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Controllability of coupled systems for impulsive φ-Hilfer fractional
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ABSTRACT
This paper studies the controllability of a coupled system for a class of
impulsive fractional integro-differential inclusions involving φ-Hilfer frac-
tional derivative and subject to coupled nonlocal integral initial conditions
in the case of convex set-valued maps. Some auxiliary conditions are intro-
duced in order to apply a fixed point theorem due to Bohnenblust–Karlin.
An illustrative example is provided to exemplify our theoretical results.
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1. Introduction

Over the years, prominent mathematicians have shown very important and accurate results in frac-
tional differential equations research field, mainly because of its effectiveness, along with fractional
derivatives, as a tool of modeling different phenomena in physics, biology, chemistry, etc. Count-
less manuscripts have been published aiming to study the existence and uniqueness of solutions for
fractional differential, integral and integro-differential equations and inclusions. For recent devel-
opments in this field, see [1–8] and the references therein. Within this context, fractional calculus
has been receiving great attention in the scientific research community of mathematics, as well as
other sciences, due to its rapid growth and development in both theoretical and practical domains.
Consequently, the road was paved for the appearance of new and unified derivatives producing the
most recent applications. Following the same line of research, Sousa and Oliveira [9] introduced the
operator φ with Hilfer fractional derivative to get a new and general fractional derivative called ‘φ-
Hilfer fractional derivative’ which contains a variety of fractional derivatives (φ-Riemann–Liouville
and φ-Caputo fractional derivatives ) in order to unify the enormous sum of such definitions in one
fractional operator. However, so far there have been only few works that deal with it, see [10–13].

Impulse conditions drive differential equations to provide an appropriate framework for math-
ematical modeling. That is due to the unexpected changes in such phenomena during particular
moments in their evolution process which cannot be described using regular differential equa-
tions. In this regard, impulsive fractional differential equations and inclusions have emerged as an
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2 A. BOUDJERIDA ET AL.

active research field in recent times, which resulted in numerous research articles related to various
fractional derivatives [14–22].

Due to the fact that a lot of practical and applied problems within the fields of biology, chemistry,
physics, and especially in computer network, are modeledmathematically in the form of coupled sys-
tems of fractional differential equations, several authors were devoted to examine the existence and
uniqueness of the solution of such type of systems. In this framework of research works, some fruitful
achievements have been obtained in relation to coupled systems of fractional differential equations
[23–28], and yet results are almost rare about coupled systems of fractional differential inclusions. For
example, Alsaedi et al. [29] studied the existence of a solution for coupled systems of time-fractional
differential inclusions by using a new fractional derivative in the case of compact and convex val-
ued L1-Carathéodory multi-valued map. Jin et al. [30] solved a coupled system of hybrid fractional
differential inclusions with coupled boundary conditions by using Bohnenblust–Karlin fixed point
theorem. In addition, Blouhi and Ferhat [31] investigated the existence of mild solution for a coupled
system of second-order impulsive semilinear stochastic differential inclusions by wiener process and
Poisson jumps. On the other hand, we noted that controllability results associated with the coupled
system of fractional differential inclusions are very rare and have not yet been processed. By pre-
senting this work, we aim to fill this gap in the literature. Therefore, our results are entirely new and
contribute to giving a valuable idea on this subject.

This paper is devoted to study the controllability of the following problem:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(hDσ1,δ1;φT+ ω1)(t) ∈ Q1(t,ω1(t),ω2(t))+ 1
�(σ1)

∫ t

T
φ′(�)(φ(t)− φ(�))σ1−1

×J1(�,ω1(�),ω2(�)) d� + Cu1(t), t ∈ I , t �= tk,

(hDσ2,δ2;φT+ ω2)(t) ∈ Q2(t,ω1(t),ω2(t))+ 1
�(σ2)

∫ t

T
φ′(�)(φ(t)− φ(�))σ2−1

×J2(�,ω1(�),ω2(�)) d� + Cu2(t), t ∈ I , t �= tk
�I1−r1;φ

T+ ω1(tk) = 	1
k ∈ R, �I1−r2;φ

T+ ω2(tk) = 	2
k ∈ R, k ∈ {1, 2, . . . , 
}

(1)

supplemented with coupled nonlocal integral initial conditions of the form:

(I1−r1;φ
T+ ω1)(T) =

∫ b

T
E1(�,ω1(�),ω2(�)) d�, r1 = σ1 + δ1 − σ1δ1, (2)

(I1−r2;φ
T+ ω2)(T) =

∫ b

T
E2(�,ω1(�),ω2(�)) d�, r2 = σ2 + δ2 − σ2δ2, (3)

where t ∈ I := [T, b], 0 < T < b < ∞, j = 1, 2 and hDσj,δj;φT is the φ-Hilfer fractional deriva-
tive of order σj ∈ (0, 1) and type δj ∈ [0, 1] with T its lower limit, I1−rj;φ is the left-sided frac-
tional integrals with respect to another function φ of order 1 − rj such that φ ∈ C1

R
(I) is an

increasing function and φ′(t) �= 0, for every t ∈ I . Moreover, Qj : I × R × R → P(R) are multi-
valued functions with convex and compact values, Jj, Ej : I × R × R → R are given functions, and
�I1−rj;φ

T+ ωj(tk) = I1−rj;φ
T+ ωj(t+k )− I1−rj;φ

T+ ωj(t−k ), whereas I
1−rj;φ
T+ ωj(t+k ) = limς→0+ I1−rj;φ

T+ ωj(tk + ς)

and I1−rj;φ
T+ ωj(t−k ) = limς→0− I1−rj;φ

T+ ωj(tk + ς) with T = t0 < t1 < · · · < t
 < t
+1 := b. In addi-
tions, C is a bounded linear operator from K to R where K a Banach space, and uj(·) belong to
L2(I ,K).

Section 2 gathers all the definitions, lemmas, remarks and theorems that are needed in Section 3.
In this last, a controllability result is presented using Bohnenblust–Karlin fixed point theorem. The
last section concludes the work with an illustrative example.
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2. Preliminaries

Let I := [T, b], 0 < T < t1 < . . . < t
 < b < ∞ andCR(I) the space of all continuous functions on
I endowed with the norm ‖v‖C = supt∈I |v(t)|.

Denote by C1−r;φ(I ,R) = {v : (T, b] → R; (φ(t)− φ(T))1−rv(t) ∈ CR(I); 0 ≤ r ≤ 1}, the
weighted space of the continuous function v on I and we define the weighted space of all piecewise
continuous functions v on C1−rj;φ((tk, tk+1],R), k = 1, . . . , 
, by

Hj := PC1−rj;φ(I ,R) = {v : (T, b] → R; v ∈ C1−rj;φ((tk, tk+1],R), which I1−rj;φ
T+ v(t+k ), I

1−rj;φ
T+

v(t−k ) exist and I1−rj;φ
T+ v(t−k ) = I1−rj;φ

T+ v(tk), k = 1, . . . , 
} for each j = 1, 2, normed by

‖v‖Hj= sup
{|(φ(t)− φ(T))1−rj v(t)|, t ∈ I} .

