models) are limited to some conditiangd intervals of application. Therefore,
establish a global model that ensures a large ageeof conditions with a reduced cost and
high accuracy becomes a necessity.

In this study, we propose new models for estimabiogom hole pressure of vertical
wells with multiphase flow. First, Artificial NeuraNetwork (ANN) based on back
propagation training (BP-ANN) with 12 neurons ig liidden layer is established using trial
and error. The next methods correspond to optimizezlolved neural networks (optimize
the weights and thresholds of the neural netwoskt) Grey Wolves Optimization (GWO),
and then its accuracy to reach the global optintmmspared with 2 other naturally inspired
algorithms which are the most used in the optinoratield: Genetic Algorithm (GA) and
Particle Swarms Optimization (PSO). The models wageeloped and tested using 100
field data collected from Algerian fields and cangra wide range of variables.

The obtained results demonstrate the superiofitthe hybridization ANN-GWO
compared with the 2 other hybridizations or witle 8P learning alone. Furthermore, the
evolved neural networks with these global optim@atlgorithms are strongly shown to be
highly effective to improve the performance of theural networks to estimate flowing
BHP over existing approaches and correlations.

Keywords: flowing bottom hole pressure (BHP), BHP correlaick mechanistic models,
Artificial Neural Network, neural network trainin@dP (back propagation), GWO, GA,
PSO.

1. Introduction



Bottom hole pressure (BHP) is a crucial paramfetea well during its various stages
of life. It is used to establish the developmemtsigies and the design of completions. As
the estimation of this parameter technically igng gauge or well testing is so expensive,
numerous empirical correlations and semi empir{ca¢chanistic) models based on the
known surface measurements have been developed #iec early 1940s. The most
commonly used correlations are those of: Hagedadh Brown [1], Duns and Ros [2],
Orkiszewski [3], Beggs and Brill [4], Aziz and Gevi[5], Mukherjee and Brill correlation
[6]; the commonly used mechanistic models are tlodgensari et al [7], Chokshi et al [8],
Gomez et al. [9] and Gray [10]. Most of these datrens and models were developed
under a range of conditions; consequently, whein #pplications are out of these domains,
their performances became poor and mediocre.

Recently, Artificial Intelligence (Al) based methwdave been widely applied in
petroleum engineering to solve many conventional anconventional problems [11].
Among Al methods, artificial neural networks (ANNm) the famous tool thanks to its
effectiveness. ANNs create models that can receghighly complex and non-straight-
forward problems, and since the prediction of buttieole pressures in multiphase flow
belongs to these problems, this tool, i.e. ANNgvjites an integrated approach for the
estimation of a such key parameter (BHP). The tedtdm some papers suggest a better
BHP prediction performance of ANN than multiphaserelations [12]. Given sufficient
actual field data sets or lab measurements, theaheetwork can be trained to predict
pressure values much closer to the measured vdhaes those from the established
correlations.

The main problem that ANN models suffer from, ie ffresence of some inaccuracies
which caused by the defaulted training algorithihe (backpropagation BP) that trap in
local minima. Hence, in this paper, we proposeptnuze the weights and thresholds of
the neural networks (on other words minimize therak network error function and
achieving global convergence) with Grey Wolves @ptation (GWO), and then its
accuracy to reach the global optima is compareld @ibther naturally inspired algorithms
which are the most used in the optimization fiel@enetic Algorithm (GA) and Particle
Swarms Optimization (PSO). The models were develagpel tested using 100 field data
collected from Algerian fields and covering a widege of variables. There are three
differences between this work and other researcatksvim this field (such as in [13], and
[14]): (1) the developed models considered in dudy are to estimate BHP in vertical
wells with multiphase flow during the productioméanot during the drilling as in [13],
and [14]), (2) the interval of the used data cowerkig variety, this gives an excellent
generalization of the established models, and €3)des the application of two algorithms
frequently used in global optimization (GA and PSt)s study shows the efficiency and
the robustness of the GWO algorithm in the optitmraof the weights and the biases of
ANNSs to estimate BHP.

Fig. 1 illustrates the main workflow of this study
2. BHP roles and methodologies of calculation

BHP is a key parameter either in the productiorc@ss or in the reservoir studies. Its
accurate prediction affects on one hand the effecéss and economical design of well's



completion and strategies of development (whicbvadl to reach the well best potential),
and in the other one, the right characterizatiohyafrocarbon reservoirs and their models
identification (such through well test analysis@v&ral valuable articles shed light this last
point such as in [15-20].

Because of the complexity of multiphase flows, tbalculation of the BHP is
complicated [21,22]. One of the applied methodslétermine BHP is the deployment of
pressure down-hole gauges (PDG) which can recottuge amount of bottom-hole
pressure data [20]. Although the value of this atwge, this method presents two
limitations: it's cost and the handling of its dathich are noisy [20].

