Abstract :

The complexes $FcCH=C{1,4-C=C-C_6H_4-C=CM(dppe)Cp^*}_2$ (Fc = ferrocenyl (FeCp(η -C₅H₄-); M = Fe (1), Ru (2)) were prepared from FcCH=C{1,4-C=C-C₆H₄-C=CSiMe₃}₂ (3) via a desilylation/metalation protocol in good (2; 65%) to excellent (1; 97%) yield. The iron compound 1 could also be prepared in a stepwise fashion by desilylation of 3 to give FcCH=C{1,4- $C \equiv C - C_6 H_4 - C \equiv CH_2$ (4), reaction with FeCl(dppe)Cp* to give the vinylidene complex FcCH=C{1,4- $C=C-C_6H_4-CH=C=Fe(dppe)Cp^*_2](PF_6)_2$ (5(PF_6)₂; 65%), and deprotonation. The cyclic voltammograms of 1 and 2 are characterized by an initial oxidation wave resulting from the overlap of two closely spaced oxidation processes, the potentials of which are sensitive to the identity of M, and a subsequent, one-electron-oxidation wave. Thus, while the dications 1^{2+} and 2^{2+} could be prepared by oxidation with 2 equiv of ferrocenium hexafluorophosphate and isolated as the PF6salts $1(PF_6)_2$ and $2(PF_6)_2$ at low temperature, the monocations 1^+ and 2^+ could only be detected and studied as comproportionated mixtures of 1, $1(PF_6)$, $1(PF_6)_2$ and 2, $2(PF_6)$, $2(PF_6)_2$. A combination of EPR spectroscopy, IR and NIR spectroelectrochemistry, and DFT quantum chemical calculations reveal subtle distinctions in the electronic structures of $1(PF_6)_n$ and $2(PF_6)_n(n = 0-2)$. The HOMOs of 1 and 2 are more heavily distributed over the metal-diethynylbenzene arm trans to the ferrocenyl moiety. While one-electron oxidation of 1 gives $1(PF_6)$, in which the spin density is similarly distributed along the branch of the molecule trans to the ferrocenyl group, the spin density in $2(PF_6)$ is more extensively, but not fully, delocalized. Further analysis of the ESR, NIR, and IR spectra reveals that charges are essentially localized in 1(PF₆) and 1(PF₆)₂ on the IR time scale, but ground-state exchange between the Fe(dppe)Cp* moieties can take place via the ferrocenyl moiety on the slower ESR time scale. For $2(PF_6)$ and $2(PF_6)_2$, optical charge transfer processes between the ferrocenyl moiety and the organometallic branches can also be observed, consistent with the increased coupling between the Ru(dppe)Cp* and Fc moieties that are linked by a linear conjugation pathway through the bridging-ligand backbone.