جامعة امحمد بوقرة بومرداس كلية العلوم الاقتصادية، التجارية و علوم التسيير يوم دراسي حول أهمية استخدام البرامج الإحصائية في التحليل الاقتصادي يوم 29 افريل 2018

THE IMPACT OF FLUCTUATING OIL PRICES ON INFLATION RATES IN ALGERIA DURING 1970-2015 (NARDL Approach with EVIEWS)

Present by Dr. CHINE Lazhar Associate professor in econometrics

6

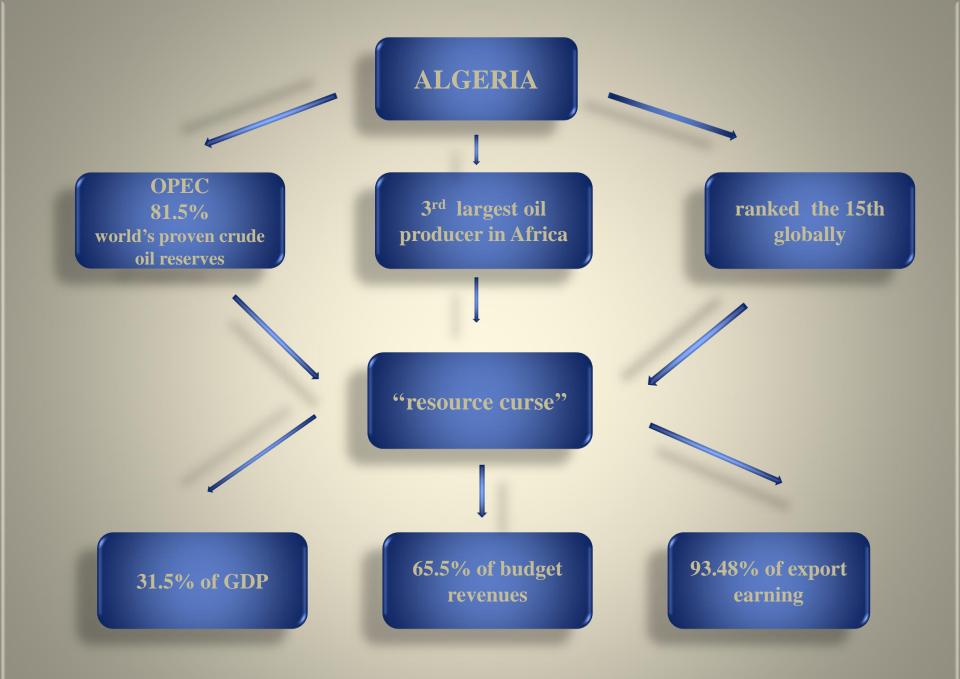
Leblanc and Chinn (2004)

De Gregorio. (2007)

have confirmed the role of oil price fluctuations on consumer price index.

Nakov and Pescatori (2007)

Killian (2008)


Mork, 1989

Mory, 1993

Hamilton, 1996

existence of asymmetric relation among oil price shocks and inflation rate.

Literature Review

How do oil price fluctuations affect on inflation in Algeria?

Does similarly changes in oil price affects and inflation rates in Algeria?

Where does the significant effect lie regarding the non-linearity of oil price impact?

Fluctuating oil price has an asymmetric effect on inflation in Algeria.

The effect of oil price increase is considerably significant compared to oil price decrease.

High dependency on hydrocarbons and reliance on importation to satisfy the local demand are the main causes of inflation in Algeria.

The present work

The impact of oil price changes on inflation rates in Algeria from its experience during 1970-2015

The nonlinear autoregressive distributed lags (NARDL) with multiple unknown threshold decompositions model

J

The expectationsaugmented Phillips curve

Potential long-run and short-run asymmetries

Why NARDL Approach?

