Fuzzy Boundary Control of Nonlinear Distributed Parameter Systems
Through an Equivalent Punctual Control Form

S. RAAB and H. HABBI
Applied Automation Laboratory
M’hamed Bougara University of Boumerdes, Algeria

Email: sadiazrl@yahoo.fr, habbi_hacene@hotmail.com

Abstract—Relying on the idea of formulating the problem of
boundary control by means of equivalent punctual control
problem, we present in this paper a novel design methodology of
a fuzzy partial differential equation model based boundary
geometric controller for nonlinear distributed parameter systems
(DPSs). With regard to the distributed dynamics of DPSs, this
control problem is formulated as a set-point reference tracking
problem with an infinite characteristic index defined for a
punctual output variable at a yields spatial position. To deal with
this control design, it is first suggested to transform the boundary
control problem to an equivalent in domain punctual control
form by using Laplace transform in the spatial domain. Then,
considering a punctual output, a weighted value of the variable,
along the spatial domain, is defined as a controlled output.
Processing the controlled output by means of geometric control
rules and control objectives leads to the determination of the
proposed fuzzy boundary geometric controller. Temperature
gradient control in a thin nonisothermal catalytic reactor is
considered as an application example to show the stabilizing
performance of the developed control strategy.

Keywords— Partial differential systems, nonlinear dynamics,
Takagi-Sugeno fuzzy model, boundary control, punctual control,
geometric control.

1. INTRODUCTION

Nonlinear distributed parameter systems dynamical
behavior is basically described by means of partial differential
equations (PDEs) [2] and [1]. This class of physical systems is
infinite dimensional whose control design is usually regarded
as a very challenging task because of the strong variations of
the systems dynamics over both time and space dimensions.

To achieve control objectives, two main control approaches
can be employed, namely the early lumping approach and the
late lumping approach [3]. The early lumping approach [24]
and [25] applies dynamics reduction to the nonlinear
distributed parameter system by using approximation methods
such as finite difference method, finite element method and
Galerkin method [4], [6], [7] and [5]. This leads to a lumped
parameter model representation which is, obviously, finite
dimensional in time, but high-order and hence rather difficult
to handle systematically for control design and real-time
implementation. Contrary to early lumping, the late lumping
approach [8] and [9] represents an interesting design method,
which involves directly the distributed parameter model in the
controller design procedure without any prior approximation.
This way of dealing with distributed parameter systems control
problems may preserve the distributed nature of the system
dynamics together with their inherent physical features.
Consequently, the resulting controller is infinite dimensional of
distributed nature which requires powerful mathematical tools
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for comportemental analysis in closed-loop operation [8] and
[12].

The control methodology presented in this paper is
achieved on the basis of the late lumping approach. The
distributed parameter system is approximated by a T-S fuzzy
partial differential equation model [11], [15], [13], [20] and
[19], based on which a fuzzy controller is derived through
fuzzy interpolation of local geometric controllers that are
determined by assuming directly the local linear partial
differential equation models without any reduction [21] and
[22]. Nevertheless, for boundary control strategy, the
characteristic index is infinite [14], which prevents the
application of the geometric control concept. Thus, in order to
get a finite characteristic index, we propose to consider an
equivalent T-S fuzzy PDE model with punctual control. The
boundary control form is hence converted into an equivalent
punctual control problem form by using the Laplace transform
in the spatial domain [16]. Based on the local linear distributed
parameter systems with a punctual control, local geometric
controllers of infinite dimensionsare designed and the overall
fuzzy geometric controller is obtained using fuzzy operators.

The rest of the paper is structured as follows. Section II
provides a description of the nonlinear distributed parameter
models and formulates the problem of fuzzy boundary
geometric control. The complete design procedure of the fuzzy
boundary geometric controller is detailed in Section III. The
proposed control methodology is applied to a thin
nonisothermal catalytic reactor model in Section V, where
simulation results are given to show the stabilizing
performance of the developed controller. The last Section
concludes the paper.

