
Accepted Manuscript

Bottom hole pressure estimation using hybridization neural networks and grey wolves
optimization

Menad Nait Amar, Nourddine Zeraibi, Kheireddine Redouane

PII: S2405-6561(17)30127-X

DOI: 10.1016/j.petlm.2018.03.013

Reference: PETLM 205

To appear in: Petroleum

Received Date: 1 July 2017

Revised Date: 7 March 2018

Accepted Date: 19 March 2018

Please cite this article as: M. Nait Amar, N. Zeraibi, K. Redouane, Bottom hole pressure estimation
using hybridization neural networks and grey wolves optimization, Petroleum (2018), doi: 10.1016/
j.petlm.2018.03.013.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to
our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please
note that during the production process errors may be discovered which could affect the content, and all
legal disclaimers that apply to the journal pertain.

https://doi.org/10.1016/j.petlm.2018.03.013


M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

Bottom hole pressure estimation using hybridization neural networks and grey wolves 
optimization  

NAIT AMAR Menad 1*, ZERAIBI Nourddine 1 and REDOUANE Kheireddine 1 
 
1 Laboratoire Génie Physique des Hydrocarbures, Faculty of Hydrocarbons and Chemistry, 
University M’hamed Bougara of Boumerdes, Avenue de l’Indépendance, 35000, Boumerdes, 
Algeria 

* Corresponding Author: Email: manad1753@gmail.com 

m.naitamar@univ-boumerdes.dz 

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
 

1 
 

 

Bottom hole pressure estimation using hybridization neural networks and grey wolves 
optimization  

NAIT AMAR Menad 1*, ZERAIBI Nourddine 1 and REDOUANE Kheireddine 1 

 
1 Laboratoire Génie Physique des Hydrocarbures, Faculty of Hydrocarbons and Chemistry, 
University M’hamed Bougara of Boumerdes, Avenue de l’Indépendance, 35000, 
Boumerdes, Algeria 

* Corresponding Author: Email: manad1753@gmail.com 

m.naitamar@univ-boumerdes.dz 

Abstract 

An effective design and optimum production strategies of a well depend on the 
accurate prediction of its bottom hole pressure (BHP) which may be calculated or 
determined by several methods.  However, it is not practical technically or economically to 
apply for a well test or to deploy a permanent pressure gauge in the bottom hole to predict 
the BHP. Consequently, several correlations and mechanistic models based on the known 
surface measurements have been developed. Unfortunately, all these tools (correlations & 
mechanistic models) are limited to some conditions and intervals of application. Therefore, 
establish a global model that ensures a large coverage of conditions with a reduced cost and 
high accuracy becomes a necessity. 

In this study, we propose new models for estimating bottom hole pressure of vertical 
wells with multiphase flow. First, Artificial Neural Network (ANN) based on back 
propagation training (BP-ANN) with 12 neurons in its hidden layer is established using trial 
and error. The next methods correspond to optimized or evolved neural networks (optimize 
the weights and thresholds of the neural networks) with Grey Wolves Optimization (GWO), 
and then its accuracy to reach the global optima is compared with 2 other naturally inspired 
algorithms which are the most used in the optimization field: Genetic Algorithm (GA) and 
Particle Swarms Optimization (PSO). The models were developed and tested using 100 
field data collected from Algerian fields and covering a wide range of variables.  

 The obtained results demonstrate the superiority of the hybridization ANN-GWO 
compared with the 2 other hybridizations or with the BP learning alone. Furthermore, the 
evolved neural networks with these global optimization algorithms are strongly shown to be 
highly effective to improve the performance of the neural networks to estimate flowing 
BHP over existing approaches and correlations. 

Keywords: flowing bottom hole pressure (BHP), BHP correlations & mechanistic models, 
Artificial Neural Network, neural network training, BP (back propagation), GWO, GA, 
PSO. 

1. Introduction 
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   Bottom hole pressure (BHP) is a crucial parameter for a well during its various stages 
of life. It is used to establish the development strategies and the design of completions. As 
the estimation of this parameter technically i.e. using gauge or well testing is so expensive, 
numerous empirical correlations and semi empirical (mechanistic) models based on the 
known surface measurements have been developed since the early 1940s. The most 
commonly used correlations are those of: Hagedorn and Brown [1], Duns and Ros [2], 
Orkiszewski [3], Beggs and Brill [4], Aziz and Govier [5], Mukherjee and Brill correlation 
[6]; the commonly used mechanistic models are those of Ansari et al [7], Chokshi et al [8], 
Gomez et al. [9] and Gray [10]. Most of these correlations and models were developed 
under a range of conditions; consequently, when their applications are out of these domains, 
their performances became poor and mediocre. 

Recently, Artificial Intelligence (AI) based methods have been widely applied in 
petroleum engineering to solve many conventional and unconventional problems [11]. 
Among AI methods, artificial neural networks (ANNs) is the famous tool thanks to its 
effectiveness. ANNs create models that can recognize highly complex and non-straight-
forward problems, and since the prediction of bottom hole pressures in multiphase flow 
belongs to these problems, this tool, i.e. ANNs, provides an integrated approach for the 
estimation of a such key parameter (BHP). The results from some papers suggest a better 
BHP prediction performance of ANN than multiphase correlations [12]. Given sufficient 
actual field data sets or lab measurements, the neural network can be trained to predict 
pressure values much closer to the measured values than those from the established 
correlations. 