Differences between linear ARDL and(NON LINIEAR ARDL)

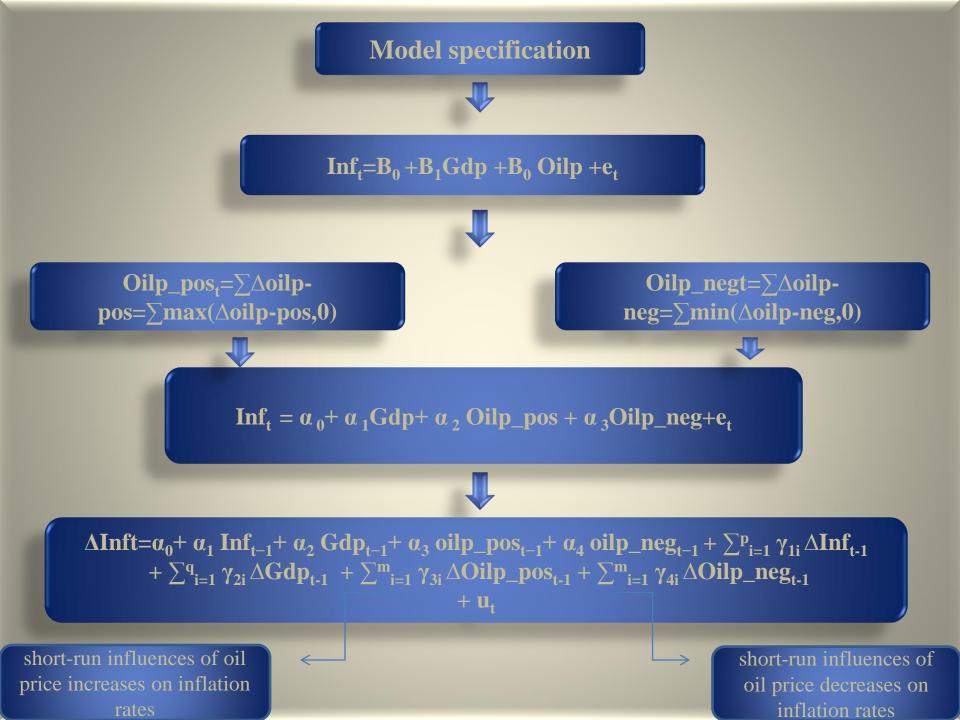
Most of researchers ask a question what is difference between ARDL and NARDL?

- ARDL Model is linear Relationship and NARDL is non linear Relationship

linear relationship is one where increasing or decreasing one variable n times will cause a corresponding increase or decrease of n times in the other variable too.

Each unit change in the x variable will not always bring about the same change in the y variable.

- NARDL This approach enables us to make a distinction between the positive and negative shocks of oil price effect on inflation
- Measure cointegration of nonlinear autoregressive distributed lag (NARDL) model in which short- and long-run nonlinearities are introduced via positive and negative partial sum decompositions of the explanatory variables.


• NARDL Model derive asymmetric dynamic multipliers that graphically depict the traverse between the short-and the long-run.

Steps for estimate NARDL Model

- 1. We must to check the stationarity of all variable in order to confirm that we don't have any variable which stationary at second difference or follow TS processus .
- 2. Estimate ARDL Model
- 3. Test cointegration, using bound test
- 4. Run NARDL
- 5. Check the asymmetries with Wald test, even from the step 4 we understand either asymmetric relationship exist or not but we can check it for further confirmation via Wald test.

EVIEWS Video Presentation

Unit root test (ADF)

₽

H₀: existence of unit root (non stationary) t-statistic > critical values → accept **H**₀

Inf

Null Hypothesis: INF has a unit root Exogenous: Constant, Linear Trend Lag Length: 0 (Automatic - based on SIC, maxlag=9)

		t-Statistic	Prob.*
Augmented Dickey-Fu Test critical values:	ller test statistic 1% level 5% level 10% level	-2.201343 -4.175640 -3.513075 -3.186854	0.4773

Null Hypothesis: D(INF) has a unit root Exogenous: Constant Lag Length: 0 (Automatic - based on SIC, maxlag=9)

		t-Statistic	Prob.*
Augmented Dickey-Ful Test critical values:	ller test statistic 1% level 5% level 10% level	-6.277369 -3.588509 -2.929734 -2.603064	0.0000

Gdp

Null Hypothesis: GDP has a unit root Exogenous: Constant, Linear Trend Lag Length: 1 (Automatic - based on SIC, maxlag=9)

		t-Statistic	Prob.*
Augmented Dickey-Ful	ler test statistic	-2.765606	0.2171
Test critical values:	1% level	-4.180911	
	5% level	-3.515523	
	10% level	-3.188259	

