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Gear fault diagnosis using Autogram
analysis
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Abstract
Rotary machines consist of various devices such as gears, bearings, and shafts that operate simultaneously. As a result,
vibration signals have nonlinear and non-stationary behavior, and the fault signature is always buried in overwhelming
and interfering contents, especially in the early stages. As one of the most powerful non-stationary signal processing
techniques, Kurtogram has been widely used to detect gear failure. Usually, vibration signals contain a relatively strong
non-Gaussian noise which makes the defective frequencies non-dominant in the spectrum compared to the discrete
components, which reduce the performance of the above method. Autogram is a new sophisticated enhancement of the
conventional Kurtogram. The modern approach decomposes the data signal by Maximal Overlap Discrete Wavelet
Packet Transform into frequency bands and central frequencies called nodes. Subsequently, the unbiased autocorrelation
of the squared envelope for each node is computed to select the node with the highest kurtosis value. Finally, Fourier
transform is applied to that squared envelope to extract the fault signature. In this article, the proposed method is tested
and compared to Fast Kurtogram for gearbox fault diagnosis using experimental vibration signals. The experimental
results improve the detectability of the proposed method and affirm its effectiveness.
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Introduction

Gears are often the most important part of rotating
machines. They play a fundamental role in transmitting
the power and the motion from one shaft to another.
Therefore, any unexpected gear failure can reduce the
performance of the industrial mechanism. Thence, it is
necessary to detect the gear defect to avoid any serious
failures. Several methods were used for the condition
monitoring of rotating machinery such as temperature,
vibration, and acoustic emission (AE).1 Lately, gear
fault diagnosis using vibration signals has been the sub-
ject of intensive studies in this field. Vibration signals
carry many information about the state of the gearbox.
Thus, a multitude of methods using those signals have
been developed to extract the fault signature such as
Fast Fourier Transform (FFT),2 Cyclostationary
Analysis,3,4 Cepstrum Analysis,5 Short-Time Fourier

Transform (STFT),6 Wigner–Ville Distribution,7–9

Wavelet Transform (WT),10–12 Hilbert–Huang
Transform (HHT),13–15 Local Mean Decomposition
(LMD),16–20 Empirical Mode Decomposition
(EMD),20,21 Bayesian algorithms,22 Hilbert Empirical
Wavelet Transform (HEWT),23,24 and Envelope
Analysis.25,26

In recent years, Envelope Analysis has gained much
attention in gear fault diagnosis field. This method
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separates the low-frequency disturbances around the
mechanical resonance of the gear system using a band-
pass filter. This is done using an amplitude demodula-
tion technique and Fourier transform.26 Unfortunately,
the main problem of this tool is to find the best filtering
frequency band.27,28 Consequently, Spectral Kurtosis
(SK) is an important step in solving this problem. SK is
an extension of the kurtosis in the frequency domain,
where a suitable demodulation frequency band is
located to select the maximum impulsivity in the data
signal.29 The SK-based STFT determines the center fre-
quency and the length of the window where the SK
value is maximized.30 These values are represented by a
second dimension color map called Kurtogram.29,31 As
an alternative method, Fast Kurtogram (FK) has been
suggested, in which the bandwidths are divided into
rational ratios to apply a fast multi-rate technique to
calculate the kurtosis value of the complex filtered sig-
nal.30 Then, the most impulsive frequency band is
selected.28–31 However, industrial equipments are com-
plex systems consisting of various devices such as gear-
boxes, bearings, and shafts that operate
simultaneously.30 As a result, gear fault signatures are
often covered by the machine natural frequencies and
submerged by high non-Gaussian noise, such as large
random impulses or very low noise ratio, making the
defective frequencies non-dominant in the spectrum
compared to discrete components.30 Thence, in the pre-
vious case, FK will have many difficulties because the
kurtosis value decreases as the transient’s repetition
rate increases.30 A modern application, called
Autogram, can manage this state by developing the
conventional Kurtogram. This method is an effective
tool for detecting the gear failure without depth knowl-
edge. Autogram is based on unbiased autocorrelation
(AC) to eliminate unrelated signal components such as
noise and random impulse contents, and then improves
periodic parts that are related to the fault signature.30