The main problem that ANN models suffer from, is the presence of some inaccuracies 
which caused by the defaulted training algorithms (like backpropagation BP) that trap in 
local minima. Hence, in this paper, we propose to optimize the weights and thresholds of 
the neural networks (on other words minimize the neural network error function and 
achieving global convergence) with Grey Wolves Optimization (GWO), and then its 
accuracy to reach the global optima is compared with 2 other naturally inspired algorithms 
which are the most used in the optimization field:  Genetic Algorithm (GA) and Particle 
Swarms Optimization (PSO). The models were developed and tested using 100 field data 
collected from Algerian fields and covering a wide range of variables. There are three 
differences between this work and other research works in this field (such as in [13], and 
[14]): (1) the developed models considered in our study are to estimate BHP in vertical 
wells with multiphase flow during the production (and not during the drilling as in [13], 
and [14]), (2) the interval of the used data covers a big variety, this gives an excellent 
generalization of the established models, and (3) besides the application of  two algorithms 
frequently used in global optimization (GA and PSO), this study shows the efficiency and 
the robustness of the GWO algorithm in the optimization of the weights and the biases of 
ANNs to estimate BHP. 

 Fig. 1 illustrates the main workflow of this study. 

2. BHP roles and methodologies of calculation  

BHP is a key parameter either in the production process or in the reservoir studies. Its 
accurate prediction affects on one hand the effectiveness and economical design of well’s 
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completion and strategies of development (which allows to reach the well best potential), 
and in the other one, the right characterization of hydrocarbon reservoirs and their models 
identification (such through well test analysis). Several valuable articles shed light this last 
point such as in [15–20].  

Because of the complexity of multiphase flows, the calculation of the BHP is 
complicated [21,22]. One of the applied methods to determine BHP is the deployment of 
pressure down-hole gauges (PDG) which can record a huge amount of bottom-hole 
pressure data [20]. Although the value of this advantage, this method presents two 
limitations: it’s cost and the handling of its data which are noisy [20]. 

The available correlations and mechanistic models (for estimating BHP) insure an 
alternate method that is practicable on the slightest costs. These models and correlations are 
based on the surface measurements. However, almost of these approaches have been 
developed under laboratory condition and specific ranges of variables. As a result, when 
scaling up these correlations to the field condition, they fail to provide the desired accuracy. 
Table 1 shows some examples of the intervals of application and ranges of development of 
these models. Another problem to apply these models is the difficulty to choose the 
appropriate one during the calculation. 

The paper is focused on building robust, fast and cheap approaches to monitor BHP 
through vertical production wells with multiphase flow by applying hybridization of three 
naturally inspired algorithms with artificial neural networks. 

3. Theory background 

3.1. Artificial Neural Network (ANN) 

        Artificial Neural Network (ANN) is an efficient algorithm to approximate any 
function with finite number of discontinuities by learning the relationships between input 
and output vectors. Its mathematical model is inspired by the biological neural networks. It 
is a non-linear mapping model and has been successfully applied in many domains such as 
in: biology and biomedicine [23–25]; finance [26,27]; engineering, modeling and design 
[28–30]; petroleum and reservoir engineering [11,31,32]. It consists of many calculating 
units called nodes, which are inside the layers: input data enter the first layer and output 
data exit the last layer. The layers between input and output layers are called hidden layers. 
For modeling purposes, the commonly used feed-forward ANN architecture namely multi-
layer perceptron (MLP) may be employed. MLP involves an input layer, an output layer, 
and one (or more) hidden layer (s) with different roles. Each connecting line has an 
associated weight. MLP training consists in adjusting the connection weights, so that the 
calculated outputs may be approximated by the desired values. The output from a given 
neuron is calculated by applying a transfer function to a weighted summation of its input to 
give an output, which can serve as input to other neurons, as follows [11]: 

                                    ��� = ���∑ �	���	
��� + �������	�� �                                            
(1) 

Where ��� 	are jth neuron outputs from kth layer and ���is the bias weight for neuron j in 
layer k. The model fitting parameters ���� are the connection weights. The nonlinear 
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activation transfer functions gk may have many different forms. The classical ones are 
threshold, sigmoid, Gaussian and linear function [33–35]. 

3.2. Back propagation training (BP) 

MLP training procedure aims at obtaining an optimal weight set ����  and biases that 
minimizes a pre-specified error function such as average absolute relative deviation percent 
(AARD %). The back propagation learning algorithm is the most commonly used learning 
algorithm, and among its methodologies: the quasi-Newton backpropagation (BFGS), the 
Powell -Beale conjugate gradient, the Levenberge-Marquardt Algorithm (LMA) and others. 
During the training, both the inputs and the outputs are provided. The network then 
processes the inputs and compares its resulting outputs against the desired outputs. Errors 
are then propagated back through the system, causing the system to adjust the weights that 
control the network. This process occurs over and over as the weights are continually 
tweaked.  

