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Abstract: A well-known metaheuristic is the bat algorithm (BA), which consists of an iterative
learning process inspired by bats echolocation behaviour in searching for prays. Basically, the
BA uses a predefined number of bats that collectively move on the search space to find
the global optimum. This article proposes the fractional Lévy flight bat algorithm (FLFBA),
which is an improved version of the classical BA. In the FLFBA the velocity is updated
through fractional calculus and a local search procedure that uses a random walk based on
Lévy distribution. Such modifications enhance the ability of the algorithm to escape from local
optimal values. The FLFBA has been tested using several well-known benchmark functions and
its convergence is also compared with other evolutionary algorithms from the state-of-the-art.
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1 Introduction

Different problems of science and engineering require
accurate solutions that in most of the cases are
computationally expensive. Optimisation algorithms are
then used to overcome this situation but traditional
optimisation techniques, including heuristic approaches that
still being insufficient. In this context, nature is considered
as a huge and vast source of inspiration for solving a
variety of complicated problems, it always finds the optimal
solution using different balanced mechanisms. This is the
main motivation for using nature inspired computational
methods. The techniques that mimic or use some natural
behaviours to solve complex optimisation problems are part
of the metaheuristic algorithms (MA).

MA’s perform a stochastic search of the best solution
of a specific problem; the main idea of these methods is
the collective behaviour that exists between the candidate
solutions, which generates a simple procedure to solve an
optimisation problem.

The bat algorithm (BA) was introduced in 2010 as
an alternative method for numerical optimisation (Yang,
2010). The BA is based on the mechanism of echolocation
in bats, it consists of the use of a sonar to guide the
bats during the flight. This behaviour also helps bats in
hunting, using the echolocation they can identify the preys
in the dark. The operators of the BA have a good balance
between exploration and exploitation that is desirable for
a MA. However, it has been proved that the performance
of BA is good only in problems with a reduced number
of dimensions (Yilmaz and Küçüksille, 2015; Fister et al.,
2013). In this sense, different modifications have been
proposed for improving the performance of BA. A recent
work by Wang et al. (2019) introduced multiple strategies
coupling to BA and the performance of their algorithm
was evaluated using the Wilcoxon and Friedman tests. To
improve the global search ability of BA with large-scale
problems, Cui et al. (2018) proposed two new variants
using principal component analysis. Another work by Xie
et al. (2013) proposed a BA using DE operators and
Lévy Flights during the optimisation process. In 2017 it
was published a directional BA (Chakri et al., 2017), in
which is proposed directional echolocation to improve the
exploration of BA. Another interesting improvement was
proposed in Fister et al. (2013) where the BA is hybridised
with DE. The standard BA has also been modified using
chaotic maps instead of normal distribution to increase
the search capabilities (Jordehi, 2015; Gandomi and Yang,
2014). In the work of Cai et al. (2016), the local search
of BA was improved by an optimal forage strategy while
a random disturbance strategy was employed to extend the
search pattern globally. There has also been introduced a
modification of BA that considers the GA and the invasive
weed optimisation (IWO) (Yilmaz and Küçüksille, 2015).

On the other hand, the fractional calculus (FC) is
a mathematical tool commonly used in engineering and
applied sciences (Oldham and Spanier, 1974; Sabatier et al.,
2007). FC is an extension of classical mathematics it has
been applied in fields like electronics, signal processing,

fractals, and chaos to mention some (Edelman, 2010;
Rabei et al., 2009; Machado, 2002). In this context, the
FC is an excellent alternative to introduce concepts as
memory (fractional derivative) in different processes; such
feature generates more realistic models that integer-based
models (Couceiro and Sivasundaram, 2016). Besides, the
Lévy Flights (LF) have been extensively used to improve
different MA (Yang and Deb, 2009; Bhateja et al., 2015).
LF can be defined as random walks whose step lengths are
not constant, and the values are selected from a probability
distribution (Viswanathan et al., 1996). As indicated by
Zhou et al. (2015) the Brownian walk and Lévy flight
strategies ignore the learning process of the visited solutions
during the waiting time between the successive movement
steps. It is considered one of the disadvantages of this
approach.