The available correlations and mechanistic mod&ds €stimating BHP) insure an
alternate method that is practicable on the slgjitests. These models and correlations are
based on the surface measurements. However, alofiodtese approaches have been
developed under laboratory condition and specditges of variables. As a result, when
scaling up these correlations to the field condititey fail to provide the desired accuracy.
Table 1 shows some examples of the intervals dicgiimn and ranges of development of
these models. Another problem to apply these mouelthe difficulty to choose the
appropriate one during the calculation.

The paper is focused on building robust, fast amelap approaches to monitor BHP
through vertical production wells with multiphasew by applying hybridization of three
naturally inspired algorithms with artificial nelireetworks.

3. Theory background
3.1. Artificial Neural Network (ANN)

Artificial Neural Network (ANN) is an effient algorithm to approximate any
function with finite number of discontinuities bgdrning the relationships between input
and output vectors. Its mathematical model is nespby the biological neural networks. It
is a non-linear mapping model and has been suatlysapplied in many domains such as
in: biology and biomedicine [23-25]; finance [26,2éngineering, modeling and design
[28—30]; petroleum and reservoir engineering [LB3]L It consists of many calculating
units called nodes, which are inside the layergutirdata enter the first layer and output
data exit the last layer. The layers between it output layers are called hidden layers.
For modeling purposes, the commonly used feed-fa N architecture namely multi-
layer perceptron (MLP) may be employed. MLP invehan input layer, an output layer,
and one (or more) hidden layer (s) with differentes. Each connecting line has an
associated weight. MLP training consists in adngstihe connection weights, so that the
calculated outputs may be approximated by the el@smlues. The output from a given
neuron is calculated by applying a transfer functm a weighted summation of its input to
give an output, which can serve as input to otleerons, as follows [11]:

— Ny_1
ajk = gi(T:5 Wik @ige-1) + bji)

1)
Wherea;, are " neuron outputs from"klayer andb;is the bias weight for neuron j in
layer k. The model fitting parameters;;; are the connection weights. The nonlinear



activation transfer functionsxgnay have many different forms. The classical oaes
threshold, sigmoid, Gaussian and linear functic@+5].

3.2. Back propagation training (BP)

MLP training procedure aims at obtaining an optimaight setw;;; and biases that
minimizes a pre-specified error function such asrage absolute relative deviation percent
(AARD %). The back propagation learning algoritherthe most commonly used learning
algorithm, and among its methodologies: the quasifdn backpropagation (BFGS), the
Powell -Beale conjugate gradient, the LevenbergegMidt Algorithm (LMA) and others.
During the training, both the inputs and the oudpate provided. The network then
processes the inputs and compares its resultiqgutsuagainst the desired outputs. Errors
are then propagated back through the system, @atisinsystem to adjust the weights that
control the network. This process occurs over awer @as the weights are continually
tweaked.

According to [36,37], the convergence of the Bpathm is highly dependent on the
initial values of weights and biases. In the litera, using novel heuristic optimization
methods or evolutionary algorithms (which are ratyrinspired algorithms) is a popular
solution to enhance the problems of BP-based legrgorithms.

3.3. Naturally Inspired algorithms and their hybridization with ANN

Recently, several naturally inspired algorithmshsas Particle Swarm Optimization,
and Genetic Algorithms are becoming very powerfal dolving hard optimization
problems. These methods are suitable for globatkedue to their capability of exploring
and finding promising regions in the search spdcnaaffordable computational timia
this section, a brief theory of the employed algjon in our study (GA, PSO and GWO)
and the manner of their hybridization with ANN ¢iptimize the weights and thresholds of
a pre-established BP-ANN) are given.

3.3.1. Genetic Algorithm (GA)

Genetic algorithm (GA) is a global heuristic, stastic optimization technique based on
evolution theory and genetic principles developgdHolland (1975) [38]. The algorithm
begins with a randomly generated population thaissts of chromosomes, and applies
three kinds of genetic operators: selection, cnemsand mutation operators to find the
optimal solutions. GA processes the population lmbmosomes by replacing unsuitable
candidates according to the fitness function. Is ¢udy, the considered fitness function is
the absolute average deviation between expected papdicted values of BHP. The
selection operator of GA is implemented by usirg lthear ranking selection algorithm to
determine which population members are chosen @sathat will create offspring for
the next generation. Crossover is a mechanism wfloaly exchanging information
between two chromosomes. Mutation operation cangdghe values of randomly chosen
gene bits, and this process continues until soreégiined termination criteria are fulfilled.
Mutation operation aims to make genetic algoritiytam local random research capability
through varying certain genes of chromosome. Inctiveent work, GA is used to optimize
the weights and thresholds of the ANN. Fig. 2 sumzesa the followed steps to implement
GA in the ANN's training.



