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Abstract 

Process monitoring via Principal Component Analysis (PCA) and Dynamic Principal 

Component Analysis (DPCA) suffer from the False Alarms (FAs), Missed Detection 

(MD) and to the Detection Time Delay (DTD). In this work, a Modified Moving Window 

PCA (MMWPCA) with Fuzzy Logic Filter (FLF) and its dynamic extension (MMW-

DPCA) with FLF are proposed to overcome these issues. The techniques are based on 

PCA, DPCA and Moving Window PCA (MWPCA) to generate adaptive thresholds with 

fixed statistical models. The applications of the proposed methods have been carried out 

on the Tennessee Eastman Process (TEP) (both old and revised models), Photovoltaic 

system and cement rotary kiln. The performances of the developed techniques are 

compared against recent Fault Detection and Diagnosis (FDD) works. The results 

demonstrate the superiority of the proposed monitoring schemes in detecting different 

types of faults with high accuracy and with shorter time delay. 

 َثرج يخرصسج

   (DPCA) ٔ ذذهٍم انًسكثاخ الأساسٍح اندٌُايٍكٍح  (PCA)يراتعح الأجٓصج تاسرعًال ذذهٍم انًسكثاخ الأساسٍح 

ذذهٍم انًسكثاخ الأساسٍح ضًٍ َافرج  ذعدٌم فً ْرا انعًم، أقرسح. كشف، َقص ٔذأخس الكاذبِ اليذعاًَ يٍ انرُة

 انًُٕذج اندٌُايٍكً نك ٔ كر(Fuzzy Logic Filter)انغايض  زشخ انًُطقً  يع انى (MMWPCA)يرذسكح

(MMW-DPCA)انرقٍُراٌ ذسرُداٌ عهىاْاخ. نرغطٍح انًشاكم انًركٕزج ساتقا  نٓرِ انرقٍُح ٌ(PCA)   ،(DPCA) 

ٌ ذى اخرثازًْا ٔيقازَح اٌ الأخٍسخاْاخ.  إدصائً ثاتدذجَٔى يع عرثاخ يركٍفح  نرٕنٍد  (PCA)ٔ  انُافرج انًرذسكح

 Tennessee Eastman Process عهى    ترطثٍقًٓاْراا يع أعًال ددٌثح فً يجال انرقاط أعطاب الأجٓصج ٔوعًهّ

(TEP)   (انطساش انجدٌد ٔانقدٌى)  .ّا فً اسرشعاز انخهم تدقح ٔفً ٔقد قصٍس عهى أجٓسج ٔاقعٍح وكًا أثثرد َجاعر

 . يثم الأنٕاح انشًسٍح ٔ يصُع إَراج الإسًُد
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Introduction 

Industrial product quality, production rate, performance efficiency and consumers 

demands satisfaction do not depend only on the high performance of the control systems but 

also on the efficient approaches of process monitoring. Industrial systems are subjected to 

malfunctions and faults which may lead to overall failures, fatal accidents, economic losses 

and environmental damages, thus process monitoring becomes a necessity to ensure safe and 

reliable operation of the entire system as well as to prevent the undesired consequences which 

faults may cause [1-11].  

Literature Review 

Multivariate Statistical Process Control (MSPC) techniques have been widely applied to 

monitor large-scaled data processes due to their ability of the dimensionality reduction [12-

16]. Principal Component Analysis (PCA) is a well known MSPC technique that has been 

extensively used for the stated objective [17-18]. It is a projection method that maps the data onto a 

lower dimensional space by means of a linear transformation that accurately characterizes the process 

[17-28]. Processes are monitored via PCA using two control charts which reflect their status, 

the Hotelling’s T
2
 and Q statistics [19, 27, 29-30]. Regardless of how the fault control limits 

are developed, a fault is detected if either or both T
2 

and Q violate their corresponding 

thresholds. PCA model does not include the dynamic behaviour of the data; hence it had been 

extended to the dynamic PCA by Ku et al [31]. Rato et al [32-33] noticed that the residuals of 

the DPCA show an auto-correlation. To handle this issue, they developed DPCA with 

Decorrelated Residuals (DPCA-DR) based on the generation of decorrelated residuals. The 

DPCA of Ku at al [31] adds the same number of lags to the process variables; however, a 

measured variable may need a number of lags that is different from the other variables. Thus, 

Rato at al [34] provided another methodology by which different numbers of lags are given to 
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the variables. Real processes are nonlinear; consequently, the measured data exhibit nonlinear 

behaviours which can be managed through the use of Kernel PCA (KPCA) by which a 

nonlinear transformation is employed instead of a linear one [35-43]. The operation set-points 

change is another problem which is added to the process monitoring using MSPC. To deal 

with this problem, several adaptive algorithms have been proposed in literature. For instance, 

Moving Window (MWPCA) [33, 44-45], fast MWPCA [46], Exponentially Weighted 

Moving Window PCA (EWMWPCA) [47] and Recursive PCA (RPCA) [48-49] are those 

PCA adaptive methods. Adaptive algorithms of KPCA, which are used to handle both 

nonlinear behaviours and the systems’ changes in the operation conditions, include the 

Adaptive Kernel PCA (AKPCA) [50-51] and Moving Window Kernel PCA (MWKPCA) [52-

53]. Combined methods such as Dynamic KPCA (DKPCA) have been developed to deal with 

both nonlinear and dynamic features of a process [11]. To enhance PCA in particular and its 

versions in general, many recent techniques were developed. For example, Zhu et al [21] 

developed distributed and parallel PCA (dpPCA) to monitor multivariate process, which 

divides a system onto several blocks. With this method, distribution and parallel analysis is 

performed then PCA is applied to extract features of each block. By considering all the PCA 

results, conclusions are made about the process status.  Lou et al [54] proposed two step PCA 

to compact the dynamic behaviour in the steady states.  Rato et al [55] used the Markovian 

and Non-Markovian sensitivity enhancing transformations which are applied to one of the 

PCA and DPCA monitoring index, T
2
, to improve its sensitivity. Constructive Polynomial 

Mapping (CPM) has been used with DPCA and Linear Gaussian State Space Model 

(LGSSM) to address the problem of infinite order mapping of radial basis kernel function 

[56]. Other non based PCA techniques were used in fault detection and diagnosis. The most 

useful ones are the Partial Least Squares (PLS) [57], Canonical Variante Analysis (CVA) [58] 

and Independent Canonical Analysis (ICA) [59]. 
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Motivation  

Problem Statement and Objectives  

The performance of any monitoring scheme depends on the quantified values of the False 

Alarms Rate (FAR), the Missed Detection Rate (MDR) and the Detection Time Delay (DTD) 

[60]. These criteria are required to be as small as possible [61]. The FAR, MDR and the DTD 

are dependent on each other, in other words, reducing one factor will increase the two other 

ones. PCA based fault detection method fails to fulfil the process monitoring performance 

requirements due to the assumptions under which its statistical model is constructed. For 

linear systems of few dynamics with independent observations and which do not exhibit the 

operation set-points changes, PCA shows high potential and good monitoring performance. 

However, with nowadays industrial processes, these assumptions become no longer valid. The 

application of PCA and its extended versions with fixed control limits to process monitoring 

delays the fault detection and results in high values of the FAR and MDR which worsen their 

performances. Consequently, the fault detection accuracy is decreased and the operators will 

confuse on what decision they must make.  Even though the adaptive techniques generate 

adaptive thresholds for the monitoring indices, they suffer from the sensitivity to small 

amplitude faults owing to their model updating at each normal observation. Each one of the 

fault detection techniques has advantages and drawbacks; hence, a combination of different 

fault detection methods is a good solution to enhance process monitoring. The main objective 

of this work is to achieve early fault detection with high accuracy and less MDR. For that 

purpose, Constant False Alarms Rate (CFAR), a Modified Moving Window PCA 

(MMWPCA) with a Fuzzy Logic Filter (FLF) and its extension to Modified Moving Window 
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DPCA with FLF are proposed for online process monitoring. The CFAR method investigates in 

the number of false alarms to detect fault. This method is basically based on statistics, the CFAR is 

computed for PCA monitoring indices, and then a fault is detected whenever one or both CFARs 

exceed their corresponding limits. The MMWPCA with FLF combines the advantages of both 

PCA and conventional MWPCA techniques. The idea is to enhance PCA performance by 

means of adaptive thresholds and FLF. Both the adaptive thresholds and the FLF involve in 

the PCA monitoring indices sensitivity improvement, the FAR and MDR reduction. The FLF 

removes outliers and corrects any corrupted samples by noise in the Q and T
2
. It is important 

to filter the monitoring indices before making decisions about the process status because false 

alarms are generated due to the existence of random noise and dynamic behaviours. Besides, 

the statistical formulas, by which the control limits are evaluated, always allow certain 

percentage of normal observations to exceed the thresholds.  The control limits of the 

MMWPCA with FLF are updated only when a new normal observation is available. The 

MMW-DPCA with FLF is a dynamic version of the MMWPCA with FLF to include the 

dynamic behaviour in the statistical model.  

The application of the proposed methods has been carried out on several processes. CFAR 

has been applied to the cement rotary kiln of Ain EL Kebira, Algeria. MMWPCA with FLF 

has been validated on the Tennessee Eastman Process (TEP) (both old and revised models). In 

addition, the real experimental applications of this method have been performed on the 

cement rotary kiln and on a photovoltaic system. MMW-DPCA with FLF has been applied to 

old TEP model. The results of the CFAR based fault detection demonstrate that the proposal 

scheme detect faults with high accuracy. The performance comparison of the MMWPCA and 

MMW-DPCA with FLF against some recently published papers in the field of FDD reveals 

the effectiveness of the developed adaptive thresholding schemes in detecting faults with 

reduced FAR, MDR and detection delay.    



Introduction 
 

 Page 6 
 

 The rest of the thesis is organized as follows, chapter one provides some basics definitions 

and concepts in the field of fault detection and diagnosis. In chapter two, the well-known 

data-driven methods are presented and explained how they can be used to detect faults. The 

reviewed techniques are the PCA, DPCA and MWPCA. These methods are the platforms of 

the proposed monitoring schemes. Chapter three is devoted to the developed fault detection 

proposals where they are explained and their algorithms are offered. The applications of the 

CFAR, the MMWPCA and the MMW-DPCA with FLF are shown in chapter four. The 

obtained results are also discussed in this chapter. The findings, conclusions and future works 

are presented in the conclusion part.    
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The basic definitions in the field of Fault Detection and Diagnosis (FDD) are provided in 

this chapter. The FDD approaches are also reviewed. Moreover, this chapter covers the 

quantified factors on which the monitoring performance analysis is based and their 

mathematical equations are given. 

1. Introduction to Fault Detection and Diagnosis 

1.1.          Fault  

Fault is an unaccepted deviation of at least one parameter, characteristic or property of the 

system from its normal behavior, usual and standard conditions [62-63]. 

1.1.1. Types of Faults 

Regarding to the fault location in the system, faults can be classified as [64]. 

A)  Actuator fault 

B) Plant fault  

C) Sensors fault 

Figure 1.1 represents the different possible locations of a fault.  

 

 

 

 

A fault can be also classified according to the time behavior as [63] 

D) Abrupt fault. 

E) Intermittent fault  

F) Incipient fault 

Actuator Plant Dynamics Sensors 

Measured 

Output 
Plant Output 

Actuation 

Signal  

Control 

Signal   

Actuator 

Fault  
Plant 

Fault  

Sensor 

Fault  
Figure 1.1. Possible locations of faults 
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Figure 1.2 represents the different types of faults according to the time behaviour.  

  

 

 

 

1.2.         Process Monitoring  

The tasks which constitute the process monitoring are: the fault detection, fault 

identification, fault diagnosis and fault recovery [65]. Figure 1.3 represents the process 

monitoring loop. 

 

 

1.2.1. Fault Detection 

Fault detection is the task which permits to determine whether an abnormal behavior has 

occurred [65]. 

1.2.2. Fault Identification  

Fault identification is identifying the variable or variables which are responsible of the 

occurred fault [65] 

1.2.3. Fault Diagnosis 

Fault diagnosis is determining the type, location, amplitude and the time of the fault [65]. 

Figure 1.2. Time properties of a fault  

Figure 1.3. Process monitoring tasks   

 
Abrupt Fault Intermittent Fault Incipient Fault 

t t t 
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1.2.4. Process Recovery   

Process recovery is removing the effect of the occurred fault [65]. 

1.3. Fault Detection and Diagnosis Approaches 

Fault Detection and Diagnosis (FDD) approaches are classified in two major categories: 

the model-based and historical-based or data-driven. Both classes are divided into the 

qualitative and quantitative techniques. Statistic and neural network constitute the quantitative 

data-driven while the qualitative data-driven is consisted of the expert system and Qualitative 

trend Analysis (QTA).  The qualitative model-based is divided into the causal models and 

abstraction hierarchy methods. The use of mathematical functions classifies the quantitative 

model-based [66-68]. The Fault detection and diagnosis tree is depicted in Figure 1.4.    