  According to [36,37], the convergence of the BP algorithm is highly dependent on the 
initial values of weights and biases. In the literature, using novel heuristic optimization 
methods or evolutionary algorithms (which are naturally inspired algorithms) is a popular 
solution to enhance the problems of BP-based learning algorithms. 

3.3. Naturally Inspired algorithms and their hybridization with ANN 

Recently, several naturally inspired algorithms such as Particle Swarm Optimization, 
and Genetic Algorithms are becoming very powerful in solving hard optimization 
problems. These methods are suitable for global search due to their capability of exploring 
and finding promising regions in the search space at an affordable computational time. In 
this section, a brief theory of the employed algorithm in our study (GA, PSO and GWO) 
and the manner of their hybridization with ANN (to optimize the weights and thresholds of 
a pre-established BP-ANN) are given.  

3.3.1. Genetic Algorithm (GA) 

Genetic algorithm (GA) is a global heuristic, stochastic optimization technique based on 
evolution theory and genetic principles developed by Holland (1975) [38]. The algorithm 
begins with a randomly generated population that consists of chromosomes, and applies 
three kinds of genetic operators: selection, crossover and mutation operators to find the 
optimal solutions. GA processes the population of chromosomes by replacing unsuitable 
candidates according to the fitness function. In this study, the considered fitness function is 
the absolute average deviation between expected and predicted values of BHP. The 
selection operator of GA is implemented by using the linear ranking selection algorithm to 
determine which population members are chosen as parents that will create offspring for 
the next generation. Crossover is a mechanism of randomly exchanging information 
between two chromosomes. Mutation operation can change the values of randomly chosen 
gene bits, and this process continues until some predefined termination criteria are fulfilled. 
Mutation operation aims to make genetic algorithm obtain local random research capability 
through varying certain genes of chromosome. In the current work, GA is used to optimize 
the weights and thresholds of the ANN. Fig. 2 summarizes the followed steps to implement 
GA in the ANN’s training. 
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3.3.2.  Particle Swarms Optimization (PSO) 

PSO is a population based meta-heuristic algorithm inspired from the nature social 
behavior and dynamic movements with communications of insects, birds and fish. It was 
proposed and developed by James Kennedy & Russell Eberhart (1995) [39]. Like 
evolutionary algorithms, PSO performs searches using a population (called a swarm) of 
individuals (called particles) that are updated from iteration to iteration. Each particle 
represents a candidate position (i.e., solution) as a point in a dimensional space, and its 
status is characterized according to its position and velocity [39,40]. The D-dimensional 
position and velocity for the particle i at iteration t can be represented as:  

                                                      �	,! = "�	�,!, �	#,!, … , �	%,!&                                               
(2) 

                                                      '	,! = {'	�,!, '	#,!, … , '	%,!}                                               
(3) 

In the partial PSO, the speed and position of each particle change according the 
following equality [40]:  

																					'	%,!*� = '	%,! + +�,��-�./!	%,! − �	%,!� + +#,#���./!%,! − �	%,!�                 
(4) 

Each particle then moves to a new potential solution based on the following equation:  

                                                         �	%,!*� = �	%,! + '	%,!*�                                           
(5) 

In this equality, 1�2,3 and 4�2,3 stand for separately the velocity of the particle i at its t 
iteration and the D-dimension quantity of its position; 5�6782,3 represents the D-dimension 
quantity of the individual i at its most optimist position at its t times.	9�6782,3	is the D-
dimension quantity of the swarm at its most optimist position. c1 indicates the cognitive 
learning factor; c2 indicates the social learning factor, r1 and r2 are random numbers from 
[0;1].  

A new parameter called inertia weight ω (introduced by Shi and Eberhart in 1998 [41]) 
was incorporating to the Eqt 4 to enhance its convergence and to slowly reduce the velocity 
of the particles to keep the swarm under control: 

           '	%,!*� = : ∗ '	%,! + +�,��-�./!	%,! − �	%,!� + +#,#���./!%,! − �	%,!�                
(6) 

The later version of PSO is the version developed by (Clerc M,1999) [42], where a 
convergence agent is introduced in the speed changing formula:  

       '	%,!*� = < ∗ =
'	%,! + +�,��-�./!	%,! − �	%,!� + +#,#���./!%,! − �	%,!�>                   

(7) 

< = #
?# − @ − A@# − B@? 

where χ is called the convergence factor, φ =c1+c2 >4. Generally, φ is equal to 4.1, so χ 
is equal to 0.729. 
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In terms of the search for minimization problems, the individual best solution of the 
particle at the next time step (t+1), is given as follows:  

                       -�./!	%,!*� = C-�./!	%,!, 	D		D
-�./!	%,! ≤ D��	%,!*���	%,!*�,			F!G.,�	/.																								                             

(8) 
where f is the objective function to minimize.  

                                          ��./!%,!*� = H�I"	D�-�./!	%,!*��&                                 (9) 

In this paper, the Clerc’s approach is used. Fig. 3 shows the procedure of optimizing the 
BHP ANN’s weights and biases using PSO. 

