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In this paper, we consider the optimal sensors placement problem for faults detection and isolation. 
When the detection and isolation of faults of an existing system’s sensors is impossible or uncertain, a 
reconfiguration sensor placement of this system should be reconsidered. The propagation of faults 
(Observability/Detectability) was studied in a structured linear system on a directed graph (digraph). An 
optimisation of sensor placement is necessary to isolate detectable faults and obtain an optimal 
structural isolability. To have a maximal structural isolability, we must find all the vertex-disjoint paths 
knowing that this property depends upon additional sensors. This novel approach is illustrated over a 
two tanks application applying on a directed graph to obtain the maximal and optimal structural 
detectability and isolability of the system.   
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INTRODUCTION 
 
This paper deals with the fault detection and isolation 
(FDI) problem of linear systems. This research work has 
received considerable attention in the past years 
(Isermann, 1997; Chen et al., 1996; Frank, 1996; Patton, 
1994). Generally in the FDI problems, intrinsic solvability 
conditions were considered depending upon the internal 
structure of the system but not on the specific parameter 
values. We look for internal structures which are well 
suited for diagnosis. 

A structural controllability was introduced by Lin (1974). 
The FDI problem solvability conditions were given by 
Commault et al. (2002) in terms of graph that can be 
associated in a natural way to a structured system. In 
general, the FDI solvability conditions are still not perfect. 
A specific attention in system observation, supervision 
and abrupt change is given to sensor placement 
problems (Bassville et al., 1987; Krysander and Frisk, 
2008; Commault and Dion, 2007; Commault and Dion, 
2003;   Frisk   and  Krysander,  2007;   Fan  et  al.,  2009;  
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Chamesedine et al., 2007).  
The structural and graphical approaches have also 

been used in fault detection problems in various contexts 
(Dion et al., 2003; Commault and Dion, 2003; Frisk and 
Krysander, 2007; Fan et al., 2009; Izadi-Zamanabadi and 
Staroswiecki, 2000; Mellal et al., 2011; Chamesedine et 
al., 2007).  

This study contributes on the sensor placement 
optimisation by generating new structural properties 
allowing the easiest and the maximum faults detectability 
and isolability in the system.  

Moreover, the proposed matrix (the structural 
adjacency matrix) inspired from the graph theory, allow 
us to associate a digraph with a linear structured system 
without going through an analytical approach. This 
approach aid to present system's structure and it is useful 
in diagnostic domain. The obtained matrix allows us to 
optimise the sensors placement. However, in the existing 
literature structural representation of linear systems 
considers only the observability (the structural 
observability problem) (Commault and Dion, 2007; 
Commault and Dion, 2003; Lin, 1974; Boukhobza et al., 
2007; Chamesedine et al., 2007). In addition, this 
developed  matrix  has  never  been  used  in this context  
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and makes it easy to obtain the structural digraph without 
need to a prior complete system state or analytical 
model. 
 
 

LINEAR STRUCTURED SYSTEM 
 

Let us consider the following linear time-invariant system 
 

x(t) Ax(t) Lf (t)

y(t) Cx(t) Mf(t)

= +
∧ = +

∑
&

                          (1) 

 
Where x(t) ∈ R

n
, is the state vector, f(t) ∈ R

r
, is the fault 

vector and y(t) ∈ R
p
, is the measured output vector. A, C, 

L and M are matrices with their corresponding 
dimensions. In this part we recall some definitions and 
results on linear structured systems (Commault and Dion, 
2003). More details can be found in the work of 
Commault et al. (2010), Dion and Commault (1993), and 
Dion et al. (2003). The system given by Equation 1 is 
called a linear structured system if the entries of the 
composite matrix J fixed zeros or independent 
parameters (not related by algebraic equations). Where Λ 
= {λ1, λ2 ..., λk} denotes the set of independent 
parameters of the composite matrix J = (A C; L M). 

For the sake of simplicity the dependence of the 
system matrices on Λ will not be made explicit in the 
notation. A structured system represents a large class of 
parameter dependent linear systems. The structure is 
given by the location of the fixed zero entries of J. This 
structure often comes from physical particularities of the 
system (as a subsystem interconnection); thus, the only 
exact information of the system is its structure (that is, the 
absence of direct relations between variables and state 
variables for example). 

For such systems one can study generic properties that 
is, properties which are true for almost all values of the 
parameters collected in Λ (Murota, 2000; Wonham, 
1985).  

Moreover, a property is said to be generic (or 
structural) if it is true for all values of the parameters (that 
is, any Λ ∈ R

k
 ) outside a proper algebraic variety of the 

parameter space, that is, the zero set of a finite number 
of nontrivial polynomials in the parameters.  

A directed graph G(ΣΛ) = (Z, W) can be associated to 
the structured system ΣΛ of Equation 1  where the matrix 

is 
A L

J
C M

 
=  
   structured. 