 

 

 

 

 

 

 

 

 

Abstraction Hierarchy  

 

Fault Detection and 

Diagnostic Techniques 

Model-Based 
Data-Driven  

Quantitative 
Qualitative 

Mathematical 

Functions 

Causal Models 
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1.3.1. Model-Based Fault Detection Techniques 

1.3.1.1. Quantitative Methods 

Quantitative methods use the relationships between the inputs and the outputs of the 

systems. These relationships are expressed through mathematical functions based on the 

knowledge of physics of the process in the form of differential or state space equations.  The 

process monitoring via this class of model-based is performed by the residuals generation 

techniques such as nonlinear observer –based residual generation that has been extensively 

applied [66-67].   

1.3.1.2. Qualitative Methods 

Qualitative methods also use the relationships between the inputs and the outputs of the 

system. However, with these techniques, the relationships are expressed in terms of 

qualitative functions which are either causal models or abstraction hierarchies [67].  

1.3.1.2.1. Causal Methods  

Causal methods can be achieved by signed direct graphs, fault tree or qualitative physic. 

Signed Direct Graph (SDG), which can be derived from differential equations for the 

process [67, 69], is a graph that reflects the behavior of the equipments and the general 

process behavior. In SDG, the cause-effect relations can be represented. High and low 

thresholds for the process variables are first defined then a node takes the value 0 when the 

measured value of a variable is in its normal conditions and takes positive value when the 

measured variable exceed the thresholds, otherwise it takes a negative value [65].    Fault 

Tree represents the relation between the fault and its symptoms [65]. A general fault tree 

analysis consists of the system definition, fault tree construction, qualitative evaluation and 
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quantitative evaluation [67]. By taking the intersection of the fault causes and the symptoms, 

the root cause of the fault is identified. Qualitative physics permits to draw conclusions about 

the systems status with incomplete knowledge of the physical process [70]. Two approaches 

are used with this method. The first is to derive qualitative equations from the differential 

equations as confluence equations. The second approach is to derive the qualitative behaviors 

from the differential equations which describe the system. These behaviors are then 

considered for fault detection and diagnosis [67,70]. 

1.3.1.2.2. Abstraction Hierarchy 

Abstraction hierarchy is based on the decomposition which permits to draw inferences 

about the behavior of the process only from laws governing the behavior of its subsystems. 

But the laws of the subsystems may not reflect the functioning of the whole system. In a 

hierarchic presentation, a class of the process units can be presented and the equations 

describing the entire class may make assumptions about the class as a whole but not about the 

behavior of specific units [67].  Structural and functional decompositions are the most used in 

abstraction and hierarchy qualitative model-based methods.  Structural defines the 

connectivity information of a unit while functional describes the unit’s output as a function of 

its input [67]. 

The main drawback of the model-based fault detection approaches is their explicit 

dependency on the exact mathematical model of the process. The derivation of such model is 

a very challenging task to do for sophisticated and large- scaled systems.     

1.3.2. Data-Driven Techniques 

1.3.2.1. Qualitative Methods 

Qualitative methods are divided into the expert system and trend analysis techniques. An 

expert system tends to solve problems in a narrow domain of expertise. The advantages of an 
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expert system in fault detection and diagnosis are: it is simple to develop, transparent in 

reasoning, able to provide explanation about the solution and its ability to reason under 

uncertainty. Trend analysis is another qualitative feature extraction technique. It is able to 

explain the various vital events occurring in the system to diagnose the malfunctions and to 

predict of the process states [68]. 

1.3.2.2. Quantitative Methods 

Quantitative methods consist of statistical and neural network techniques. Statistical 

quantitative technique achieves fault detection and diagnosis by means of the use of statistical 

theories while fault detection via quantitative neural network is accomplished via neural 

networks approaches [68]. 

Modern industrial systems are sophisticated, complex and large-scaled data for which an 

exact mathematical model is difficult to be obtained [71-73]. However, such processes, with 

the development of the data acquisition, provide large amount of data that can be exploited to 

extract information about their operation status. This feature gives the data-driven techniques 

a priority and an advantage to monitor modern processes because only measurements are 

required [65, 68, 72, 74].  

1.4.  Multivariate Statistical Process Control 

Multivariate is an extension of the univariate Shewhart, Cumulative Sum (CUSUM) and 

Exponentially Weighted Moving Average (EWMA) control charts [75]. Univariate charts 

provide efficient information when monitoring an individual characteristic but they become 

less efficient when monitoring processes with large-scaled data [76].  Multivariate Statistical 

Process Control (MSPC) techniques address some limitations of the univariate monitoring 

methods by extracting information based on the variations of the whole data simultaneously 
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[20, 77-78]. Multivariate statistical projections combined with monitoring charts are widely 

used for dimensionality reduction and fault detection [30].  

1.5.   Monitoring Scheme Performance Analysis 

The performance analysis of any monitoring scheme is based on the quantified values of 

the False Alarms rate (FAR), the Missed Detection Rate (MDR) and the Detection Time 

Delay (DTD).  The more these values are reduced, the more efficient the monitoring scheme 

is [60-61]. FAR returns the rate of the normal samples detected as faulty samples. In 

statistics, the FAR corresponds to the type I error of the evaluated statistical control chart. The 

FAR can computed using the following equation 

𝐹𝐴𝑅 =
𝑁𝑢𝑚𝑏𝑒𝑟  𝑜𝑓  𝑛𝑜𝑟𝑚𝑎𝑙  𝑠𝑎𝑚𝑝𝑙𝑒𝑠  𝑎𝑏𝑜𝑣𝑒  𝑡ℎ𝑒  𝑙𝑖𝑚𝑖𝑡𝑠  

𝑡𝑜𝑡𝑎𝑙  𝑛𝑢𝑚𝑏𝑒𝑟  𝑜𝑓  𝑛𝑜𝑟𝑚𝑎𝑙  𝑠𝑎𝑚𝑝𝑙𝑒𝑠
∗ 100                                                   (1.1) 

The MDR  represents the rate of non detected faulty samples. It is given by  

𝑀𝐷𝑅 =
𝑁𝑢𝑚𝑏𝑒𝑟  𝑜𝑓  𝑓𝑎𝑢𝑙𝑡𝑦  𝑠𝑎𝑚𝑝𝑙𝑒𝑠  𝑢𝑛𝑑𝑒𝑟  𝑡ℎ𝑒  𝑙𝑖𝑚𝑖𝑡𝑠  

𝑡𝑜𝑡𝑎𝑙  𝑛𝑢𝑚𝑏𝑒𝑟  𝑜𝑓  𝑓𝑎𝑢𝑙𝑡𝑦  𝑠𝑎𝑚𝑝𝑙𝑒𝑠
∗ 100                                                    (1.2) 

The DTD is provided as 

𝐷𝑇𝐷 = 𝑓𝑎𝑢𝑙𝑡 𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 − 𝑓𝑎𝑢𝑙𝑡 𝑜𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒 𝑡𝑖𝑚𝑒                                                                (1.3) 

Fault Detection Rate (FDR) is another criterion used to evaluate the performance of a 

monitoring scheme. It measures the rate of the detected samples over the total number of 

faulty samples. It can be calculated using the Eq. (1.4) 

𝐹𝐷𝑅 =
𝑁𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑓𝑎𝑢𝑙𝑡𝑦  𝑠𝑎𝑚𝑝𝑙𝑒𝑠  𝑎𝑏𝑜𝑣𝑒  𝑡ℎ𝑒  𝑙𝑖𝑚𝑖𝑡𝑠

𝑡𝑜𝑡𝑎𝑙  𝑛𝑢𝑚𝑏𝑒𝑟  𝑜𝑓  𝑓𝑎𝑢𝑙𝑡𝑦  𝑠𝑎𝑚𝑝𝑙𝑒𝑠
∗ 100                                                                         (1.4) 

The FDD concepts have been given in this chapter. These definitions provide a general 

overview of the FDD. The necessary tasks of process monitoring and the different approaches 
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of FDD are reviewed also in this chapter. In the next chapter, the well-known data-driven 

methods will be presented and explained. 
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The Principal Component Analysis (PCA), Dynamic PCA (DPCA) and the conventional 

MWPCA are reviewed in this chapter. These well-known data-driven techniques are the 

basics of the proposed monitoring schemes which are provided in chapter three. The 

definitions of these methods and their mathematical formulations are presented. In addition, 

their application to the process monitoring is also discussed throughout this chapter.  

2. Data-Driven Techniques 

2.1. Principal Component Analysis 

2.1.1. Definition and Mathematical formulation 

Principal Component Analysis (PCA) is widely used for dimensionality reduction of 

large-scaled data processes. It projects the original correlated data onto a lower dimensional   

uncorrelated data while preserving as much as possible the carried variability on the original 

variables. PCA based fault detection is performed by monitoring the principal component and 

the residual subspaces which are defined after the determination of the Principal Components 

(PCs) [79-89]. A data-set of m measured variables and n observations, collected from an 

ergodic process, is stored in the matrix 𝑋 ∈ 𝑅𝑛×𝑚  that is defined as follows 

𝑋 =  

𝑥11 𝑥12 ⋯ 𝑥1𝑚

𝑥21 𝑥22 ⋯ 𝑥2𝑚

⋮
𝑥𝑛1

⋮
𝑥𝑛2

⋮ ⋮
… 𝑥𝑛𝑚

                                                                                            (2.1) 

Since the process variables are measured with different units and scales, it is necessary to 

scale and shift the matrix 𝑋 to zero mean and unity variance by means of the mean 𝑀 ∈ 𝑅1×𝑚  

and the standard deviation 𝑆 ∈ 𝑅1×𝑚  of the matrix 𝑋. Let 𝑋𝑠 be the scaled and shifted data 

matrix. The uncorrelated data are given by the score matrix 𝑇 ∈ 𝑅𝑛×𝑚  that defines the 

projection. This matrix is provided by  
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𝑇 = 𝑋𝑠𝑃                                                                                                                            (2.2) 

In which 𝑃 ∈ 𝑅𝑚×𝑚  is a matrix of the eigenvectors of the covariance matrix of 𝑋𝑠 that 

satisfies 𝑃𝑃𝑇 = 𝐼. This matrix is determined through the Eigen Value Decomposition (EVD) 

of the covariance matrix.  

𝑐𝑜𝑣 𝑋𝑠 = 𝑃𝑇Λ 𝑃                                                                                                                  (2.3) 

Λ ∈ 𝑅𝑚×𝑚  is a diagonal matrix where the diagonal elements are the eigenvalues of the 

covariance matrix. 

2.1.2. Number of Retained Principal Components 

The PCA model depends on the number of Principal Components (PCs), a, to be retained. 

A large value of a includes noise in the model and a small value of a deteriorates the process 

description by the model [65]. In literature, many criteria are utilized for the number of PCs, a 

selection [65, 85, 90]. The employed techniques, in this work, are the parallel analysis, 

Cumulative Percentage Variance (CPV) and Kaiser’s rule.     

A. Parallel Analysis  

The number of PCs by the parallel analysis criterion is defined as the cross point of the 

eigenvalues profile of the original data and the eigenvalues profile of generated data assuming 

independent observations [65]. 

B. Cumulative Percentage Variance 

Cumulative Percentage Variance (CPV) picks up the PCs associated with a percentage of 

variance less or equal to a predefined value. CPV is generally set between 90% and 95%. 

CPV is given as [65, 90] 

𝐶𝑃𝑉 𝑎 =
 λ 𝑗

𝑎
𝑗=1

 λ 𝑖
𝑚
𝑖=1

100%                                                                                                 (2.4)  
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C. Kaiser’s Rule 

Kaiser’s rule retains all the principal components which correspond to the eigenvalues greater 

than one [91-92]. 

The number of PCs allows the definition of two subspaces, the principal component 

subspace spanned by the first a eigenvectors and the residual subspace that is spanned by the 

m-a eigenvectors. The 𝑇 , Λ and 𝑃 matrices are decomposed as  

𝑇 =  𝑇  𝑇                                                                                           (2.5) 

𝑃 =  P  P                                                                                                                          (2.6) 

Λ =  Λ
  0
0 Λ  

                                                                                                                    (2.7) 

Where T ∈ 𝑅𝑛×𝑎  and T ∈ 𝑅𝑛× 𝑚−𝑎 . P ∈ 𝑅𝑚𝑥𝑎  and P ∈ 𝑅𝑚𝑥  𝑚−𝑎 . Λ  ∈ 𝑅𝑎×𝑎  and 

Λ  ∈ 𝑅 𝑚−𝑎 ×(𝑚−𝑎). 

Eq. (2.2) permits to rewrite the matrix 𝑋𝑠 as follows 

𝑋𝑠 = 𝑇𝑃𝑇                                                                                                                           (2.8) 

𝑋𝑠 = 𝑇 𝑃 𝑇 + 𝑇 𝑃 𝑇                                                                                                              (2.9) 

𝑇 𝑃 𝑇  is the estimated data matrix 𝑋 𝑠 whereas 𝑇 𝑃 𝑇  is the residual matrix.  

2.1.3. Monitoring Indices 

PCA based fault detection is characterized by two different monitoring indices the 

Hotelling’s T
2
 [93] and Q [94]. The T

2
 measures how far the observation is from the origin 

while the Q measures how good the PCA model is. The Q statistic is the Square Predicted 
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Error (SPE). For each monitoring index, a threshold is determined.  T
2
 and Q with their 

thresholds are given by the Eq. (2.10), (2.11), (2.12) and (2.13). 