Initially, the data signal is filtered and divided by WT
into a dyadic tree structure to obtain different fre-
quency bands and center frequencies.30 However, the
down-sampling operation reduces the ability to investi-
gate the WT coefficients when there is a change in the
starting point of the data signal.30 Maximal Overlap
Discrete Wavelet Transform (MODWT) overcomes the
dyadic step. MODWT is a new enhancement of
Discrete Wavelet Transform (DWT) without the down-
sampling process,32–35 although MODWT has the
same inconvenience as DWT. The bandwidth fre-
quency used to decompose the signal is non-uni-
form.35 Therefore, a substitute method has been
developed called Maximal Overlap Discrete Wavelet
Packet Transform (MODWPT) to provide a uniform
frequency bandwidths and overcome time-variant
transformation.32,35 MODWPT decomposes the orig-
inal signal into many unique components with

different levels of resolution. MODWPT also allows
the reconstruction of the original signal without los-
ing any information and facilitates the monitoring of
the gear state.35 So, the principle of Autogram is
defined according to these steps. First, MODWPT is
used to decompose the vibration signal into several
frequency bands and center frequencies called
nodes.30 Thereafter, the unbiased AC is calculated for
the squared envelope for each node.30 Autogram then
determines the most appropriate frequency band to
compute the kurtosis of the squared envelopes.30 The
kurtosis values are displayed in a color map, where
the color scale is proportional to the kurtosis value,
while the decomposition level and MODWPT fre-
quency are presented in the vertical and horizontal
axes, respectively.30 Finally, the squared envelope,
where the kurtosis value is maximized, is selected to
extract the characteristic fault frequency using
Fourier transform.30

The aim of this article is to propose Autogram as a
new method to enhance the gearbox fault diagnosis
ability. Compared to FK, Autogram is more robust sig-
nal processing technique which could extract the fault
signature even in noisy environment. Experimental
results demonstrate the reliability and accuracy of the
proposed method for early detection of a chipping
fault.

Mathematical background

Autocorrelation

AC is a mathematical tool which compares a signal
with a delayed version of itself. AC also allows the
detection of repeated patterns in a signal such as a peri-
odic signal disturbed by a lot of noise and then
improves the periodic parts that are significantly
related to the gear fault. The AC of a signal is calcu-
lated as follows:30

� Find the value of the signal at a time t.
� Find the signal value at a time t + t.
� Multiple the two values together.
� Repeat the process.
� Calculate the average of all those products.

Mathematically, for a signal x, the unbiased AC of
the squared envelope is calculated with this expression30

R̂XX tð Þ= 1

N � q

XN�q

i= 1

x tið Þx ti + tð Þ ð1Þ

with the delay factor is equal to t = q/fs and
q= 0, . . . ,N � 1, where N is the length of the signal
while fs is the sampling frequency.
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Spectral kurtosis and Kurtogram

Kurtosis detects the impulsivity faults related to rotat-
ing machines by computing the peakedness of the data
signal as follows30

Kurtosis=

PN
i= 1

x tið Þ � mxð Þ4

PN
i= 1

x tið Þ � mxð Þ2
� �2

ð2Þ

where x(ti) presents the sample at time with ti=1/fs,
and mx is the mean value of the data signal.

The SK value is obtained by calculating the kurto-
sis value for each frequency band to extract its
impulsive and non-stationary components, then find
their location in the frequency domain as is expressed
in30

Kx fð Þ=
Y ti, fð Þj j4

D E
Y ti, fð Þj j2

D E2
ð3Þ

with Y(ti, f ) represent the STFT of the data signal while
h i is the mean operator in time.

Kurtogram is the implementation result of these cal-
culations for all possible combinations between fre-
quencies and the window of STFT.