This article presents a hybrid version of the BA that
improves its performance in global optimisation. The first
contribution is the introduction of the fractional Lévy
flights (FLF) that use the fractional calculus to avoid the
drawbacks of standard LF. The modifed algorithm proposed
in this paper combines the FLF and the DE to to improve
the performance of the standard BA, this is the main
contribution. The proposed algorithm is called fractional
Lévy flight bat algorithm (FLFBA).

The remaining sections are organised as follows: in
Section 2, it analysed the related work. Section 3 presents
the proposed FLFBA. In Section 4, it described the
experimental results of FLFBA compared to the ones
obtained by cuckoo search algorithm (CS) (Yang, 2014),
fractional-order Darwinian particle swarm optimisation
(FDPSO) (Couceiro et al., 2012), moth-flame optimisation
algorithm (MFO) (Mirjalili, 2015), ant colony optimisation
algorithm (ACO) (Dorigo et al., 1996), shuffled
frog-leaping algorithm (SFLA) (Eusuff et al., 2006) and
a novel bat algorithm with habitat selection and Doppler
effects (NBA) (Meng et al., 2015). Statistical analysis of
the results obtained by the four algorithms is provided in
Section 5. Finally, Section 6 discusses the conclusions and
recommendations.

2 Related work

2.1 Basic bat algorithm

The bat-inspired algorithm, which mimics the echolocation
navigation system in detecting and pursuing their preys,
was firstly proposed by Yang (2010). By emitting loud
sound pulses, the echoes that bounce back from different
surrounding objects help bats identify not only their size
but also their exact distances when flying in darkness.
Microbats emits from 10 to 20 ultrasonic sound bursts a
second with constant frequency (25 KHz to 150 KHz) but
as they get closer to their preys they are increased to up to
200 pulses per second (Yang, 2014). Emitted pulses are as
loud as 110 dB but as they get closer to their preys they
become quieter.
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The algorithm is based on the following three idealised
rules (Yang, 2014):

1 Bats use echolocation to measure distance as well as
differentiate between food/prey and background
barriers.

2 Bats fly randomly with velocity vi from position xi
using a frequency fmin, varying wavelength λ and
loudness A0 to search for prey. Based on their
proximity to target, bats can automatically adjust the
wavelength (or frequency) of their emitted pulses and
adjust the rate of pulse emission r ∈ [0, 1].

3 Although the loudness can vary in many ways, it is
assumed that loudness varies from a large predefined
(positive) value A0 to a minimum constant value
Amin.

2.1.1 Initialisation

A randomly distributed population of N virtual bats is
firstly generated. Such initial positions are produced in
D-dimensional bounded search space as follows:

x0ij = xmin + (xmax − xmin) ∗ rand (1)

where i ∈ [1, · · · , N ] , j ∈ [1, · · · , D] and rand is
a random vector with uniformly distributed elements
generated in the range [0, 1]. The vectors xmax and xmin

contain the upper and lower boundaries in each dimension
j, respectively. The initial velocities v0i are generally set to
zero.

2.1.2 Generation of new solutions

Bats navigate by selecting new directions to optimal
solutions through the combination of their own and other
bats best experience. At each iteration t, a new solutions
xt+1
i and velocities vt+1

i are updated as follows:

fi = fmin + (fmax − fmin)β, (2)

vt+1
i = vti + (xti − xg)fi, (3)

xt+1
i = xti + vt+1

i , (4)

where β ∈ [0, 1] is uniformly distributed random vector
and fmin, fmax are the minimum/ maximum frequency of
emitted pulse by the bats. The value xg represents the best
global location found so far which is obtained by comparing
all the solutions of all N bats at iteration t.

2.1.3 Local search

After new solutions are generated, it is used a local search
that is based on random walks. It considers an ith bat on the
condition that its pulse emission rate ri is smaller than a
random number. The old position xold is modified to obtain
a new position xnew by,

if (rand > ri) then, xnew = xold + ϵĀt, (5)

where ϵ ∈ [−1, 1] is a random number and Āt = ⟨At
i⟩ is the

average loudness of all bats at time step t.

2.1.4 Solutions and parameters update

As indicated in Yang (2010), BA can be considered as a
balanced combination of a classical PSO and the intensive
local search controlled by both loudness and pulse emission
rate.