𝑇2 = 𝑥P Λ −1P T𝑥𝑇                                                                                                                        (2.10)                                                                     

𝑄 =  (𝐼 − P P T)𝑥𝑇 
2

= 𝑥 (𝐼 − P P T)2𝑥𝑇                                                                               (2.11) 

𝑇𝛿
2 =

𝑎 𝑛−1  𝑛+1 

𝑛 𝑛−𝑎 
𝐹𝛿 𝑎, 𝑛 − 𝑎                                                                                         (2.12) 

𝑄𝛿 = 𝜃1  
𝐶𝛿 2𝜃2ℎ0

2

𝜃1
+ 1 +

𝜃2ℎ0(ℎ0−1)

𝜃1
2  

1

ℎ0

                                                                        (2.13) 

Where 𝐹𝛿 𝑎, 𝑛 − 𝑎  is the upper 𝛿 percentile of an F-distribution with a, n-a degree. 

𝐶𝛿  is the normal deviate corresponding to (1 − 𝛿) percentile. 

𝜃𝑖 =  λj
i     ,   i = 1,2,3 𝑚

𝑗=𝑎+1                                                                                           (2.14) 

ℎ0 = 1 −
2𝜃1𝜃2

3𝜃2
2                                                                                                                 (2.15) 

2.1.4. Fault Detection Using PCA 

If one or both of the monitoring indices exceed their associated threshold, then a fault 

is detected. As it is mentioned previously, the monitoring indices measure the variations in 

different subspaces; hence, it is preferable to use both of them when monitoring a process. 

 The PCA algorithm for fault detection is provided by the following phases 

A. Offline Phase 

1. Construct the PCA model (the mean, standard deviation and the number of 

PCs) using the training data-set. 

2. Compute the monitoring indices for the samples of the training data-set. 

3. Evaluate the thresholds for a given Confidence Level (CL), 𝛿. 
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B. Online Phase 

1. Get the new testing sample. 

2. Compute its monitoring indices using the constructed model. 

3. Compare these monitoring indices with the specified thresholds. If both of 

them are less than their corresponding control limit, go to step 4 else go to 

step 5.  

4. Generate no fault alarm and then repeat from 1. 

5. Generate a fault alarm and then repeat from 1. 

The offline phase is used to construct and validate the PCA model while the online phase is 

used to monitor the new testing samples. The flowchart of the algorithm is shown in the 

Figure 2.1. 

  

 

 

 

 

 

 

 

 

 

Figure 2.1. Flowchart of PCA 
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2.1.5. Fault Identification Using PCA 

The fault identification via PCA is performed by determining the variables which mostly 

contribute to the monitoring indices [65]. The contribution of the j
th 

process variable to the Q 

statistic at the time period, k, is given by 

𝐶𝑜𝑛𝑡𝑗
𝑄 𝑘 =  𝑒𝑗 (𝑘) 

2
=  𝑥𝑗  𝑘 − 𝑥 𝑗 (𝑘) 

2
                                                                  (2.16) 

In the case of T
2
, the contribution of the j

th 
process variable is given by 

𝐶𝑜𝑛𝑡𝑖 ,𝑗
𝑇2

(𝑘) =
𝑡𝑖 𝑘 

𝜆𝑖
𝑝𝑖 ,𝑗𝑥𝑗 (𝑘)                                                                                          (2.17) 

Where 𝑝𝑖,𝑗  is the j
th 

element of the eigenvector 𝑃𝑖  corresponding to the eigenvalue 𝜆𝑖  and 

𝑡𝑖 is the i
th

 element (i=1...a) from the k
th

 row of the score matrix. 𝑥𝑗 (𝑘) is the variable of the 

current observation.  𝐶𝑜𝑛𝑡𝑖 ,𝑗
𝑇2

 𝑘  is set to 0 if it is negative. The total contribution to the T
2
 

of the variable 𝑥𝑗 (𝑘) is provided by: 

𝐶𝑂𝑁𝑇𝑗
𝑇2

(𝑘) =  𝐶𝑜𝑛𝑡𝑖 ,𝑗
𝑇2

(𝑘)𝑎
𝑖=1                                                                                       (2.18) 

 𝐶𝑜𝑛𝑡𝑗
𝑄

 and 𝐶𝑂𝑁𝑇𝑗
𝑇2

 are plotted to provide good interpretation of the variables 

contribution. A variable with a high contribution value is identified as the fault source. 

2.2. Dynamic Principal Component Analysis 

Data measurements, form fast industrial processes, need a small sampling period to 

provide early fault detection. The statistical independency assumption between observations 

becomes no longer valid with small sampling interval; hence, the PCA performance will not 

satisfy the process monitoring requirements [58]. To include the dynamics of the data in the 

PCA model, Ku et al [31] extended PCA to Dynamic PCA (DPCA) through the use of the 
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time lag shift method. The current values of the process variables depend on the past values 

with the DPCA.  The DPCA model is obtained by adding a necessary number of lags, l, to the 

data. If l is determined then, the augmented data matrix is 

𝑋𝐴 𝑙 =  

𝑥11 𝑥21
… 𝑥(𝑙+1)1

𝑥21 𝑥31
… 𝑥(𝑙+2)1

⋮
𝑥(𝑛−𝑙)1

⋮
𝑥(𝑛−𝑙+1)1

⋮
…

⋮
𝑥𝑛1

 

𝑥12

𝑥22

⋮
𝑥(𝑛−𝑙)2

𝑥22

𝑥32

⋮
𝑥(𝑛−𝑙+1)2

…
…
⋮
…

 

𝑥(𝑙+1)2

𝑥(𝑙+2)2

⋮
𝑥𝑛2

  

…
…
⋮
…

 

𝑥1𝑚

𝑥2𝑚

𝑥2𝑚

𝑥3𝑚

… 𝑥(𝑙+1)𝑚

… 𝑥(𝑙+2)𝑚

⋮ ⋮ ⋮ ⋮
𝑥(𝑛−𝑙)𝑚 𝑥(𝑛−𝑙+1)𝑚 … 𝑥𝑛𝑚

    

                        (2.19) 

Applying PCA to  𝑋𝐴 𝑙  allows the construction of the DPCA model. The monitoring 

procedures of the DPCA are the same as the ones of PCA. The main key of the DPCA is the 

number of lags to be selected. A lag will be included if it adds an important linear relationship 

for one of the variables [44]. Ku et al [31] provided algorithms to determine the required 

number of lags l. These methods select the same number of lags for all the process variables. 

These algorithms are well explained in Ku et al [31]. The dynamic relationship between the 

current and the past values of the process variables may differ from one variable to another. 

Based on this statement, Rato et al [34] developed an algorithm able to select necessary 

number of lags for each process variable. Rato et al [32-33] noticed that when the DPCA is 

applied to a process, the monitoring index Q still shows an auto-correlation. To handle this 

problem, they proposed DPCA with Decorrelated Residuals (DPCA-DR). This method 

handles also the serial correlation in the data. 

2. 3. Conventional Moving Window Principal Component Analysis  

The existence of dynamics in the industrial processes is not the only problem that is faced 

in process monitoring. Although the DPCA provides a dynamic statistical model, it fails to 

fulfill the fault detection requirements when it is applied to systems which exhibit operation 

set-points changes. To overcome this problem, researchers designed a multivariate statistical 



Chapter Two                                                        Data-Driven Techniques 
 

 Page 24 
 

technique able to track the system’s changes. This method is the conventional Moving 

Window PCA (MWPCA). The systems changes are tracked by this method via the PCA 

model adaption. The monitoring indices thresholds of the MWPCA are adaptive allowing the 

FAR, and the MDR reduction in some cases. At each new normal observation, the PCA 

model is recalculated allowing the generation of the adaptive thresholds after the newest 

normal observation inclusion in the moving window and the oldest sample exclusion. For a 

window of size H, the data matrix is given at the time t as [33, 44-45] 

𝑋𝑡 = (𝑥𝑡−𝐻+1, 𝑥𝑡−𝐻+2, …𝑥𝑡   )𝑇                                                                                     (2.20) 

and at the time t+1 as: 

𝑋𝑡+1 = (𝑥𝑡−𝐻+2, 𝑥𝑡−𝐻+3, …𝑥𝑡+1  )𝑇                                                                              (2.21) 

The initial PCA model is constructed based on the training data-set and validated on the 

testing data-set. 

The algorithm of the conventional MWPCA can be summarized in the following steps 

A. Offline phase 

1. Establish the initial PCA model based on training data (initialize the loading vectors, 

number of principal components and control limits of the monitoring indices, T
2
 and Q 

statistics). 

2. Validate the constructed model using a testing data-set. 

B. Online Phase 

1. Obtain the next testing sample x. Scale it using the current mean and standard deviation. 

3. compute the monitoring indices for this observation 

4.  Compare the monitoring indices with the current thresholds. If both of them are under 

the thresholds, go to step 5, else go to step 6. 
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5. Include the sample in the moving window and exclude the oldest ones. Recalculate the 

PCA model and the thresholds. Repeat from step 1. 

6. Generate an alarm. Go to step 1. 

Figure 2.2 represents the flowchart of the conventional MWPCA. 

 

 

 

 

 

 

 

 

 

 

 

 The well-known multivariate statistical process control techniques, PCA, MWPCA 

and DPCA, are reviewed and discussed. In addition, their mathematical formulations are 

provided. Furthermore, the use of these methods in fault detection is explained throughout the 

given algorithms and flowcharts. Since each one of the reviewed methods has advantages and 

disadvantages, a combined method will be a good solution to enhance and improve the data-

driven techniques in process monitoring. In the next chapter, combined methods of MWPCA 

with PCA and DPCA are presented and explained how they enhance the performance of PCA, 

DPCA and MWPCA based fault detection schemes.   
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In this chapter, three proposed methods are discussed. The Constant False Alarms Rate 

(CFAR) [95], the Modified Moving Window PCA (MMWPCA) with Fuzzy Logic Filter 

(FLF) [96-99] and the Modified Moving Window Dynamic PCA (MMW-DPCA) with FLF 

[100]. These methods are designed to reduce the FAR, MDR and the detection time delay. 

Mainly, two solutions are presented by the methods. The first one is to investigate in the 

number of false alarms; this solution corresponds to the CFAR technique. The second one is 

to monitor processes with adaptive thresholds combined with filters. 

3. Proposed Monitoring Schemes     

3.1. Constant False Alarms Rate  

The mathematical formulas used to develop the control limits of the PCA monitoring 

indices allow a certain number of normal samples to exceed the thresholds. This percentage is 

associated with type I error. It is also evident that when a fault is occurs, the number of 

samples above the thresholds is increased; thus, the idea behind the Constant False Alarms 

Rate (CFAR) is to detect faults through the number of samples which violate the PCA control 

limits [95]. To do so, PCA method is applied to the training data-set in order to determine a 

descriptive statistical model of the process with the fixed thresholds. Through the offline 

phase, a window of fixed length is sliding over the obtained monitoring indices vectors (Q 

and T
2
) where the number of sample above the control limits is computed at each iteration. 

The obtained numbers for each monitoring index are stored in vectors which will be used to 

compute empirically the CFAR thresholds by estimating their distributions. At the end of the 

offline phase, two CFAR thresholds are obtained, the CFARQth and the CFART
2

th associated 

with the computed CFARQ and CFART
2
 indices. The CFAR is provided as [95] 

𝐶𝐹𝐴𝑅 𝑖 =
𝑁𝑢𝑚𝑏𝑒𝑟  𝑜𝑓  𝑠𝑎𝑚𝑝𝑙𝑒𝑠  𝑎𝑏𝑜𝑣𝑒  𝑡𝑒  𝑙𝑖𝑚𝑖𝑡𝑠

𝑊𝑖𝑛𝑑𝑜𝑤  𝑙𝑒𝑛𝑔𝑡 
∗ 100                                                        (3.1) 



Chapter Three                                        Proposed Monitoring Schemes 
 

 Page 28 
 

In the online phase, the monitoring indices of the new testing sample are calculated using 

the constructed PCA model. These monitoring indices are then included in the moving 

window after removing the oldest observation indices. Within the updated window, the 

number of samples above the fixed PCA thresholds is computed and compared against the 

predefined CFAR thresholds. If both CFARQ and CFART
2
 are greater than their 

corresponding CFAR thresholds, then a fault alarm is generated otherwise, the sample is 

considered to be normal. Figure 3.1 summarizes the different steps of the CFAR algorithm. 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.1. Flowchart of the CFAR method 

No 

Yes 

Iis  

CFARQ> CFARQth  

and 

 CFART
2 
> CFART

2
th? 

Slide a window over the 

vectors Q and T
2
 

Obtain the CFARQth 

and the CFART
2

th 

Include Q and T
2
 in the 

moving window 

Construct the vectors 

CFARQ and CFART
2
 Determine the number of 

samples above Qthin and T
2

thin 

within the moving widow 

System 

Training data 

PCA 

- Obtain the Vector Q. 

- Obtain the Vector T
2
. 