3.3.2. Particle Swarms Optimization (PSO)

PSO is a population based meta-heuristic algorithspired from the nature social
behavior and dynamic movements with communicatminmsects, birds and fish. It was
proposed and developed by James Kennedy & RusdmfhBrt (1995) [39]. Like
evolutionary algorithms, PSO performs searchesguairpopulation (called a swarm) of
individuals (called particles) that are updatednfrd@eration to iteration. Each particle
represents a candidate position (i.e., solutiona g®int in a dimensional space, and its
status is characterized according to its positiod @elocity [39,40]. The D-dimensional
position and velocity for the particle i at iteratit can be represented as:

Xit = {xi1,t» Xi2tr s xiD,t}

(2)

3)

In the partial PSO, the speed and position of ga&tiicle change according the
following equality [40]:

Vit = {vil,t’ Viztr - viD,t}

Vipe+1 = Vipe + C171(pbestip, — xip ) + cr2(gbestp, — xip ;)
4)

Each particle then moves to a new potential salub@sed on the following equation:

Xipt+1 = Xipt t Vip,t+1
(5)

In this equality,v;p . andx;p, stand for separately the velocity of the partics its t
iteration and the D-dimension quantity of its piosit pbest) , represents the D-dimension
quantity of the individual i at its most optimisbgtion at its t timesgbestp ; is the D-
dimension quantity of the swarm at its most optinpissition. ¢ indicates the cognitive
learning factor; gindicates the social learning factof,and p are random numbers from
[0;1].

A new parameter called inertia weight(introduced by Shi and Eberhart in 1998 [41])
was incorporating to the Eqt 4 to enhance its cayerece and to slowly reduce the velocity
of the particles to keep the swarm under control:

Vipt+1 = @ * Vipp + €171 (pbeStiD,t - xiD,t) + €212 (gbeStD,t - xiD,t)

(6)

The later version of PSO is the version developgdQierc M,1999) [42], where a
convergence agent is introduced in the speed charfigimula:

Vipg+1 = X * ((viD,t + C1T1(Pb35tm,t - xiD,t) + €T (gbeStD,t - xiD,t))

(7)

2
X =
|2—¢—\/<p2—4<p|
wherey is called the convergence factor=c;+c, >4. Generallyp is equal to 4.1, sp
is equal to 0.729.



In terms of the search for minimization problentss tndividual best solution of the
particle at the next time step (t+1), is givenakvs:

_ pbeStl‘D t lf f(pbeStiD,t) < f(xiD,t+1)
pbestip;1 = ’ ,
' Xipt+1, otherwise
(8)

where f is the objective function to minimize.

gbestp ., = min{ f(pbest;p,.1)} 9)
In this paper, the Clerc’s approach is used. Fgh@ws the procedure of optimizing the
BHP ANN's weights and biases using PSO.

3.3.3. Grey Wolves Optimization (GWO)

GWO is a recently proposed swarm-based reatadtic [43]. It was proposed and
developed by Seyedali Mirjalili [43]. It is inspadrom the social leadership and hunting
behavior of grey wolves in nature. In this algamththe population is divided into four
groups: alphad), beta p), delta §), and omegacf). The first three fittest wolves are
considered as, , andé who guide other wolveso] toward promising areas of the search
space. During optimization, the wolves update thesitions around, B, ord as follows:

D=|C.X,(t) —X(®)| and X(t+1)=X,(t)—A.D (10)

where t indicates the current iteratigh= 2a.77 — a, C = 275, XT,(t) is the position vector
of the prey, X'(t) indicates the position vector of a grey wolfsdinearly decreased from 2
to O (generally), andy, 7, are random vectors in [0,1].

In GWO algorithm, it is always assumed tldt, ands are likely to be the position of
the prey (optimum) [43]. During optimization, thiest three best solutions obtained are
assumed as, 3, ands respectively. Then, other wolves are considered asd able to re-
position with respect ta, B, andd. The mathematical model proposed to re-adjust the
position ofw wolves are as follows [43]:

Dy =[C1. Xq(®) = X(®)]; Dg = [C2. X5(8) = X(0)]; D5 = |C5. X5(t) — X(0)]
(11)
whereX, (t) shows the position of the alphg; (t) shows the position of the betds (t) is
the position of deltaC;, C,, andC, are random vectors ak{¢) indicates the position of
the current solution.