When a bat looks for a prey it decreases its loudness
while increasing the rate of pulse emission. For simplicity,
the algorithm starts with an initial set loudness A0 which is
reduced at each iteration until it reaches an Amin near zero
which represents a bat catching its prey. The bat is guided
toward an optimal solution using the following two design
equations,

If(rand < At
i) and f(x

t+1
i ) < f(xti)

At+1
i = αAt

i, (6)

rt+1
i = r0i [1− exp(−γt)] , (7)

where α and γ are constants. The value α, which is similar
to a cooling factor of the simulated annealing cooling
schedule (Kirkpatrick et al., 1983), lies between 0 and 1
while γ is greater than 0. The value At+1

i represent an
updated value of the loudness At

i of bat i at time step t.
As the time step t tends toward infinity, the rate of pulse
emission converges to the initial rate of pulse emission r0i
whereas the average loudness of the bat approaches zero
expressed as follows,

At
i → 0, rti → r0i , as t→ ∞ (8)

2.2 Fractional-order calculus

Definition 2.1: The Riemann-Liouville fractional derivative
of an order α > 0 of a continuous function x : (0,+∞) →
R is given by

RLDα
0+x(t) =

1

Γ(m− α)

dm

dtm

∫ t

0

x(s)

(t− s)α−m+1
ds, (9)

where Γ(x) is the gamma function, m− 1 ≤ α < m, and
the right-hand side is point-wise defined on (0,+∞).

Definition 2.2: Starting with the assumption that a function
x(s) satisfies some smooth condition for a finite interval
(0, t), the Grüwald-Letnikov fractional derivative definition,
which is based on finite difference, with respect to a
fractional coefficient α ∈ R in an equidistant grid in [0, t]
such that:

0 = s0 < · · · < si

= (i+ 1)h < · · · < sn+1 = t

= (n+ 1)h,
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is given by

RLDα
0+x(t) = lim

h→0

1

hα
∆α

hx(t)

=
1

hα
∆α

hx(t) +O(h),

(10)

where

1

hα
∆α

hx(t) =
1

hα

(
x(sn+1)

+
n+1∑
i=1

(−1)i
(
α
i

)
x(sn+1−i)

) (11)

Dαx(t) = lim
h→0

[
1

hα

+∞∑
k=0

(−1)kΓ(α+ 1)x(t− kh)

Γ(k + 1)Γ(α− k + 1)

]
(12)

2.3 Bat algorithm modified equations

Following the same principles and steps as in Couceiro and
Sivasundaram (2016), the bat algorithm is described both in
discrete and continuous form. In discrete form, the general
bat algorithm is given by

v[t+ 1] = v[t] + (x[t]− xg[t])f

x[t+ 1] = x[t] + v[t+ 1]
(13)

and in continuous form by

v′[t] = v[t] + (x[t]− xg[t])f

x′[t] = v[t]
(14)

The derivatives in equation (14) can be rewritten as
fractional derivative in the following form,

GLDα
0+v[t] = v[t] + (x[t]− xg[t])f

GLDα
0+x[t] = v[t]

(15)

As a result, equation (15) is rewritten in a form which
allows simple numerical computation,

v[tn+1] = hα {v[tn] + (x[tn]− xg[tn])f}

−
n+1∑
k=1

skv[tn+1 − kh],

x[tn+1] = hαv[tn+1]−
n+1∑
k=1

skv[tn+1 − kh]

(16)

where the coefficients sk are computed in a recursive
scheme as follows

s0 = 1,

sk =

(
1− α+ 1

k

)
sk−1, k > 0

(17)

and 0 = t0 < · · · < ti = ih < · · · < tn+1 = (n+ 1)h = T .

2.4 Lévy flight

It is shown in previous studies, that different animals and
insects follow a Lévy flight behaviour in their search for
preys or when flying in swarms. The process is defined
as a non-Gaussian stochastic random walk kind in which
the random step lengths are computed using a Lévy
distribution.