Combined squared envelope spectrum

The squared envelope spectrum (SES) is calculated for
the nodes (nlevel) with highest kurtosis values at every
decomposed level. Thereafter, the normalized spec-
trums within 0 and 1 are combined by30

SES levelð Þ=
Xnlevel

i= 1

SES i, levelð Þ ð4Þ

Maximal Overlap Discrete Wavelet Packet Transform

Continuous Wavelet Transform (CWT) is one of the
most used signal processing methods. It gives a multi-
time scale resolution. Each scale is considered as a fre-
quency band to analyze the signal under several scales,
and the CWT can be defined by11,34,36

CWT a, tð Þ= 1ffiffiffiffiffiffi
aj j

p ð‘
�‘

x tð Þc� t � t

a

� �
dt ð5Þ

where t represents the translation parameter, while a is
the dilation factor and it is called scale.

The main limit of CWT is the wide quantity of com-
putation wavelet coefficients. DWT overcomes this
limit by using a dyadic scale and translation parameter
as defined in36

DWT a, tð Þ= 1ffiffiffiffi
2j
p

ð‘
�‘

x tð Þc� t � 2jk

2j

� �
dt ð6Þ

where 2j and 2jk replace the dilation and translation
parameters, respectively.

The DWT decomposes the signal using a high-pass
and low-pass filters to analyze the high-frequency
bands [Details Dj] and the low-frequency bands
[Approximations Aj], respectively, at level j. The
decomposition process is defined in36

x tð Þ=AJ +
X
j ł J

Dj ð7Þ

Figure 1 gives a better illustration of the decomposi-
tion process.

The motivation for formulating the Discrete Wavelet
Packet Transform (DWPT) is essentially to overcome the
main problem of DWT. Unless DWT, DWPT decom-
poses both the detail and approximation coefficients at
each levels to obtain more information as follows35

Figure 1. Decomposition process using DWT.
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s2z
j kð Þ=

X+‘

n=�‘

g nð Þsz
j�1 2k � nð Þ ð8Þ

s2z+ 1
j kð Þ=

X+‘

n=�‘

h nð Þsz
j�1 2k � nð Þ ð9Þ

with z is the node number and z=2m, where m2N
and m ł 2j–1 – 1 at level j. s0

0 presents the original signal
and sz

j (k) is the decomposition packet coefficients of the
higher frequency bands, while h and g are the wavelet
filters and their properties are given in35

X+‘

n=�‘

g nð Þ=
ffiffiffi
2
p

,
X+‘

n=�‘

g2 nð Þ= 1,
X+‘

n=�‘

g nð Þh nð Þ= 0

ð10Þ

X+‘

n=�‘

h nð Þ= 0,
X+‘

n=�‘

h2 nð Þ= 1,
X+‘

n=�‘

h nð Þg nð Þ= 0 ð11Þ

Although both DWT and DWPT have some dis-
advantages like time-variant property due to the
down-sampling process, MODWPT overcomes those
drawbacks by dispensing that dyadic step as shown
in Figure 2. The MODWPT decomposition coeffi-
cients are expressed as follows35

s2z
j kð Þ= 1ffiffiffi

2
p

X+‘

n=�‘

g nð Þsz
j�1 k � nð Þ ð12Þ

s2z+ 1
j kð Þ= 1ffiffiffi

2
p

X+‘

n=�‘

h nð Þsz
j�1 k � nð Þ ð13Þ

Autogram

As detailed in Moshrefzadeh and Fasana,30 Autogram
could be described in the following steps:

Step 1: The data signal is filtered and decomposed
using MODWPT into frequency bands and center
frequencies called nodes. MODWPT is a sophisti-
cated version of the DWPT without the down-
sampling process.32,35 The down-sampling step is
the main limit of DWPT because of the sensitivity
of the starting point selection in a time data, for
instance, a change in the starting point can give
quite different results.30 MODWPT is also used as a
filter to analyze the data signal at all decomposition
levels. Each filtered data correspond to a frequency
band and a center frequency (node).
Step 2: Autogram uses the periodicity of the autoco-
variance function. In this step, the unbiased AC is
calculated on the squared envelope of the filtered
signal using equation (1). AC eliminates all uncorre-
lated parts of the signal such as noise and random
impulsive components and improves all periodic
components that are related to gear failure.30 Also,
AC offers more advantages since it is done on each
node separately to remove any random impulsive
part that defines a very high kurtosis.30

Step 3: The aim in this step is to select an appropri-
ate frequency band for the demodulation signal for
an effective gear fault diagnosis. In this step, the
kurtosis is evaluated on the unbiased AC of the
squared envelope for each level and frequency band
(nodes). Kurtosis values for all nodes are displayed

Figure 2. Two levels of the MODWPT decomposition.
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in a color map, where the color scale is proportional
to the kurtosis value, while the decomposition level
and MODWPT frequency are presented in the verti-
cal and horizontal axes, respectively.