3.3.3.  Grey Wolves Optimization (GWO) 

       GWO is a recently proposed swarm-based metaheuristic [43]. It was proposed and 
developed by Seyedali Mirjalili [43]. It is inspired from the social leadership and hunting 
behavior of grey wolves in nature. In this algorithm, the population is divided into four 
groups: alpha (α), beta (β), delta (δ), and omega (ω). The first three fittest wolves are 
considered as α, β, and δ who guide other wolves (ω) toward promising areas of the search 
space. During optimization, the wolves update their positions around α, β, or δ as follows:  

                                %JJK = LMJJK. O-JJJJJK
! − OJJK
!L		�PQ			OJJK
! + � = O-JJJJJK
! − RJJK. %JJK                 (10) 

where t indicates the current iteration, SK = 2�. UVJJJK − �, WK = 2UXJJJK; YZJJJJK
8 is the position vector 
of the prey, X K(t) indicates the position vector of a grey wolf, a is linearly decreased from 2 
to 0 (generally), and UVJJJK, UXJJJK are random vectors in [0,1]. 

       In GWO algorithm, it is always assumed that α, β, and δ are likely to be the position of 
the prey (optimum) [43]. During optimization, the first three best solutions obtained are 
assumed as α, β, and δ respectively. Then, other wolves are considered as ω and able to re-
position with respect to α, β, and δ. The mathematical model proposed to re-adjust the 
position of ω wolves are as follows [43]:  

        %[JJJJJK = LM�JJJJK. O[JJJJJK
! − OJJK
!L; 	%]JJJJJK = LM#JJJJK. O]JJJJJK
! − OJJK
!L; 	%^JJJJJK = LM_JJJJK. O^JJJJK
! − OJJK
!L      
(11) 

where Y`JJJJK
8 shows the position of the alpha, YaJJJJK
8 shows the position of the beta,  YbJJJJK
8 is 

the position of delta, WVJJJJK, WXJJJJK, and WcJJJJK are random vectors and YK
8  indicates the position of 
the current solution. 
         These three last equations calculate the approximate distance between the current 
solution and alpha, beta, and delta respectively. After defining the distances, the final 
position of the current solution is calculated or updated as follows:  
                   O�JJJJJK = O[JJJJJK
! − R�JJJJK. %[JJJJJK;	O#JJJJJK = O]JJJJJK
! − R#JJJJK. %]JJJJJK	; 	O_JJJJJK = O^JJJJK
! − R_JJJJK. %^JJJJJK         (12) 

                                                          OJJK
! + � = O�JJJJJK*O#JJJJJK*O_JJJJJK
_                                                (13) 

The general steps of the GWO algorithm are [43]: 
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- Initialize a population of wolves randomly. 
- Evaluate the corresponding objective value for each wolf. 
- The first three best wolves are saved as α, β, and δ. 
- Update the position of the rest of the population (ω wolves) using equations discussed 

above. 
- Update parameters a, A, and C. 
- Return the position of α as the best approximated optimum. 
- These steps are repeated till the termination criterion will be satisfied. 
  Fig. 4 illustrates the implementation of GWO to train the BHP ANN. 

4. Methodology 

4.1. DATA acquisition, pre-fitting and pre-processing  

      A total of 125 data sets was collected from different Algerian fields. Ten parameters 
were utilized as inputs of the developed ANN models to predict bottom-hole pressure 
(BHP) in vertical wells with multiphase flow. The input variables are illustrated in the 
following sequence: Oil flow rate (Qoil) expressed in (bbl/day), Gas flow rate (Qgas) in 
(scf/day), Water flow rate (Qwater) in (bbl/day), Oil gravity, gas gravity, Depth in (ft), inside 
pipe diameter (ID) expressed in (inch), well head temperature (WHT) in (°F), well head 
pressure (WHP) expressed in (Psia) and the gas oil ratio (GOR) in (bbl/scf). The data used 
for developing the models cover the ranges illustrated in the Table 2. 

To check the validity of the collected data and remove the suspected outliers, empirical 
correlations and mechanistic models were used to predict the bottom-hole flowing 
pressures and compare them with the measured values. Data sets which consistently 
resulted in poor predictions by all correlations and mechanistic models were considered to 
be invalid, and therefore removed. A cut-off-error percentage (relative error) of 20% was 
implemented for the whole data. After such a screening, a total 100 data sets were used to 
develop the ANN models: 80% of the filtered data are used to build (training) the ANNs, 
and the other 20% are used to check the accuracy of the ANNs developed (predictive test). 

To improve the convergence conditions of ANN models, the used data are normalized at 
the interval [-1, 1] according to the following equation: 

                                            �PF,d�e	f.Q = #
�	��d	P
�d����d	P − �                                       (14) 

where 4ghijkl�mno is the normalized value of  4�, 4jkp	�qr	4j�g are the maximum and 
minimum values of the variable x, respectively (as shown in Table 2). 

To demonstrate the correlation between BHP and the used independent variables, the 
correlation matrix was implemented [44,45]. This matrix illustrates the power of a linear 
relationship between two different variables in multi-variables system [44,45]. The 
coefficient between two variables x and y is defined by the following formula: 

                                              ,�s t�st�ts                                                                        (15) 

where up and uv are the sample standard deviations, and upv is the sample covariance. 
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Its values are between [-1 1]. Two variables are said to be positively linearly related if 
their correlation coefficient is close to 1 and negatively linearly if it is close to -1. For 
values nearby zero, it would indicate a weak linear relationship between the variables. 