II. Fuzzy BOUNDARY CONTROL PROBLEM FORMULATION
A. Control Problem Description

Consider the nonlinear DPS described by the following
model [17]:

0
2D o pta,0) T sy x02,0) 2D
+£(x(z,1)) €))
with boundary conditions:
0x(z,t) _ 0x(z,t) _ 0 )
aZ 70 - u(t): aZ - - ( )
and initial condition:
x(z,0) = x0(2) 3)

where x(z, t) is the state, z € [0,1] and t € [0, + o[ are space
and time variables, respectively. u(t) is the manipulated
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boundary control input applied at z = 0 and x,(z) is the initial
spatial profile. B (x(z, t)), y(x(z, t)) and f (x(z, t)) are
sufficiently smooth nonlinear functionsin x(z,t), satisfying
B(0) =0,y(0) = 0 and f(0) = 0, respectively.

We define the punctual output variable y, (t) as follows:
1

300 = [ 8(2 = 2eg) ) 2

0
= X(Zref, t) (4)
where z, is a given spatial position with z,. € [0, [].

Let the measured output y(t), taken as the weighted mean
value of the state variable x(z, t) along the z-axis, be defined

as:
l

y(©) = f c(2)x(z,0) dz ©)

0
where c(z) is a smooth shaping function.

B. Equivalent In domain Punctual Control Problem Form

Formulating the boundary control problem as a punctual
control one is the first step in the procedure of deriving the
fuzzy boundary geometric control. This can be achieved by
using a punctual actuation. The system variables are
manipulated by means of Laplace transform in the domain[0, {]
under the following changes:

z=1l—n (6)
x(z,t) =X, ¢t) @)
c(z) =C() (8

As a result, the nonlinear distributed parameter system (1) is
rewritten as:

0X(n,t) 0X(m,t) 9’°X(n,t)
ot -B(X(n, 1)) n +y(x(n, t))a—nz
+f(X(n, 1) €)
with the following boundary conditions
0X(m,t 0X(n,t
( )| — (o), ( )l _ 0 (10)
o o 1

By applying the Laplace transform, the punctual output
variable y, (t) takes the following form:

yp(t) = X(nrefv t) (11)

and the output variable (4) can be written as:
l

y© = [ conxa,odn (12)
0
The dynamical behavior of the nonlinear DPS (1)-(2) can
be approximated by a T-S fuzzy partial differential equation
model composed of a set of fuzzy rules whose consequents are
described by local linear PDE models as follows:

Model Rule £:

IF ¥, (n, t) is about Gy, and ...and ¥, (n, t) is about Gy,

9X(n, t) 0X(n,t) ~~ 9*X(n,t)
+6,.X(n, ) (13)
with the boundary conditions
aX(n,t aX(n,t
(,g” . g’ I o (14)
n n=0 N n=l

where Gyg, kK €S 2 {1,2,..,m}, q €{1,2,..,n} are fuzzy
sets; Pq (1, t) are the premise variables and m is the number of
IF-THEN rules. S, v, and 6,are real known matrices.

Then, the overall fuzzy partial differential equation
dynamics of the nonlinear DPS (13)-(14) can be expressed as
follows:

XMt aX(n,t)  92°X(m,t)
az =;uk(¢(n.t))<—ﬁ’k 6777] + Vi 3772

+ 0, X(, t)) (15)

where (0, £) = [Y1 (0, 1) ... Y (1, DI,
and p (Y (1, 0) = w (Y1, 0)) /T wi (W, ), k €S,
with — w(Y(,0) = [15=1Gkq (l,bq 1, t)) such  that
wi(Y(@,6) =0,keS and Yp-, wi (¥, £)>0 for all
z €[0,1] and t = 0.

According to these considerations, we  have

:uk(l/)(rl; t)) =0 y ke Sa and Z‘;(n=1 nu'k(ll}(n! t)) =1for all
z €[0,{] and t = 0.

Relying on the T-S fuzzy PDE model (13), the fuzzy
boundary geometric controller is expressed linguistically by:

Control Rule £:
IF ¥, (n, t) is about G and ...and ¥,,(n, t) is about Gy,
THEN w,.(t) = ¢ (X(1, 1)) (16)

Where ¢, (X(n,t)) stands for a local boundary geometric
control law.