These three last equations calculate pproximate distance between the current
solution and alpha, beta, and delta respectivefterAdefining the distances, the final
position of the current solution is calculated pdated as follows:

X1 =X,({t) —A1.Dg; X, = Xp(t) — Az.Dg; X3 = X5(t) — A3.Ds 12)
(13)

X(t+1) =120

The general steps of the GWO algorithm are [43]:



- Initialize a population of wolves randomly.
- Evaluate the corresponding objective value for eaalf.
- The first three best wolves are saved g% ands.
- Update the position of the rest of the populatiem(olves) using equations discussed
above.
- Update parameters a, A, and C.
- Return the position af as the best approximated optimum.
- These steps are repeated till the terminationritevill be satisfied.
Fig. 4 illustrates the implementation of GWO tdrirthe BHP ANN.

4.Methodology

4.1. DATA acquisition, pre-fitting and pre-processing

A total of 125 data sets was collected fraffecent Algerian fields. Ten parameters
were utilized as inputs of the developed ANN modelspredict bottom-hole pressure
(BHP) in vertical wells with multiphase flow. Theaput variables are illustrated in the
following sequence: Oil flow rate () expressed in (bbl/day), Gas flow ratey{in
(scf/day), Water flow rate (Rwp in (bbl/day), Oil gravity, gas gravity, Depth {ft), inside
pipe diameter (ID) expressed in (inch), well heachperature (WHT) in (°F), well head
pressure (WHP) expressed in (Psia) and the gaatml (GOR) in (bbl/scf). The data used
for developing the models cover the ranges illusttan the Table 2.

To check the validity of the collected data and seenthe suspected outliers, empirical
correlations and mechanistic models were used #digr the bottom-hole flowing
pressures and compare them with the measured valma sets which consistently
resulted in poor predictions by all correlationsl anechanistic models were considered to
be invalid, and therefore removed. A cut-off-erp@rcentage (relative error) of 20% was
implemented for the whole data. After such a sdregra total 100 data sets were used to
develop the ANN models: 80% of the filtered data ased to build (training) the ANNSs,
and the other 20% are used to check the accuratye &NNs developed (predictive test).

To improve the convergence conditions of ANN mogdiis used data are normalized at
the interval [-1, 1] according to the following edion:

2(Xi—Xmin)
Xnormalized = m -1 (14)

wherex,, ,rmatizea 1S the normalized value af;, x,,,, and x,,;, are the maximum and
minimum values of the variable respectively (as shown in Table 2).

To demonstrate the correlation between BHP andusieel independent variables, the
correlation matrix was implemented [44,45]. Thistrxaillustrates the power of a linear
relationship between two different variables in thudriables system [44,45]. The
coefficient between two variables x and y is dedibg the following formula:

(15)

Xy G50y

whereo, and o, are the sample standard deviations, @jds the sample covariance.




Its values are between [-1 1]. Two variables ard 8abe positively linearly related if
their correlation coefficient is close to 1 and adeely linearly if it is close to -1. For
values nearby zero, it would indicate a weak limetationship between the variables.

The obtained correlation matrix between independariibles and BHP is presented in
Table 3. Thec;; element of the correlation coefficient matrix prsethe linear relation
between™ andj™ variable. According to Table 3, WHP has the maxindegree of linear
relation with BHP. In addition, BHP follow the firlinear tendency with the depth and
don't have direct relation with any of the 3 floates (oil, water and gas).

4.2. ANN models development

The first step to establish and develop the differmodels with the cited three
algorithms consists to achieve to an ANN topolog§h\BP learningOne hidden layer was
employed in our study (it is proven in the literaty46] that a MLP network having only
one hidden layer can estimate most of nonlineatesys) and its number of neurons was
established usingrial and error method (after a series of optim@atprocesses by
monitoring the performance of the network until tlhest network structure was
accomplished). The Sigmoid activation function weed as the transfer function from
input layer to hidden layer, and the Linear functiwas taken as the activation function in
the last layer. Then, the weights and the biaseth@felaborated ANN structure were
optimized using evolutionary and metaheuristic atgms discussed in the theory
background part. Table 4 shows the setting paramefehe used algorithms.

4.3. Statistical and graphical error analysis

To evaluate the developed models and their predigierformances, the new models
must be compared against existing correlations randels. This is done through cross
plots (all predicted values are sketched agairse#perimental values and therefore across
plot is created and compared against a unit sliogewhich shows the perfect model line:
the closer the plotted data to this line, the high¢he reliability of the model) and a group
error analysis, using the average absolute pesremt (AARD%), standard deviation (SD),
and the correlation factor {Ras indicators. These statistical indexes can &thematically
expressed by the Eqs (16) through (18).
BHP{*P—BHPf™

BHP*P

BHP{*P—BHPf® 2
SD = Jl/(zv 3 (W) (17)

Z{"ZI(BHPf"p—BHPf“‘)Z
Sl (sHpfelBAP)
whereN represents the number of the measured informafigie,”? is the observed
bottom hole pressure values whil&pf* is the calculate®HP values which is predicted
by the developed models. Average value ofBH® data is shown bgHP.