The obtained correlation matrix between independent variables and BHP is presented in 
Table 3. The w�� element of the correlation coefficient matrix presents the linear relation 
between ith and jth variable. According to Table 3, WHP has the maximum degree of linear 
relation with BHP. In addition, BHP follow the fairly linear tendency with the depth and 
don't have direct relation with any of the 3 flow rates (oil, water and gas). 

4.2. ANN models development 

The first step to establish and develop the different models with the cited three 
algorithms consists to achieve to an ANN topology with BP learning. One hidden layer was 
employed in our study (it is proven in the literature [46] that a MLP network having only 
one hidden layer can estimate most of nonlinear systems) and its number of neurons was 
established using trial and error method (after a series of optimization processes by 
monitoring the performance of the network until the best network structure was 
accomplished). The Sigmoid activation function was used as the transfer function from 
input layer to hidden layer, and the Linear function was taken as the activation function in 
the last layer. Then, the weights and the biases of the elaborated ANN structure were 
optimized using evolutionary and metaheuristic algorithms discussed in the theory 
background part. Table 4 shows the setting parameters of the used algorithms. 

4.3. Statistical and graphical error analysis 

To evaluate the developed models and their predictive performances, the new models 
must be compared against existing correlations and models. This is done through cross 
plots (all predicted values are sketched against the experimental values and therefore across 
plot is created and compared against a unit slope line which shows the perfect model line: 
the closer the plotted data to this line, the higher is the reliability of the model) and a group 
error analysis, using the average absolute percent error (AARD%), standard deviation (SD), 
and the correlation factor (R2) as indicators. These statistical indexes can be mathematically 
expressed by the Eqs (16) through (18). 

 

                                      SSxy% = V{ ∑ |}~������}~�����
}~����� |{��V × 100                                         (16) 

                                     �y = �1 
� − 1� ∑ �}~������}~�����
}~����� �X{��V                                          (17) 

                                         xX = 1 − ∑ �}~������}~�����������∑ �}~������}~�������������                                                         (18) 

where N represents the number of the measured information, ����npZ is the observed 
bottom hole pressure values while �����kl is the calculated BHP values which is predicted 
by the developed models. Average value of the BHP data is shown by ���������. 

4.4. Leverage approach 
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Outlier diagnostics (or detection) are of much importance in developing the 
mathematical models/correlations since it allows to detect the applicability domain of a 
model and identify suspect data [47–50]. Several approaches have been proposed for this 
purpose of which Leverage approach is one of the most well-known [47,48]. This approach 
is based on the calculation of the values of the residuals that represent the deviations of a 
model results from the experimental data, and a matrix known as Hat matrix composed of 
the experimental data and the predicted values obtained from a model. Then, the Leverage 
or Hat indices are calculated based on Hat matrix (H) according to the following 
expression: 

                                                  � = Y
Y3Y�VY3                                                       (19) 

where Y is a two-dimensional 
�	 × 	� matrix composing � data points (rows) and � 
parameters of the model (columns), and Y3	is the transpose of matrix Y. The diagonal 
elements of the H matrix represent the hat values of the data in the feasible region of the 
model. Once this matrix is calculated, the applicability domain and the outlier detection is 
done through Williams plot which sketches the correlation of hat indices vs. standardized 
residuals (R). A warning Leverage (�∗) is generally fixed at the value equal to 3
� + 1/�, 
in which �	is the number of data points and � is the number of model parameters. A cut-off 
value (standardized residual) equal to three is regarded to accept the data points within ±3  
range standard deviations from the mean (to cover 99% normally distributed data).  If 
majority of data points exist in the ranges of 0 ≤ � ≤ �∗ and −3 ≤ x ≤ 3	,	it 
demonstrates that both model development and its predictions are done in applicability 
domain and demonstrating that the model is statistically valid. 

5. Results and Discussion 

5.1. Results with building data (training, testing and validation) 

Table 5 shows the results of performed sensitivity analysis for investigation of the 
number of neurons in the hidden layer for ANN-BP (only topologies, which have been 
trained several times and show a high degree of accuracy are presented in Table 5). The 
optimal configuration has been selected by finding the structure that has a high accuracy 
based on the statistical error analysis. It can be clearly seen that the 12 is the best number of 
neurons in the hidden layer and the configuration 10 × 12 × 1 (one input layer containing 
the inputs showed in Table 2, one hidden layer with twelve nodes and one output layer 
containing one node which is bottom-hole pressure) can be considered as an optimal 
topology in this study.  