- Compute T
2

thin 

- Compute Qthin 

 

 

 

New sample 

Q and T
2
 

Generate an alarm 

No an alarm 

Repeat  

Is 

CFARQ>CFARQth  

and  

CFART2>CFART
2

th 

Inputs  Outputs  

 



Chapter Three                                        Proposed Monitoring Schemes 
 

 Page 29 
 

The CFAR thresholds are determined empirically by estimating the distributions of the 

vectors CFARQ and CFART
2
 in the offline phase. 

3.2. Modified Moving Window PCA with Fuzzy Logic Filter  

Modified Moving Window PCA (MMWPCA) with Fuzzy Logic Filter (FLF) is a data-

driven method combined with FLF. This technique is based on the two well-known MSPC 

approaches, PCA and MWPCA. The PCA technique allows the construction of a model that 

will evaluate the monitoring indices of each new testing sample while the MWPCA permits 

the generation of the adaptive thresholds which will enhance the PCA monitoring indices 

sensitivity, robustness and will decrease the MDR. The FLF filters the evaluated monitoring 

indices to reduce both the FAR and MDR. In addition, it makes the whole proposed scheme 

robust to noise and outliers [96-99].  

3.2.1. Fuzzy Logic Filter  

Filters have been widely used to remove noise and outliers from different signals for a 

variety of applications. In literature, plenty of filters types have been implemented [101-102]. 

The design of a filter for fault detection applications must take the filtering action effects on 

monitoring. The implemented filter must not affect too much the monitoring indices 

sensitivity of the used FD method. Three types of filter have been analyzed, using the rotary 

kiln data described in the next chapter, before the FLF is implemented. These filters are, the 

Standard Median Filter (SMF), the Improved Median Filter (IMF) and the fuzzy based filter. 

The filters effect on process monitoring via PCA has been studied based on the FARs and the 

Signal to Noise Ratio (SNR) recorded for the Q and T
2
 monitoring indices [103]. The SNR is 

given by  

SNR dB = 10log10  
  si

n
i=1  

2

n  si
2−  si

n
i=1  

2n
i=1

                                                                           (3.2) 
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The results are summarized in Table 3.1. 

Table 3.1. SNR and FAR Values 

Type of Filter FAR(%) of Q FAR(%) of T
2
 SNR (dB) of Q SNR(dB) of T

2 

Unfiltered signals 0.46 0.79 8.1208 -1.2923 

SMF 0.11 0.19 10.2521 13.0327 

IMF 0.27 0.52 8.3584 11.2086 

Fuzzy logic based filter 0.22 0.48 8.4294 11.3496 

Table 3.1 shows the obtained SNR and FAR for the SMF, IMF and the fuzzy logic based 

filter. The SNR and the FAR of the SMF are better than the ones of the IMF and the fuzzy 

based filter. These results are due to the filtering process where all the samples are filtered 

regardless if they are affected by noise or not. This filtering is undesired in fault detection 

since the sensitivity of the monitoring indices is too much affected. In addition, the filter may 

return an outlier since its output is the median value within a window of fixed length.  

Comparing the FAR and the SNR values of the IMF and the fuzzy logic based filter, one can 

conclude that the fuzzy logic based filter is better than the IMF. The fuzzy logic based filter 

does not provide satisfactory performances for fault detection because its output is also the 

median value within a window; hence, it may return an outlier. Therefore, an adjusting 

parameter is required to control the filtering action where a sample may be just scaled and not 

totally replaced.  

The Fuzzy Logic Filter (FLF) implemented in this work is based on the work of Naso et al 

[102]. It is developed on the Mamdani Fuzzy Inference System (FIS) with the centroid 

defuzzification technique [96-100]. Figure 3.2 represents the schematic diagram of the 

developed FLF. Three inputs are fed to the FIS. These inputs are fuzzified via predefined 

membership functions. The FIS output is obtained after evaluating the fuzzy rules. The input 

and output fuzzy sets and the membership functions types are tabulated in Table 3.2.    

At the j
th 

iteration a three samples moving window is sliding to scan the data. At this 

iteration, this window is defined as 
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𝑊𝑗 = [𝑄𝑗 𝑄𝑗+1 𝑄𝑗 +2]                                                                                                  (3.3) 

Where 𝑄𝑗  is the j element of the unfiltered vector. 𝑊𝑗  permits, at each iteration, to compute 

the FIS inputs which are represented by the following differences  

𝑑1 𝑗 =  𝑄𝑗 −  𝑄(𝑗−1)𝑓                                                                                                         (3.4) 

𝑑2 𝑗 =  𝑄𝑗+1 −  𝑄𝑗                                                                                                             (3.5) 

𝑑3 𝑗 =  𝑄𝑗+2 −  𝑄𝑗+1                                                                                                         (3.6) 

 

 

 

 

 

 

 

 Table 3.2. Fuzzy Sets and Types of Membership Functions for the FLF 
Fuzzy input set  Fuzzy output set  Type of Membership Function 

LN (Large Negative) SV (Short Value) Trapezoidal 

ST (Standard) MV (Medium Value) Triangular 

LP (Large Positive) LV (Large Value) Trapezoidal 

𝑄(𝑗−1)𝑓  is the filtered sample from the previous iteration. 

The FLF algorithm is summarized in the following  

1. Define the window𝑊𝑗 . 

2. Compute the FIS inputs. 

3. Compute the FIS output 𝑅𝑗 ∈ [0,1] 

 

𝑄2 𝑓  𝑄𝑗  𝑓  𝑄(𝑗−1)𝑓  ⋯ 𝑄1 𝑓   

𝑄𝑓 𝑝𝑎𝑠𝑡 = 𝑄(𝑗−1)𝑓  

Fuzzy Inference System (FIS) 

𝑄𝑗 +2 ⋯ 𝑄1 𝑄𝑗 +1 𝑄𝐽  ⋯ 𝑄𝑛  

+ 
+ 

× 

+ 

+ 

+ 
− 

− 

− 
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Figure 3.2. Schematic diagram of the FLF 
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4. Compute the filtered value as  

𝑄𝑗𝑓 = 𝑄(𝑗−1)𝑓 + 𝑅 𝑗  𝑄𝑗 − 𝑄(𝑗−1)𝑓                                                                              (3.7) 

The output of the FLF can be either 𝑄(𝑗−1)𝑓  when 𝑅𝑗 = 0 or 𝑄𝑗  when 𝑅𝑗 = 1 or it is the 

average of the previous filtered sample and the scaled difference between the actual unfiltered value 

and the previous filtered one when 𝑅𝑗  is between 0 and 1. 

3.2.2. Adaptive Thresholds  

The adaptive thresholds of the proposed method are generated via the use of a fixed PCA 

model and a fixed length sliding window. The PCA monitoring indices thresholds depend 

explicitly on the number of retained PCs and the number of observations in the training data-

set. These two parameters are not changing with the proposed method. Referring to the Eq. 

(2.13), (2.14) and (2.15), the Q threshold depends on the values of the 𝜃𝑖 ; therefore, the 

adaption of the residual subspace thresholds can be achieved if 𝜃𝑖  changes. For that purpose, 

the variances of the residual subspace, from one time to another and the matrix 𝑃 , are used. 

The variances are computed for the samples within a specific window length. The projection 

matrix of the window 𝑤𝑛 ∈ 𝑅𝐿×𝑚  onto the residual subspace is [96-100]  

𝐵 = 𝑤𝑛𝑃 =  𝐵1 𝐵2 ⋯ 𝐵𝑚−𝛼                                                                                  (3.8) 

𝑤𝑛 is first scaled and shifted to zero mean and unity variance. 

The 𝜃𝑖  values for 𝑖 = 1, 2, 3 are provided by  

𝜃𝑖 =  (𝑣𝑎𝑟(𝐵𝑗 ))𝑖𝑚−𝛼
𝑗 =1                                                                                                       (3.9)  

Where 𝑣𝑎𝑟(.) stands for variance. 
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The adaptive thresholds for the Q statistic is updated using Eq. (2.13) and (2.15) after 

substituting the values of the 𝜃𝑖 .   

The adaptive thresholds of the T
2
 monitoring indices is updated empirically by estimating the 

distribution of the past evaluation of T
2
 within a vector of the same length as the length of 𝑤𝑛. 

3.2.3. Modified Moving Window PCA with Fuzzy Logic Filter Algorithm   

The algorithm of the MMWPCA with FLF is performed in two phases: offline and online 

phases. The offline phase consists of two important tasks in process monitoring which are the 

process training and the model validation. The first task allows the construction of a 

descriptive statistical model while the second task permits the model validation. The online 

phase is used to monitor new testing samples. The two phases are summarized in the 

following points [96-99] 

A. Offline phase 

A.1. Process Training 

1. Construct the PCA model based on a training data-set. The PCA model is constituted 

of the mean, standard deviation and the number of PCs. 

2. Compute the initial thresholds, 𝑄𝑡𝑖𝑛  and 𝑇𝑡𝑖𝑛
2 . 

A.2. Model Validation 

1. Select an appropriate window length of 𝑤𝑛 that will correspond to minimum FAR in 

the testing data-set and then set the fault indicator to 0. 

2. Apply the constructed PCA model on the testing data-set. 

3. Select the fixed thresholds 𝑄𝑓𝑖𝑥𝑒𝑑  and 𝑇𝑓𝑖𝑥𝑒𝑑
2 . These thresholds will be employed when 

a fault is detected. They are set by trial and error in a condition that the process 

recovery is not affected.  

4. Select the fuzzy rules and the parameters of the membership functions for the FLF. 
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At the end of the offline phase, the PCA model is determined and validated besides to the 

window length selection and the FLF parameters determination. The identified parameters are 

then used in the online phase.  

B. Online Phase 

1. Get the new observation when it is available. Scale and shift it using the mean and 

standard deviation of the constructed PCA model. 

2. Compute its monitoring indices Q and T
2
 via the PCA model. 

3. Obtain the filtered monitoring indices 𝑄𝑓  and 𝑇𝑓
2 by passing the Q and T

2
 through the 

FLF. 

4. Compare the filtered monitoring indices with their associated initial thresholds. If 

𝑄𝑓 <  𝑄𝑡𝑖𝑛  and 𝑇𝑓
2 <  𝑇𝑡𝑖𝑛

2 , go to step 6 and 7 otherwise, go to steps 5 and 7. 

5. Set the adaptive thresholds as 

𝑄𝒂𝒅 = 𝑄𝑓𝑖𝑥𝑒𝑑  and 𝑇𝑎𝑑
2 = 𝑇𝑓𝑖𝑥𝑒𝑑

2 . Update the initial thresholds as 𝑄𝑡𝑖𝑛 = 𝑄𝑎𝑑  and 

𝑇𝑡𝑖𝑛
2 = 𝑇𝑎𝑑

2  and switch the fault indicator to 1. 

6. Include the sample in the 𝑤𝑛 after excluding the first observation. Recalculate the new 

thresholds and set 𝑄𝒕𝒉𝒊𝒏 = 𝑄𝑎𝑑  and 𝑇𝑡𝑖𝑛
2 = 𝑇𝑎𝑑

2 . Set the fault indicator to 0. 

7. Repeat from 1. 

Figure 3.3 summarizes the algorithm where all the necessary steps are presented.  
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The MMWPCA with FLF based fault detection technique does not take into consideration 

the relationships between the current sample and the past observations. To include the 

dynamic behavior of the data in the statistical model, the MMWPCA with FLF method has 

been extended to Modified Moving Window Dynamic PCA (MMW-DPCA) with Fuzzy 

Logic Filter (FLF). The same steps of the MMWPCA with FLF algorithm are performed in 

the MMW-DPCA with FLF algorithm except that the lags are added to the data. 
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Figure 3.3. Application procedure of the MMWPCA with FLF  
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3.3. Modified Moving Window Dynamic PCA with Fuzzy Logic Filter  

 The filter’s design procedure for this method is the same as the FLF described above. The 

adaptive thresholds generation steps are the same as the MMWPCA with FLF monitoring 

scheme. The only difference is that a number of lags, l, is added to the moving window 𝑤𝑛. 

To distinguish between the two moving windows, let 𝑤𝑛𝑎𝑢𝑔  denote the augmented moving 

window. After the number of needed lags, l, is determined using any algorithm given in [31]; 

The following MMW-DPCA with FLF algorithm can be applied for the process monitoring 

[100] 

A. Offline Phase  

1. Add l to the training data matrix then apply PCA to determine the statistical 

model. 

2.  Initiate the control limits 𝑄thin  and 𝑇thin
2 for this data-set. 

3. Initiate the fault indicator to 0 and select the appropriate length for the 𝑤𝑛𝑎𝑢𝑔   

4. Select the fixed thresholds, 𝑄𝑓𝑖𝑥𝑒𝑑  and 𝑇𝑓𝑖𝑥𝑒𝑑
2 . These thresholds will be 

employed when a fault is detected. They are set by trial and error in a condition 

that the process recovery is not affected.  

5. Select the fuzzy rules and the parameters of the membership functions for the 

FLF. 

B. Online Phase  

1. Get the new testing sample when it is available. Add to it l lags. Scale and shift 

the observation using the mean and standard deviation of the constructed DPCA 

model. 