AARD% = ¥, x 100 (16)

R?=1

(18)

4.4. Leverage approach



Outlier diagnostics (or detection) are of much im@oce in developing the
mathematical models/correlations since it allowsdé&bect the applicability domain of a
model and identify suspect data [47-5B¢veral approaches have been proposed for this
purpose of which Leverage approach is one of thst mvell-known[47,48] This approach
is based on the calculation of the values of tis&dtmls that represent the deviations of a
model results from the experimental data, and aixnlaown as Hat matrix composed of
the experimental data and the predicted valuesraatdrom a model. Then, the Leverage
or Hat indices are calculated based on Hat matH) #&ccording to the following
expression:

H=XXX)"1xt (19)

whereX is a two-dimensionalN x k) matrix composingV data points (rows) ankl
parameters of the model (columns), axdis the transpose of matriX. The diagonal
elements of the H matrix represent the hat valddbeodata in the feasible region of the
model. Once this matrix is calculated, the appliidggbdomain and the outlier detection is
done through Williams plot which sketches the datren of hat indices vs. standardized
residuals (R). A warning Leveragd™*) is generally fixed at the value equal3g: + 1)/N,
in which N is the number of data points akds the number of model parameters. A cut-off
value (standardized residual) equal to three iardsgl to accept the data points withiB
range standard deviations from the méan cover 99% normally distributed data). If
majority of data points exist in the ranges 6f< H <H* and -3 <R <3,it
demonstrates that both model development and édigitons are done in applicability
domain and demonstrating that the model is steaikyi valid.

5. Resultsand Discussion

5.1. Results with building data (training, testing and validation)

Table 5 shows the results of performed sensitigiyalysis for investigation of the
number of neurons in the hidden layer for ANN-BRIyotopologies, which have been
trained several times and show a high degree afracg are presented in Table 5). The
optimal configuration has been selected by findimg structure that has a high accuracy
based on the statistical error analysis. It caol&arly seen that the 12 is the best number of
neurons in the hidden layer and the configurafionk 12 x 1 (one input layer containing
the inputs showed in Table 2, one hidden layer witblve nodes and one output layer
containing one node which is bottom-hole presseas) be considered as an optimal
topology in this study.

In the intelligent session of our study (as it isntioned before), we investigated the
application of optimized ANNs through evolutionagnd metaheuristic algorithms
discussed above. In order to create an equal carmopdor our compared models (ANN-
BP, ANN-ANN-GA-BP, ANN-PSO-BP and ANN-GWO-BP), weed the same topology as
that of ANN-BP, i.e.10 x 12 X 1. Then, the problem was formulated as an optinonati
problem to find a set of weights and biases of ANNs that minimized the difference
between the predictions and the target valuesdrtrining set of data (a total of 80 wells



data are used in this section). It should be ntitetithe proposed hybridizations could have
other possible structures and consequently pospiolyides better results, but in this study
and since we investigated the optimization of wisglnd biases of ANNs using these
methods, we used the same topology for all apphethods. Different sets of weights and
biases were generated randomly and evolved/updaed) these algorithms. Matlab®
2016-a [51] was used in this study. As already mest, in order to check the accuracy of
the developed models, some statistical error aeslysve been measured and the results
are reported in Table 6. This table demonstratessthtistical parameters of the training
process. In addition to statistical error analysiess plots of this process are also presented
in figures 5 and 6. Fig. 5 shows the results ofBR# ANN-BP which concern the training
process. Fig. 6 illustrates the results of the iaybation naturally inspired algorithms with
ANNSs-BP after the training process as follows:he subplot (a), measured BHP (the data
used) is compared against those of ANN-GA-BP (ingly subplots (b) and (c) present
measured BHP versus BHP ANN-PSO-BP (Training) akidP BNN-GWO-BP (Training)
respectively.