Null Hypothesis: D(GDP) has a unit root Exogenous: Constant Lag Length: 0 (Automatic - based on SIC, maxlag=9)

		t-Statistic	Prob.*
Augmented Dickey-Ful Test critical values:	ler test statistic 1% level 5% level	-3.774259 -3.588509 -2.929734	0.0061
	10% level	-2.603064	

Oilp

Null Hypothesis: OILP has a unit root Exogenous: Constant, Linear Trend Lag Length: 0 (Automatic - based on SIC, maxlag=9)

		t-Statistic	Prob.*
Augmented Dickey-Ful Test critical values:	ler test statistic 1% level 5% level 10% level	-1.974526 -4.175640 -3.513075 -3.186854	0.5990

Null Hypothesis: D(OILP) has a unit root Exogenous: Constant Lag Length: 0 (Automatic - based on SIC, maxIag=9)

		t-Statistic	Prob.*	
Augmented Dickey-Ful Test critical values:	ler test statistic 1% level 5% level 10% level	-4.987277 -3.588509 -2.929734 -2.603064	0.0002	
	10/010/01	2.000004		

Stationary

Stationarity test (KPSS)

H₀: the serie is stationary LM statistic > critical values \rightarrow reject H₀

Null Hypothesis: INF is stationary Exogenous: Constant, Linear Trend Bandwidth: 5 (Newey-West automatic) using Bartlett kernel

		LM-Stat.
Kwiatkowski-Phillips-Schmidt-Shin test statistic		0.121733
Asymptotic critical values*:	1% level	0.216000
	5% level	0.146000
	10% level	0.119000

Null Hypothesis: D(INF) is stationary Exogenous: Constant Bandwidth: 1 (Newey-West automatic) using Bartlett kernel

		LM-Stat.
Kwiatkowski-Phillips-Schmidt-S	Chin test statistic	0.066585
Asymptotic critical values*:	1% level	0.739000
	5% level	0.463000
	10% level	0.347000

Gdp

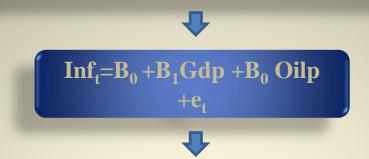
Null Hypothesis: GDP is stationary Exogenous: Constant, Linear Trend Bandwidth: 5 (Newey-West automatic) using Bartlett kernel

		LM-Stat.
Kwiatkowski-Phillips-Schmidt-Shin test statistic		0.107145
Asymptotic critical values*: 1% level		0.216000
	5% level	0.146000
	10% level	0.119000

Null Hypothesis: D(GDP) is stationary Exogenous: Constant Bandwidth: 4 (Newey-West automatic) using Bartlett kernel

_			LM-Stat.
	Kwiatkowski-Phillips-Schmidt-Sh Asymptotic critical values*:	in test statistic 1% level 5% level 10% level	0.186944 0.739000 0.463000 0.347000

Null Hypothesis: OILP is stationary Exogenous: Constant, Linear Trend Bandwidth: 5 (Newey-West automatic) using Bartlett kernel


		LM-Stat.
Kwiatkowski-Phillips-Schmidt-Sh	in test statistic	0.157185
Asymptotic critical values*:	1% level	0.216000
	5% level	0.146000
	10% level	0.119000

Null Hypothesis: D(OILP) is stationary Exogenous: Constant Bandwidth: 1 (Newey-West automatic) using Bartlett kernel

		LM-Stat.
Kwiatkowski-Phillips-Schmidt-Sh Asymptotic critical values*:	1% level 5% level	0.076648 0.739000 0.463000
	10% level	0.347000

Stationary

Estimating the ARDL model

Dependent Variable: INF Method: ARDL Date: 07/14/17 Time: 16:52 Sample (adjusted): 1972 2015 Included observations: 44 after adjustments Maximum dependent lags: 2 (Automatic selection) Model selection method: Akaike info criterion (AIC) Dynamic regressors (2 lags, automatic): GDP OILP Fixed regressors: C Number of models evalulated: 18 Selected Model: ARDL(1, 2, 0)