In the intelligent session of our study (as it is mentioned before), we investigated the 
application of optimized ANNs through evolutionary and metaheuristic algorithms 
discussed above. In order to create an equal competition for our compared models (ANN-
BP, ANN-ANN-GA-BP, ANN-PSO-BP and ANN-GWO-BP), we used the same topology as 
that of ANN-BP, i.e. 10 × 12 × 1. Then, the problem was formulated as an optimization 
problem to find a set of weights and biases of the ANNs that minimized the difference 
between the predictions and the target values in the training set of data (a total of 80 wells 
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data are used in this section). It should be noted that the proposed hybridizations could have 
other possible structures and consequently possibly provides better results, but in this study 
and since we investigated the optimization of weights and biases of ANNs using these 
methods, we used the same topology for all applied methods. Different sets of weights and 
biases were generated randomly and evolved/updated using these algorithms. Matlab® 
2016-a [51] was used in this study. As already mentioned, in order to check the accuracy of 
the developed models, some statistical error analyses have been measured and the results 
are reported in Table 6. This table demonstrates the statistical parameters of the training 
process. In addition to statistical error analysis, cross plots of this process are also presented 
in figures 5 and 6. Fig. 5 shows the results of the BHP ANN-BP which concern the training 
process. Fig. 6 illustrates the results of the hybridization naturally inspired algorithms with 
ANNs-BP after the training process as follows: in the subplot (a), measured BHP (the data 
used) is compared against those of ANN-GA-BP (training); subplots (b) and (c) present 
measured BHP versus BHP ANN-PSO-BP (Training) and BHP ANN-GWO-BP (Training) 
respectively. 

5.2. Results with predictive data (predictive test) 

     Once the neural networks were built and trained, they are used to predict BHP with 
blind data (in our study, a set of 20 wells data are used). The results of this predictive part 
are presented in Table 7 and Fig. 7. Table 6 illustrates the values of the AARD%, R2 and SD 
which are existed between experimental and calculated values by the developed models for 
the blind data. Subplots of Fig. 7 are cross plots of experimental BHP versus calculated 
BHP by the developed models for the predictive process.  

5.3. Discussion of the obtained results 

      Tables 6 and 7 highlight that the proposed models predictions (the optimized ANN 
with the evolutionary and metaheuristic algorithms) are in excellent agreement with 
experimental data, either in the training or in the predictive sections. The cross plots of the 
models (Figs. 5-7) show that the most of calculated data lay on the unit slope line, and this 
proves their perfect accuracy and robustness. In addition, we should note that the proposed 
ANN techniques (combined with GWO, GA and PSO), achieved minimum mean square 
error and standard deviation. Thus, these models yield better robustness and stability over 
the BP artificial neural networks alone. 

5.4. Comparison of the ANN models against existing correlations and mechanistic 
models 

      To demonstrate the robustness of the developed ANNs models, a performance 
comparison between these ANNs against existing correlations and mechanistic models is 
presented in Table 8 through statistical error analyses. 

 As depicted in Table 8, from existing models (correlations & mechanistic models), 
and for the whole data used in our study, we see that Gray, Aziz et al. and Ansari et al. 
correlations are the best outperformed models. Investigation of Table 8 clearly 
demonstrates the outstanding performance of the established ANNs models.  Based on the 
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statistic parameters obtained, the ANN-GWO-BP is the most accurate ANN developed with 
an AARE value of 4.64% and a standard deviation of 6.90%. 

5.5. Outlier detection 

To check the range of reliability of the developed models, the H matrix, hat indices 
and standardized residuals were calculated through the Leverage approach and Williams 
plots were illustrated. In this study, the number of parameters is ten, and the number of data 
points is 100. Therefore, �∗of the model is set to be 0.33. Fig. 8 shows Williams plot 
(outlier data detection and applicability domain) of the established models in this work to 
predict BHP. As can be seen in this figure, Good High Leverage points are accumulated in 
the domains of 0.33 ≤ �∗ and −3 ≤ x ≤ 3 for the ANNs based naturally inspired 
algorithms. In addition, nearly all the data points (expect 3 points) are within the 
applicability domain of the developed ANN-GWO-BP model (in the range of 0 ≤ � ≤�∗	and −3 ≤ x ≤ 3). This is a proof of validity and robustness of this model. 

Finally, for utilizing of our best established model (i.e. ANN-GWO-BP) and exact 
reproducing its results, the detailed information, i.e. its weight and bias matrixes, are 
reported in Table 9. This model contains one input layer containing the inputs as arranged 
in Table 10, one hidden layer (it contains twelve nodes) and one output layer (contains one 
node) which is bottom-hole pressure. The Sigmoid activation function was used as the 
transfer function from input layer to hidden layer, and the Linear function was taken as the 
activation function in the last layer. The normalization of dataset followed is expressed in 
equation (14) with respect to the bounds shown in Table 2.   

6. Conclusions 

    In this study, we developed several intelligent models by adapting methodologies 
using three naturally inspired algorithms (GA, PSO and GWO) to search optimal feed-
forward network weights and biases for predicting BHP in vertical wells from Algerian 
fields data. A comparison of developed methods to other models, based on the statistical 
parameters (R2, AARE and SD) and graphical analyses, showed the superiority of the 
newly developed methods: the new models provided exceptionally accurate predictions 
over the best available empirical correlations and mechanistic models. With respect to 
accuracy ranking, ANN-GWO-BP outperformed the other models, whether intelligent or 
correlations. Furthermore, Leverage approach reveals that this model is statistically correct 
and valid with only three probably doubtful data points in the whole experimental data set. 
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Fig. 1: The main workflow of study. 
Fig. 2: Implementation of GA to BHP ANN’s training 
Fig. 3: Training of the BHP ANN using PSO 
Fig. 4: Training of the BHP ANN using GWO 
Fig. 5: Plot of the Results of the BHP ANN-BP only 
Fig. 6: Plots of the Results of the BHP ANN combined with evolutionist and meta 

heuristic algorithms: (a) BHP measured vs. BHP ANN-GA-BP (training); (b) BHP 
measured vs. BHP ANN-PSO-BP (Training); (c) BHP measured vs. BHP ANN-GWO-
BP (Training). 

