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A
set of equations governing an isothermal compressible ¯uid ¯ow is resolved

numerically for two practical cases. The ®rst case concerns the fast ¯uid ¯ow in short
gas pipelines where the equations, written in conservative form, are resolved by a

predictor-corrector scheme for the interior mesh points: an improved Lax-Friedricks scheme
as a predictor and a leapfrog scheme as a corrector. Characteristics and upwind methods
are used for the boundary conditions. The second case is concerned with massic slow ¯uid
¯ow in relatively long gas pipelines. The equations, written in non conservative form, are
resolved by a simple explicit ®nite difference scheme. The boundary conditions are considered
by using the characteristic form of the equations including an inertial multiplier (Yow model)
and resolved by a Newton-Raphson method. The obtained results agree with those of other
methods. These numerical experiments permit the user to gain more computational time and
simplicity in comparison with methods.
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INTRODUCTION

The mathematical model of transient gas ¯ow in a pipe
can be, as has been demonstrated in theory, one partial
differential equation or a system of equations. The form
of these equations varies with the assumptions made with
regards to the operating conditions of the pipeline. The
equations may be linear or, generally non linear. They may
be parabolic or hyperbolic of the ®rst or second order.

In this study, relatively simpli®ed models will be
presented. It is required that on the one hand the descrip-
tion of the phenomena is accurate, and on the other hand,
that it is reasonable to use simple computational calcula-
tions to solve these models. As a rule, simple models are
an alternative which presents a reasonable compromise
between the description accuracy and the cost of solution.
The simpli®ed models are obtained by neglecting some
terms in the basic set of equations, as a result of a
quantitative estimation of the particular elements of the
equations for given operating conditions of the pipeline.
This means that the models of gas transient ¯ow used
for simulation should ®t the given conditions of operation
of the pipe. A necessary condition for proper selection of
the model can, therefore, be the previous analysis of these
conditions.

The methods for solving partial differential equations
can generally be classi®ed as analytical and numerical. The
analytical methods are very laborious compared to numeri-
cal computations, and are unsuitable for solving problems
of this kind. The ®nite difference methods, most frequently
used to solve transient partial differential equations in the
case of dynamic simulation of gas networks, are implicit
and explicit methods both for parabolic and hyperbolic
forms of the equations.

The most currently accepted numerical procedures

include the method of characteristics, Wylie and Streeter1,
the explicit and the implicit ®nite difference methods,
Wylie and Al2 and Streeter and Wylie3, and the variational
methods. Racheford and Dupond4. With any of these
methods, the numerical errors, especially the truncation
error in the solution, may be appreciable if a large reach
length (Dx) is used.

The characteristic method and the explicit method have
obvious advantages by requiring relatively little computer
storage compared to the implicit methods. But the ratio of
the time increment to reach length (Dt/Dx) is limited by
certain stability criteria so that the time increment is very
small. The computational time becomes excessive for long
duration transients.

Under isothermal conditions, the continuity and momen-
tum equations, together with the state equations, constitute
the governing equations describing transient ¯ows in natural
gas pipelines. From these equations, the aim of this study
is to consider two types of gas ¯ow in pipelines: fast and
slow ¯uid ¯ows. Taking into account the physical nature
of these ¯ows, different numerical methods are proposed for
the resolution of the respective equation sets. The assump-
tions usually made include isothermal ¯ow, applicability
of steady-state friction and negligible wall expansion or
contraction under pressure loads.