Variable	Coefficient	Std. Error	t-Statistic	Prob.*
INF(-1) GDP GDP(-1) GDP(-2) OILP C	0.698515 -2.31E-08 -1.98E-08 4.80E-08 -0.017115 2.294848	0.094436 2.51E-08 4.33E-08 2.62E-08 0.026487 2.012842	7.396720 -0.920884 -0.456234 1.829004 -0.646165 1.140103	0.0000 0.3629 0.6508 0.0753 0.5221 0.2614
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.726108 0.690070 4.408828 738.6351 -124.4868 20.14820 0.000000	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat		9.312266 7.919383 5.931219 6.174517 6.021446 1.794532

Bound testing

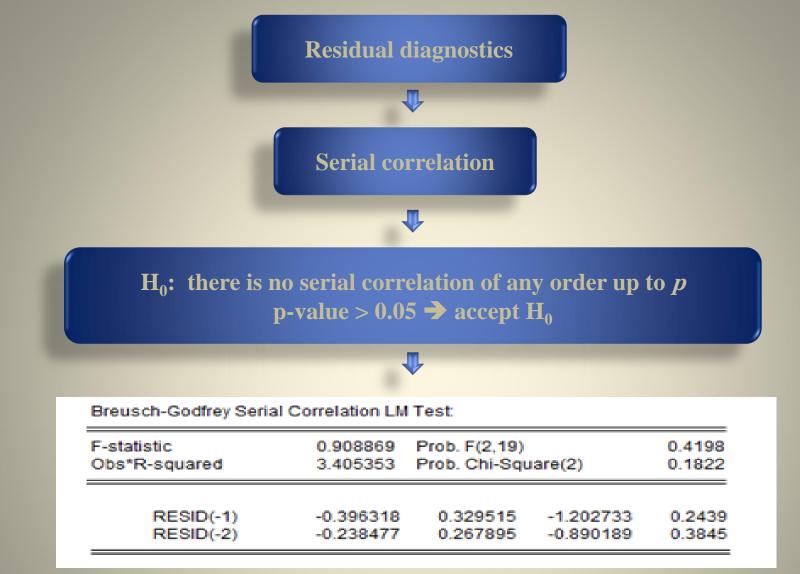
ARDL Bounds Test Date: 07/14/17 Time: 17:06 Sample: 1972 2015 Included observations: 44 Null Hypothesis: No long-run relationships exist

Test Statistic	Value	k	
F-statistic	0.776989	2	

Critical Value Bounds

Significance	I0 Bound	I1 Bound	
10%	2.63	3.35	
5%	3.1	3.87	
2.5%	3.55	4.38	
1%	4.13	5	

Estimating NARDL model


$\Delta Inft = \alpha_0 + \alpha_1 Inf_{t-1} + \alpha_2 Gdp_{t-1} + \alpha_3 oilp_pos_{t-1} + \alpha_4 oilp_neg_{t-1} + \sum_{i=1}^{p} \gamma_{1i} \Delta Inf_{t-1} + \sum_{i=1}^{q} \gamma_{2i} \Delta Gdp_{t-1} + \sum_{i=1}^{m} \gamma_{3i} \Delta Oilp_pos_{t-1} + \sum_{i=1}^{m} \gamma_{4i} \Delta Oilp_neg_{t-1}$

⊦ u,

V

Method: Stepwise Regression Date: 07/15/17 Time: 18:49 Sample (adjusted): 1977 2015 Included observations: 39 after adjustments Number of always included regressors: 6 Number of search regressors: 23 Selection method: Uni-directional Stopping criterion: p-value = 0.1