For the bat algorithm a new location x′i corresponding
to an ith bat is derived by combining a Lévy flight to its
old position xi as follows:

x′i = xi + ζ ⊕ Levy(λ) (18)

where ζ is a random step size, λ is a Lévy flight distribution
parameter and ⊕ indicates an entry-wise multiplication.
The step size ζ is obtained using the Mantegna algorithm
(Mantegna, 1994) such that,

ζ = υ ⊕ Levy(λ) ∼ 0.01
u

|v|1/β
(xi − xopt) (19)

where u and v are obtained from

u ∼ N(0, σ2
u), σu =

(
Γ(1 + β) sin(πβ/2)

βΓ[(1 + β)/2]2(β−1)/2

)1/β

v ∼ N(0, σ2
v), σv = 1

(20)

and Γ is the gamma function defined as,

Γ(y) =

∫
zy−1e−ydt (21)

2.5 DE-based location update formula

In order to overcome the entrapment of the BA on
local optimal values, that occurs due to a location update
equation which is based only on a global best solution. In
Yilmaz and Küçüksille (2015), it is proposed an improved
version based on DE. They provide a formula which allows
a better search ability at both local and global levels through
the following equation:

vt+1
i = ωtvti + fiξ

t
1(x

t
i − xg) + fiξ

t
2(x

t
i − xtq) (22)

ξt1 + ξt2 = 1,

ξt1 = 1 + (ξinit − 1)
(T − t)n

Tn
,

(23)

where xtq is a randomly selected solution from the
population and ξt1 and ξt2 are learning factors in the range
[0, 1]. The ξt1 is computed based on a relation between an
initial ξinit, the maximum number of iteration T , the actual
iteration number t, and a nonlinear index n as presented in
equation (23).

This modification allows an exploitation in one hand by
guiding the velocity update toward the global best xg and
on the other hand an exploration based on a third term that
is based on a random position xtq. The balance between
exploration and exploitation is governed by the changes in
the term ξ1.
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3 Fractional Lévy flight bat algorithm

Even though BA has the advantage of simplicity and
flexibility, just like any other metaheuristic it still lacks
the mechanism of escaping local optimums. The idea is to
design an algorithm capable of adjusting itself to the fitness
functions landscape making it more robust and applicable
to any sort of optimisation problem. An innovative bat
algorithm based on fractional calculus, differential evolution
and Lévy flight is introduced and explained in this section.

The proposed algorithm starts by generating a
population of N random locations using equation (1) and
assigning values to the initial velocity vector. The objective
function is then evaluated at each position of the initial
population and the first global best solution is selected.
At each generation and for each bat in the population an
update process of the positions is divided, with an equal
probability of 50%, between two different mechanisms.
Here is important to mention that the population is divided
to increase the diversity of the solutions using different
operators to modify each partition. As was previously
mentioned the LF increases the exploration of the search
space and the FLF enhances the exploitation of the
prominent regions.

The first mechanism starts by producing a new location
using the difference between two randomly selected local
best solutions multiplied by a random value ε. This random
variable is taken from a uniform distribution and then added
to the ith local best solution as in the following equation,

s = ε(xlq − xlp) (24)

xn = xli + s (25)

The fitness function is then evaluated at this new solution
and then compared with function value at the ith local best
solution. If the new location xn produces a better result than
xli then xli = xn. An updated solution xt+1

i is obtained in
the neighbourhood of the corresponding best local solution
xli through a Lévy flight search as follows,

xt+1
i = xli + 0.01

u

|v|1/β
|x̄l − xti| (26)

where x̄l is the mean value of the vector of local best
solutions. This will assign half of the population in a local
search around the selected local best solution which should
result in a better exploration procedure.

A combination of DE and fractional calculus velocity
update equation is applied to obtain the second half of
the population. The velocity term is computed based on a
fractional differential formula where,

νti =
o∑

k=0

skv
t−k
i (27)

where sk is obtained using equation (17) and o is the
order of the fractional derivative which is selected randomly
between the integers 1 and 10. The above process tries
to mimics to a certain degree a continuous time random
walk (CTRW) where for each individual of the population

a different learning period is selected based on the order o
of equation (27).

As defined by Zhou et al. (2015), the CTRW strategy is
a composition of the flight step lengths of a movement in a
random direction with the elapsed waiting time between two
successive movement steps which are both represented by
two independent random variables distributed according to
their probability densities. The main idea of CTRW search
strategy is presented in Zhou et al. (2015) by using the
probability distribution function of search length:

ω(lj) ∼ l
−(α+1)
j (28)

where 0 < α < 2, and lj is the search length at the jth step
and probability distribution function of waiting time.

ψ(tj) ∼ t
−(β+1)
j (29)

where 0 < β < 1, and tj is the waiting time length before
starting the jth step. The Fractional random walk has been
used successfully on undirected regular networks such as
Riascos and Mateos (2014) and Michelitsch et al. (2017).