DEVELOPMENT OF THE
MATHEMATICAL MODEL

Consider a pipeline with constant cross-sectional area, the
one dimensional continuity equation for the gas is:

¶»g

¶t
+ ¶

¶x
( »gV ) = 0 (1)

The one dimensional momentum equation for gas ¯ux in
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pipelines with spatially constant temperature distribution
along the pipeline is given by:

¶
¶t

(»gV ) + ¶
¶x

(»gV
2) = ê

¶P

¶x ê
fg»gV jV j

2D ê »gg
¶z

¶x
(2)

Writing an equation of state for natural gas as:

P = »g

ZRT

mg

(3)

and taking into account the isothermal conditions, the
acoustic wave speed becomes:

C =
ZRT

mg

0.5

(4)

The transient ¯ows in pipelines may be divided as a
function of the gas speed in fast and slow ¯uid transients.
These cases have been studied by many authors in gas
dynamics, Leveque and Yee5, Wylie and Al6, Racheford
and Dupond7 and Harten8. The aim here is to reformulate
the above equations for practical applications. Setting
m = »gVg and putting equation (4) into (3), equations (1)
and (2) may be rearranged in the following conservative
form:

¶ !
U

¶t
+ ¶!

F

¶x
=

!
A (5)

Where

!
F =

!
F(

!
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!
A =

!
A(

!
U) (6)

And
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!
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m
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A

(7)

The above equation set is one dimensional, ®rst order,
non-linear and hyperbolic.

In the absence of ®eld data, steady state variable
distribution constitutes the initial conditions. These steady
state initial conditions are obtained using an appropriate
analytical equation written as in Zhou and Adewumi9:

Å» =
fg m2

1

DC 2»gi
2

D

fg

ln Å» ê Dl + 1 (8)

Where

Å» =
»g

»gi

2

This equation, which is implicit in Å», is well suited for
the iterative method to determine density or pressure
distribution.

THE NUMERICAL SCHEMES

Fast Fluid Flow

Several classical numerical schemes were tested to
integrate equation (5). These include the Lax-Wendroff,
the MacCormack and the Godunov schemes, (respectively

Leveque and Yee5, Sod10 and Warren11). These second order
schemes, used for the above constitutive equations, have
the advantage that shock wave problems and other dis-
continuities can be treated with relatively good accuracy.

This paper considers two practical cases. The ®rst case
concerns fast ¯uid ¯ow in short gas pipelines, where the
equations, written in conservative form, are resolved by
a two time step predictor-corrector scheme for the interior
mesh points: an improved Lax-Friedricks scheme as a pre-
dictor and a leapfrog scheme as a corrector. Characteristics
and upwind methods are used for the boundary conditions.

Then the conservative form of equation sets (1) and (2)
can be written as:

¶q1i

¶t
+ ¶q2i

¶x
= q3i (9)

Where qij (for j = 1, 2, 3 and i = 1, 2) are function of the
density (or pressure) and the velocity (or mass rate).

The Lax-Friedricks scheme applied to equation (9),
yields:

q1i(x, t + Dt) = 0.5 ´ b q1i(x + Dx, t) + q1i(x ê Dx, t c

ê [q2i(x + Dx, t) ê q2i(x ê Dx, t)]

´ Dt/2/Dx + [q3i(x + Dx, t)

+ q3i(x ê Dx, t)] ´ Dt/2 (10)

This scheme is obtained by using a stabilizing procedure
which consists of replacing qli(x, t) of the original scheme
by [qli(x + Dx, t) + qli(x ê Dx, t)]/2. This corresponds, in
fact, to the addition of a dissipative term proportional to the
second derivative of qli(x, t), Hirch12.

The numerical viscosity is then introduced by the ®rst
term on the right hand side of equation (10). Unfortunately,
this scheme causes considerable damping of the waves,
owing to its ®rst-order accuracy. This would lead to too low
values for the maximum pressures. Second-order accuracy
can be obtained by adding an adapted second step (leapfrog
scheme) to equation (10):

q1i(x, t + Dt) = q1i(x, t) ê
q2i(x + Dx, t + Dt) ê
q2i(x ê Dx, t + Dt)

" #

´ Dt/Dx + 0.5 ´ Dt ´
q3i(x + Dx, t + Dt) +

q3i(x ê Dx, t + Dt)

" #
(11)

q3i corresponds to the source terms in equations (1) and (2).
Equations (10) and (11) together constitute a predictor-

corrector two-step, and also one among the Lax-Wendroff
family schemes. The numerical damping by this scheme is
appreciable, provided a suf®cient number of mesh points
is chosen. This scheme can be shown to be consistent with
diffusional equations (9), and to be linearly stable if:

Dt

Dx
#

1

C + jV j

Slow Fluid Flow

The second case is concerned with slow ¯uid ¯ow in
relatively long gas pipelines. The non-conservative equa-
tions are resolved by a simple explicit ®nite difference
scheme. The boundary conditions are considered by using
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the characteristic form of the equations including an
inertial multiplier (Yow13 model), and resolved by a
Newton-Raphson method.