Equations (14) to (16) give a three modified equa-
tions of the conventional kurtosis in order to measure
the impulsivity of AC for each node obtained above30

Kurtosis Xð Þ=

PN2
i= 1

R̂XX ið Þ �min R̂XX tð Þ
	 
� �4

PN2
i= 1

R̂XX ið Þ �min R̂XX tð Þ
	 
� �2" #2

ð14Þ

Kurtosisu Xð Þ=

PN2
i= 1

R̂XX ið Þ � �X T ið Þ
 4

+

PN2
i= 1

R̂XX ið Þ � �X T ið Þ
 2

+

" #2
ð15Þ

Kurtosisl Xð Þ=

PN2
i= 1

R̂XX (i)� �X T (i)
 4

�

PN2
i= 1

R̂XX (i)� �X T (i)
 2

�

" #2
ð16Þ

Only positive and negative values are accepted while
the other are converted to zero, and �XT is the threshold
level and it is defined as follows30

�XT ið Þ= 1

k

Xi+ k�1

j= 1

R̂XX ið Þ ð17Þ

where k is the length of the windowed signal.
As we mentioned in the previous step, AC eliminates

all the uncorrelated parts in the signal such as noise and
random impulsive which may ineffectively assigns very
high kurtosis. Therefore, the node with the highest kur-
tosis value is selected as an optimal frequency band for
the demodulation signal.

Step 4: Fourier transform is applied to the squared
envelope with the highest kurtosis value to extract
the feature frequency, which is associated to the gear
fault.

Figure 3 summarizes the four previous steps.

Experimental description

The vibration signals have been provided from
CETIM, France.37 They were delivered from a single-
stage speed reducer as shown in Figure 4. The gearbox
is composed of a pinion and a gear with 20 and 21
teeth, respectively. The rotation frequency of the input

shaft is equal to fr1=16.67Hz and fr2=15.87Hz on
the output shaft, while the meshing frequency is equal
to fmesh=333.33Hz with 20 kHz as a sampling
frequency.

The gearbox system was operating for 24 h over
24 h, and experimental vibration signals were collected
for 13 days, except the first day (no data acquisition),
until we were close to the tooth break as illustrated in
the expert report (Table 1). The dimensions of gears in
addition to the operating conditions (speed, torque)
have been adjusted to obtain chipping fault over the
entire width of a tooth. During experience, the test
bench has been stopped every day to appraise the gear
state.

Figure 5 shows the faultless and the faulty tooth in
the pinion, while Table 2 shows the different dynamic
and geometrical parameters of the gear system.

Results and discussion

The data sets provided by CETIM, France,37 will be
used to evaluate the performance of the proposed
method by comparing the results with another signal
processing technique. The comparison was provided
with FK to prove the effectiveness of the suggested
approach.

Table 1 gives the expert report and there is no data
acquisition for the first day. Our purpose is to recognize
the defect from the vibration signals collected before
the tooth is broken.

The experimental signals for 2nd, 7th, and 10th
days are shown in Figure 6. It can be seen that it is
not possible to detect the gear failure only by looking
at the waveform, since the fault impulses are masked
by the noise.

The signals generated by a defective gear have two
important characteristics: a wide frequency and a very
low energy compared to the total energy of the signal,
so it is difficult to detect the chipping defect through a
simple conventional signal processing technique.