Furthermore, we defineH := H1 × H2 as the product weighted space normed by

‖(v,ω)‖H = ‖v‖H1 + ‖ω‖H2 .

Let (F , ‖ · ‖F ) be given Banach space.

Definition 2.1 ([32]): The multi-valued mapN defined from F into P(F) is

(1) convex (closed) valued ifN (y) is convex (closed) for all y ∈ F ;
(2) bounded on bounded sets if N (D) = ⋃

y∈DN (y) is bounded in F for each bounded set D
of F ;

(3) upper semi-continuous (u.s.c.) if for every y0 ∈ F , the set N (y0) is nonempty closed subset of
F , and for every open set B of F containing N (y0), there exists an open neighborhood B0 of
y0 such thatN (B0) ⊂ B;

(4) completely continuous ifN (D) is relatively compact for each bounded subset D ⊂ F .

Furthermore, if for each y ∈ N , the function t → d(y,N (t)) = inf{d(y,ψ),ψ ∈ N (t)} is mea-
surable, thenN is measurable.

Definition 2.2: Let N be a multi-valued map defined from F to a compact Banach space Z with
nonempty values then: if the graph ofN is closed, thusN is upper semi-continuous.

Definition 2.3 ([29]): Amulti-valued mapN : I × F × F → P(F) is called Carathéodory if

(1) t 
→ N (t,ω1,ω2) is measurable for each ωj ∈ F , j = 1, 2;
(2) (ω1,ω2) 
→ N (t,ω1,ω2) is upper semi-continuous (u.s.c) for each t ∈ I .

Now, we define the selections set of a multi-valued mapNj at ωj for each j = 1, 2 by


Nj,ωj = {
ϕj ∈ L1(I ,F);ϕj(t) ∈ Nj(t,ω1(t),ω2(t)), for a.e., t ∈ I} , (4)

which are nonempty if dim F < ∞.

Lemma 2.4 ([14]): Let Z be a separable Banach space and N : I × Z × Z → Pc,cp(Z) be a
Carathéodory multi-valued map with
N ,ω is nonempty set (Pc,cp(Z) denotes the family of nonempty,
convex and compact subsets ofZ) and letϒ : L1(I ,Z) → CZ (I) be a linear continuous function, then
ϒ ◦
N : CZ (I) → Pc,cp(CZ (I)),whereω 
→ (ϒ ◦
N )(ω) = ϒ(
N ,ω) is a closed graph operator
in CZ (I)× CZ (I).

In the remainder of this paper, we recall the necessary basic notions and properties related to
fractional calculus then we give the fixed point theorem used to investigate our controllability results.
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Definition 2.5 ([9]): Let σ > 0 and φ(t) be an increasing and positive monotone function on I ′ =
(T, b] having a continuous derivative φ′(t) on (T, b). The φ-Riemann–Liouville fractional integral of
order σ > 0 of a functionR on I is defined by:

Iσ ;φR(t) = 1
�(σ)

∫ t

0
φ′(s)(φ(t)− φ(s))σ−1R(s) ds.

In the following n − 1 < σ < n with n ∈ N, and R,φ ∈ Cn(I ,R) two functions such that φ is
increasing and φ′(t) �= 0,∀t ∈ I .

Definition 2.6 ([9]): The φ-Riemann–Liouville fractional derivative of order σ of a function R is
defined by

Dσ ,φR(t) = 1
�(n − σ)

(
1

φ′(t)
d
dt

)n ∫ t

0
φ′(s)(φ(t)− φ(s))n−σ−1R(s) ds, t > 0,

such that n = [σ ] + 1.

Definition 2.7 ([9]): The φ-Caputo fractional derivative of order σ of functionR is defined by

cDσ ;φR(t) = In−σ ;φ
(

1
φ′(t)

d
dt

)n
R(t), t > 0.

Definition 2.8 ([9]): The φ-Hilfer fractional derivative of functionR of order σ and type 0 ≤ δ ≤ 1
is defined by:

hDσ ,δ;φR(t) =Ir−σ ;φDr;φR(t); t > 0, r = σ + δ(n − σ)

=Iδ(n−σ);φ
(

1
φ′(t)

d
dt

)n
I(1−δ)(n−σ);φR(t) (5)

Remark 2.9: In the above definitions,

(1) if φ(t) = t, we find the classical fractional integral and derivative of Riemann–Liouville, classical
fractional derivative of Caputo and Hilfer, respectively;

(2) if φ(t) = ln(t), we find the fractional integral and derivative of Hadamard, the fractional
derivative of Caputo–Hadamard and Hilfer–Hadamard, respectively.

Remark 2.10: (1) If δ → 0 and 0 < σ ≤ 1, the φ-Hilfer fractional derivative (5) equivalent to the
φ-Riemann–Liouville derivative;

(2) If δ → 1 and 0 < σ ≤ 1, the φ-Hilfer fractional derivative (5) equivalent to the φ-Caputo
derivative.For more details on φ-fractional derivative, see [9].

Lemma 2.11 ([9]): Let σ > 0, δ > 0, and r > 0. Then

(1) Iσ ;φT+ Iδ;φT+R(t) = Iσ+δ;φ
T+ R(t);

(2) ifR(t) = (φ(t)− φ(T))r−1, then Iσ ;φT+ R(t) = (�(r)/(�(σ + r)))(φ(t)− φ(T))σ+r−1.

Theorem 2.12 ([9]): LetR ∈ C1[T, b], σ > 0 and 0 ≤ δ ≤ 1, then

hDσ ,δ;φT+ Iσ ;φT+ R(t) = R(t).
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Theorem 2.13 (Bohnenblust–Karlin [14]): Let	 be a nonempty subset of a Banach space F , which
is bounded, convex and closed. Assume thatA : 	 → P(F) \ {0} is u.s.c. with closed and convex values
such thatA(	) ⊂ 	 andA(	) is compact. ThenA has a fixed point.

We conclude this section by defining the solution to our problem (1)–(3). Before that we will
present the following auxiliary Lemma.

Lemma 2.14: Let 0 < σ < 1 and 0 ≤ δ ≤ 1, r = σ + δ − σδ and� ∈ CR(I). Then for each t ∈ I a
function w ∈ C1−r,φ(I ,R) given by

w(t) = (φ(t)− φ(T))r−1

�(r)

{
I1−r;φ
T+ w(b)− I1−r+σ ;φ

T+ �(t) |t=b

}
+ Iσ ;φT+ �(t), (6)

is the solution of the φ-Hilfer fractional differential equation

hDσ ,δ;φT+ w(t) = �(t), t ∈ I .