5.2. Results with predictive data (predictive test)

Once the neural networks were built and tidirieey are used to predict BHP with
blind data (in our study, a set of 20 wells da& @sed). The results of this predictive part
are presented in Table 7 and Fig. 7. Table 6 ittiss the values of the AARD%? Bnd SD
which are existed between experimental and cakedilahlues by the developed models for
the blind data. Subplots of Fig. 7 are cross ptdtexperimental BHP versus calculated
BHP by the developed models for the predictive gssc

5.3. Discussion of the obtained results

Tables 6 and 7 highlight that the proposediet® predictions (the optimized ANN
with the evolutionary and metaheuristic algorithnazse in excellent agreement with
experimental data, either in the training or in phedictive sections. The cross plots of the
models (Figs. 5-7) show that the most of calculatai@ lay on the unit slope line, and this
proves their perfect accuracy and robustness. ditiad, we should note that the proposed
ANN techniques (combined with GWO, GA and PSO),i@sdd minimum mean square
error and standard deviation. Thus, these modeld Yietter robustness and stability over
the BP artificial neural networks alone.

5.4. Comparison of the ANN models against existing correlations and mechanistic
models

To demonstrate the robustness of the devel@ddéNs models, a performance
comparison between these ANNs against existingetlaons and mechanistic models is
presented in Table 8 through statistical error yses.

As depicted in Table 8, from existing models (etations & mechanistic models),
and for the whole data used in our study, we sat @ray, Aziz et al. and Ansari et al.
correlations are the best outperformed models. shigation of Table 8 clearly
demonstrates the outstanding performance of tlablesied ANNs models. Based on the

10



statistic parameters obtained, the ANN-GWO-BP ésrtiost accurate ANN developed with
an AARE value of 4.64% and a standard deviatio6.20%.

5.5. Outlier detection

To check the range of reliability of the developaddels, theH matrix, hat indices
and standardized residuals were calculated threligh_everage approach and Williams
plots were illustrated. In this study, the numbieparameters is ten, and the number of data
points is 100. Thereforg{*of the model is set to be 0.33. Fig. 8 shows Wiikaplot
(outlier data detection and applicability domain)tieé¢ established models in this work to
predict BHP. As can be seen in this figure, GooghHieverage points are accumulated in
the domains 0f0.33 < H* and —3 <R <3 for the ANNs based naturally inspired
algorithms. In addition, nearly all the data poir{fexpect 3 points) are within the
applicability domain of the developed ANN-GWO-BP aed (in the range 00 < H <
H*and—3 < R < 3). This is a proof of validity and robustness a§timodel.

Finally, for utilizing of our best established mbdee. ANN-GWO-BP) and exact
reproducing its results, the detailed informatiae, its weight and bias matrixes, are
reported in Table 9. This model contains one irlayér containing the inputs as arranged
in Table 10, one hidden layer (it contains tweleeles) and one output layer (contains one
node) which is bottom-hole pressure. The Sigmoitivaiton function was used as the
transfer function from input layer to hidden layand the Linear function was taken as the
activation function in the last layer. The normatian of dataset followed is expressed in
equation (14) with respect to the bounds showrabsld 2.

6. Conclusions

In this study, we developed several intelligemidels by adapting methodologies
using three naturally inspired algorithms (GA, P&@ GWO) to search optimal feed-
forward network weights and biases for predictingPBin vertical wells from Algerian
fields data. A comparison of developed methodsth@romodels, based on the statistical
parameters (R AARE and SD) and graphical analyses, showed thEeriority of the
newly developed methods: the new models providezkgtionally accurate predictions
over the best available empirical correlations amechanistic models. With respect to
accuracy ranking, ANN-GWO-BP outperformed the otherdels, whether intelligent or
correlationsFurthermore, Leverage approach reveals that thdeirie statistically correct
and valid with only three probably doubtful datante in the whole experimental data set.
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Fig. 1: The main workflow of study.

Fig. 2: Implementation of GA to BHP ANN'’s training

Fig. 3: Training of the BHP ANN using PSO

Fig. 4: Training of the BHP ANN using GWO

Fig. 5: Plot of the Results of the BHP ANN-BP only

Fig. 6: Plots of the Results of the BHP ANN comlineith evolutionist and meta
heuristic algorithms: (a) BHP measured vs. BHP ASN-BP (training); (b) BHP
measured vs. BHP ANN-PSBR (Training); (c) BHP measured vs. BHP ANN-GWO-
BP (Training).

Fig. 7: Plots of the Results of the prediction gect(a) Measured BHP vs. BHP
ANN-BP (testing); (b) Measured BHP vs. BHP ANN-GA-BP (testing); (c) Measured
BHP vs. BHP ANN-PS@3P (testing); (d) Measured BHP vs. BHP ANN-GWO-BP
(testing).

Fig. 8: Outlier data detection and applicabilitynthin of the elaborated models in

this work



Table 1. examples of the ranges and application intervied®me BHP correlations

& mechanistic models

BHP Correlations
Mechanistic models

year of
publication

Conditions/ range of development

Hagedorn and Brown

(1]

1965

1500 ft experimental vertical well.

3270 scf/bbl.