Fig. 7: Plots of the Results of the prediction section: (a) Measured BHP vs. BHP 
ANN-BP (testing); (b) Measured BHP vs. BHP ANN-GA-BP (testing); (c) Measured 
BHP vs. BHP ANN-PSO-BP (testing); (d) Measured BHP vs. BHP ANN-GWO-BP 
(testing). 

Fig. 8: Outlier data detection and applicability domain of the elaborated models in 
this work 
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Table 1: examples of the ranges and application intervals of some BHP correlations 
& mechanistic models 

BHP Correlations/ 
Mechanistic models 

year of 
publication 

Conditions/ range of development 

Hagedorn and Brown 
[1] 

1965 

1500 ft experimental vertical well. 
1.0, 1.25, 1.5 in nominal diameter tubes; Liquids with different 
viscosities: 0.86 cp (water), 30, 35 and 110 (oil); 
Liquide flow rates: 30-1680 bbl/day; and, Gas-liquid ratios: 0-
3270 scf/bbl.  

Beggs and Brill [6] 1973 

The parameters studied and their range of variation were, 
. Gas (air) flow rate: 0 to 300 Mscf/day; 
. Liquid (water) flow rate: 0 to 1029 bbl/day 
. Pipe diameter: 1.0 to 1.5 in; 
. Liquid holdup: 0 to 0.870; 
. Pressure gradient: 0 to 0.80 psi/ft; 
. Inclination angle: -90° to +90°; 

Aziz et al. [5] 1972 
Oil flow rates are between 44 and 1850 bbl/day 
API gravity of 36 to 47.3 

Orkiszewski [3] 1967 
Oil flow rates are between 175 and 3166 bbl/day 
Wells depth from 3705ft to 4766 ft 

 

Table 2: the ranges of the used data 
 Parameters Max value Min value 

Inputs Qoil (bbl/d) 1660 8 
Qgas (Mscf/d) 572 22500 
Qwater (bbl/d) 750 0 
Oil gravity 0.931 0.569 
Gas gravity 0.884 0.602 

ID (in) 4.404 1.61 
Depth (ft) 14742 3678 
WHP (Psi) 8472 450 
WHT (°F) 184 46 

GOR (bbl/scf) 1170000 701 

Output BHP (Psia) 11250 653 

 

 

 

Table 3: Values of linear relationship between considered variables in BHP 
estimation 

Depth ID GOR Oil gravity Gas gravity Qoil WHP WHT Qwater Qgas BHP Variables 

1.0 -0.29 -0.14 0.40 -0.09 0.31 0.72 0.28 0.19 -0.07 0.77 Depth 

-0.29 1.0 0.23 -0.45 0.27 0.21 -0.44 -0.03 -0.17 0.61 -0.42 ID 

-0.14 0.23 1.0 -0.08 -0.08 -0.23 -0.15 -0.04 0.00 0.23 -0.17 GOR 

0.40 -0.45 -0.08 1.0 -0.24 0.0 0.50 0.17 0.23 -0.21 0.51 Oil gravity 

-0.09 0.27 -0.08 -0.24 1.0 0.37 -0.39 -0.03 -0.20 0.12 -0.32 Gas gravity 

0.31 0.21 -0.23 0.0 0.37 1.0 0.08 0.08 -0.14 0.42 0.16 Qoil 

0.72 -0.44 -0.15 0.50 -0.39 0.08 1.0 0.21 0.26 -0.21 0.97 WHP 

0.28 -0.03 -0.04 0.17 -0.03 0.08 0.21 1.0 0.03 0.05 0.24 WHT 
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0.19 -0.17 0.0 0.23 -0.20 -0.14 0.26 0.03 1.0 -0.16 0.31 Qwater 

-0.07 0.61 0.23 -0.21 0.12 0.42 -0.21 0.05 -0.16 1.0 -0.18 Qgas 

0.77 -0.42 -0.17 0.51 -0.32 0.16 0.97 0.24 0.31 -0.18 1.0 BHP 

 

Table 4: Naturally inspired algorithms setting used in the study 

algorithm Parameters Value/setting 
GA Population size 50 

Crossover’s probability 90 % 
Mutation’s probability 0.01% 
Type of selection Linear ranking 
Max number of generation 250 
Coding Binary 

PSO Size of the Swarm 50 
Max number of iteration 250 
C1 2.05 
C2 2.05 
� 0.729 

GWO Number of wolves 50 
Max number of iteration 250 
a linearly decreased from 5 to 0 

 

Table 5: AARE (%), R2 and SD (%)values for various ANN topologies 

Number of hidden neurons AARE (%) R2 SD (%) 