2. Evaluate its corresponding Q and T
2
. 
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3. Obtain the filtered monitoring indices 𝑄𝑓  and 𝑇𝑓
2 by passing the Q and T

2
 

through the FLF.  

4. Compare the filtered monitoring indices with their associated initial thresholds. 

If 𝑄𝑓 <  𝑄𝑡𝑖𝑛  and 𝑇𝑓
2 <  𝑇𝑡𝑖𝑛

2 , go to step 6 and 7 otherwise, go to steps 5 and 7. 

5. Set the adaptive thresholds as 

𝑄𝒂𝒅 = 𝑄𝑓𝑖𝑥𝑒𝑑  and 𝑇𝑎𝑑
2 = 𝑇𝑓𝑖𝑥𝑒𝑑

2 . Update the initial thresholds as 𝑄𝑡𝑖𝑛 = 𝑄𝑎𝑑  

and 𝑇𝑡𝑖𝑛
2 = 𝑇𝑎𝑑

2 . Switch the fault indicator to 1. 

6. Include the sample in the 𝑤𝑛𝑎𝑢𝑔  after excluding the first observation. 

Recalculate the new thresholds and set 𝑄𝒕𝒉𝒊𝒏 = 𝑄𝑎𝑑 , 𝑇𝑡𝑖𝑛
2 = 𝑇𝑎𝑑

2  and the fault 

indicator to 0. 

7. Repeat from 1. 

The offline phase of the MMW-DPCA with FLF permits to construct the DPCA model. In 

addition, it allows the selection of the moving window length and the FLF parameters. The 

online phase is used to monitor new testing samples. The MMW-DPCA algorithm is 

summarized by the following flowchart.  
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In this chapter, the three proposed methods have been presented. The CFAR method 

focuses on the number of false alarms to detect faults whereas the MMWPCA and MMW-

DPCA with FLF combine the advantages of PCA or DPCA and the MWPCA to monitor 

processes via fixed statistical model and adaptive thresholds. The adaptive thresholds will 

improve the monitoring indices sensitivity while the use of the FLF will enhance the fault 

detection accuracy by reducing the effect of false alarm in the process monitoring. The 

applications of these methods are provided in the next chapter.  
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Figure 3.4. Flowchart of the MMW-DPCA with FLF [100] 
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The applications of the proposed methods are presented in this chapter. The CFAR 

technique has been applied to the Cement Rotary Kiln (CRK) of Ain El Kebira. The 

MMWPCA with FLF has been applied to the Tennessee Eastman Process (TEP), CRK and a 

Grid-Connected Photovoltaic System (GCPVS). The application of the MMW-DPCA with 

FLF has been carried out on the TEP and CRK. The organization of this chapter is as follows. 

Section 4.1 is devoted to the descriptions of different processes to which the proposed 

methods are applied. Section 4.2 is about the results and discussions of the CFAR application 

on CRK, the application of the MMWPCA and MMW-DPCA with FLF on the old model of 

the TEP and the application of the MMWPCA with FLF on the revised model of the TEP; 

furthermore, the application results of the MMWPCA with FLF on the GCPS are presented 

and discussed also in this section. 

4. Applications: Results and Discussions  

4.1. Process Description    

4.1.1. Cement Rotary Kiln  

Cement plant of Ain El Kebira is the first production line in Algeria. The experimental 

application of the developed monitoring schemes has been performed on its rotary kiln. This 

rotary kiln is about 80 m length and 5.4 m in diameter, inclined by 3 degrees. Rotary kilns are 

used to heat materials to a temperature at which the chemical reactions occur allowing the 

production of cement substance. Figure 4.1 shows the cement plant divided into two parts (a) 

and (b) following material flow direction, from the top of the pre-heater tower downwards to 

the cooler [100]. Two 560 kW asynchronous motors rotate the kiln at a maximum speed of 

2.14 rpm. A series of four cyclones, mounted on four floors of two parallel towers, are used to 

dry and hydrate the raw materials via the hot counter stream gas and a secondary fuel burner 

mounted in the bottom of the towers. The kiln’s rotation causes the gradual downstream 
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motion of the entered pre-heated mixture to the kiln’s lower end. During this motion, the 

material is further heated using the main burner and hot secondary gas coming back from the 

cooler. At high temperatures (more than 1450 C°), a liquid phase appears and complex 

chemical reactions are sped up before entering vitrification phase where materials become 

again solid but in a new structural form called clinker. The clinker is then milled with some 

additives to produce cement. As a last step in the cement production, the kiln’s output is 

cooled down to less than 100 C° via the cooler of many fans, static and mobile gates. [91, 95, 

97, 100, 103-104].  

 

  

Table 4.1. Measured variables of the cement rotary kiln 

Variable Sensor’s Tag Description Unit 

𝒙𝟏 229_32/SE Process filter exhauster fan speed for tower I r.p.m 

𝒙𝟐 239_32/SE Process filter exhauster fan speed for tower II r.p.m 

𝒙𝟑 313_03/FE Raw materials flow rate feeding  the kiln’s tower I Tones/h 

𝒙𝟒 313_04/FE Raw materials flow rate  feeding  the kiln’s tower II Tones/h 

𝒙𝟓 331_01/PE Cyclone I outlet gas’s negative pressure for tower I mbar 

𝒙𝟔 331_01/TE Cyclone I outlet gas’s temperature for tower I C° 

𝒙𝟕 331_02/PE Cyclone II outlet gas’s negative pressure for tower I mbar 

𝒙𝟖 331_02/TE Temperature of gases in outlet of cyclone II, tower I C° 

𝒙𝟗 331_03/PE Depression of gases in outlet of cyclone III, tower I mbar 

𝒙𝟏𝟎 331_03/TE Temperature of gases in outlet of cyclone III, tower I C° 

𝒙𝟏𝟏 331_04_PE Depression of gases in outlet of cyclone IV, tower I mbar 

𝒙𝟏𝟐 331_04/TE Temperature of gases in outlet of cyclone IV, tower I C° 

𝒙𝟏𝟑 331_05/JE(P) Exhauster fan motor’s power for tower I KW 

𝒙𝟏𝟒 331_05_PE Depression of gases in inlet of cyclone IV, tower I mbar 

𝒙𝟏𝟓 331_05/SE Speed of the exhauster fan of tower I r.p.m 

𝒙𝟏𝟔 331_05/TE Temperature of the materials entering the kiln, tower I C° 

𝒙𝟏𝟕 331_06/PE Depression of gases in outlet of smoke box, tower I mbar 

𝒙𝟏𝟖 331_07/TE Temperature of gases in outlet of smoke box, tower I C° 

Figure 4.1-b. Cooler system with its 

heat exchanger and filter to the left and 

kiln end appears to right. 

Figure 4.1-a. Pre-heater tower at the right along with rotary kiln laying 

in horizontal to the left. 

Figure 4.1. Ain El Kebira cement plant. 
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𝒙𝟏𝟗 335_05/JE(P) Power of the motor of the exhauster fan, tower II KW 

𝒙𝟐𝟎 335_05/SE Speed of the exhauster fan of tower II r.p.m 

𝒙𝟐𝟏 341_01/PE Depression of gases in outlet of cyclone I, tower II mbar 

𝒙𝟐𝟐 341_01/TE Temperature of gases in outlet of cyclone I, tower II C° 

𝒙𝟐𝟑 341_02/PE Depression of gases in outlet of cyclone II, tower II mbar 

𝒙𝟐𝟒 341_02/TE Temperature of gases in outlet of cyclone II, tower II C° 

𝒙𝟐𝟓 341_03/PE Depression of gases in outlet of cyclone III, tower II mbar 

𝒙𝟐𝟔 341_03/TE Temperature of gases in outlet of cyclone III, tower II C° 

𝒙𝟐𝟕 341_04/PE Depression of gases in outlet of cyclone IV, tower II mbar 

𝒙𝟐𝟖 341_04/TE Temperature of gases in outlet of cyclone IV, tower II C° 

𝒙𝟐𝟗 341_05/PE Depression in inlet of cyclone IV, tower II mbar 

𝒙𝟑𝟎 341_05/TE Temperature  of materials in the in inlet of cyclone IV, tower II C° 

𝒙𝟑𝟏 341_06/PE Smoke box outlet gas’s negative pressure for tower II mbar 

𝒙𝟑𝟐 341_07/TE Temperature of gases in outlet of smoke box, tower II C° 

𝒙𝟑𝟑 351_01/JE Kiln’s spinning  motors power (sum of two) KW 

𝒙𝟑𝟒 351_03/SE Kiln’s rotation speed r.p.m 

𝒙𝟑𝟓 355_08/TE Temperature of the excess air from the cooler C° 

𝒙𝟑𝟔 355_10/PE Static grate cooling fan I air pressure mbar 

𝒙𝟑𝟕 355_10/SE Static grate cooling fan’s I speed r.p.m 

𝒙𝟑𝟖 355_11/TE Secondary air temperature C° 

𝒙𝟑𝟗 355_12/PE Pressure of the air under the static grate (repression fan II) mbar 

𝒙𝟒𝟎 355_14/PE Pressure of the air under the static grate (repression fan III) mbar 

𝒙𝟒𝟏 355_14/SE Speed of the cooling fan III r.p.m 

𝒙𝟒𝟐 355_16/PE Pressure of the air under  chamber I of the dynamic grate(repression fan IV) mbar 

𝒙𝟒𝟑 355_16/SE Speed of fan IV  r.p.m 

𝒙𝟒𝟒 355_18/PE Pressure of the air under chamber II of the static grate mbar 

𝒙𝟒𝟓 355_18/SE Speed of the cooling fan V r.p.m 

𝒙𝟒𝟔 355_20/PE Pressure of the air under chamber III of the dynamic grate(repression fan VI) mbar 

𝒙𝟒𝟕 355_20/SE Speed of the cooling fan VI r.p.m 

𝒙𝟒𝟖 355_62/ST Speed of the dynamic grate Strockes.p.m 

𝒙𝟒𝟗 ACM01_01/SIC

_LMN 

Kiln’s head-hood pressure controller output controlling the cooler filter exhaust fans r.p.m 

𝒙𝟓𝟎 AGN_04/FE Flow of fuel (natural gas) to the main burner m3/h 

𝒙𝟓𝟏 HO1_PY/FE Flow of fuel (natural gas) to the secondary burner in the pre-calcination level m3/h 

 

 

 

4.1.2. Tennessee Eastman Process (Old Model) 

 Tennessee Eastman Process (TEP) was created by Eastman company to test and simulate 

the variety of the developed methods in the field of process control and process monitoring 

[65]. The simulator was developed by Downs and Vogel [105-107]. The system is composed 

of five major units, a reactor, a product condenser, a vapor liquid separator, a recycle 

compressor and a product stripper [108-114]. Figure 4.2 shows the TEP diagram. The 

measured variables and the manipulated variables of the TEP are tabulated in Table 4.2 and 

Table 4.3. The simulator permits to simulate 21 faults. These faults are listed in Table 4.4. 
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Sixteen of the TEP faults are known while the remaining disturbances are unknown. The first 

7 faults correspond to the step change in the process variables.  The 8
th

 up to the 12
th 

fault are 

related to an increase variability of some process variables. Fault 13 is a slow drift in the 

reactor kinetics and faults 14, 15 and 21 are associated with the sticking valves [96, 99-100]. 