1.0, 1.25, 1.5 in nominal diameter tubes; Liquidthwlifferent
viscosities: 0.86 cp (water), 30, 35 and 110 (oil);
Liquide flow rates: 30t680 bbl/day; and, Gas-liquid ratios: O-

Beggs and Brill [6]

1973

. Pipe diameter: 1.0 to 1.5 in;
. Liquid holdup: 0 to 0.870;

. Inclination angle: 90° to +90°;

The parameters studied and their range of variatiere,
. Gas (air) fbw rate: 0 to 300 Mscf/day;
. Liquid (water) flow rate: 0 to 1029 bbl/day

. Pressure gradient: 0 to 0.80 psi/ft;

Aziz et al. [5]

1972

Oil flow rates are between 44 and 1850
API gravity of 36 to 47.3

bbl/day

Orkiszewski [3]

1967

Wells depth from 3705ft to 4766 ft

Oil flow rates are between 175 and 3166 bbl/day

Table 2: the

ranges of the used data

Parameters

Max value Min value

Inputs

Quil (bbl/d)

1660 8

Qgas(Mscf/d)

572 22500

Quater (bbI/d)

750 0

Qil gravity

0.931 0.569

Gas gravity

0.884 0.602

ID (in)

4.404 1.61

Depth (ft)

14742 3678

WHP (Psi)

8472 450

WHT (°F)

184 46

GOR (bbl/scf)

1170000 701

Output

BHP (Psia)

11250 653

Table 3: Values of linear relationship between considerauables in BHP

estimation
Depth ID GOR Oil gravity ~ Gas gravity & WHP  WHT  Quer Quas BHP| Variables
1.0 -0.29 -0.14 0.40 -0.09 0.31 0.72 0.28 0.19 -0.07 Q77 tbep
-0.29 1.0 0.23 -0.45 0.27 0.21 -0.44 -0.03 -0.17 610.-0.42 ID
-0.14 0.23 1.0 -0.08 -0.08 -0.23 -0.15 -0.04 0.00 .230 -0.17 GOR
0.40 -0.45 -0.08 1.0 -0.24 0.0 0.50 0.17 0.23 -0.21 051 Givgy
-0.09 0.27 -0.08 -0.24 1.0 0.37 -0.39 -0.03 -0.20.120 -0.32] Gas gravity
0.31 0.21 -0.23 0.0 0.37 1.0 0.08 0.08 -0.14 0.4216 ¢ Qi
0.72 -0.44 -0.15 0.50 -0.39 0.08 1.0 0.21 0.26 -0.21 0|97 WHH
0.28 -0.03 -0.04 0.17 -0.03 0.08 0.21 1.0 0.03 0.05 0j24 WHT




019 -0.17 00 0.23 -0.20 014 026 003 1.0 -016 OBl ,uf
007 061 023 -0.21 0.12 042 -021 005 -0.16 0 1-0.18 Quas
077 -042 -0.17 0.51 -0.32 0.16 097 024 031 -0.18 I.o BHPI
Table 4: Naturally inspired algorithms setting used in shiedy
algorithm | Parameters Value/setting
GA Population size 50
Crossover’s probability 90 %
Mutation’s probability 0.01%
Type of selection Linear ranking
Max number of generatior 250
Coding Binary
PSO Size of the Swarm 50
Max number of iteration 250
C1l 2.05
C2 2.05
X 0.729
GWO | Number of wolves 50
Max number of iteration 250

a

linearly decreased from 5 to

D

Table5: AARE (%), R? andSD (%)values for various ANN topologies

Number of hidden neurofjsAARE (%) R> | sD (%)
4 8.87 0.993] 13.21
10 6.78 0.995F 8.79
12 5.18 0.9970y 7.99
16 9.31 0.994p 13.73
20 6.27 0.996p 8.94
27 7.57 0.993B 11.25

Table 6: Results of the building section

AARE %) | R® | SD (%)
ANN-BP 5.18 0.9970 7.99
ANN-GA-BP 4.86 0.9983 6.51
ANN-PSO-BP 4.62 0.9984 6.70
ANN-GWO-BP 4.10 0.9980 6.16




Table7: Results of the

prediction AARE (%) R2 SD (%) section
ANN-BP 7.97 0.9834 11.53
ANN-GA-BP 6.34 0.9893 10.03
ANN-PSO-BP 6.90 0.9890 10.35
ANN-GWO-BP 6.81 0.9921 9.87

Table 8. Comparison of the developed models with the comoamorelations and
mechanistic models to predict BHP

M odel AARE (%) R? SD (%)