4 8.87 0.9931 13.21 
10 6.78 0.9951 8.79 
12 5.18 0.9970 7.99 
16 9.31 0.9945 13.73 
20 6.27 0.9965 8.94 
27 7.57 0.9938 11.25 

 

 

 

Table 6: Results of the building section 

 

 

 

 

 

 AARE (%) R2 SD (%) 

ANN-BP 5.18 0.9970 7.99 

ANN-GA-BP 4.86 0.9983 6.51 

ANN-PSO-BP 4.62 0.9984 6.70 

ANN-GWO-BP 4.10 0.9980 6.16 
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Table 7: Results of the 
prediction section 

 

 

 

 

Table 8: Comparison of the developed models with the common correlations and 
mechanistic models to predict BHP 

 Model AARE (%) R2 SD (%) 

T
he

 
de

ve
lo

pe
d 

M
od

el
s 

 
(t

ra
in

in
g 

+ 
pr

ed
ic

ti
on

) ANN-BP 5.738 0.9943 8.70 
ANN-GA-BP 5.156 0.9965 7.21 
ANN-PSO-BP 5.076 0.9965 7.43 

ANN-GWO-BP 4.642 0.9968 6.90 

T
he

 e
xi

st
in

g 
m

od
el

s 

Ansari et al. 5.89 0.9937 7.95 
Beggs & Brill 8.06 0.9934 11.72 
Duns et Ros 8.94 0.9921 12.04 
Aziz et al. 5.79 0.9937 7.75 

Hagedorn et Brown 6.40 0.9931 8.23 
Gray 5.33 0.9950 7.28 

Mukherjee et Brill 9.08 0.9906 12.31 
Orkiszewski 18.50 0.9855 22.59 

 

 

 

 

 

 

 

 

Table 9: Weights and biases of the ANN-GWO-BP 

Neurons Weight values of connections between input and hidden layer 

1 0.5757 -1.1635 -0.8763 1.4949 0.7954 -0.6475 -1.6290 -1.7631 0.5552 1.1967 

2 -2.2366 -0.7505 -1.7698 0.5346 1.1133 0.1721 -1.8439 0.3027 0.3900 0.6366 

3 1.0230 1.4026 -1.6195 -0.8070 0.0930 0.9736 -0.7396 0.5130 -1.6048 -1.7160 

4 1.8853 -1.7139 0.7817 -1.1562 -1.2866 -0.6320 0.8445 1.0901 0.0484 -0.2232 

5 -0.9390 0.1201 0.8347 -0.0610 -0.7509 1.8678 1.2313 1.6444 1.0299 -0.9241 

6 -1.0118 0.0014 1.0990 1.3180 -1.1244 0.9807 -1.5145 0.6989 -1.5218 -0.8136 

 AARE (%) R2 SD (%) 
ANN-BP 7.97 0.9834 11.53 

ANN-GA-BP 6.34 0.9893 10.03 
ANN-PSO-BP 6.90 0.9890 10.35 

ANN-GWO-BP 6.81 0.9921 9.87 
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7 -1.1619 0.3702 0.7682 -1.6552 -0.6756 0.3022 -1.0408 0.0210 0.0248 -1.5820 

8 0.1217 -1.5722 -0.2641 1.2784 0.2881 1.1623 -1.1465 1.7998 0.7862 1.6195 

9 0.4207 2.2443 -0.3439 1.5695 1.7279 -0.0864 1.0836 0.8775 -0.3140 -0.8922 

10 -0.2855 1.8144 -0.7272 1.9593 0.4484 -1.6312 0.4802 -1.2393 0.6730 0.2976 

11 -0.2225 2.0064 -0.6391 1.3521 1.4044 -0.5485 -0.6333 1.2238 0.3653 1.2372 

12 0.5439 -0.4550 -1.5728 0.2667 -0.0263 -0.0998 2.8425 -1.3738 -0.8637 -0.4769 

           

Weight values of connections between hidden and output layer 

-0.6203 -0.4544 -0.1717 0.0438 0.7390 -0.3602 -0.3600 0.3843 0.4329 0.4798 -0.4288 0.8237 

Biases of the hidden layer 

-3.6524 2.5227 -2.157 -1.338 1.1527 0.6006 -0.5242 0.6321 -1.6766 2.6273 -2.9119 -3.1651 

Biases of the output layer 

-0.2000           

 

Table 10: order of the inputs in the input layer of the ANN-GWO-BP 
Input layer 

(order of the inputs) 
Depth 

ID 
GOR 

Oil gravity 
Gas gravity 

Qoil 
WHP 
WHT 
Qwater 
Qgas 
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Highlights 

• BHP is a needed parameter for effective well design. 
• Several correlations and mechanistic models exist, but they fail to cover the 

whole range of application’s condition. 
• A new approach to apply artificial neural network combined with evolutionist 

and meta heuristic algorithms was established. 
• A Hybrid GA-BPANN, PSO-BPANN, and GWO-BPANN models are used to 

estimate BHP with a significant range of conditions. 
• The models have a robust performance compared with the existing methods. 
• GWO-BPANN is the most accurate over the developed models. 
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