 
 

Figure 4.2. Tennessee Eastman process diagram 

Table 4.2. Manipulated Variables 
Variable Description 

XMV(1) D Feed Flow (Stream 2) 
XMV(2) E Feed Flow (Stream 3) 

XMV(3) A Feed Flow (Stream 1) 

XMV(4) Total Feed Flow (Stream 4) 
XMV(5) Compressor Recycle Valve 

XMV(6) Purge Valve (Stream 9) 

XMV(7) Separator Pot Liquid Flow (Stream 10) 
XMV(8) Stripper Liquid Product Flow (Stream 11) 

XMV(9) Stripper Steam Valve 

XMV(10) Reactor Cooling Water Flow 
XMV(11) Condenser Cooling Water Flow 

XMV(12) Agitator Speed 

Table 4.3. Measured Variables 
Variable Description Variable Description 

XMEAS(1) A Feed (Stream 1) XMEAS(22) Separator Cooling Water Outlet Temp 

XMEAS(2) D Feed (Stream 2) XMEAS(23) Composition of A in Reactor Feed 

XMEAS(3) E Feed (Stream 3) XMEAS(24) Composition of B in Reactor Feed 

XMEAS(4) Total Feed (Stream 4) XMEAS(25) Composition of C in Reactor Feed 

XMEAS(5) Recycle Flow (Stream 8) XMEAS(26) Composition of D in Reactor Feed 

XMEAS(6) Reactor Feed Rate (Stream 6) XMEAS(27) Composition of E in Reactor Feed 

XMEAS(7) Reactor Pressure XMEAS(28) Composition of F in Reactor Feed 

XMEAS(8) Reactor Level XMEAS(29) Composition of A in Purge Gas Flow 

XMEAS(9) Reactor Temperature XMEAS(30) Composition of B in Purge Gas Flow 

XMEAS(10) Purge Rate (Stream 9) XMEAS(31) Composition of C in Purge Gas Flow 

XMEAS(11) Product Sep Temp XMEAS(32) Composition of D in Purge Gas Flow 
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XMEAS(12) Product Sep Level XMEAS(33) Composition of E in Purge Gas Flow 

XMEAS(13) Prod Sep Pressure XMEAS(34) Composition of F in Purge Gas Flow 

XMEAS(14) Prod Sep Underflow (Stream 10) XMEAS(35) Composition of G in Purge Gas Flow 

XMEAS(15) Stripper Level XMEAS(36) Composition of H in Purge Gas Flow 

XMEAS(16) Stripper Pressure XMEAS(37) Composition of D in Product Flow 

XMEAS(17) Stripper Underflow (Stream 11) XMEAS(38) Composition of E in Product Flow 

XMEAS(18) Stripper Temperature XMEAS(39) Composition of F in Product Flow 

XMEAS(19) Stripper Steam Flow XMEAS(40) Composition of G in Product Flow 

XMEAS(20) Compressor Work XMEAS(41) Composition of H in Product Flow 

XMEAS(21) Reactor Cooling Water Outlet Temp   

Table 4.4. Process Faults of TEP 
Fault NO Description Type Fault NO Description Type 

1 A/C Feed ration, B Composition constant(Stream 4) Step 13 Reaction kinetics Slow drift 

2 B Composition, A/C ration constant (Stream4) Step 14 Reactor cooling water valve Sticking 

3 D Feed temperature (Stream 2) Step 15 Condenser cooling water valve Sticking 

4 Reactor cooling water inlet temperature Step 16 Unknown Unknown 

5 Condenser cooling water inlet temperature Step 17 Unknown Unknown 

6 Feed loss (Stream 1) Step 18 Unknown Unknown 

7 C Header pressure loss- Reduced availability (Stream 4) Step 19 Unknown Unknown 

8 A, B, C feed composition (Stream 4) Random Variation 20 Unknown Unknown 

9 D Feed temperature ( Stream 2) Random Variation 21 Valve position constant (Stream 4) Constant position 

10 C Feed temperature (Stream 4) Random Variation    

11 Reactor cooling water inlet temperature Random Variation    

12 Condenser cooling water inlet temperature Random Variation    

 

4.1.3. Tennessee Eastman Process (Revised Model) 

The TEP described above has been revised by Bathelt et al [115] where they added some 

measured variables which are listed in Table 4.5; thus, the revised model provides 85 

measured variables in which two of them are constant. The new model permits to simulate 28 

faults. Table 4.6 represents the revised TEP faults [99]. 

Table 4.5. Added variables 

Variable Description 

XMEAS(42) Temperature A Feed (Stream 1) 

XMEAS(43) Temperature D Feed (Stream 2) 

XMEAS(44) Temperature E Feed (Stream 3) 

XMEAS(45) Temperature A and C Feed (Stream 4) 

XMEAS(46) Reactor Cooling Water Inlet Temperature 

XMEAS(47) Reactor Cooling Water Flow 

XMEAS(48) Condenser Cooling Water Inlet Temperature 

XMEAS(49) Condenser Cooling Water Flow 

XMEAS(50- 55) Composition of A Feed (Stream1); Components A through F 

XMEAS(56- 61) Composition of D Feed (Stream2); Components A through F 

XMEAS(62- 67) Composition of E Feed (Stream3); Components A through F 

XMEAS(68- 73) Composition of A and C Feed (Stream4); Components A through F 
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Table 4.6. Process Faults 
Fault 

NO 

Description Type Fault NO Description Type 

1 A/C Feed ration, B Composition 

constant(Stream 4) 

Step 15 Condenser cooling water valve Sticking 

2 B Composition, A/C ration 

constant (Stream4) 

Step 16 Unknown Unknown 

3 D Feed temperature (Stream 2) Step 17 Unknown Unknown 

4 Reactor cooling water inlet 

temperature 

Step 18 Unknown Unknown 

5 Condenser cooling water inlet 

temperature 

Step 19 Unknown Unknown 

6 Feed loss (Stream 1) Step 20 Unknown Unknown 

7 C Header pressure loss- Reduced 

availability (Stream 4) 

Step 21 A feed temperature (stream 1) Random 

Variation 

8 A, B, C feed composition (Stream 

4) 

Random 

Variation 
22 E feed temperature (stream 3 Random 

Variation 

9 D Feed temperature ( Stream 2) Random 

Variation 
23 A feed pressure (stream 1) Random 

Variation 

10 C Feed temperature (Stream 4) Random 

Variation 
24 D feed pressure (stream 2) Random 

Variation 

11 Reactor cooling water inlet 

temperature 

Random 

Variation 
25 E feed pressure (stream 3) Random 

Variation 

12 Condenser cooling water inlet 

temperature 

Random 

Variation 
26 A and C feed pressure (stream 4) Random 

Variation 

13 Reaction kinetics Slow drift 27 pressure fluctuation in the cooling 

water re-circulating unit of the 

reactor 

Random 

Variation 

14 
Reactor cooling water valve Sticking 28 pressure fluctuation in the cooling 

waterre-circulating unit of the 

condenser 

Random 

Variation 

 

4.1.4. Grid-Connected Photovoltaic System. 

The Grid-Connected Photovoltaic System (GCPVS), of the Power Electronic and 

Renewable Energy Research Laboratory (PEARL) of Malaya University, supplies the power 

to the laboratory building [116]. The detailed information about this system is tabulated in 

Table 4.7 [117].  This GCPVS is composed of 16 modules of polycrystalline silicon (POLY), 

25 modules of monocrystalline (MONO) and 20 modules of the thin film. These modules are 

connected to the three inverters INV 01, INV 02 and INV 03 respectively. Figure 4.3 shows 

the diagram of the GCPVS. The list of measured variables consists mainly of the solar 

radiation, wind speed, panels’ and ambient temperatures, voltages and currents at different 

stages.  
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Table 4.7.  Process Description  

Specifications Polycrystalline Monocrystalline Thin film 

Number of modules 16 25 20 

DC power per module (Wp) 125 75 135 

Voltage at max. power (V) 17.3 47.0 17.0 

Current at max. power (A) 7.9 2.9 4.4 

DC/ AC inverter capacity (W) 1600 1600 2500 

Inverter max. DC voltage (V) 600 600 700 

Inverter max. AC voltage (V) 220-240 220-240 220-240 

4.2. Results and Discussions 

4.2.1. Application of CFAR on the Cement Rotary Kiln 

The CFAR based fault detection is applied to the cement rotary kiln presented above. This 

technique has been used with the PCA method. Under healthy operation conditions of the 

CRK, 15344 observations were collected for 51 measured variables. These variables are 

 
Module 

temperature 

sensor  

Thin film 

PV module 

Mono-crystalline 

PV module 

Poly-crystalline 

PV module 

Ambient 

temperature 

sensor  

Wind Speed 

Sensor  

INV 01  
INV 02  INV 03  

Sensor box with 

irradiance sensor 

Power injector 

Web box 

Computer 1 Computer 2 

Printer 

CPU CPU 

AC line system 

Local network 

Figure 4.3. Schematic diagram of grid-connected PV system 
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provided in the Table 4.1. The data have been recorded with one sample every one second. 

These data have been processed to remove outliers and corrupted observations using a 

statistical filter where all the observations with values greater than 𝜇 ± 3𝜎 have been removed, 

where 𝜇 is the mean and 𝜎 the standard deviation of each measured variable. After data 

processing, a training data- set of 14730 samples is employed to construct the PCA model. The 

fixed thresholds of the PCA monitoring indices are calculated with 99% Confidence Level 

(CL). By means of the CPV, which is set at 90%, 28 principal components have been retained 

[95]. The monitoring indices along with their corresponding fixed thresholds are depicted in 

Figure 4.4.   

 

The problem of false alarms is clearly seen from this figure. 184 false alarms are recoded. 

From the fault indicator, the detection accuracy of any possible fault is much affected by the 

presence of these false alarms. The monitoring indices of some observations violate the 

control limit indicating that abnormal behavior has been occurred, however, the data have 

collected during the healthy mode of the CRK. The CFAR method has been applied to the 

same data-set. But before the application, the length of the moving window must be first 

determined. This length is selected based on the minimum FAR in the training data-set. The 
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 with the associated thresholds and fault indicator  
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window length selected for this application is 1031 [95]. The CFAR monitoring indices with 

their corresponding thresholds are presented in Figure 4.5. 

 

It can be shown from Figure 4.5 that no false alarm has been signaled with the CFAR 

method, hence, this method resolved the problem of the false alarms encountered by the PCA 

based monitoring scheme. The CFAR detection ability is tested using abrupt fault, 

intermittent fault and ramp fault. These faults are injected in the data. The descriptions of the 

faults, the resulted FAR and the detection delay are in the Table 4.8. 

Table 4.8.  Fault Description, the FAR and the Detection Delay  

Fault Type Occurrence Time (sec) Amplitude % Sensor’s Number Detection Delay (sec) FAR % 

Abrupt 9000 3 8 12 0 
Intermittent 9000 3 28 12 0 

Ramp 9000  4 234 0 

Table 4.8 shows that the resulted FAR for the sensors faults are 0%. The CFAR technique, 

as it is illustrated by this table, introduces a delay of 12 sec for the abrupt and the intermittent 

faults while 234 sec for the ramp fault. The relatively high detection delay of the ramp fault is 

due to its slope which is taken very small to simulate the worst case. 

The detection of the real fault by the CFAR is in the following figure 
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Figure 4.6 confirms the occurrence of a fault since some samples are above the thresholds. 

It is also seen that this fault has been detected with no false alarm. 

4.2.2. Application of MMWPCA and MMW-DPCA with FLF to the Old TEP Model   

The MMWPCA and MMW-DPCA with FLF have been applied to the old model of the 

TEP. The proposed monitoring schemes have been applied to the same benchmark data-sets 

used by Russell et al [58]. 52 measured variables were employed. The number of observations 

in the training data-set is 500 while a total of 960 samples are in the testing and the faulty 

data-sets. All the measurements were sampled every 3 minutes. The faults in the faulty data-

sets were introduced after 8 simulation hours. 

The PCA and the DPCA models have been constructed and validated based on the training 

and testing (Fault 0) data-sets. The dynamic structure of the MMW-DPCA with FLF is the 

same as the one provided by Russell et al [58] where 3 lags are used. The PCA model of the 

MMWPCA with FLF is determined by 11 PCs which captures 54% of the total variance. On 

the other side, the DPCA model of the MMW-DPCA with FLF is described by 29 PCs 

explaining 61.39% of the total variance. The initial thresholds and the adaptive thresholds of 
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the proposed methods are calculated at 99% CL. The fixed thresholds are determined by trial 

and error. The sliding windows lengths and the filters parameters are selected based on the 

minimum FAR recorded for the testing data-set. Two approaches of MMWPCA with FLF 

have been implemented, the hold-five and the hold-one. The obtained FAR, MDR and the 

detection delay are tabulated in Tables 4.9, 4.10, and 4.11. These results are compared against 

the results of Russell et al. [58], Rato et al [33], Yu and Khan [56] and Wang et al [118]. 

Table 4.12 represents the detailed comparison (method against method) [96-100]. 