Based on the above description, the overall fuzzy boundary
geometric controller can be determined by:

u(®) = ) wH®0) 9 (X0,0) an
k=1
Considering Laplace transform tools, namely:
r d’h(z)\ _ 27 dh(z) h(o 18
(dzz)_s (S)_?Z=O_S() (18)
dh _
,c( d(zz)) — sT(s) — h(0) (19)

Where h(0) is thevalue of # for strictly negative values of z.

Applying (18) and (19), the rule-consequent equation in
model (13) becomes:

0 (s, i
(gi D g (s%(s,0) - X(0,0)

Authorized licensed use limited to: Consortium - Algeria (CERIST). Downloaded on January 11,2021 at 10:18:11 UTC from IEEE Xplore. Restrictions apply.



aX(n,t)

+)/k SZX(SI t) - an

—sX(0,¢)
n=0
+6,X(s, t) (20)
where X (s, t) is the Laplace transform of X (n, t).

_ Considering the boundary condition (14), we get:
0X(s,t) _
Fra —Bi(sX(s,t) — X(0,1))
+yk(52)?(s, t) — u, (t) — sX(0, t)) + 0, X(s,t)

=y (s2X(s,t) — sX(0,0)) — Bi(sX(s,£) — X(0,1))

+6,X(s,t) — yiue () 21

_ Therefore, the corresponding equivalence form of (21) is:

0X(s,t) _
ot = _.Bk(SX(SJ t) —X(O, t))
= 0X(n,t
+vi | s2X(s,t) — (. 8) —s5X(0,t)
on 7=0

+0,X(s,t) = Vieur () (22)

Thus, applying the inverse Laplace transform to equation
(22), it results the following equivalent punctual control form
with homogeneous boundary conditions:

0X(n,t) 0X(n,t) 0%X(n,t)
o - Pa, + Vi an? + 0, X(n,t)
=Yk My (t) (23)
subject to
0X(n,t 0X(m,t
WO, 26, o0
n n=0 n z=1

Where 6 (n) is the Dirac delta-function.

III. DESIGN OF THE FUZZY BOUNDARY GEOMETRIC
CONTROLLER

A key issue in the proposed fuzzy geometric control design
methodology consists in the application of the concept of
characteristic index. Considering the measured output y(t), our
objective is to ensure good tracking of the desired reference
input 9(t) following a first-order-like dynamic behavior which
is expressed by:

dy(®)

Vo +y() =9(t)

where v is a design control parameter.

(25)

More precisely, the design procedure is built upon the
nonlinear partial differential equation (1). Thus, taking the first
derivative of (12) yields:

d aX(m,
y(t) f() (77)77

l
0X(n, %X (n,
- f cn) (—ﬁk @8 XD o xm

on an?
- Vké(n)uk(t)> dn
l
aX(n, %X,
= fC(n) (—Bk g] 2 + Yk 6;2 2 + 6, X(m, t)) dn
0

~ve| [ copowm) dnfw @ @6)
0

J1
Evaluating the integral term J; in equation (26), we obtain:
J1 =¥k C(O)w (t) (27)

The resulting local geometric controller u(t) takes then
the form:

aX(n, t)

l
we(®) = — 9(t) — y(©) + VB f c

0

1
vy C(0)

l l
9%X(n,t)
—vyka(n)Tdn— vﬁka(n)X(n,t)dn
0 0
J2

(28)
Integrating the term J,defined in equation (28), we have:

2X ,
2= vyka(n) (n 2 dn

aX(n, )"

on
l

+ J CmXm,t)dn

0
Besides, by taking into account the boundary conditions

(22), the integral term J, becomes:

oc
Jo = o, 20

acm|"

c@m X, )—TI

= UYk

n=0 n=0

(29)

ac(m)
on

+ U)/kX(O, t)

n=l
l

- f EaDX @, ) dn
0

n=0
(30)

Then, by assuming a smooth shaping function C(z) that
satisfies C(0) # 0, and substituting (30) into (28), it results the
following local control law:
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OX(n, t)

l
we(t) = — 9(t) — y(O) + vy f can)

vy C(0)
+uyC(DX(,¢t) — vka‘(O)X(O, t)
!