Proof: The application of the operator hDσ ,δ;φT+ (·) to both sides of (6) gives us

hDσ ,δ;φT+ w(t) =
{
I1−r;φ
T+ w(b)− I1−r+σ ;φ

T+ �(t) |t=b

}
hDσ ,δ;φT+

(
(φ(t)− φ(T))r−1

�(r)

)
+ hDσ ,δ;φT+ Iσ ;φT+ �(t),

As a consequence of the result hDσ ,δ;φT+ ((φ(t)− φ(T))r−1) = 0, 0 < r < 1 and Theorem 2.12, we can
conclude that

hDσ ,δ;φT+ w(t) = �(t), t ∈ I . �

Lemma 2.15: Let 0 < σ < 1, 0 ≤ δ ≤ 1, and � ∈ CR(I), then the impulsive φ-Hilfer fractional
differential equations of the form

(hDσ ,δ;φT+ w)(t) = �(t), t ∈ I , t �= tk; (7)

�I1−r;φ
T+ w(tk) = I1−r;φ

T+ w(t+k )− I1−r;φ
T+ w(t−k ) = 	k ∈ R, k ∈ {1, . . . , 
}; (8)

(I1−r;φ
T+ w)(T) =

∫ b

T
E(�,w(�)) d�, r = σ + δ − σδ, (9)

has a solution given by

w(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(φ(t)− φ(T))r−1

�(r)

∫ b

T
E(η,ω(η)) dη

+ 1
�(σ)

∫ t

T
φ′(η)(φ(t)− φ(η))σ−1�(η) dη, t ∈ [T, t1];

(φ(t)− φ(T))r−1

�(r)

(∫ b

T
E(η,ω(η)) dη +

k∑
ι=1

	ι

)

+ 1
�(σ)

∫ t

T
φ′(η)(φ(t)− φ(η))σ−1�(η) dη, t ∈ (tk, tk+1], k ∈ {1, . . . , 
};

(10)

Proof: First of all, we suppose that w ∈ PC1−r;φ(I ,R) satisfies Equations (7)–(9) and we check that
w achieve (10)
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If t ∈ [T, t1] : with the application of the fractional integral operator Iσ ;φT+ (·) to both sides of (7)
and via Lemma 2.9 [11], we get

w(t) = (φ(t)− φ(T))r−1

�(r)

∫ b

T
E(η,ω(η)) dη + Iσ ;φT+ �(t). (11)

If t ∈ (t1, t2] : by means of Lemma 2.14, we obtain

w(t) = (φ(t)− φ(T))r−1

�(r)

{
I1−r;φ
T+ w(t+1 )− I1−r+σ ;φ

T+ �(t)
∣∣t=t1

}
+ Iσ ;φT+ �(t)

= (φ(t)− φ(T))r−1

�(r)

{
I1−r;φ
t+ w(t−1 )+	1 − I1−r+σ ;φ

T+ �(t)
∣∣t=t1

}
+ Iσ ;φT+ �(t). (12)

In view of (11), we find

I1−r;φ
T+ w(t) =

∫ b

T
E(η,ω(η)) dη + I1−r+σ ;φ

T+ �(t),

then

I1−r;φ
T+ w(t−1 )− I1−r+σ ;φ

T+ �(t)|t=t1 =
∫ b

T
E(η,ω(η)) dη, (13)

linking (12) and (13), we can see

w(t) = (φ(t)− φ(T))r−1

�(r)

{∫ b

T
E(η,ω(η)) dη +	1

}
+ Iσ ;φT+ �(t), t ∈ (t1, t2]. (14)

Similarly, if (t2, t3], Lemma 2.14 implies that

w(t) = (φ(t)− φ(T))r−1

�(r)

{
I1−r;φ
T+ w(t+2 )− I1−r+σ ;φ

T+ �(t)
∣∣t=t2

}
+ Iσ ;φT+ �(t)

= (φ(t)− φ(T))r−1

�(r)

{
I1−r;φ
T+ w(t−2 )+	2 − I1−r+σ ;φ

T+ �(t)
∣∣t=t2

}
+ Iσ ;φT+ �(t). (15)

In view of (14), we find

I1−r;φ
T+ w(t) =

{∫ b

T
E(η,ω(η)) dη +	1

}
+ I1−r+σ ;φ

T+ �(t),

then

I1−r;φ
T+ w(t−2 )− I1−r+σ ;φ

T+ �(t)|t=t2 =
∫ b

T
E(η,ω(η)) dη +	1, (16)

linking (15) and (16), we can see

w(t) = (φ(t)− φ(T))r−1

�(r)

{∫ b

T
E(η,ω(η)) dη +	1 +	2

}
+ Iσ ;φT+ �(t). (17)

pursue the above process, we get for t ∈ (tk, tk+1], k ∈ {1, . . . , 
}

w(t) = (φ(t)− φ(T))r−1

�(r)

{∫ b

T
E(η,ω(η)) dη +

k∑
ι=1

	ι

}
+ Iσ ;φT+ �(t). (18)

Reciprocally, we suppose w ∈ PC1−r;φ(I ,R) achieves (10) and we check that is verify (7)–(9).
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For t ∈ [T, t1], we have

w(t) = (φ(t)− φ(T))r−1

�(r)

∫ b

T
E(η,ω(η)) dη + Iσ ;φT+ �(t),

by implement the operator hDσ ,δ;φT+ (·) on both sides of the above equality, we obtain

hDσ ,δ;φT+ w(t) =
∫ b

T
E(η,ω(η)) dηhDσ ,δ;φT+

(
(φ(t)− φ(T))r−1

�(r)

)
+ hDσ ,δ;φT+ Iσ ;φT+ �(t),

in fact that
hDσ ,δ;φT+ (φ(t)− φ(T))r−1 = 0, 0 < r < 1, (19)

and from Theorem 2.12, we can write

hDσ ,δ;φT+ w(t) = �(t), t ∈ [T, t1].

Arguing as above, for t ∈ (tk, tk+1], k ∈ {1, . . . , 
},

w(t) = (φ(t)− φ(T))r−1

�(r)

{∫ b

T
E(η,ω(η)) dη +

k∑
ι=1

	ι

}
+ Iσ ;φT+ �(t),

by applying the operator hDσ ,δ;φT+ (·) on both sides of the above equality, we have

hDσ ,δ;φT+ w(t) =
{∫ b

T
E(η,ω(η)) dη +

k∑
ι=1

	ι

}
hDσ ,δ;φT+

(
(φ(t)− φ(T))r−1

�(r)

)
+ hDσ ,δ;φT+ Iσ ;φT+ �(t),

via (19) and Theorem 2.12, we get

hDσ ,δ;φT+ w(t) = �(t), t ∈ (tk, tk+1], k ∈ {1, . . . , 
}.