Table 4.9. FAR for the Training and the Testing Data-Sets 

 

Methods 

Russell et al [58]    

 

Hold-five  

MMWPCA 

 Hold-one 

MMWPCA PCA  DPCA  MMW-DPCA  

Statistics Q T2 Q T2  Q T2  Q T2  Q T2 

Training Data-Set 0.4 0.2 0.4 0.2  0 0  0 0  0 0 

Testing Data-Set 1.6 1.4 28.1 0.6  0 0  0 0  0 0 

 

Table 4.10.  Missed Detection Rate for the 21 Faults 
 

Methods 

Russell et al [58]  Rato et al[33]  Yu and Khan [56]  Wang et al [118]   

 

MMW-DPCA 

 Hold-five  

MMWPCA 

Hold-one 

MMWPC

A 
PCA DPCA  MWPCA  RPCA  NGSSM NDPCA  LPPLS   

Statistics Q T2 Q T2  Q T2 Q T2  Q T2 Q T2  Q T2  Q T2  Q T2
 Q T2 

Fault No                          
1 0.3 0.8 0.5 0.6  0.4 0.6 0.9 0.9  0.75 0.38 0.5 0.5  0.62 1  0.62 0.62  1 1.5 0.62 0.87 
2 1.4 2 1.5 1.9  3.1 1.9 3.2 1.7  1.75 1.62 1.5 1.88  2 2  1.50 1.62  2.37 2.37 1.62 1.87 
3 99.1 99.8 99 99.1  99.6 99.4 99.8 99.9  97.7 97.1 96.7 97.6  99.7 99.6  99.2 100  100 100 100 100 
4 3.8 95.6 0 93.9  99.4 99.4 8.90 85.6  92.7 89.5 87.7 86.2  13.7 99.7  0.25 54.4  0.62 35.7 0.12 73.3 
5 74.6 77.5 74.8 75.8  78.5 76.7 90.1 77.9  70 58.3 61.5 64.2  0 1.87  51.4 64  71 72.7 70.8 72.7 
 6 0 1.1 0 1.3  0.1 0.5 0.10 0.7  0 0 0 0  0 1  0.12 0.5  3 3 0.12 0.87 
 7 0 8.5 0 15.9  6.0 0.1 30 0.1  51.6 39.1 46.4 50.3  0 63.6  0.12 6.38  0.62 0.75 0.12 0.12 
 8 2.4 3.4 2.5 2.8  3.2 2.9 15.6 2.9  1.75 1.38 1.75 2.25  5.87 8  2.62 2.62  3.15 3.25 2.62 2.87 
 9 98.1 99.4 99.4 99.5  99.9 99.9 100 99.8  98 99.8 97.6 98.7  99.5 99.1  91.7 92.1  85.6 89.1 98.3 98.8 
 10 65.9 66.6 66.5 58  98.9 98.4 99.6 99.6  33.2 17.3 41.6 43.2  83.1 67.5  23.7 31.2  52.1 62.2 33.6 48.3 
 11 35.6 79.4 19.3 80.1  98.4 98.1 93.5 92.3  67.7 70.5 70.3 76.2  41.7 97.1  4.13 35.6  5.25 34.6 4 38.6 
 12 2.5 2.9 2.4 1  2.7 1.7 13.5 2.0  2.12 4 2.13 2.63  3.75 7.75  0.37 0.37  0.87 1 0.37 0.37 
 13 4.5 6 4.9 4.9  0.2 2.4 6 5.7  5.37 3.62 5.26 5.51  6.37 5.87  4.88 4.88  5.25 6.25 4.75 6.13 
 14 0 15.8 0 6.1  0.1 0.1 12.6 1.9  0.12 0.25 8.01 9.26  0 97.6  0.25 0.37  0.75 1.37 0.25 0.25 
 15 97.3 98.8 97.6 96.4  99.8 99.0 99.8 100  83.7 67.2 71.8 70.2  99.7 99.5  92.9 93.9  97.6 99.5 81.8 87.9 
 16 75.5 83.4 70.8 78.3  99.6 99.9 99.5 100       73.1 60.6  41.9 54.6  42 49.1 47.4 65.9 
 17 10.8 25.9 5.3 24  78.2 80.3 10.9 24.6       14.3 58.5  2.87 7.50  3.62 9.37 3.25 3.62 
 18 10.1 11.3 10 11.1  11.2 11.0 10.5 10.9       10.7 12.6  10.3 11.2  11.3 12 10.7 11.2 
 19 87.3 99.6 73.5 99.3  99.5 99.3 100 99.6       95.2 99.3  30.6 84.7  2.87 76.2 98.4 99.8 
 20 55 70.1 49 64.4  94 92.6 90.6 89.8       64.8 64.3  19.6 28.9  14.6 28 11.6 35.1 
 21 57.0 73.6 55.8 64.4  98.9 98.5 100 100       60.7 59.8  36.2 44.5  37.7 52.2 35.7 64.4 

MMDR 37.2 48.6 34.8 46.6  55.7 55.3 51.6 52.1  40.4 36.6 39.5 40.5  36.8 52.6  24.5 34.2  25.7 35.2 28.8 38.7 

Blank cell means that the MDR is not reported. 
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Table 4.11.  Detection Time Delay (Samples) 

 

 

 

 

 

 

 

 

 

 

 

Blank cell means that the detection delay is not reported or a fault is not detected. 
 

Table 4.12. Method Against Method Comparison 
 

 

Methods 

Russell et al [58]  Rato et al [33]   Wang et al 

[56] 

  Yu and Khan*[118] 

PCA DPCA  MWPCA  RPCA  LPPLS  NGSSM NDPCA 

Statistics 

MMW-

DPCA 

Q 57.14 61.90  80.95 95.24  80.95  66.67 60 
 T2 95.24 85.71  76.19 85.71  90.48  40 66.67 

 

Hold-five 

MMWPCA 

Q 52.38 52.38  71.42 80.95  61.90  40 40.66 
 T2 66.66 57.14  52.38 61.90  71.42  33.33 40 

 

Hold-one 

MMWPCA 

Q 47.61 52.38  76.19 85.71  71.42  53.33 46.66 
 T2 80.95 71.42  61.90 66.66  71.42  40 40 

* The comparison is done for the 15 Faults. 

It is shown in Table 4.9 that the MMWPCA (hold-one and hold-five) and the MMW-

DPCA with FLF record 0 % FAR for the training and testing data-sets. These results illustrate 

the high potentials of the developed monitoring schemes in terms of reducing FAR. Rato et al 

[33], Yu and Khan [118] and Wang et al [56] have not reported the FAR for those data-sets. 

The MDR of the MMWPCA and the MMW-DPCA with FLF are presented in Table 4.10. 

The bold values highlight the best performance of the methods. The overall performance is 

indicated by the Mean MDR (MMDR) from which it can been seen that the overall 

 

 
Methods 

Russell et al [58]  MMW-

DPCA 

 Hold-five 

MMWPCA 

 Hold-one 

MMWPCA PCA DPCA  

Statistics Q T
2
 Q T

2
  Q T

2
  Q T

2
  Q T

2
 

Fault No   
1 3 7 5 6  5 5  9 14  5 7 
2 12 17 13 16  12 13  19 25 13 15 

3      514       
4 3  1 151  2 3  6 14 1 1 
5 1 16 2 2  2 3  7 14 2 3 
6 1 10 1 11  1 4  6 30 1 1 
7 1 1 1 1  1 2  6 11 1 1 
8 20 2 3 21 23  21 21  25 31 21 23 
9      660 660  333 340 363 662 

10 49 96 50 101  26 26  60 430 51 53 
11 11 304 7 195  7 9  12 21 11 12 
12 8 22 8 3  3 3  8 13 3 3 
13 37 49 40 45  39 39  43 52 38 49 
14 1 4 1 6  2 3  7 12 2 2 
15 740     238 242  243 248 580 581 
16 197 312 196 199  22 26  203 208 199 199 
17 25 29 24 28  23 28  30 35 26 28 
18 84 93 84 93  83 90  92 97 86 90 
19   82   16 16  16 62 12 13 
20 87 87 84 89  81 82  90 95 83 83 
21 285 563 286 522  251 257  261 276 244 456 
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performance by the Q of the hold-one MMWPCA with FLF is better than the overall 

performance of the PCA [58], DPCA, MWPCA, RPCA, NGSSM, NDPCA and the LPPLS. 

The hold-one MMWPCA with FLF reduces also the MMDR by the T
2
 compared to the all 

methods except for the NGSSM [118]. The hold-five MMWPCA with FLF results smallest 

values of the MMDR by both the Q and T
2
 compared to all other methods. The same 

conclusion is drawn for the MMW-DPCA with FLF. For detailed comparison, consider the 

Table 4.12 that represents the percentage of the faults that have been detected with small 

MDR by the MMWPCA and the MMW-DPCA with FLF techniques compared against the 

methods presented in table 4.10. From this table, it is found that the hold-one MMWPCA with 

FLF detects more than 50% of the TEP faults by the T
2
 better than PCA [58], DPCA [58], 

MWPCA [33], RPCA [33] and LPPLS while by the Q, it detects more 50% of TEP 

abnormalities with small MDR compared to the DPCA, MWPCA, RPCA, LPPLS and 

NGSSM. On the other hand, the hold-five MMWPCA with FLF detects more than 50% of the 

TEP faults better than all methods except the NGSSM and NDPCA via both monitoring 

indices. Based on the results of the Table 4.12, only the NGSSM method by the T
2 

has shown 

a better MDR reduction compared to the MMW-DPCA with FLF based fault detection 

technique. 

The detection delays obtained by the proposed methods are provided in the Table 4.11. The 

results are compared to the reported detection delays by Russell et al [58]. Wang et al [56], 

Rato et al [33] and Yu and Khan [118] did not report the detection delays. The hold-one 

MMWPCA with FLF reduces the detection delay for the faults 4, 6, 7, 9, 12, 15, 19, 20 and 

21 via both monitoring indices. This factor is also reduced by the T
2
 of this method for the 

faults 2, 8, 10, 11, 14, 16, 17 and 18. Both monitoring indices of the hold-five MMWPCA 

with FLF reduce the fault detection delay for the faults 9, 15, 19 and 21. In addition, faults 4 

and 11 are detected earlier by its T
2
.   The Q and T

2
 of the MMW-DPCA with FLF detect in a 
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short time delay the faults 2, 6, 9, 10, 11, 12, 15, 16, 17, 18, 19, 20 and 21. The MMW-DPCA 

with FLF decreases also the detection delay by the T
2
 for faults 1, 4, 8, 13, and 14 while by 

the Q, this delay is reduced for faults 3 and 7. 

Figures 4.7, 4.8, 4.9, 4.10 show the detection of the faults 5, 8, 13 and 16 by the hold-one 

MMWPCA with FLF respectively while the figures 4.11, 4.12, 4.13, 4.14 represent the 

detection of the faults 7, 10, 20 and 21 by the MMW-DPCA respectively [96, 100]. 
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Figure 4.10. Detection of fault 16 

 

Figure 4.9. Detection of fault 13 

 

Figure 4.8. Detection of fault 8 
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4.2.3. Application of MMWPCA with FLF to the Revised TEP Model  

The training data-set of the revised model has 83 measured variables and 1440 samples 

while the testing data-sets are of 83 variables and 10000 observations. The sampling interval 

is 3 minutes in each data-set. The faults are introduced at the sample 2000. The initial 

thresholds and the adaptive thresholds of the MMWPCA with FLF based fault detection 

technique are evaluated for 99% CL. Using parallel analysis criterion, 23 PCs are retained. 

These PCs explain 48.28% of the total variance in the training data-set. The moving window 

length and the FLF parameters are determined such that minimum FAR  results in the testing 
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data-set (Fault 0). The method leads to 0% FAR in both the training and testing data-sets. 

These results signify that the detection accuracy is improved. The Fault Detection Rates 

(FDR) obtained for the TEP faults are given in Table 4.13. The FDR and the Mean FDR 

(MFDR) are compared against the values reported by Zhu et al [21], Rato et al [55], and 

Ciabattoni et al [119]. The bold values highlight the best performances [99]. 

Table 4.13.  FDR (%) and MFDR (%) for the 24 Faults 
Method The Proposed 

Method With 

FLF 

Zhu et al 

[21] 

Rato et al [55] Ciabattoni 

et al [119] 

 

Statistics 

 

Q 

 

T
2
 

 

PFI 

T
2
-SET-

STA-MK 

T
2
-SET-STA-

NM 

T
2
-SET-DYN-

MK 

T
2
-SET-

DYN-NM 

 

SLR 

Fault No Fault Detection Rate (FDR%)  

1 99.84 99.84 99.0 99.81 99.81 97.60 97.60 99.94 

2 99.09 99.08 95.7 99.44 99.40 85.77 85.77 99.5 

3 100 100 06.6 01.19 00.54 00.31 00.31 04.75 

4 100 100 99.9 99.98 99.98 99.98 99.98 100 

5 100 100 04.3 01.23 00.79 00.37 00.37 01.06 

6 100 100 99.7 99.86 99.86 99.86 99.86 14.99 

7 100 100 99.9 99.98 99.98 99.98 99.98 100 

8 97.54 97.54 89.3 99.10 99.08 19.87 19.87 98.94 

9 99.23 99.21 19.0 03.85 01.75 00.29 00.29 04.87 

10 99.02 99.01 87.3 91.63 93.13 58.70 58.70 91.38 

11 99.84 99.84 98.0 98.60 98.46 76.98 76.98 97.88 

12 99.62 99.62 58.9 36.39 34.74 00.40 00.40 48.59 

13 96.48 96.48 95.0 96.13 96.23 73.59 73.59 92.57 

14 99.91 99.91 98.9 99.90 99.88 96.50 96.50 99.94 

17 99.08 96.47 85.4 99.60 99.60 83.96 83.96 99.38 

18 95.61 95.61 64.0 82.40 81.09 75.88 75.88 80.07 

19 99.72 99.72 95.4 99.27 99.27 62.20 62.20 97.81 

20 97.32 88.58 83.9 97.21 97.21 72.40 72.40 98.13 

21 99.75 99.75 07.30 00.48 0.52 00.46 00.46 01.56 

22 99.78 99.77 11.0 01.71 01.00 00.27 00.27 10.37 

24 99.61 99.58 88.7 98.17 98.19 31.37 31.37 97.06 

26 87.61 72.58 91.3 82.48 81.05 04.71 04.71 72.70 

27 88.52 63.68 92.3 83.30 81.86 17.18 17.18 74.58 

28 06.43 02.40 03.6 00.81 00.58 00.42 00.42 02.56 

MFDR(%) 94.33 92.02 69.76 69.68 69.33 48.29 48.29 66.19 

 

From this table, it can be seen that the MMWPCA with FLF provides better FDR compared 

to the one recorded by Rato et al [55] within the monitoring indices T
2
-SET-STA-MK and T

2
-
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SET-STA-NM for all the faults except for the faults 8 and 17. Moreover, high FDRs are 

obtained when comparing the proposed method’s Q and T
2
 with T

2
-SET-DYN-MK and T

2
-

SET-DYN-NM.T. Comparing to the method of Zhu et al [21], presented by the PFI statistic, the 

developed technique improves the FDR by both monitoring indices for all the TEP changes 

except for the faults 26 and 27. It can be demonstrated by the Table 4. 13 that the FDR of the 

SLR is slightly high compared to the one of the MMWPCA with FLF just for the faults 1, 2, 14 

and 20. The MFDR gives the general performance of the methods. The MFDR of the proposed 

method is high compared to the one of the offered fault detection technique in the Table 4.13. 