- vf (ykf(n) + 9kC(n))X(n. t)dn
0
(31)
Hence, the global fuzzy boundary geometric control can be
expressed by:

u(®) = ) w(H@.0) 9(5) = y(®
k=1

1
vy C(0)

aX(n, t)

l
+ B, j )
l

—u [ (neen +6.co) X0 0dn
0

+ vy, C(DX (L, t) — vy, C(0)X(0,8)| | (32)

Rewriting the obtained fuzzy boundary geometric controller
(32) with respect to the variable changes (6)-(8) gives the final
control law:

u(t)
Z 1@ 0) |~ 7|90 - y©
1
+ upy f c(z) ax(z t) dz—v f(yk'c'(z) + ch(z)) x(z,t)dz

+ vy c(Dx(, t) — vy ¢(0)x(0,t) (33)

IV. APPLICATION EXAMPLE
The above-described control design procedure is applied in
this section to a thin non isothermal catalytic reactor model
with a nonlinear source for temperature control purpose. The
process model is described by [18] and [23]:

0T, (z,t) 0°T,(z,t) 0T,(zt)
g@t = gzz - gaz a, (TC (z,t) —T,(z t))
(34)
2
ez t) _ 07Te(zt) + By YTe2/ A+ Te(z)
at 0z2
B (Te(z,6) = Ty(z,0)) (35)
with the boundary conditions
0T, (z,t) aT.(z,t)
— =u®, ——| =ul) (36)
0z o0 0z =0
9T,(z,t) T (z,t)
=_°¢ =0 (37)
0z ol 0z ol

and the initial conditions

Tg(zr O) = yg,O(Z); TC(Z, 0) = yC,O(Z) (38)
where T, (z,t) and T;(z,t) are the temperature of the gas and
the catalytic, respectively. u,(t) and u.(t)are the manipulated
boundary control inputs.

Setting S, = —0.003, B, =1, y = 21.14, a, = 0.5 and
[ =1, and the initial conditions y,¢(2z) = 0.2 and y.,(z) =
0.2, the process model (34)-(37) is approximated by the
following T-S fuzzy PDE model composed of two fuzzy rules
with the boundary conditions (36)-(37):
System rule 1:
IF T,.(z,t) is “about 0” THEN

T, (z,t) 0°T,(z,t) 0T,(zt)

g\& ) Y lg\% g\%

at - azz - aZ +A11TC(Z! t) - ach(Z' t)
0T.(z,t) 92%T.(z,t)

S =g T Aul@t) + BTy (2 1)
System rule 2:
IF T,(z,t) is “not about 0” THEN
0T (z,t)  0%Ty(z,t) 0Ty (z,t)

% - oz o, + A Te(z,t) — acTy(z,t)
oT.(z,t) 0%T.(z,t)

o =gt ARl ) + BTy (2, 0)
with A11 = a., Alz = 0.1354’ﬁ0 - ﬁ(l? A21 = a., andAzz =
_Bc~

The structure of the fuzzy model and its parameters are
determined by using the sector nonlinearity method [11]. The
number of rules is deduced according to the nonlinearities
involved in the process model (34)-(37) and the fuzzy
partitions are obtained as described below.