New, we show that w also satisfies (8) and (9) According to (10), for t ∈ (tk, tk+1] and k ∈ {1, . . . , 
},
we have

I1−r;φ
T+ w(t) =

{∫ b

T
E(η,ω(η)) dη +

k∑
ι=1

	ι

}
I1−r;φ
T+

(
(φ(t)− φ(T))r−1

�(r)

)
+ I1−r;φ

T+ Iσ ;φT+ �(t)

=
{∫ b

T
E(η,ω(η)) dη +

k∑
ι=1

	ι

}
+ I1−r+σ ;φ

T+ �(t), (20)

and for t ∈ (tk−1, tk], k ∈ {1, . . . , 
}, we find

I1−r;φ
T+ w(t) =

{∫ b

T
E(η,ω(η)) dη +

k−1∑
ι=1

	ι

}
I1−r;φ
T+

(
(φ(t)− φ(T))r−1

�(r)

)
+ I1−r;φ

T+ Iσ ;φT+ �(t)

=
{∫ b

T
E(η,ω(η)) dη +

k−1∑
ι=1

	ι

}
+ I1−r+σ ;φ

T+ �(t), (21)
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as outcome of (20) and (21), we obtain

�I1−r;φ
T+ w(tk) = I1−r;φ

T+ w(t+k )− I1−r;φ
T+ w(t−k ) =

k∑
ι=1

	ι −
k−1∑
ι=1

	ι = 	k, k ∈ {1, . . . , 
}.

On the other hand, by the application of the operator I1−r;φ
T+ (·) to both sides of Equation (11)we obtain

I1−r;φ
T+ w(t) =

∫ b

T
E(η,ω(η)) dηI1−r;φ

T+

(
(φ(t)− φ(T))r−1

�(r)

)
+ I1−r;φ

T+ Iσ ;φT+ �(t)

=
∫ b

T
E(η,ω(η)) dη + I1−r+σ ;φ

T+ �(t),

and then I1−r;φ
T+ w(T) =

∫ b

T
E(η,ω(η)) dη. �

Consequently, we have the following definition.

Definition 2.16: (ω1,ω2) ∈ H is said to be a solution for the coupled system of impulsive frac-
tional integro-differential inclusions (1)–(3) if it satisfies the nonlocal integral conditions (2) and (3),
and there exist ϕ1,ϕ2 ∈ L1(I ,R)× L1(I ,R)with ϕj ∈ Qj(t,ω1(t),ω2(t)) for a.e., t ∈ I , j = 1, 2, k ∈
{1, . . . , 
} and

ωj(t) = (φ(t)− φ(T))rj−1

�(rj)

(∫ b

T
Ej(η,ω1(η),ω2(η)) dη +

k∑
ι=1

	
j
ι

)

+ 1
�(σj)

∫ t

T
φ′(η)(φ(t)− φ(η))σj−1[ϕj(η)+ Cuj(η)] dη

+ 1
�2(σj)

∫ t

T
φ′(η)(φ(t)− φ(η))σj−1

∫ η

T
φ′(�)(φ(η)− φ(�))σj−1

× Jj(�,ω1(�),ω2(�)) d� dη for each t ∈ I , and j = 1, 2.

Definition 2.17: The coupled system of impulsive fractional integro-differential inclusion (1)–(3) is
called controllable onI , if for any initial stateωT = (ωT

1 ,ω
T
2 ) ∈ H and any final stateωb = (ωb

1,ω
b
2) ∈

H, there exist two control functions u1, u2 ∈ L2(I ,K), such that the classical solution ω(·) of (1)–(3)
fulfills ω(b) = ωb.

3. Assumptions and controllability results

Suppose that

(A1) The multi-valued mapQj : I × R × R → P(R) is Carathéodory;
(A2) There exists a continuous function μQj : I → R

+, j = 1, 2 such that

‖Qj(t,ω1(t),ω2(t))‖P(R) ≤ μQj(t)(1 + ‖ωj‖Hj),

for each t ∈ I ,ωj ∈ Hj and j = 1, 2;
(A3). The functions Jj, Ej : I × R × R → R, j = 1, 2 are continuous and there exists two functions

μJj ∈ L1(I ,R+) and μEj ∈ CR+(I) such that for each t ∈ I and j = 1, 2

|Jj(t,ω1(t),ω2(t))| ≤ μJj(t)
( |ω1(t)| + |ω2(t)|
1 + |ω1(t)| + |ω2(t)|

)
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|Ej(t,ω1(t),ω2(t))| ≤ μEj(t)
( |ω1(t)| + |ω2(t)|
1 + |ω1(t)| + |ω2(t)|

)

(A4). The linear operator� : L2(I ,K) → R defined by

�uj = 1
�(σj)

∫ b

T
φ′(η)(φ(b)− φ(η))σj−1Cuj(η) dη,

has a bounded inverse operator�−1 : R → L2(I ,K)\Ker(�) and there exists a constant ξ� >
0 such that ‖�−1‖ ≤ ξ� .

Theorem 3.1: If the assumptions (A_1)–(A_4) are satisfied, then the coupled fractional inclusions
(1)–(3) is controllable on I .

Proof: We consider the operator A : H → P(H) associated with the problem (1)–(3) defined
by A(ω1,ω2) = (A1(ω1),A2(ω2)) whereas the operator Aj : Hj → P(Hj) is defined as follows
Aj(ωj) = {�j ∈ Hj} such that for t ∈ I ,ϕj ∈ 
Qj,wj , j = 1, 2, k ∈ {1, . . . , 
}

�j(t) = (φ(t)− φ(T))rj−1

�(rj)

(∫ b

T
Ej(η,ω1(η),ω2(η)) dη +

k∑
ι=1

	
j
ι

)

+ 1
�(σj)

∫ t

T
φ′(η)(φ(t)− φ(η))σj−1[ϕj(η)+ Cuj,ωj(η)] dη

+ 1
�2(σj)

∫ t

T
φ′(η)(φ(t)−φ(η))σj−1

∫ η

T
φ′(�)(φ(η)−φ(�))σj−1Jj(�,ω1(�),ω2(�)) d� dη.