Variable	Coefficient	Std. Error	t-Statistic	Prob.*
C INF(-1)	43.19066 -1.167674	8.987896 0.172826	4.805425	0.0001
GDP(-1)	-3.51E-08	1.12E-08	-3.143511	0.0049
OILP_POS(-1)	0.164095	0.047742	3.437144	0.0025
OILP_NEG(-1)	0.101796	0.076768	1.326020	0.1991
@TREND	-1.466189	0.340158	-4.310313	0.0003
DGDP(-3)	-9.75E-08	2.28E-08	-4.275107	0.0003
DGDP(-1)	-5.62E-08	2.14E-08	-2.629482	0.0157
DGDP(-4)	-8.48E-08	2.44E-08	-3.478508	0.0022
DOILP_NEG(-4)	-0.344471	0.147113	-2.341548	0.0291
DINF(-1)	0.468732	0.123456	3.796753	0.0011
DOILP_POS	0.270552	0.088689	3.050559	0.0061
DINF(-3)	0.289506	0.115434	2.507986	0.0204
DGDP(-5)	-1.02E-07	3.17E-08	-3.214332	0.0042
DGDP	-6.05E-08	2.34E-08	-2.586250	0.0172
DOILP_POS(-4)	0.413571	0.142980	2.892507	0.0087
DOILP_POS(-5)	-0.325544	0.128138	-2.540575	0.0190
DGDP(-2)	4.73E-08	2.36E-08	2.005694	0.0579
R-squared	0.845520	Mean depend	entvar	-0.121026
Adjusted R-squared	0.720465	S.D. dependent var		5.116635
S.E. of regression	2.705222	Akaike info criterion		5.132283
Sum squared <u>resid</u>	153.6827	Schwarz criterion		5.900080
Log likelihood	-82.07951	Hannan-Quinn criter.		5.407762
F-statistic	6.761167	Durbin-Watson stat		2.304615
Prob(F-statistic)	0.000037			

Heteroskedasticity ARCH

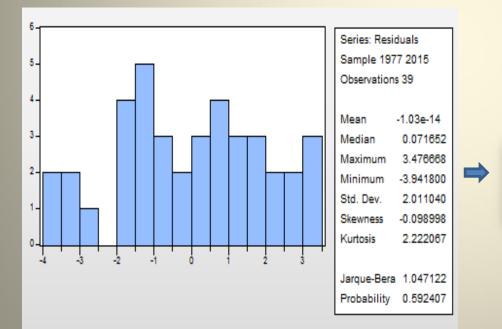
J

H₀: homoscedasticity, the variance of the errors is constant p-value > 0.05 → accept H₀

Heteroskedasticity Test: ARCH

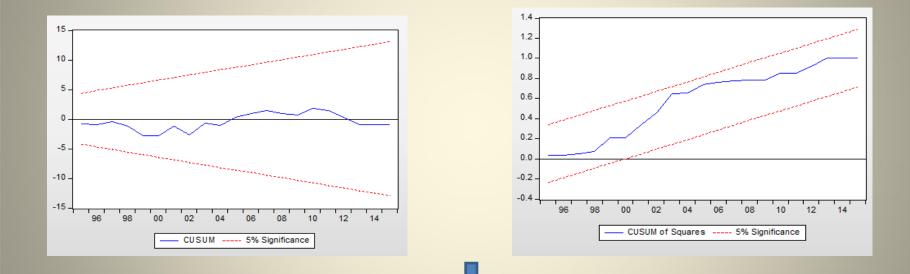
F-statistic 0.712180 Prob. F(2,34) 0.49 Obs*R-squared 1.487715 Prob. Chi-Square(2) 0.41
--

Test Equation:
Dependent Variable: RESID ²
Method: Least Squares
Date: 07/15/17 Time: 20:19
Sample (adjusted): 1979 2015
Included observations: 37 after adjustments

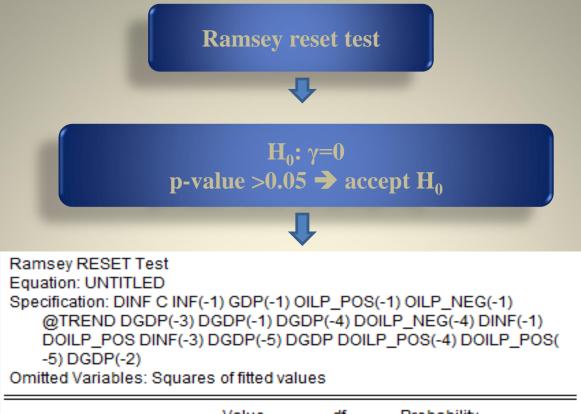

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C	2.762861	1.183330	2.334819	0.0256
RESID ^A 2(-1)	0.086025	0.162742	0.528599	0.6005
RESID ^A 2(-2)	0.172266	0.162751	1.058465	0.2973