These results reveal the effectiveness and the high performance potential of the monitoring 

proposal [99].  

The detection of the faults 10, 14, 19, and 13 are depicted in the figures 4.15, 4.16, 4.17 and 

4.18 respectively [99]. 
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Figure 4.15. Detection of random variation  Figure 4.16. Detection of sticking  
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4.2.4. Application of MMWPCA with FLF to the Cement Rotary Kiln  

The MMWPCA with FLF has been applied to detect and identify a real fault of the cement 

rotary kiln. The data descriptions for this application are shown in the Table 4.14 [97].  

Table 4.14. Different Data-Sets  
Data set Number of observations Number of variables Sampling time (sec) 

Training data-set 482 51 30 

Testing data-set 7900 51 1 

Simulated faults data-set 2101 51 1 

Faulty data-set 3286 51 1 

 

The training data-set is utilized to construct the PCA model.  The initial thresholds and the 

adaptive thresholds are computed for 99% CL. To validate the model, choose the window 

length and the FLF parameters, the testing data-set is used. Setting the CPV at 90%, 27 of PCs 

are retained. The length of the moving window is determined for minimum FAR is the testing 

data-set. Figure 4.19 represents how this window size is selected. According to this figure, the 

length is found to be 343. It corresponds to 0% FAR. The monitoring indices along with their 

adaptive thresholds for the training and testing data-sets are shown in the Figure 4.20. No 

false alarms are signaled for these two data-sets by the MMWPCA with FLF [97].  
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Figure 4.17. Detection of unknown fault  Figure 4.18. Detection of slow drift  
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The detection and identification accuracies of the MMWPCA with FLF have been tested 

first on simulated sensors faults before the method is applied to detect and identify the real 

fault. The simulated faults are described in the Table 4.15 [97]. 

Table 4.15. Simulated Faults 
Sensor 

fault 
Fault Description 

Number of 

faulty samples 
Fault amplitude 

Fault 1 A Single abrupt fault activated at sample 1000 in the sensor number 20 200 +2% 

Fault 2 Multiple  abrupt fault activated at sample 1000 in the sensors number  5,8,12 200 +2% 

Fault 3 Intermittent fault with variable amplitude started at 1000 in the sensor number 28 400 +3%,-1.5%, -2%,+2% 

Fault 4 Single ramp fault activated on the sensor number 2 at sample 1000 with slop of 10−4 500 From (0% to 5%) 

Fault 5 Multiple ramp faults activated on sensors number 1, 3 ,4 sample 1000 with slop of 10−4 500 From (0% to 5%) 

Fault 6 Additive random noise fault with 0 mean and 0.05 standard deviation activated on sensor 50 at sample 103 300 Between -15% and 17% 
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Figure 4.20. The monitoring indices with their associated thresholds for the training and the testing data-sets  
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The FAR, FDR and the detection time delay of each fault are tabulated in Table 4.16. 

Table 4.16.  FAR, FDR and the Detection Time Delay for the Simulated Faults 

Simulated Fault False Alarms Rate (FAR %) Fault Detection Rate(FDR%) Fault Detection Delay(s) 

Statistics Q T2 Q T2 Q T2 

Fault 1 0 0 100 99.5 0 1 

Fault 2 0 0 100 99.5 0 1 

Fault 3 0 0 99.2 98.7 0 1 

Fault 4 0 0 89.4 94.6 48 27 

Fault 5 0 0 90.8 90.8 46 46 

Fault 6 0 0 100 99.6 0 1 

According to this table, all the faults have been detection with 0% FAR. These results 

demonstrate the detection accuracy enhancements. The MMWPCA with FLF detects faults 1, 

2, and 6 with 100% FDR and 0 sec delay by the Q whereas the detection is delayed by 1 sec 

via the T
2
. No detection delay is introduced by the Q for the fault 3 but the FDR is not 100%. 

The relative high detection delays of the fault 4 and 5 are due to slops of the ramp faults 

which are taken very small. In general, all the simulated faults are detection with 0% FAR, 

high FDR and in a short detection delay [97]. 

The fault identification is performed through the use of the contribution plots. The 

variables with high contribution to the monitoring indices are identified as the variables 

responsible of the out of control status. Table 4.17 presents the variables at which the 

deviations are introduced and the identified ones.  According the results, the identification of 

the fault source is very accurate [97]. 

Table 4.17. Fault Identification 
Faults Faulty Variables Identified variables by 

Statistics / Q T
2
 

Fault 1 x20 x20 x20 

Fault 2 x5, x8, x12 x5, x8, x12 x5, x8, x12 

Fault 3 x28 x28 x28 

Fault 4 x2 x2 x2 

Fault 5 x1, x3, x4 x1, x3, x4 x1, x3, x4 

Fault 6 x50 x50 x50 

  The detection of the fault 1 and its corresponding contribution plots are depicted in Figure 

4.21. 
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The application of the MMWPCA with FLF to the faulty data-set of the Table 4.14 allows 

the detection and identification of the real occurred fault in the CRK. The obtained results are 

shown in the Figure 4.22.  This real fault has been successfully detected with no false alarm. 

The variables behind the faulty status are identified through the contribution plots. 
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Figure 4.21. In the left: Q, T
2
 and the thresholds. In the right: the variables contribution plots for fault 1 
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Referring the variables contribution to the monitoring indices in the Figure 4.22, the 

occurred fault is a multiple abnormality where several variables are involved. To better 

understanding the cause, one can consider the recorded error in the specified variables. Figure 

4.23 displays those errors [97]. 

 

The operator noticed that the production rate had been decreased. To overcome this 

problem, he started increasing the kiln’s inputs, x3 and x4. But he made the system unstable by 

adding quantities more than the designed conditions. Consequently, the kiln’s power (x33), the 

gas outlet of the smoke box (x18) and cyclone IV gas outlet (x28) destabilized. The operator 

reduced abruptly the flow of materials entering the kiln from both tower I and II (x3 and x4) as 

a counteraction to this situation. This counteraction increased the temperature of gases in the 

outlet of smoke box of tower I (x18). In addition, the rotation speed decreased to avoid the kin 

big shilling abnormality. In this case, the rotary kiln system must be restarted that is why the 

operator lowered the fuel rate to the main burner (x50) [97]. 
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4.2.5. Application of MMWPCA with FLF to the Grid-Connected Photovoltaic System 

The fault detection in the Grid-Connected Photovoltaic System (GCPVS) is performed by 

measuring 29 variables. The PCA model of the MMWPCA with FLF is constructed based on 

a training data-set of 2766 observations. The model is validated using a testing data-set of 

1500 samples. After the selection of all needed parameters of the proposed method, it is tested 

using sensor faults shown in the Table 4.18. The faulty data, which include the real fault, 

consists of 2465 samples. All the data-sets are sampled every 5 minutes. The length of the 

sliding window is found to be 142 [98].  

Table 4.18.  Simulated Faults 

Faults Fault Description 
Number of 

Faulty Samples 
Fault Amplitude 

Fault 1 Abrupt fault activated at sample 600.  200 +1% 

Fault 2 Additive random noise fault with 0 mean and 0.05 standard deviation activated at sample 103. 300 Between -15% and 17% 

Fault 3 Ramp fault activated at sample 700 with slop of 1.5 × 10−4. 500 From (0% to 9%) 

 The monitoring indices with the adaptive thresholds for the training and testing data-

sets are depicted in the following figures [98]. 
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Figure 4.24. Training data-set Figure 4.25. Testing data-set 
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According to the Figure 4.24, some false alarms are signaled in the T
2
 statistic. These false 

alarms correspond to 0.61% FAR which is negligible. In the Figure 4.25, it can be seen 

clearly that no false alarm is recorded for the testing data-set [98].  

The detections of the simulated faults are depicted in Figures 4.26, 4.27 and 4.28 [98]. 
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Figure 4.26. Detection of abrupt fault Figure 4.27. Detection of random fault 
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Figure 4.26 and 4.27 illustrate that the detection of the simulated faults is exactly at the 

occurrence time of each fault. The detection of the ramp fault is delayed because the used slop 

is very small. After this test, the MMWPCA with FLF is applied to real faulty data. The 

results are shown in the Figure 4.29. Since no false alarms are recorded by the Q statistic for 

the training data-set and no false alarm is also signaled by the MMWPCA with FLF 

monitoring indices in the testing data-set, it can be concluded that any violation of the 

adaptive thresholds with high percentage can be considered as a fault. This is the case that is 

observed in the Figure 4.29, thus the real fault has been successfully detected [98]. 

 

 

Chapter four summarizes the simulation and the experimental results of the proposed 

methods on the different processes. The CFAR method reduces the effect of the false alarms 

in process monitoring and detects successfully all the types of faults. However it has a main 

drawback that is undesirable in the fault detection and diagnosis field. This drawback is the 

detection delay which is high for fast systems. This problem is encountered because the 

detection of faults by the CFAR method is done by accumulating the number of samples 

which are above the PCA monitoring indices thresholds. Hence, the accumulated sum needs a 

time to exceed the CFAR thresholds. 
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Figure 4.29. Detection of real fault 
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The MMWPCA with FLF showed high detection performance in either the TEP or in the 

CRK and the GCPVS. It reduces the FAR, MDR and the detection time delay. It improves 

also the PCA performance in process monitoring. The adaptive thresholds of this method 

increase the sensitivity of the monitoring indices leading to enhancements in the FDR. The 

FLF involves also in the FDR improvements and in the FAR reduction. As it is demonstrated 

through the comparison results against recent published papers, the MMWPCA with FLF 

showed high potential in terms of the average MDR or FDR. The scheme performance has 

been proved by the real application to the CRK and GCPVS where the real occurred faults in 

the systems have been successfully detected. The fault identification of the proposed 

technique is also very accurate as it is illustrated by the sensors faults in the CRK data.   

The MMW-DPCA with FLF is the dynamic extension of the MMWPCA with FLF where 

the dynamic behaviors are included in the PCA model. This monitoring scheme showed also 

high detection performance compared to recent works in the fault detection and diagnosis 

area. It enhances the DPCA based fault detection method by means of the adaptive thresholds 

and the FLF that ensures robustness to noise and outliers. This method also has been applied 

to the CRK where the real fault has been successfully detected. The results are presented and 

discussed in [100].   
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Conclusion 

The performance of any monitoring scheme relies on the reduction of the False Alarm 

Rate (FAR), Missed Detection Rate (MDR) and Detection Time Delay (DTD). The more 

these criteria are reduced, the more efficient the monitoring scheme is. The problems 

encountered with MSPC motivated many researchers to enhance process monitoring in order 

to achieve accurate fault detection and in a short DTD. 

Throughout this thesis, several techniques have been proposed to reduce FAR, MDR and 

the DTD. These techniques include Constant False Alarms Rate (FAR), Modified Moving 

Window PCA (MMWPCA) and Modified Moving Window Dynamic PCA (MMW-DPCA) 

with FLF. The CFAR technique, as it has been demonstrated in the applications part, reduces 

the FAR and accomplishes the detection of a real process fault with high accuracy and with 

no false alarms; however, this methods needs some additional improvements to reach 

satisfactory process monitoring performances. Hence, as a future work, it is proposed to apply 

this technique with adaptive thresholding schemes to reduce the detection delays and improve 

the FDR. It has been also illustrated through the applications that the MMWPCA and MMW-

DPCA with FLF provide high detection potentials and performances better than the methods 

which have been recently proposed in the field of FDD. The use of the FLF shows an 

interesting performance when it is combined with data-driven techniques. It has been used in 

the goal of ensuring spikes elimination in the monitoring indices for more accurate detection 

without introducing a delay in the abnormality detection.  

MMWPCA with FLF based monitoring scheme enhances the monitoring performance by 

combining the advantages of both PCA and MWPCA based fault detection methods. Both 

adaptive thresholds and the FLF improve the PCA performance. Furthermore, this technique 

has been extended to MMW-DPCA with FLF to handle the dynamic behaviour in the data. 
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This dynamic extension improves the performance of DPCA in the fault detection with a 

simple dynamic structure. The adaptive thresholds of these techniques do not require updating 

the statistical model to be generated. 

Industrial systems are generally nonlinear processes; thus, to deal with the nonlinear 

behaviours, one can extent the proposed methods to a Modified Moving Window Kernel PCA 

(MMW-KPCA) with FLF.  Both the dynamics and nonlinearities of the data can be handled 

by developing a Modified Moving Window Dynamic Kernel PCA (MMW-DKPCA) with 

FLF in which the statistical model will include both the dynamic and nonlinear 

characteristics; hence, data-driven methods in process monitoring can be improved further via 

these two techniques. 
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