Substituting for »g from equation (3) and writing the mass
rate as M = m ´ A, the relations (1) and (2) yield:

C2

A

¶M

¶x
+ ¶P

¶t
= 0 (12)

¶P

¶x
+ »g V

¶V

¶x
+ ¶V

¶t
+ »gg

¶z

¶x
+ fg »g

V jV j
2D

= 0

(13)

Where A is the cross-sectional area of the ¯ow.
Substituting for »g from (3) and (4) yields:

v =
MC 2

AP

Then the equation of motion (13) becomes:

1 ê
M 2C 2

A2P2

¶P

¶x
+ 2MB2

A2P

¶M

¶x
+ 1

A

¶M

¶t
+ Pg

C 2

¶z

¶x

+ fg C 2 MjMj
2DA2g2P

= 0 (14)

In this equation, the second term in the coef®cient of
¶P/¶x is negligible compared to unity. Also, the term ¶M/¶x
is negligible compared to the other terms. With these
simpli®cations and multiplying equation (14) by P, the
equation of motion for transient gas ¯ow yields:

1

2

¶P2

¶x
+ P

A

¶M

¶t
+ P2g

C 2

¶z

¶x
+ fg C 2 MjMj

2DA2
= 0 (15)

Equations (12) and (15), describing the slow transient
¯ow of gas in a pipeline, constitute a hyperbolic system of
two non-linear partial differential equations which cannot
be solved analytically. Any analytical solution must
incorporate some simpli®cations, or assume some speci®c
set of initial and boundary conditions.

Generally, the analytical solution thus generated reduces
computational expense, but is only applicable to analysis of
a subproblem, or a very simpli®ed problem. Thus, these
equations must be solved numerically.

Several types of numerical methods for solving the above
system for gas transient ¯ow have been reported in the
literature: explicit and implicit ®nite difference methods,
method of characteristics and variational methods. All these
methods proceed in steps, computing the required parameter
values (pressure and ¯ow rate) at various points along the
pipeline at the instant t + Dt, on the basis of the known
distribution of these parameters along the pipeline at time t.

The partial differential equations (12) and (15) can be
discretized along the space x and time t in three ways:
backward, centred and forward difference schemes. Let Dx
be the length of each pipe segment; solutions are computed
successively at the value of time, increasing in time steps
of size Dt. Then, using the explicit forward ®nite differ-
ence method, the partial differentials (12) and (15) can be
expanded for any grid point i at time t + Dt as follows:

¶P

¶t
=

Pt
i + Dt ê P t

i

Dt

¶P2

¶x
=

P t
i + 1 ê P t

i

Dx

¶M

¶t
=

M t
i
+ Dt ê M t

i

Dx

¶M

¶x
=

M t
i + 1 ê M t

i

Dx

Where the subscript i indicates the grid along the x direc-
tion, and superscript t indicates the parameter value at the
previous time step. The pressure P and the mass ¯ow M
are discretized as follows:

P =
P t

i + P t
i + 1

2
and M =

M t
i + M t

i + 1

2

Then the transient ¯ow equations (12) and (15), can be
linearized using the above ®nite difference equations.