The vertex set is Z = F ∪ X ∪ Y where F, X and Y are 
the faults, the states and the output sets are given by {f1, 
f2..., fr}, {x1, x2..., xn} and {y1, y2..., yp}, respectively. 
The arc set is W = {(fi, xj) | Lji≠0} ∪ {(xi, xj ) | Aji≠0} ∪ {(xi, 
yj ) | Cji≠0} ∪ {(fi, yj ) | Mji≠0}, where Aji(resp. Cji ,Lji ,Mji) 
denotes the entry (j, i) of the matrix A(resp. C ,L,M ). 
Moreover, the directed path in G(ΣΛ) from the vertex iµ0 
to the vertex iµq is the arcs sequence (iµ0, iµ1), (iµ1, iµ2)..., 
(iµq−2, iµq−1), (iµq−1, iµq) such that iµt∈ Z for t = 0, 1..., q 
and (iµt−1, iµt) ∈ W for t=1, 2...,q.  

 
 
 
 

The path length is the number of its arcs, each arc 
being counted the number of times it appears in the 
sequence. For the last sequence, the path has length q. 
Sometimes, we denote the path P by the sequence of 
vertices such that P = (iµ0, iµ1..., iµq−1, iµq).  

Moreover, if iµ0 ∈ F and iµq ∈ Y, thus, P is called a 
fault-output path. A path where iµ0 = iµq is called a 
circuit. A path set with no common vertex is said to be a 
disjoint vertex.  

A k-linking is a set of k vertex disjoint fault-output paths; 
it is also called a linking of size k. A linking is maximal 
when k is maximal.  

Using the structured systems with theirs associated 
graphs many important results have been obtained for 
these systems on structural controllability, decoupling, 
disturbance rejection (Commault et al., 2010; Dion and 
Commault, 1993; Dion et al., 2003; Lin, 1974; Boukhobza 
et al., 2007).  

As first example of these definitions the graph 
characterization of the structural observability were given 
by Lin (1974) and Murota (2000). 

Let us consider ΣΛ to be the linear structured system 
given by Equation 1 with its associated graph G(ΣΛ). The 
system (in fact the pair(C, A)) is structurally observable if 
and only if: 
 
1) There exists a state-output path starting from any state 
vertex in X, 
2) There exists a set of vertex disjoint circuits and state-
output paths which cover all state vertices. 
 
However, in the existing literature of structural 
representation, the linear systems consider only the 
structural observability problem. In this paper, we look to 
define new structural proprieties for the FDI problem.  
 
 
FDI PROBLEM SOLVABILITY WITH A SENSOR 
PLACEMENT OPTIMIZATION 
 
It has been seen that the solvability of the FDI problem 
(observability condition) is based on the maximal size of 
fault-output linking. Here, consider some properties of 
these maximal linking and derive some useful 
consequences for fault detection problem and then for 
isolation of detectable faults. 
 
 

Solvability of the fault detection problem with 
additional sensors 
 
Here, we propose a method on the solvability of the fault 
detection problem with additional sensors. In graph 
terms, we try to get a size r linking based on the addition 
new output vertices and new edges which link the new 
states or fault vertices to them.   

We define F1 as the set of fault vertices, Y1 the set of 
output  vertices  and  X1  the  set  of  state vertices in any  



 

 
 
 
 
fault-output paths from F1 to Y1. 

Now, we think of a new structured system defined by its 
graph with input set F1 and output set Y1, state set X1 is 
the set of edges which corresponds to the edges in any 
path from F1 to Y1. 

A variable wi is said to be measurable with additional 
sensors if we can add a new sensor with its 
corresponding output zj such that in the graph of the 
composite system G(ΣΛ), there is an edge (wi, zj) 
between this variable and the new output. Let us denote 
by Wm the set of measurable faults and state variables. 
 
 

Lemma 1 
 

Consider a linear structured system ΣΛ with graph G(ΣΛ). 
If we suppose that the FDI problem without additional 
sensors has no solution thus, the FDI problem with 
additional sensors has a solution if and only if: 
 

(F1U X1) Wm∩ ≠ Φ                           (2) 

 

Proof: Since the FDI problem without additional sensors 
has no solution, therefore F1 ≠ Ф. If the condition of 
Equation 2 is not satisfied, there is no edge connecting 
F1 ⋃ X1 to the additional vertices of Z, therefore the FDI 
problem with additional sensors has no solution. To 
check this, if we do additional measurements which allow 
to solve the problem by simply adding new output 
vertices and new edges and verify on the modified graph 
that the condition is satisfied. 
 
 
New structural propositions 
 
Up to this point, we have defined the FDI problem as a 
classical problem based on the satisfaction of the 
observability condition (Lin, 1974). Now, we define new 
structural proprieties to represent a complete FDI 
problem (Krysander and Frisk, 2008; Frisk and 
Krysander, 2007), such as structural detectability and 
structural isolability. 