Assuming T,(z,t) € [0.1990,0.2005] and z € [0,1], the
nonlinear term ¢(7,(z,t)) = exp(—yT.(z,t)/(1 + T.(z1)))
in (35) can be expressed as follows:

(p(TC(Z, t)) = exp(—yTC(Z, t)/(l + T.(z, t))) =

0.1990 T, (z, )1 (T.(z, ) + 0.1995 T.(z, )u5(T.(z, t))
(39)

where p, (T (z, t)) Us (T (z, t)) ] and

1 (Te(z,0)) + up(Te(z, t)) =1 (40)

By solving equations (39) and (40), the membership
functions p, (TC (z, t)) and p, (TC (z, t)) are obtained as:
0.1995 T.(z,t) — ¢(T.(z,t))

u(T.(z,6)) =4 7(0.1995 — 0.1990)T.(z, ¢) Te(z,t)#0
1 , T.(zt)=0
(41)

wo(Te(2,0) =1 - 1y (T (2,)) (42)

The overall process model is written as follows:
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0Ty (z,t) 0%Ty(z,t) 0Ty(z,t)

Jat 0z2 R 0z
+ Z e (W(z 1) (Alec(Z' t)
— & T, (5 1) (43)
0T (z,t)  0°T.(zt)
at  9z2 ,
D w6 0) (4T 0
+ BT, D) (44)

Following the above described control design methodology
and considering the boundary control input at z = 0, we obtain
the fuzzy controller:

2
1
1y = D we$0) | 590 — 5
k=1

+vfc(z)%dz

0
1

—v A f c(2) T.(z,t)dz

0
l

—v [ (€2) —a.c(2))T,(z,t)dz
J ),

0
+ve¢(DT,(Lt) —ve(0)T,(0,t) (45)
- 1
ue® = ) w(@0)| 5[0 -3©
k=1 z
—v B, f c(2) Ty(z, t)dz
L0
—v f(é"(z) + Akzc(z)) T.(z,t)dz
0
+vec(DT. (I, t) — vé(0)T.(0,t) (46)

Consider the following outputs:
l 1
30 = [ ¢4, 0dz3 30 = [ e 00z (47)
0 0
with ¢y (2) = c.(2) = z.

Applying the fuzzy boundary geometric control laws
described by (45)-(46) to the process model (34)-(38), yields
the closed-loop trajectory of ||Tg G, t)||2and IT.(.,t)|l, shown
in Fig. 1. The closed-loop profile of Ty(z,t) and T.(z,t) are
depicted in Fig. 2 and Fig. 3, respectively, which demonstrate
that the fuzzy boundary geometric control can stabilize
efficiently the process model (34)-(38) around the desired set

point. The generatedfuzzy control inputs u,(t) and u.(t) are
illustrated in Fig. 4.

0.045 = - —
— Ty

0,041 — || 7%l

0.035

0.03

0.025

MNorms

0.02H

0.015

0.01F

0.005 -

0 .
0 5 ].I'O 15 20

Fig. 1. Closed-loop trajectories of ”Tg(. , tt)”2 and ||TE(. , t)||2using the

fuzzy boundary geometric controller.

T

Fig. 2. Closed-loop profile of T, (z,t).

Fig. 3. Closed-loop profile of T,(z, t).
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Controls
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f
Fig. 4. The manipulated fuzzy geometric control variables u,(t) and u(t).

V. CONCLUSION

The present contribution addressed the problem of fuzzy
boundary geometric control of nonlinear DPS by using the
concept of characteristic index. The dynamical behavior of the
nonlinear DPS is first approximated by a Takagi-Sugeno (T-S)
fuzzy PDE model with boundary control which has been
constructed by interpolating linear partial differential equation
models using fuzzy inference operators. A problematic issue in
the design process is that the resulting T-S fuzzy model has an
infinite characteristic index. To overcome this constraint, a
control problem transformation has been introduced. More
precisely, an equivalent in domain punctual control form has
been derived for the linear PDE models that describe locally
the overall nonlinear T-S fuzzy PDE model. For this purpose,
Laplace transformation in the space domain has been applied.
Manipulating the resulting models with the aid of geometric
control theory concepts and tools conducted us to the
determination of a nonlinear controller with fully specified
control objectives. Applying the proposed methodology to
control temperature gradient in a thin nonisothermal catalytic
reactor has shown interesting results that assessed clearly the
stabilizing performance of the designed fuzzy boundary
geometric controller. Future studies might consider further
engineering applications of the proposed methodology with
closed-loop stability analysis which might be checked by using
the Lyapunov direct method. Semi-group theory might also be
emphasized for this particular purpose.
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