+ = ANN-BP 5.738 0.9943]  8.70

s 2225 | ANNGABP 5156 | 0.9965| 7.21
£33 =g ANN-PSO-BP 5.076 0.9965|  7.43
8% g ANN-GWO-BP 4642 | 0.9968] 6.90
Ansari et al. 5.89 0.9937] 7.95

Beggs & Brill 8.06 0.9934 11.72

24 Dunset Ros 8.94 0.9921 12.04
% o AZiz et al. 5.79 0.9937| 7.75
g%j g Hagedorn et Brown 6.40 0.9931| 8.23
< Gray 5.33 0.9950] 7.28
M ukher|jee et Brill 9.08 0.9906] 12.31

Orkiszewski 18.50 0.9855|  22.59

Table 9: Weights and biases of the ANN-GWO-BP

Neurons Weight values of connections between iapdthidden layer

1 0.5757 -1.1635-0.8763 1.4949 0.7954 -0.6475 -1.62901.7631 0.5552 1.1967
-2.2366 -0.7505 -1.7698 0.5346 1.1133 0.1721 -1.843®.3027 0.3900 0.636/
1.0230 1.4026 -1.6195-0.8070 0.0930 0.9736 -0.73960.5130 -1.6048-1.7160
1.8853 -1.7139 0.7817 -1.1562-1.2866 -0.6320 0.8445 1.0901 0.0484 -0.2z232
-0.9390 0.1201 0.8347 -0.0610-0.7509 1.8678 1.2313 1.6444 1.0299 -0.9z41
-1.0118 0.0014 1.0990 1.3180 -1.12440.9807 -1.5145 0.6989 -1.5218-0.8136

o O~ W N



7 -1.1619 0.3702 0.7682 -1.6552-0.6756 0.3022 -1.0408 0.0210 0.0248 -1.5820
8 0.1217 -1.5722-0.2641 1.2784 0.2881 1.1623 -1.1469.7998 0.7862 1.6195
9 0.4207 2.2443 -0.34391.5695 1.7279 -0.0864 1.0836 0.8775 -0.314m8922
10 -0.2855 1.8144 -0.7272 1.9593 0.4484 -1.6312 0.4802 -1.2398.6730 0.2976
11 -0.2225 2.0064 -0.6391 1.3521 1.4044 -0.5485 -0.6333.2238 0.3653 1.2372
12 0.5439 -0.4550-1.5728 0.2667 -0.0263 -0.0998 2.8425 -1.3738-0.8637 -0.4769

Weight values of connections between hidden anpublayer
-0.6203 -0.4544 -0.1717 0.0438 0.7390 -0.3602 4D360.3843 0.4329 0.4798 -0.4288 0.8237

Biases of the hidden layer

-3.6524 2.5227 -2.157 -1.338 1.1527 0.6006 -0.5242 0.6321 -1.6766 2.6273 -2.9119 -3.1651

Biases of the output layer

-0.2000

Table 10: order of the inputs in the input layer of the ANBWO-BP

Depth
° ID
g _ GOR
= _g Qil gravity
S < Gas gravity
=y Q Qoi
S WHP
5 =
S WHT
% Qwate\
£ Qqa:




Data acquisition and

Best BHP ANN-BP
model establishment

pre-fitting using trail and error
method
|
v
Optimize weights and
biases of BHP ANN Fetiormanee
. evaluation and outliers
using GA, PSO and detection
GWO cHo
]
v

Results' comparison

(between developed

models and existing
correlations)

Conclude the best
model




Initial Population
—>| Create an initial population of
random individuals

[ Evaluation: fitness calculation ]

Elitism

Termination Yes
criterion satisfied?

No Stop GA training
BP training l
Output the results

End

[ Crossover & mutation ]

New Populations




[ Set up the parameters of PSO ]

Train the BHP ANN

[Evaluation: fitness calculation]

(for each Particle)

[ Update the positions and velocities ]

Termination
criterion satisfied?

Stop PSO training

L | New Populations —
BP training
Output the results

End




[ Set up the parameters of GWO ]

|

[ Train the BHP ANN ]

l

[ Evaluation: fitness calculation (for each wolf) ]

l

[ Select the a, B, and 6 wolves ]

l

[Update the position of other wolves]

|

No Termination criterion Yes

satisfied?

Stop GWO training

BP training
Output the results

End
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Highlights

 BHP is a needed parameter for effective well design

» Several correlations and mechanistic models dxigtthey fail to cover the
whole range of application’s condition.

* A new approach to apply artificial neural netwodarbined with evolutionist
and meta heuristic algorithms was established.

* A Hybrid GA-BPANN, PSO-BPANN, and GWO-BPANN modelee used to
estimate BHP with a significant range of conditions

« The models have a robust performance comparediétbxisting methods.

« GWO-BPANN is the most accurate over the developedets.
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