(22)

Depending on assumption four, we can define the control function uj,ωj , j = 1, 2 as follows:

uj,ωj(t) = �−1
[
ωb
j − (φ(b)− φ(T))rj−1

�(rj)

(∫ b

T
Ej(η,ω1(η),ω2(η)) dη +

k∑
ι=1

	
j
ι

)

− 1
�(σj)

∫ b

T
φ′(η)(φ(b)− φ(η))σj−1ϕj(η) dη

− 1
�2(σj)

∫ b

T
φ′(η)(φ(b)− φ(η))σj−1

∫ η

T
φ′(�)(φ(η)

− φ(�))σj−1Jj(�,ω1(�),ω2(�)) d� dη
]
(t), (23)

where ϕj ∈ 
Qj,ωj for j = 1, 2.
To simplify the calculations, let us take for each t ∈ I , j = 1, 2, k ∈ {1, . . . , 
}

|uj,ωj(t)| ≤ ξ�

[
|ωb

j | + (φ(b)− φ(T))rj−1

�(rj)

(∫ b

T
|Ej(η,ω1(η),ω2(η))| dη +

k∑
ι=1

|	j
ι|
)

+ 1
�(σj)

∫ b

T
φ′(η)(φ(b)− φ(η))σj−1|ϕj(η)| dη + 1

�2(σj)

∫ b

T
φ′(η)(φ(b)− φ(η))σj−1

×
∫ η

T
φ′(�)(φ(η)− φ(�))σj−1|Jj(�,ω1(�),ω2(�))| d� dη

]
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by utilizing (A2), (A3) and (A4), we find

|uj,ωj(t)| ≤ ξ�

[
|ωb

j | + (φ(b)− φ(T))rj−1

�(rj)

(∫ b

T
μEj(η) dη +

k∑
ι=1

|	j
ι|
)

+ 1
�(σj)

∫ b

T
φ′(η)(φ(b)− φ(η))σj−1μQj(η)(1 + ‖ωj‖Hj) dη

+ 1
�2(σj)

∫ b

T
φ′(η)(φ(b)− φ(η))σj−1

∫ η

T
φ′(�)(φ(η)− φ(�))σj−1μJj(�) d� dη

]

≤ ξ�

[
|ωb

j | + (φ(b)− φ(T))rj−1

�(rj)

(
‖μEj‖L1 +

k∑
ι=1

|	j
ι|
)

+ 1
�(σj)

‖μQj‖(1 + ‖ωj‖Hj)

×
∫ b

T
φ′(η)(φ(b)− φ(η))σj−1 dη + 1

�2(σj)
‖μJj‖

∫ b

T
φ′(η)(φ(b)− φ(η))σj−1

×
∫ η

T
φ′(�)(φ(η)− φ(�))σj−1 d� dη

]

≤ ξ�

[
|ωb

j | + (φ(b)− φ(T))rj−1

�(rj)

(
‖μEj‖L1 +

k∑
ι=1

|	j
ι|
)

+ (φ(b)− φ(T))σj

�(σj + 1)
‖μQj‖

×(1 + ‖ωj‖Hj)+ (φ(b)− φ(T))2σj

�2(σj + 1)
‖μJj‖

]
:= ζuj , j = 1, 2. (24)

Note that any fixed point of the operatorA corresponds to the classical solution of problem (1)–(3).
The proof is given in the following steps:

The first step: The values ofA are convex and closed.
Let �, �̂ ∈ A(ω1,ω2) where � = (�1,�2), �̂ = (�̂1, �̂2) and (ω1,ω2) ∈ H. Thus there exist

ϕj, ϕ̂j ∈ 
Qj,ωj , j = 1, 2 such that k ∈ {1, . . . , 
}

�j(t) = (φ(t)− φ(T))rj−1

�(rj)

(∫ b

T
Ej(η,ω1(η),ω2(η)) dη +

k∑
ι=1

	
j
ι

)

+ 1
�(σj)

∫ t

T
φ′(η)(φ(t)− φ(η))σj−1[ϕj(η)+ Cuj,ωj(η)] dη

+ 1
�2(σj)

∫ t

T
φ′(η)(φ(t)−φ(η))σj−1

∫ η

T
φ′(�)(φ(η)− φ(�))σj−1Jj(�,ω1(�),ω2(�)) d� dη,

and

�̂j(t) = (φ(t)− φ(T))rj−1

�(rj)

(∫ b

T
Ej(η,ω1(η),ω2(η)) dη +

k∑
ι=1

	
j
ι

)

+ 1
�(σj)

∫ t

T
φ′(η)(φ(t)− φ(η))σj−1[ϕ̂j(η)+ Cûj,ωj(η)] dη

+ 1
�2(σj)

∫ t

T
φ′(η)(φ(t)− φ(η))σj−1

∫ η

T
φ′(�)(φ(η)−φ(�))σj−1Jj(�,ω1(�),ω2(�)) d� dη.
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For γ ∈ [0, 1], t ∈ I , k ∈ {1, . . . , 
}, and j = 1, 2 we find

[γ�j + (1 − γ )�̂](t) = (φ(t)− φ(T))rj−1

�(rj)

(∫ b

T
Ej(η,ω1(η),ω2(η)) dη +

k∑
ι=1

	
j
ι

)

+ 1
�(σj)

∫ t

T
φ′(η)(φ(t)− φ(η))σj−1[(γ ϕj(η)

+ (1 − γ )ϕ̂(t))+ (γ Cuj,ωj(η)+ (1 − γ )Cûj,ωj(η)] dη

+ 1
�2(σj)

∫ t

T
φ′(η)(φ(t)−φ(η))σj−1

∫ η

T
φ′(�)(φ(η)− φ(�))σj−1

× Jj(�,ω1(�),ω2(�)) d� dη,

as the values of Qj are convex then γ�j + (1 − γ )�̂j ∈ Aj(ωj), j = 1, 2, and therefore γ�+ (1 −
γ )�̂ ∈ A(ω1,ω2).

On the other hand, let (�n
1 ,�

n
2) ∈ A(ω1,ω2) for all (ω1,ω2) ∈ H such that (�n

1 ,�
n
2) → (�1,�2),

we need to show that (�1,�2) ∈ A(ω1,ω2).
For (�n

1 ,�
n
2) ∈ A(ω1,ω2), there exists ϕnj ∈ 
Qj,ωj such that for j = 1, 2 and k ∈ {1, . . . , 
}

�n
j (t) = (φ(t)− φ(T))rj−1

�(rj)

(∫ b

T
Ej(η,ω1(η),ω2(η)) dη +

k∑
ι=1

	
j
ι

)

+ 1
�(σj)

∫ t

T
φ′(η)(φ(t)− φ(η))σj−1[ϕnj (η)+ Cunj,ωj(η)] dη

+ 1
�2(σj)

∫ t

T
φ′(η)(φ(t)− φ(η))σj−1

∫ η

T
φ′(�)(φ(η)−φ(�))σj−1Jj(�,ω1(�),ω2(�)) d� dη.