Algorithm 1 Pseudo code of FLFBA
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The velocity term computed in equation (27) is combined
with an exploration and exploitation term, through a DE
approach. In this process is obtained the updated velocity
vector corresponding to each individual of the population.
The following formula explains the computation of such
value:

vt+1
i = ωtνti + f ti ξ

t
1(x

g − xti) + f ti ξ
t
2(x

l
i − xtq) (30)

where ωt is an inertia weight, f ti is the frequency, xg
is the global best location. xli is the corresponding local
best solution, and xtq is a randomly selected solution from
the population such that q ̸= i. The new proposed formula
contains several important factors, such as information from
previous generations, a combination of exploitation around
the global best and an exploration with respect to local
best. This combination is reflected in a better and consistent
convergence of the algorithm. The new computed velocity
vector is then added to the actual corresponding location
vector as in equation (4).

Once the second half of the population locations are
updated, a local search routine, based on the one the
proposed in Meng et al. (2015), is applied only to the
solutions which pulse emission ri is below a randomly
generated value in the interval [0, 1]. The proposed local
search is combined with a Lévy flight pattern around the
global best solution as indicated below,

rA = 0.01
u

|v|1/β
|Ai − Ā| (31)

xt+1
i = xg(1 + rA) (32)

where Ai is the ith related loudness value and Ā is the mean
value of the loudness vector.

The local best bats are updated and if ∃xli, F (xli) <
F (xg), i = 1, · · · , n and the associated loudness value Ai

is greater than a random number ε ∈ [0, 1] then xg = xli.
This is then followed by a reduction in the corresponding
ith loudness Ai and an increase in the pulse emission ri as
presented in equations (6) and (7). The pseudo-code of the
modified bat algorithm is presented in Algorithm 1.

4 Results and analysis

The parameters settings of the CS, FDPSO, NBA, ACO,
MFO, SFLA and FLFBA are provided in Table 1. The
maximum number of iterations was set to 50 times the
dimension such as, for D = 10 it is 500, for D = 20 it is
1000 and finally for D = 40 it is 2000. The search space
in all algorithms is restricted to the interval [−5, 5]D since
the majority of the benchmark functions has the global
optimum solution inside the interval [−4, 4]D or drawn
uniformly from this compact. For a better analysis of the
results, each optimisation procedure was repeated 50 times
overall the functions in the three dimensions. It should
be noted that the inconsistent results obtained for F5 in
all dimensions were omitted due to a probable bug in the
downloaded benchmark source code.

The proposed algorithm is evaluated for performance
using 24 CEC2015 benchmark functions (Qu et al., 2016).

In Table 2, the average computational time of
the selected algorithms using 50 different trials for
each benchmark function computed using three variables
dimensions, 10−D/20−D/40−D, is presented. The
first observation is the large computational time of both
SFLA followed by FDPSO and, for some benchmark
functions, CS algorithms which is more than 4 times that of
NBA and MFO algorithms. The second observation is the
similar performance of ACO and FLFBA time wise.

Table 1 Parameters settings

Parameters CS FDPSO NBA ACO MFO SFLA FLFBA

Population size N 30 30 30 30 30 30 30
Loudness A0 − − [1, 2] − − − [1, 2]

Pulse emission r0 − − [0, 1] − − − [0, 1]

Frequency [fmin, fmax] − − [0, 1.5] − − − [0, 2]

ρ, γ − − 0.99, 0.9 − − − 0.99, 0.9
Probability habitat selection P − − [0.5, 0.9] − − − −
Compensation rates Doppler echoes C − − [0.1, 0.9] − − − −
Contraction-expansion coefficient θ − − [0.5, 1] − − − −
Inertia weight ω − 0.9 [0.4, 0.9] − − − [0.2, 0.9]

Fractional coefficient α − 0.632 − − − − 0.632

Cognitive and social components − 1.5, 1.5 − − − − −
Search counter/max iterations − 15 − − − 5 −
Number of swarms [min, n,max] − [1, 2, 3] − − − − −
Discovery rate/step-size 0.25 − − 2 − − −
Deviation-distance ratio − − − 1 − − −
Intensification factor − − − 0.5 − − −
Memeplex/sample size − − − 40 − 5 −
Offspring number − − − − − 3 −
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Table 2 Average computational time of the different algorithms using 50 trials for the benchmarks function F1 · · · F24