To overcome this problem, we first applied FK on
the vibration signals recorded with a sampling fre-
quency of 20 kHz. Figures 7 and 8 show the FK and
the corresponding envelope spectrum of the filtered sig-
nal for days 2, 7, and 10, respectively. Figure 7(b) dis-
plays the color map of FK for 7th day, the bandwidth
and center frequency are equal to 2500 and 8750Hz,
respectively, while Figure 8(b) displays the spectrum of
that band. From Figure 8(b), we notice that it is not
possible to extract the defect signature using FK. This
is due to the nature of the impulses that are converted
by noise. Whereas from Figure 8(c), we could obviously
view the appearance of a new frequency that effectively
corresponds to the input shaft frequency fr1=16.67Hz
with 2fr1 is its harmonics.

Afia et al. 5



Figure 3. Flowchart for the new proposed method.

Figure 4. Schematic representation of the test rig CETIM.
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The results obtained indicate that we could only
detect the gear defect using FK after the 10th day, while
the expert report (Table 1) indicates that we could
detect it before that.

Thereafter, the proposed ‘‘Autogram’’ method is
applied to the same data signals. The results are shown
in Figures 9 and 10. Unlike FK, a smaller frequency
bandwidth is located (156.25Hz) in the 7th day as
shown in Figure 9(b). The corresponding squared
envelope spectrum for the 7th day is shown in Figure
10(b). We can see that the squared envelope spectrum
immediately indicates a typical modulation which actu-
ally corresponds to the input shaft rotation speed,
fr1=16.67Hz (Figure 10(b)). It is also possible to
notice the presence of the same frequency at the 10th
day, when the width of the chipping tooth has evolved

Figure 5. Pictures of the pinion from CETIM test rig: (a) without defect and (b) with defect.

Figure 6. Analyzed vibration signals of (a) 2nd, (b) 7th, and (c) 10th days.

Table 1. The expert report.

Days Observations

1 No acquisition
2 First day of acquisition, no anomaly
3 No anomaly
4 ////
5 ////
6 ////
7 Chipping tooth (1/2 width)
8 No evolution
9 Beginning of chipping with 15/16 width of the tooth
10 Evolution of chipping tooth (15/16 width)
11 ////
12 ////
13 Chipping over all the width of tooth

//// : same thing as the previous day

Afia et al. 7



Figure 7. Fast Kurtogram of the vibration signals for (a) 2nd, (b) 7th, and (c) 10th days.

Figure 8. The envelope spectrum provided by the Fourier transform for (a) 2nd, (b) 7th, and (c) 10th days.
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up to 15/16 of the entire width (Figure 10(c)), which
confirms the robustness and effectiveness of the pro-
posed method compared to FK.

Conclusion

Gear fault diagnosis requires a powerful non-stationary
vibration signal analysis tool to extract the fault signa-
ture buried in strong background noise. FK has a

strong ability to detect the gear failure even in noisy
environment. However, a robust signal processing tech-
nique is still required when the vibration signals are
covered by strong non-Gaussian noise. Therefore, a
new method named Autogram is proposed to reduce
the influence of noise, which covers the gear defect
from a raw data. In contrast with Kurtogram, this new
method finds the perfect frequency band for demodula-
tion to allow a better feature extraction. First, the data
signal is decomposed by MODWPT into different fre-
quency bands and center frequencies (nodes).
Subsequently, the unbiased AC of the squared envelope
is computed for each node to decrease the uncorrelated
random noise. Thereafter, Autogram selects the node
with the highest kurtosis value. Finally, Fourier trans-
form is applied on the optimal selected frequency band
to extract the fault signature. Experimental data sets
with faultless and a faulty gearbox were utilized and
compared with FK to test the accuracy of the suggested
approach. The experimental results confirm the

Figure 9. Autogram of the vibration signals for (a) 2nd, (b) 7th, and (c) 10th days.

Table 2. Dynamic and geometrical parameters of the gear
system.

Parameter Pinion Gear

Speed, r/min 1000 952
Number of teeth 20 21
Face width, m 0.015 0.03
Shaft diameter, m 0.092 0.110
Module, m 0.01 0.01
Mass, N 36 80
Drive torque, N m 200

Afia et al. 9



effectiveness of our method in the identification of gear
failure even in the presence of non-Gaussian noise.
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