SinceQj, j = 1, 2 has compact values and the set
Qj,ωj is nonempty for eachωj ∈ Hj and j = 1, 2, we
may pass to a subsequence to find that ϕnj converge to ϕj ∈ L1(I ,R). So we conclude that ϕj ∈ 
Qj,ωj .
Then from the Lebesgue dominated convergence theorem,we deduce that for each t ∈ I , j = 1, 2, and
k ∈ {1, . . . , 
}

�n
j (t) → �j(t) = (φ(t)− φ(T))rj−1

�(rj)

(∫ b

T
Ej(η,ω1(η),ω2(η)) dη +

k∑
ι=1

	
j
ι

)

1
�(σj)

∫ t

T
φ′(η)(φ(t)− φ(η))σj−1[ϕj(η)+ Cuj,ωj(η)] dη

+ 1
�2(σj)

∫ t

T
φ′(η)(φ(t)− φ(η))σj−1

∫ η

T
φ′(�)(φ(η)− φ(�))σj−1

× Jj(�,ω1(�),ω2(�)) d� dη.

Then (�1,�2) ∈ A(ω1,ω2).
The second step: A(�κ) ⊂ �κ , where κ is a positive constant and the bounded set �κ ⊂ H

is given by �κ = {(ω1,ω2) ∈ H, ‖(ω1,ω2)‖H = ‖ω1‖H1 + ‖ω2‖H2 ≤ κ}. �κ is convex and closed
inH.

Let (�1,�2) ∈ A(ω1,ω2) for each (ω1,ω2) ∈ �κ , which means the existence of ϕj ∈ 
Qj,ωj such
that�j(t) achieves (22) for j = 1, 2. Thus, from (A2)− (A4) together with (24), for k ∈ {1, . . . , 
} we
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get

|(φ(t)− φ(T))1−r1�1(t)| ≤ 1
�(r1)

(∫ b

T
|E1(η,ω1(η),ω2(η))| dη +

k∑
ι=1

|	1
ι |
)

+ (φ(t)− φ(T))1−r1

�(σ1)

∫ t

T
φ′(η)(φ(t)− φ(η))σ1−1|ϕ1(η)| dη

+ (φ(t)− φ(T))1−r1

�(σ1)

∫ t

T
φ′(η)(φ(t)− φ(η))σ1−1‖C‖|u1,ω1(η)| dη

+ (φ(t)− φ(T))1−r1

�2(σ1)

∫ t

T
φ′(η)(φ(t)− φ(η))σ1−1

×
∫ η

T
φ′(�)(φ(η)− φ(�))σ1−1|J1(�,ω1(�),ω2(�))| d� dη

≤ 1
�(r1)

(∫ b

T
μE1(η) dη +

k∑
ι=1

|	1
ι |
)

+ (φ(t)− φ(T))1−r1

�(σ1)

×
∫ t

T
φ′(η)(φ(t)− φ(η))σ1−1μQ1(η)(1 + ‖ω1‖H1) dη

+ (φ(t)− φ(T))1−r1

�(σ1)
‖C‖ζu1

∫ t

T
φ′(η)(φ(t)− φ(η))σ1−1 dη

+ (φ(t)− φ(T))1−r1

�2(σ1)

∫ t

T
φ′(η)(φ(t)− φ(η))σ1−1

×
∫ η

T
φ′(�)(φ(η)− φ(�))σ1−1μJ1(�) d� dη

≤ 1
�(r1)

(
‖μE1‖L1 +

k∑
ι=1

|	1
ι |
)

+ 1
�(σ1 + 1)

‖μQ1‖(1 + ‖ω1‖H1)

× (φ(t)− φ(T))1−r1+σ1 + 1
�(σ1 + 1)

‖C‖ζu1(φ(t)− φ(T))1−r1+σ1

+ 1
�2(σ1 + 1)

‖μJ1‖(φ(t)− φ(T))1−r1+2σ1

≤ 1
�(r1)

(
‖μE1‖L1 +

k∑
ι=1

|	1
ι |
)

+ (φ(b)− φ(T))1−r1+σ1
�(σ1 + 1)

×
[
‖μQ1‖(1 + κ)+ ‖C‖ζu1 + (φ(b)− φ(T))σ1

�(σ1 + 1)
‖μJ1‖

]
:= κ1. (25)

Following the same way, as before we find

|(φ(t)− φ(T))1−r2�2(t)| ≤ 1
�(r2)

(
‖μE2‖L1 +

k∑
ι=1

|	2
ι |
)

+ (φ(b)− φ(η))1−r2+σ2
�(σ2 + 1)

×
[
‖μQ2‖(1 + κ)+ ‖C‖ζu2 + (φ(b)− φ(T))σ2

�(σ2 + 1)
‖μJ2‖

]
:= κ2. (26)

As a outcome of (25) and (26) for each t ∈ I , we conclude the existence of a constant κ > 0 such that
‖�‖H = ‖�1‖H1 + ‖�2‖H2 ≤ κ1 + κ2 := κ . Namely,A(�κ) ⊂ �κ .
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The third step:A(�κ) is equicontinuous inH. Let (ω1,ω2) ∈ �κ and (�1,�2) ∈ A(ω1,ω2). For
this, there exist ϕ1,ϕ2 ∈ 
Qj,ωj such that�j(t) satisfies (22), j = 1, 2. Take t1, t2 ∈ J, t1 < t2, and put
P := |(φ(t2)− φ(T))1−r1�1(t2)− (φ(t1)− φ(T))1−r1�1(t1)|, then

P ≤ (φ(t2)− φ(T))1−r1

�(σ1)

∫ t2

t1
φ′(η)(φ(t2)− φ(η))σ1−1|ϕ1(η)+ Cu1,ω1(η)| dη

+ 1
�(σ1)

∫ t1

T
|(φ(t2)− φ(T))1−r1φ′(η)(φ(t2)− φ(η))σ1−1 − (φ(t1)− φ(T))1−r1

× φ′(η)(φ(t1)− φ(η))σ1−1||ϕ1(η)+ Cu1,ω1(η)| dη

+ (φ(t2)− φ(T))1−r1

�2(σ1)

∫ t2

t1
φ′(η)(φ(t2)− φ(η))σ1−1

×
∫ η

T
φ′(�)(φ(η)− φ(�))σ1−1|J1(�,ω1(�),ω2(�))| d� dη

+ 1
�2(σ1)

∫ t1

T
|(φ(t2)− φ(T))1−r1φ′(η)(φ(t2)− φ(η))σ1−1 − (φ(t1)− φ(T))1−r1

× φ′(η)(φ(t1)− φ(η))σ1−1|
∫ η

T
φ′(�)(φ(η)− φ(�))σ1−1|J1(�,ω1(�),ω2(�))| d� dη

≤ (φ(t2)− φ(T))1−r1

�(σ1)