The errors are homoscedastic

 H_0 : the residuals follow a normal distribution p-value > 0.05 \rightarrow accept H_0

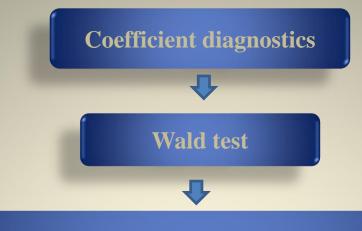


刀


The residuals are normally distributed

Stability diagnostics

CUSUM and CUSUM of squares



The model is dynamically stable

	Value	df	Probability	
t-statistic	1.113585	20	0.2787	
F-statistic	1.240072	(1, 20)	0.2787	
Likelihood ratio	2.346136	1	0.1256	

 H_0 : some parameter = some value. p-value > 0.05 → accept H_0

Wald Test: Equation: Untitled

Test Statistic	Value	df	Probability
F-statistic	10.02830	(5, 21)	0.0001
Chi-square	50.14149	5	0.0000

Null Hypothesis: C(1)=C(2)=C(3)=C(4)=C(5)=C(6) Null Hypothesis Summary:

Normalized Restriction (= 0)	Value	Std. Err.
C(1) - C(6)	44.65684	9.312807
C(2) - C(6)	0.298515	0.238567
C(3) - C(6)	1.466189	0.340158
C(4) - C(6)	1.630284	0.377297
C(5) - C(6)	1.567985	0.336669

Restrictions are linear in coefficients.

0.010		
I(0)	<i>I</i> (1)	
15.73	15.73	
8.74	9.63	
6.34	7.52	
5.17	6.36	
4.40	5.72	
3.93	5.23	
3.60	4.90	
3.34	4.63	
3.15	4.43	
2.97	4.24	
2.84	4.10	

There is a cointegration between variables

Asymmetry test

↓

Wald Test: Equation: Untitled	I			
Test Statistic	Value	df	Probability	
t-statistic -3.935321 18 0.0010 F-statistic 15.48675 (1, 18) 0.0010 Chi-square 15.48675 1 0.0001 Null Hypothesis: -C(4)/C(2)=-C(5)/C(2)				
Null Hypothesis Summary: Normalized Restriction (= 0) Value Std. Err.				
-C(4)/C(2) + C(5)/C(2)		-0.637186	0.161915	

Delta method computed using analytic derivatives.

Significance of the variables

Wald Test: Equation: Untitled			
Test Statistic	Value	df	Probability
t-statistic F-statistic Chi-square	-3.252380 10.57798 10.57798	18 (1, 18) 1	0.0044 0.0044 0.0011
Null Hypothesis: - Null Hypothesis S			
Normalized Restr	iction (= 0)	Value	Std. Err.
-C(3) / C(2)		-5.08E-08	1.56E-08

Wald Test: Equation: Untitled

Test Statistic	Value	df	Probability
t-statistic	4.220519	21	0.0004
F-statistic	17.81278	(1, 21)	0.0004
Chi-square	17.81278	1	0.0000

Null Hypothesis: -C(4)/C(2)=0 Null Hypothesis Summary:

Normalized Restriction (= 0)	Value	Std. Err.
-C(4) / C(2)	0.140532	0.033297

Delta method computed using analytic derivatives.

Oilp_neg

Wald Test: Equation: Untitled			
Test Statistic	Value	df	Probability
t-statistic F-statistic Chi-square	1.325592 1.757195 1.757195	21 (1, 21) 1	0.1992 0.1992 0.1850

Null Hypothesis: -C(5)/C(2)=0 Null Hypothesis Summary:

Normalized Restriction (= 0)	Value	Std. Err.
-C(5) / C(2)	0.087179	0.065766

Delta method computed using analytic derivatives.

Conclusion

This study analyze the impact of oil price changes on CPI, and to do so we adopt a nonlinear ARDL model for the analysis to capture both long-run and short-run asymmetric between CPI and oil prices. Estimated results confirm the existence of both long-run and shortrun asymmetry behavior of CPI. Precisely, in the long-run, oil price increase tend to increase inflation level in Algeria. However, oil price decrease seems to be unrelated to inflation level.

Similarity, in the short-run, only oil price increase seems to increase inflation in Algeria.

THAN YOU FOR YOUR ATTENTION