Algorithm F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12

D – 10

CSN 7.67 9.34 9.86 12.98 9.44 14.92 13.14 12.18 12.09 13.78 13.73 12.83
FDPSO 12.13 27.58 19.22 19.79 11.62 19.64 8.41 16.71 18.14 21.57 8.69 12.86
NBA 2.11 2.75 3.18 3.27 1.72 2.91 2.40 2.27 2.44 2.90 2.79 2.52
ACO 3.58 4.38 4.61 5.04 2.50 4.48 3.79 3.48 3.57 4.25 4.23 3.88
MFO 4.28 4.18 3.99 4.15 2.59 4.27 4.32 3.40 1.74 2.18 2.27 1.94
SFLA 14.86 14.85 14.75 15.22 12.41 15.34 15.70 12.60 12.40 15.74 16.57 12.78
FLFBA 4.11 6.77 7.05 6.90 5.85 8.58 7.37 6.78 7.45 8.46 5.56 4.20

D – 20

CSN 15.41 19.30 21.06 21.89 15.15 19.47 18.12 16.62 17.00 20.46 20.16 18.06
FDPSO 18.85 48.92 32.50 33.39 16.15 33.77 14.10 22.58 20.10 30.80 17.76 22.04
NBA 4.11 5.27 5.81 5.92 3.13 5.33 4.30 4.08 4.07 5.37 5.27 4.48
ACO 12.04 11.83 11.24 11.35 5.87 10.68 9.57 8.82 9 10.68 10.49 9.63
MFO 2.92 4.21 4.67 4.83 2.22 4.48 3.66 3.13 3.26 4.33 4.21 3.62
SFLA 27.64 32.95 34.59 34.50 24.55 32.14 32.14 25.11 24.49 32.25 34.61 25.51
FLFBA 11.40 19.17 14.79 16.7 8.76 16.82 15.33 15.00 18.62 18.43 18.87 15.92

D – 40

CSN 32.71 42.03 45.92 46.82 35.60 40.45 38.40 35.20 36.03 43.32 42.77 38.01
FDPSO 28.35 70.98 48.53 48.21 21.30 52.25 22.67 32.37 30.68 48.40 34.88 33.61
NBA 7.01 10.75 12.58 12.64 7.28 10.92 9.00 7.69 8.08 11.30 11.29 9.15
ACO 23.68 28.73 30.42 30.62 16.74 28.70 26.52 24.63 25.25 29.34 29.19 26.57
MFO 5.63 8.77 9.88 10.10 4.35 8.77 7.43 6.28 6.59 9.23 9.04 7.38
SFLA 59.91 71.40 76.01 75.77 53.66 72.66 69.47 54.53 56.20 69.08 70.77 57.26
FLFBA 15.32 19.00 21.13 21.18 10.13 18.91 16.97 20.28 26.82 22.85 29.75 26.60

Algorithm F13 F14 F15 F16 F17 F18 F19 F20 F21 F22 F23 F24

D – 10

CSN 12.19 12.01 14.61 16.07 14.22 10.46 8.76 9.93 11.86 11.50 9.36 8.53
FDPSO 13.15 11.48 20.41 10.24 14.80 11.62 5.90 14.42 24.97 25.07 10.70 8.16
NBA 2.33 2.37 3.21 3.58 3.17 3.03 2.26 2.61 4.01 3.51 3.87 2.40
ACO 3.46 3.57 4.96 5.20 4.56 4.41 3.54 3.99 5.27 4.87 4.43 3.67
MFO 1.69 1.81 2.53 2.78 2.34 2.35 1.73 1.98 3.06 2.69 2.22 1.77
SFLA 11.25 13.22 14.82 16.24 14.01 14.18 15.80 13.11 17.16 16.03 16.93 13.48
FLFBA 3.87 5.71 5.39 5.90 5.16 5.00 4.05 4.53 6.44 5.84 11.19 6.93