∫ t2

t1
φ′(η)(φ(t2)− φ(η))σ1−1[μQ1(η)(1 + ‖ω1‖H1)+ ‖C‖ζu1 ] dη

+ 1
�(σ1)

∫ t1

T
[(φ(t1)− φ(T))1−r1φ′(η)(φ(t1)− φ(η))σ1−1 − (φ(t2)− φ(T))1−r1

× φ′(η)(φ(t2)− φ(η))σ1−1][μQ1(η)(1 + ‖ω1‖H1)+ ‖C‖ζu1 ] dη

+ (φ(t2)− φ(T))1−r1

�2(σ1)

∫ t2

t1
φ′(η)(φ(t2)− φ(η))σ1−1

∫ η

T
φ′(�)(φ(η)− φ(�))σ1−1μJ1(�) d� dη

+ 1
�2(σ1)

∫ t1

T
[(φ(t1)− φ(T))1−r1φ′(η)(φ(t1)− φ(η))σ1−1 − (φ(t2)− φ(T))1−r1

× φ′(η)(φ(t2)− φ(η))σ1−1]
∫ η

T
φ′(�)(φ(η)− φ(�))σ1−1μJ1(�) d� dη

≤ (φ(t2)− φ(T))1−r1

�(σ1)

∫ t2

t1
φ′(η)(φ(t2)− φ(η))σ1−1[μQ1(η)(1+‖ω1‖H1)+ ‖C‖ζu1 ] dη

+ 1
�(σ1 + 1)

[‖μQ1‖(1 + ‖ω1‖H1)+‖C‖ζu1 ][(φ(t1)−φ(T))1−r1+σ1−(φ(t2)−φ(T))1−r1+σ1 ]

+ (φ(t2)− φ(T))1−r1

�2(σ1)

∫ t2

t1
φ′(η)(φ(t2)− φ(η))σ1−1

∫ η

T
φ′(�)(φ(η)−φ(�))σ1−1μJ1(�) d� dη

+ 1
�2(σ1 + 1)

‖μJ1‖(φ(b)− φ(T))σ1 [(φ(t1)− φ(T))1−r1+σ1 − (φ(t2)− φ(T))1−r1+σ1 ].

The second term of the previous inequality shows that |(φ(t2)− φ(T))1−r1�1(t2)− (φ(t1)−
φ(T))1−r1�1(t1)| → 0, as |t2 − t1| → 0. By following the same process, we find |(φ(t2)−
φ(T))1−r2�2(t2)− (φ(t1)− φ(T))1−r2�2(t1)| → 0, as |t2 − t1| → 0. This results prove the
equicontinuity of A(�κ). Therefore, we conclude from step two and three with Arzela–Ascoli
theorem, the compactness of the operatorA.



14 A. BOUDJERIDA ET AL.

The fourth step: In order to proof thatA is u.s.c we have to show that its graph is closed.
Let (�n

1 ,�
n
2) ∈ A(ωn

1 ,ω
n
2) such that (�n

1 ,�
n
2) → (�1, (�2) and (ωn

1 ,ω
n
2) → (ω1,ω2) in H, we

ensure that (�1,�2) ∈ A(ω1,ω2).
From (�n

1 ,�
n
2) ∈ A(ωn

1 ,ω
n
2) follows the existence of ϕ

n
j ∈ 
Qj,ωn

j
such that for each j = 1, 2, k ∈

{1, . . . , 
},

�n
j (t) = (φ(t)− φ(T))rj−1

�(rj)

(∫ b

T
Ej(η,ωn

1(η),ω
n
2(η)) dη +

k∑
ι=1

	
j
ι

)

+ 1
�(σj)

∫ t

T
φ′(η)(φ(t)− φ(η))σj−1[ϕnj (η)+ Cunj,ωj(η)] dη

+ 1
�2(σj)

∫ t

T
φ′(η)(φ(t)− φ(η))σj−1

∫ η

T
φ′(�)(φ(η)− φ(�))σj−1

× Jj(�,ωn
1(�),ω

n
2(�)) d� dη,

and there exist ϕj ∈ 
Qj,ωj with j = 1, 2 such that

�j(t) = (φ(t)− φ(T))rj−1

�(rj)

(∫ b

T
Ej(η,ω1(η),ω2(η)) dη +

k∑
ι=1

	
j
ι

)

+ 1
�(σj)

∫ t

T
φ′(η)(φ(t)− φ(η))σj−1[ϕj(η)+ Cuj,ωj(η)] dη

+ 1
�2(σj)

∫ t

T
φ′(η)(φ(t)− φ(η))σj−1

∫ η

T
φ′(�)(φ(η)− φ(�))σj−1

× Jj(�,ω1(�),ω2(�)) d� dη,

To reach the desired result, we define the following function ϒ : L1(I ,R) → CR(I) as

ϒ(ϕ)(t) = 1
�(σj)

∫ t

T
φ′(η)(φ(t)− φ(η))σj−1

[
ϕ(η)− C�−1

×
(

1
�(σj)

∫ b

T
φ′(θ)(φ(b)− φ(θ))σj−1ϕ(θ) dθ

)]
dη

Moreover, through the above definition of ϒ we note that

�n
j (t)− (φ(t)− φ(T))rj−1

�(rj)

(∫ b

T
Ej(η,ωn

1(η),ω
n
2(η)) dη +

k∑
ι=1

	
j
ι

)

− 1
�(σj)

∫ t

T
φ′(η)(φ(t)− φ(η))σj−1C�−1

[
ωb
j − (φ(b)− φ(T))rj−1

�(rj)

×
(∫ b

T
Ej(θ ,ωn

1(θ),ω
n
2(θ)) dθ +

k∑
ι=1

	
j
ι

)
− 1
�2(σj)

∫ b

T
φ′(θ)(φ(b)− φ(θ))σj−1

×
∫ θ

T
φ′(�)(φ(θ)− φ(�))σj−1Jj(�,ωn

1(�),ω
n
2(�)) d� dθ

]
dη
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− 1
�2(σj)

∫ t

T
φ′(η)(φ(t)− φ(η))σj−1

∫ η

T
φ′(�)(φ(η)− φ(�))σj−1

× Jj(�,ωn
1(�),ω

n
2(�)) d� dη ∈ ϒ(
Qj,ωn

j
), j = 1, 2, k ∈ {1, . . . , 
}.