Solving for Pt+ Dt
i and M t + Dt

i yields:

P t + Dt
i = P t

i ê
Dt

Dx

C 2

A
[M t

i + 1 ê M t
i] (16)

M t + Dt
i = M t

i ê
Dt

Dx

A

P t
i + P t

i + 1

x ((P t)2
i + 1 ê (P t)2

i )

ê
Ag Dt

2(Pt
i
+ Pt

i + 1)C
2
sin a ê fg

C 2Dt

4DA(P t
i
+ P t

i + 1)
x

´ [(M t
i
+ M t

i + 1)jM t
i
+ M t

i + 1j] (17)

The ®rst previous methods are faster because they
require lesser computation time than implicit methods, but
they are subject to instability and a restricted time step
size. For these reasons, and also because of the inaccuracies
in the computations that generally result from the use of
this method, it is proposed in the following section, to use
it in conjunction with the method of characteristics.

In this study, the choice of an explicit method for the
mesh interior points and characteristics form of the equa-
tions for the boundaries, responds mainly to the requirement
to minimize the computational time of the program.

INITIAL AND BOUNDARY CONDITIONS

Initial conditions, as well as boundary conditions to the
previous equation sets, must be speci®ed in order to obtain
an appreciable solution for the differential equations (1), (2)
and (12), (15). The initial conditions of these systems are
required to resolve initial density and velocity for the ®rst
case, and pressure and mass rate for the second case, as a
function of the position x along the pipeline. Boundary
conditions must also be speci®ed to obtain a unique solu-
tion. In this study, the initial conditions are given by
the relations (8) and (13) for fast and slow gas ¯ow,
respectively.

Boundary Conditions for the Fast Fluid Flow

Physical boundary conditions are imposed to allow the
consideration of a wide variety of operating situations.
The practical example used considers the following case:
a constant mass ¯ux (or a known function of time) at the
inlet when the outlet mass ¯ux is a known function of time
(or a constant). Densities or pressures at the boundaries
constitute the unknowns. It is proposed in this study to treat
numerically the two boundary conditions by the character-
istics method and by an upwind ®nite difference method.
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The ®rst method converts the initial partial differential
equation sets (1) and (2) into ordinary differential equations.
The physical interpretation is that the waves travel with
speed C which is given by the relation (4), propagating then
the effect of the initial boundary conditions. This theory is
generally used in different ways to follow wave develop-
ment. Then the transformation of equations (1) and (2) into
ordinary differential form yields:

dP 6 »gCdV = 6 »gC
fgjV jV

2D
dt 7 »g gC sin u dt (18a)

A computational procedure to obtain P or V is necessary
with incremental Dt, and equal space Dx. Values of the ¯uid
properties at the previous time are interpolated linearly
for subsonic ¯ow from mesh i ê 1, i and i + 1.

The second method is based on upwind differentiation
of the relation (1) at the boundaries. The relations used by
Zhou and Awedumi14 are considered as:

(»g)
t + Dt
1 = (»g)

t
1 + Dt

Dx
(mt

1 ê mt
2)

1 ê
mt

1

C(»g)
n
1

1 + mt
1

C(»g)
t
1

ê
Dt

Dx
(mt

1 ê mn
2)

mt
1

(»g)
n
1 ê C + mt + Dt

1 ê mt
1

C + mt
1

(»g)
t
1

+ fg mt
1jmt

1jDt

2D(»g)
t
1 C + mt

1

(»g)
t
1

(18b)

(»g)
t + Dt
n + 1 = (»g)

t
n + 1

Dt

Dx
(mt

n + 1 ê mt
n)

1 + mt
n + 1

C(»g)
t
n + 1

1 ê
mt

n + 1

C(»g)
t
n + 1

ê
Dt

Dx
(mt

n + 1 ê mt
n)

mt
n + 1

(»g)
t
n + 1

+ C

ê
mt + Dt

n + 1 ê mt
n + 1

C + mt
n + 1

(»g)
t
n + 1

ê
fg m1

n + 1jmt
n + 1jDt

2D(»g)
t
n + 1 C ê

mt
n + 1

(»g)
t
n + 1

(18c)

The results obtained are in relatively good agreement for
the ®rst times of the transient, i.e. the times corresponding
to the Figures 1, 2, 3 and 4. Unfortunately, instabilities were
observed for the time corresponding to Figure 5.