As defined previously, the detectability condition in 
terms of linear structured systems is the same as the 
observability condition. 

The additional sensor set lets the observability 
condition be maximal and full, we speak now about the 
maximal FDI. 
 
 
Proposition 1 (Maximal structural detectability) 
 
In the oriented graph associated to a linear structured 
system we can detect a fault if there is a path from the 
fault vertex to the output vertex and only one state vertex 
is on the path. We get maximal fault detection, if all faults 
vertices are connected to the output by adding new 
sensors (output vertices). 
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Proof: Since the fault detection problem without 
additional sensors has no solution, because the condition 
of Equation 2 is not satisfied as a result is no edge 
connecting F1⋃ X1 to the additional vertices of Z (we 
suppose that the studied system has some fault-states 
links not connected to the output). Note that a k-linking is 
a set of k vertex disjoint fault-output paths. A linking is 
maximal when k is maximal. By adding the corresponding 
additional vertices of Z to the fault-state no output-
connected will take place, while in a full output 
connection, we will have maximal fault detection and an 
optimal sensor placement.  

Now we have to test if the new sensors placement with 
the maximal fault detection allows us to isolate all faults.  
As given in the previous paragraphs the system ΣΛ 
without additional sensors represented by the graph 
G(ΣΛ) is not satisfied over the condition given by 
Equation 2, therefore, it has no maximal k-linking. So, it 
has at most one non-detected fault, which means, not all 
the faults are detectable and so we cannot isolate the 
faults. 
 
 
Proposition 2 (Maximal structural isolability)  
 
In the oriented graph associate to a linear structured 
system we can isolate a detectable fault if we have 
maximal faults detection, and if there is a path from the 
fault vertex to the output vertex and only one state vertex 
is on the path. 
 
Proof: In the system ΣΛ without additional sensors 
represented by the graph G(ΣΛ) did not have a maximal 
linking, noting that at least one fault does not belong to 
any linking, thus, this fault is not detectable. In this case, 
there exist some faults that cannot be isolated from 
others because they have common outputs. By adding a 
new sensor to the system ΣΛ represented by a new 
output-edge in the graph G(ΣΛ) it will make a linking to 
fault-output path. Thus, each fault vertex is detected with 
just one sensor (output vertex) connected to a shared 
state vertex.  

We consider this as a maximal isolation of all the 
detectable faults, but how about an optimal sensor 
placement that allows to isolate the maximal faults 
(without additional sensors). This will be solved by 
Proposition 3. 
 
 

Proposition 3 (Optimal structural isolability)  
 
In the oriented graph associated to a linear structured 
system we can isolate a maximum of detectable faults 
without any additional sensor; this is called an optimal 
isolability. The optimum isolation of all the detectable 
faults using the proprieties in the digraph is obtained by 
changing the direction of one arc connected to the state 
vertex  between  two adjacent faults vertices, which share  
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Figure 1. Two tanks system. 

 
 
 

the same non-connected output state vertex (without 
losing the structural Observability condition). 
 

Proof: In a system ΣΛ without additional sensors 
represented by the graph G(ΣΛ), some faults share the 
same state vertex and they are connected to a common 
output vertex that make them observable, but not 
detectable and not isolable. So in each fault-output path 
we can make a linking but it is not allowed at the same 
time (except if we add a new output). However, by 
changing the arc connected between the two states (from 
the shared state to the non-connected output state) we 
get two linking (two detected/isolated faults). This 
isolation of the faults is practical in example for visual 
faults and remarkable changes. 
 
 
STUDY CASE 
 

This study case was chosen to test our proposed 
approach with the existing ones such as bond graph and 
FDI problems (Benazzouz et al., 2009). 

The chosen application consists of two tanks system 
given in Figure 1. C1 and C2 are the two tanks, R1 and 
R2 are two valves, Msf is the pump, u1 and u2 are 
commands, De1, De2 and Df1 are sensors used for 
detecting faults and monitoring the system. r1, r2 …, r6 
are the residues or the faults indicators (Mellal et al., 
2011). Mb is monitorability/detectability of the fault if Mb = 
1, the fault is detectable on the element of the system, in 
this application all faults are detectable with a maximal 
faults detection. Ib is the isolability of the detectable fault 
if Ib = 1, the fault is isolable from the other faults. In this 
application the elements C2 and R2 have the same fault 
signatures, therefore, they give the same information on 
the fault and we cannot locate the faulty element (Mellal 
et al., 2011). 

The fault signature matrix of two tanks system 
(Benazzouz et al., 2009) is given in Table 1. To isolate all 
the faults we must add new sensors in the system. Based 
on  the  proposed  analysis,  the  digraphs  were  used  to  

 
 
 
 
solve the FDI problem and isolate all the detectable faults 
of the two tanks system, because the digraph illustrates 
the fault propagation through a system. 