In addition, by linking the continuity ofJj and Ej for each j = 1, 2,CH(D) ⊂ Lp(D,H)(1 < p < ∞),
and Lebesgue dominated convergence theorem, we acquire the uniform convergence of the previous
relationship to

�j(t)− (φ(t)− φ(T))rj−1

�(rj)

(∫ b

T
Ej(η,ω1(η),ω2(η)) dη +

k∑
ι=1

	
j
ι

)

− 1
�(σj)

∫ t

T
φ′(η)(φ(t)− φ(η))σj−1C�−1

[
ωb
j − (φ(b)− φ(T))rj−1

�(rj)

×
(∫ b

T
Ej(θ ,ω1(θ),ω2(θ)) dθ +

k∑
ι=1

	
j
ι

)
− 1
�2(σj)

∫ b

T
φ′(θ)(φ(b)− φ(θ))σj−1

×
∫ θ

T
φ′(�)(φ(θ)− φ(�))σj−1Jj(�,ω1(�),ω2(�)) d� dθ

]
dη

− 1
�2(σj)

∫ t

T
φ′(η)(φ(t)− φ(η))σj−1

∫ η

T
φ′(�)(φ(η)− φ(�))σj−1

× Jj(�,ω1(�),ω2(�)) d� dη, as n → +∞ ∀j = 1, 2, k ∈ {1, . . . , 
}. (27)

According to Lemma 2.4, ϒ ◦
Qj,ωj is a closed graph operator and since ωn
j → ωj, for n ∈ N and

j = 1, 2, so the formula (27) belong to ϒ(
Qj,ωj), for j = 1, 2. Thus, (�1,�2) ∈ A(ω1,ω2). i.e. the
graph ofA is closed. Subsequently, we deduce thatA is u.s.c.

Consequently, all the conditions of Theorem 2.13 are realized and therefore the operator A
has a fixed point, which represents the solution of the fractional coupled system (1)–(3). More-
over, through (23) It is clear that any solution of (1)–(3) achieves ω(b) = ωb, this result means the
controllability of (1)–(3). �

4. Applications

In this section, we provide an example to illustrate the applicability of the theoretical techniques
presented in this paper.

We consider the following coupled system of impulsive fractional integro-differential inclusion
with nonlocal integral condition by taking φ(t) = t:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(hD1/3,1/4;t
1+ v1)(t) ∈

[
(et + sin t)(t + t3/2|v1(t)|)e| cos v2(t)|

3
2+t

,
( |v2(t)|2 − 1

|v2(t)|2 +
√
t2+4t

)
t1/2|v1(t)|

]

+ 1
�( 13 )

∫ t

1
(t − �)−2/3 ln (�

2 + 2)(v1(�)+ v2(�) sin �)
(�2 + 3)(1 + v1(�)+ v2(�))

d� + Cu1(t), t ∈ I = [1, 5] − {2, 3, 4},

(hD2/3, 34 ;t
1+ v2)(t) ∈

[
(et + cos t)(t + t7/4|v2(t)|)e| sin v1(t)|

5
3 + t

,
( |v1(t)|3−1

|v1(t)|3 +√
t(4+t)

)
t3/4|v2(t)|

]

+ 1
�( 23 )

∫ t

1
(t − �)−1/3 2e1/3�(v1(�)+ v2(�) cos �)

(e� + 12)(1 + v1(�)+ v2(�))
d� + Cu2(t), t ∈ I = [1, 5] − {2, 3, 4},

�I1−1/2;t
1+ v1(tk) = 	1

k ∈ R, �I1−3/4;φ
1+ v2(tk) = 	2

k ∈ R, tk = k + 1, k = {1, 2, 3},
(28)
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with the coupled nonlocal integral conditions:

(I1−1/2;t
1+ v1)(1) =

∫ 5

1

e−2�(v1(�)+ v2(�))
(� + 8)2(1 + v1(�)+ v2(�))

d�, (29)

(I1−3/4;t
1+ v2)(1) =

∫ 5

1

�1/2e� ln(1 + v1(�)+ v2(�))
(t + 2)2(1 + v1(�)+ v2(�))

d�, (30)

where σ1 = 1
3 , δ1 = 1

4 , σ2 = 2
3 and δ1 = 3

4 , here for each j= 1,2,Qj,Jj and Ej are given by⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Q1(t, v1, v2) =
[
(et + sin t)(t + t3/2|v1|)e| cos v2|

3
2 + t

,
( |v2|2 − 1

|v2|2 +
√
t2 + 4t

)
t1/2|v1|

]

J1(t, v1, v2) = (ln t2 + 2)(v1 + v2 sin t)
(t2 + 3)(1 + v1 + v2)

E1(t, v1, v2) = e−2t(v1 + v2)
(t + 8)2(1 + v1 + v2)

,

and ⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Q2(t, v1, v2) =
[
(et + cos t)(t + t7/4|v2|)e| sin v1|

5
3 + t

,
( |v1|3 − 1

|v1|3 + √
t(4 + t)

)
t3/4|v2|

]

J2(t, v1, v2) = 2e1/3t(v1 + v2 cos t)
(et + 12)(1 + v1 + v2)

E2(t, v1, v2) = t1/2et ln(1 + v1 + v2)
(t + 2)2(1 + v1 + v2)

.

Clearly,Qj satisfies (A1), and Jj, Ej are continuous for j = 1, 2. In addition

‖Q1(t, v1, v2)‖ ≤ e(et + 1)(1 + ‖v1‖H1), ‖Q2(t, v1, v2)‖ ≤ e(et + 1)(1 + ‖v2‖H2),

|J1(t, v1, v2)| ≤ | ln(t2 + 2)|(|v1| + |v2|)
(t2 + 3)(1 + |v1| + |v2|) , |J2(t, v1, v2)| ≤ 2e1/3t(|v1| + |v2|)

(et + 12)(1 + |v1| + |v2|) ,

|E1(t, v1, v2)| ≤ e−2t(|v1| + |v2|)
(t + 8)2(1 + |v1| + |v2|) , |E2(t, v1, v2)| ≤ t1/2et(|v1| + |v2|)

(t + 2)2(1 + |v1| + |v2|) .

Whereas

μQj = e(et + 1), μJ1 = | ln(t2 + 2)|
t2 + 3

, μJ2 = 2e1/3t

et + 12
,

μE1 = e−2t

(t + 8)2
, and μE2 = t1/2et

(t + 2)2
.

Thus, the assumptions (A2) and (A3) are satisfied. Now, we suppose that the linear operator ψ :
L2(I ,K) → R defined by

ψu1(t) = 1
�( 13 )

∫ 5

1
(t − η)−2/3Cu1(η) dη,

ψu2(t) = 1
�( 23 )

∫ 5

1
(t − η)−1/3Cu2(η) dη,

has a bounded invertible operator and satisfies the assumption (A4).
From above, we note that all the condition of Theorem 2.13 are met, so the coupled sys-

tem (28)–(30) is controllable on I = [1, 5].
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