Boundary Conditions for the Slow Fluid Flow

For the reasons involved in the section on slow ¯uid
¯ow, this explicit scheme is rarely used. Nevertheless, it
is possible to avoid the previous undesirable instabilities
by using the characteristics method to resolve equations (12)
and (13) for the boundaries. Rewriting these equations
without taking into account the gas inertia, the correspond-
ing compatibility equations obtained by the classical

mathematical method (Wylie and Streeter1) are:

a
C

A
(M t + Dt

i ê M t
i 6 1) 6 P t + Dt

i 7 Pt
i 7 1

+ fg

C 2
Dx

DA(P t + Dt
i + Pt

i 6 1)
X

e S

ê 1

s

´
M t + Dt

i + M t
i 6 1

2

M t + Dt
i + M t

i 6 1

2

 !

+ (P t + Dt
i )2

P t + Dt
i

+ P t
i 6 1

(e S

ê 1) = 0 (19)

Where:

s = (2gDx sin u )/C 2

The parameter a is the so-called `inertial multiplier,’
introduced by Yow15 in the equation of gas motion. He
made an extensive analysis of the value of a to error, based
on gas ¯ow in a single horizontal pipe with sine wave
variation of the input boundary condition. His procedures
also permitted a study of this discretization on error. Then,
in equation (19) a second order evaluation of the friction
term is used by averaging linearly the mass ¯ow. An
iterative Newton-Raphson method permits discovery of the
unknown functions P and M in the boundaries for the time
t + Dt. The signs + and ê correspond respectively to outlet
and inlet condition. In the current application, the inertial
multiplier a is calculated by a more suitable engineering
method (Wylie and Streeter1).

RESULTS AND DISCUSSION

Two practical examples, corresponding to fast and slow
¯uid ¯ows, are simulated using both previously combined
methods. The boundary conditions for these two cases are
treated by characteristics methods with changing the
primitive variables of the corresponding equation set of
the fast ¯uid ¯ow.

The ®rst example, which concerns the transport of a fast
gas transient in a short pipeline with an impulse supply of
gas mass ¯ux at the inlet of the line, has been simulated
using the previous predictor-corrector scheme. This example
is taken from Wylie and Al2, Racheford and Dupond4

and Zhou and Adewumi14 in which the solutions were
obtained respectively using the method of characteristics
(MOC), variational methods, and ®rst-order three-point
explicit Godunov scheme, and the second-order ®ve-point

928 KESSAL

Trans IChemE, Vol 78, Part A, September 2000

Figure 1. Fast ¯uid ¯ow: Flow rate version at the midpoint of the pipeline.



TVD scheme for the source free to solve the full set of the
governing equations.

A pipeline 91.44 m long, 0.609 m interior diameter and
having initially 41.368 ´ 105 N m ê 2 with a shut downstream
extremity. At time zero, the upstream in¯ow begins to
increase linearly and reaches 41.368 ´ 105 N mê 2 at 0.145
seconds, decreases linearly to zero again at 0.29 seconds,
and then remains constant at zero. The downstream end
is closed. For the simulation of the above fast transient
problem, the predictor-corrector scheme adopts with the
characteristics method the same Dt which is imposed by
the stability criteria of Courant, Friedricks and Lewy (Wylie
and Streeter1).

Using the predictor corrector scheme (10) and (11) to
resolve system (9), Figure 1 shows mass rate time evolution,
rate of the gas at midpoint of the gasline (x = 0.5 ´ L),
where these results are compared with those obtained by
the authors referenced2,14. A good agreement between them
is observed. The gas ¯ow rate fronts are completely solved
within the ®rst 0.8 seconds. The behaviour of the gas ¯ow
rate evolution at the midpoint of the pipeline is the result
of the re¯ected pressure impulse at the upstream end of the
pipe.

Figure 2 shows the comparison of the predicted pressure
(by the present model) at the inlet of the line (x/L = 0)
with the reported data. Again, a relatively good agreement
between the predicted results and the reported data is
obtained. It can be seen that the duration of the pressure
pulse of the peak is the same. The pressure wave is main-
tained and captured during the ®rst 0.80 seconds.