To draw the directed graph of the two tanks system the 
structural adjacency matrix was defined. This matrix is a 
squared matrix composed by elements of the system in 
lines and columns (Alem and Benazzouz, 2011). 
 
 

Definition 1  
 

Assume G = (V, A) a digraph, where V is the vertices and 
A is the arcs of the graph G. The structural adjacency 
matrix of G is a squared matrix, M = (mij), of size n × n, 
defined as: 
 

mij 1 if (i, j) A

0 else

= ∈



                                                         (3) 

 

To obtain the adjacency matrix and the digraph of the two 
tank system, Figure 1 was referred to and Table 1 to 
select the concerned elements and to verify the structural 
connections between them. Table 2 represents the 
structural adjacency matrix of the two tanks system. This 
matrix illustrates flows and information propagations 
through the system. 

Note that, the structural adjacency matrix is zero-
diagonal because there are no circuits (between the 
elements themselves) and is symmetric. Considering 
sensors De1, De2 and Df1, which are used to detect 
faults on elements Msf, C1, R1, C2 and R2 of the two 
tanks system. Note that f1, f2, f3, f4 and f5 designates 
faults of elements Msf, C1, R1, C2 and R2, respectively. 
Figure 2 represents the digraph of the two tanks system. 

To apply our proposed approach to solve the FDI 
problem for the two tank system, new sensors to detect 
the maximum of faults were first added because it can be 
seen from the graph given in Figure 2 that R2 has no 
direct connection with the output. This remark is also 
confirmed in Table 2. Therefore, we propose to add Df2 
as a sensor, this will allow that the fault f5 affecting R2 is 
detectable and isolated from the fault f4 affecting C2. 
This problem was mentioned Table 1, where Ib = 0 for C2 
and R2. 

With the additional sensor set all the faults on the 
elements can be detected because each of these is 
connected directly to the output (first proposition).  

However, Msf is a pump and the faults on the upstream 
sources are remarkable and known (that is, faults on the 
commands). By eliminating the commands u1 and u2 we 
will simplify the system. Based on the graph, if we inverse 
the effect of the fault f1 on the Msf this will isolated 
directly from the others faults, since it is easy to isolate a 
fault on sources and inputs (Commault et al., 2002; Frisk 
and Krysander, 2007) (second and third proposition).  

The obtained new directed graph is given in Figure 3. 
Based on this new graph, we can isolate all the 
detectable faults of the two tanks system. 
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Table 1. Fault signature matrix of two tanks system. 
 

Variable r1 r2 r3 r4 r5 r6 Mb lb 

CI 1 0 0 0 0 0 1 1 

RI 0 1 0 0 0 0 1 1 

C2 0 0 1 0 0 0 1 0 

R2 0 0 1 0 0 0 1 0 

Msf 1 0 0 1 0 0 1 1 

u1 0 0 0 1 0 1 1 1 

u2 0 0 0 0 1 0 1 1 

De1 1 1 0 0 0 1 1 1 

De2 0 1 1 0 1 0 1 1 

Df1 1 0 1 0 0 0 1 1 

 
 
 

Table 2. Structural adjacency matrix of the two tanks system. 
 

Two tank Msf C1 RI C2 R2 De1 De2 v 

Msf 0 1 0 0 0 1 0 0 

C1 1 0 1 0 0 1 0 1 

R1 0 1 0 1 0 0 1 1 

C2 0 0 1 0 1 0 0 0 

R2 0 0 0 1 0 0 0 0 

De1 1 1 0 0 0 0 0 0 

De2 0 0 1 1 0 0 0 0 

Df1 0 1 1 0 0 0 0 0 

 
 
 

 
 
Figure 2. Digraph of two tanks system. 

 
 
Figure 3. New digraph of two tanks system. 
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Conclusion  
 
In this paper, we have considered a particular FDI 
problem and interested in a case when this problem has 
no solution using the measurements available on the 
system. We focused our goal of faults detection problem 
with additional sensors, then on the maximal and the 
optimal (structural) isolation of the detectable faults on 
linear structured systems by using oriented graphs 
(Digraphs). 

We have presented the graph G(ΣΛ) which can be 
naturally associated with the structured system ΣΛ . This 
graph gives a visual representation of the internal 
structure and the solvability of several structural problems 
which can be extended to other applications. 

The structural adjacency matrix has been defined as a 
simple method to draw the digraph. The obtained matrix 
is a qualitative approach to solve the FDI problems and 
the optimal sensors placement on system or components 
level which have been never used in this context. This 
matrix illustrates the propagation of information and the 
flows through the system. So it can be used in other 
contexts such as in system and control theory. 
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