D – 20

CSN 17.88 16.89 21.05 22.97 20.79 21.00 16.85 19.62 25.57 23.88 19.80 18.22
FDPSO 20.79 20.64 31.78 19.59 25.38 21.50 12.59 21.66 38.35 34.70 13.55 14.92
NBA 3.94 4.21 6.06 7.47 6.08 5.96 4.33 4.81 7.25 6.38 8.57 4.27
ACO 8.72 8.94 11.44 12.71 10.97 10.85 9.27 9.61 12.69 11.78 11.08 8.92
MFO 3.07 3.22 4.83 5.72 4.60 4.52 3.28 3.66 5.84 5.14 4.43 3.30
SFLA 24.14 27.79 33.81 35.06 29.19 29.19 31.82 30.60 42.00 39.10 32.58 27.17
FLFBA 20.52 11.88 16.25 20.32 24.63 17.32 9.09 9.51 14.04 14.83 18.88 10.57

D – 40

CSN 34.87 35.19 46.59 52.62 46.1 45.76 35.94 41.73 58.64 49.63 42.26 37.01
FDPSO 33.08 32.03 50.65 46.96 47.38 41.65 23.79 34.15 67.42 54.93 28.65 27.83
NBA 7.92 8.56 13.20 20.50 11.89 11.83 8.04 9.32 15.73 12.78 17.46 8.59
ACO 24.73 25.46 31.60 37.38 30.25 30.15 25.35 26.50 34.47 31.42 30.70 25.31
MFO 6.24 6.67 10.54 14.10 9.87 9.85 6.67 7.38 13.21 10.72 9.87 6.83
SFLA 52.53 59.69 70.98 78.38 66.55 65.54 66.85 64.00 88.60 79.58 65.68 59.27
FLFBA 23.02 25.27 34.83 59.88 30.17 31.09 23.40 25.42 39.03 32.27 59.71 24.22
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To analyse the performance of stochastic algorithms
based on computational intelligence we avoid using the
parametric tests because the independence, normality,
and homoscedasticity assumptions cannot be satisfied,
for that reason non-parametric statistical procedures are
very practical in this case (Derrac et al., 2011). In
this section we deal with multiple comparisons class of
non-parametric analysis and post-hoc procedures to evaluate
the performance of FLFBA with respect to remaining five
algorithms. Moreover, this analysis helps verify if the
proposed FLFBA can significantly improve the accuracy in
comparison with other methods.

Table 3 Average Rankings of the algorithms

Algorithm Friedman
Aligned
Friedman Quade

D – 10 CASES

CS 4.9792 109.4375 5.02167
FDPSO 4.5625 102.9792 4.5716
NBA 2.2291 51.1041 2.1183
ACO 3.8125 80.8125 3.8066
MFO 3.1875 63.0625 2.9116
SFLA 5.666 112.3334 5.9183
FLFBA 3.5624 71.7708 3.6516

D – 20 CASES

CS 5.0416 107.8333 5.0633
FDPSO 4.6667 95.8333 4.6733
NBA 2.4583 62.9166 2.380
ACO 3.75 81.9583 3.7066
MFO 2.5000 46.3333 2.0466
SFLA 5.9583 110.9166 6.4366
FLFBA 3.625 85.7083 3.6933

D – 40 CASES

CS 5.29166 107.9166 5.2866
FDPSO 5.2083 98.6249 5.1233
NBA 2.9166 74.3333 2.71
ACO 2.0 57.6666 2.1433
MFO 2.3333 47.5416 1.9100
SFLA 6.125 108.875 6.4866
FLFBA 4.1245 96.5416 4.339

The Friedman test aims to distinguish significant differences
between two or more algorithms. Its null hypothesis
designates sameness of medians between the populations
when the alternative hypothesis is given as the reversal
of the null hypothesis, its statistic distributed according to
the chi-square distribution with (k − 1) degrees of freedom.
The Friedman aligned Ranks test is used when the number
of compared algorithms is small. The statistical test is
evaluated through a chi-square distribution with (k − 1)
degrees of freedom. The Quade test considered as an
alternative test of Friedman by means of the difficulty
considerations. In this sense, the rankings computed on
each problem could be scaled depending on the differences
observed in the algorithm’s performances, finding, as a
consequence, a weighted ranking analysis of the results
sample. Its distributed according to the Fisher distribution

with (k − 1) and (k − 1)(n− 1) degrees of freedom where
k is the number of the tested algorithms and n is the
number of problems considered.

Table 3 provides the average rankings of the algorithms
achieved by the Friedman, Friedman aligned, and Quade
tests for D − 10, D − 20 and D − 40. Results indicate that
SFLA achieves the best average rank by all three tests in
all the dimensions while FLFBA was fifth in both 10 and
20 dimensions and finally NBA scored last. A different
order of performance is obtained in the D − 40 case where
FLFBA was fourth and ACO came last.