In Figure 3, the pressure wave front is reproduced over

2.4 seconds without signi®cant loss of accuracy. However,
the pressure amplitude seems close to that obtained by
the characteristics method. The slight differences with the
curves which correspond to the other methods may be due
to some simpli®cations introduced by Zhou and Adewumi14

(i.e. the value of the coef®cient of the friction losses).
Figure 4 shows the comparison, as regards the pressure

at the outlet point of the pipeline (x/L = 1), between the
obtained numerical results and the reported data. Again, a
relatively good agreement can be noted. At the outlet of the
pipeline, the pressure wave fronts are completely resolved
within the ®rst 0.8 seconds.

In order to check the numerical method described
herein, the pressure evolution was calculated for the times
close to the end of the transient phenomenon. Figure 5
shows that the agreement is satisfactory, in comparison
with those of other authors. This indicates that the method
described in the previous sections is reliable. Also, the
computed results show that the introduced numerical
damping has not produced any undesirable effect.

The second example is the propagation of slow transient,
for 30 minutes, in a 1.930 ´ 103 m long, 0.365 m interior
diameter transmission pipeline, with a speci®ed sinusoidal
boundary condition at the downstream (Figure 6). The pro-
cedure to determine Dx and a is illustrated in the original
study of Yow13, where the solution obtained with the
standard characteristics method is compared to an accurate
solution. The sinusoidal boundary condition takes the
following form:

M = Mo + DM sin(vt) (20)
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Figure 2. Fast ¯uid ¯ow: Pressure at the inlet of the pipe.

Figure 3. Fast ¯uid ¯ow: Pressure at the inlet of the pipeline.

Figure 4. Fast ¯uid ¯ow: Pressure at the outlet of the pipe.

Figure 5. Pressure response at the inlet of the pipe.



where the mass initial rate M0 = 20 kg s ê 1, t is in minutes
and v the frequency in rad/sec.

For this example, Yow13 compares the obtained accurate
(analytical) solution for an equation set equivalent to (12)
and (14) (where Dx = L/10 and a = 1), with those result-
ing from using the equivalent relations to (19). In this last
case two values of a (3 and 8) are tested.

Figure 7 shows the predicted gas mass rate curves at
the inlet of the pipeline by using the relations (16) and (17)
in the grid interior points, and (19) for the boundaries. In
comparison with the previous author results13, the agree-
ment is very good. The present model reproduces the
propagation of the imposed outlet signal very well, without
any attenuation.

The pressure curves at the outlet of the pipeline are drawn
in Figure 8. In this ®gure, the obtained gas pressure
evolution at the inlet is closer to the measured data than
that predicted by the previous author13. Hence the agree-
ment between the obtained results and the measured and
reported data is good, and it appears to be fairly in agree-
ment with the accurate solution.

Thus, it is considered that the numerical models presented
in the previous section, describing slow ¯uid ¯ow for gas
pipelines, without neglecting any important term in the
momentum equation represents faster programming and a
more economical solution.

CONCLUSION

The numerical methods presented in this study allow
calculation of the propagation of pressure or mass rate
perturbations from one boundary of a gas pipeline. It is
shown that the coupling of two different types of ®nite
difference schemes, can reduce the computational time

and also avoid the instabilities, errors and dif®culties
existing during the use of sophisticated ®nite difference
schemes, especially for more complex gas networks
distribution.

NOMENCLATURE

A cross-sectional area of pipeline, vector
C isothermal speed of sound
d pipeline diameter
fg gas friction factor
F ¯ux vector in equation (5)
g gravitational acceleration
m gas mass ¯ux
M gas mass rate
p pressure
R universal gas constant
t time
T absolute gas temperature
V gas velocity
X axial coordinate, L
z compressibility factor

Greek letters
v pulsation
»g gas density
»i inlet gas density
mg molecular gas weight
Dt uniform time step
Dx uniform grid size
u angle of the pipe makes with the horizontal

Subscripts
g gas
i inlet, upstream, node
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