Our experimental study shows that the Friedman and
Friedman aligned ranks are both distributed according
chi-square distribution with 6 degrees of freedom, while
the Quade test is distributed according to F-distribution
with 6 and 138 degrees of freedom. The Friedman statistic
shows an (F = 41.5312, p-value = 2.2757E-7) for the
10−D cases, an (F = 52.4285, p-value = 1.5810E-9)
for the 20−D cases and finally an (F = 80.2857,
p-value= 4.7076E-11) for the 40−D cases. Iman and
Davenport test indicates for the D − 10 an (F = 9.3220,
p-value = 1.4116E-8), for D − 20 (F = 13.1684, p-value
= 9.4150E-12) and for D − 40 (F = 28.9820, p-value
= 2.9043E-22) proposing the existence of significant
differences between the tested algorithms.

Table 4 Contrast estimation

CS FDPSO NBA ACO MFO SFLA FLFBA

D – 10 CASES

CS 0 –0.9582 –7.124 –2.193 –4.534 1.631 –2.774
FDPSO 0.9582 0 –6.165 –1.235 –3.576 2.589 –1.815
NBA 7.124 6.165 0 4.931 2.589 8.754 4.350
ACO 2.193 1.235 –4.931 0 –2.341 3.823 –0.5806
MFO 4.534 3.576 –2.589 2.341 0 6.165 1.761
SFLA –1.631 –2.589 –8.754 –3.823 –6.165 0 –4.404
FLFBA 2.774 1.815 –4.350 0.5806 –1.761 4.404 0

D – 20 CASES

CS 0.000 –5.059 –19.68 –7.410 –28.00 9.945 –9.221
FDPSO 5.059 0.000 –14.62 –2.350 –22.94 15.00 –4.161
NBA 19.68 14.62 0.000 12.27 –8.321 29.62 10.46
ACO 7.410 2.350 –12.27 0.000 –20.59 17.35 –1.811
MFO 28.00 22.94 8.321 20.59 0.000 37.95 18.78
SFLA –9.945 –15.00 –29.62 –17.35 –37.95 0.000 –19.17
FLFBA 9.221 4.161 –10.46 1.811 –18.78 19.17 0.000

D – 40 CASES

CS 0.000 –34.32 –86.68 –177.6 –157.2 42.20 –32.72
FDPSO 34.32 0.000 –52.36 –143.3 –122.9 76.52 1.598
NBA 86.68 52.36 0.000 –90.97 –70.56 128.9 53.96
ACO 177.6 143.3 90.97 0.000 20.41 219.8 144.9
MFO 157.2 122.9 70.56 –20.41 0.000 199.4 124.5
SFLA –42.20 –76.52 –128.9 –219.8 –199.4 0.000 –74.92
FLFBA 32.72 –1.598 –53.96 –144.9 –124.5 74.92 0.000
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Contrast estimation based on medians used to estimate the
difference between the presentations of two algorithms in
view of all pairwise comparisons. It is particularly helpful
to estimate by how far an algorithm outperforms another
one. The importance of this test can be summarised as the
estimation of dissimilarity between medians of samples of
results. It is important to note that this test cannot give
a probability of error related to the refusal of the null
hypothesis of equality. In our experimental study, we can
calculate the set of estimators of medians directly from the
average error results.

Table 4 shows the estimations computed for each
algorithm in the D − 10, D − 20 and D − 40 cases
respectively. Focusing our attention in the rows of the
tables, we can underline the performance of FSLA as the
best performing algorithm because it have the max number
of negative related estimators (attain very low error rates
considering median estimators) followed by CS algorithm
while FLFBA was fourth in both the D − 20/D − 40 cases.

4.1 Post-hoc procedures

Since the Friedman, Iman-Davenport, Friedman aligned,
and Quade tests can just detect significant differences
over the complete multiple comparisons, which makes it
incapable to create accurate comparisons between some

of the considered algorithms then we can progress with
a post-hoc procedure that permit us to establish which
algorithms are significantly better/worse.

Tables 5, 6 and 7 show the Holm/ Hochberg/ Hommel,
Holland, Rom, Finner and Li procedures for all six
algorithms in the D − 10, D − 20 and D − 40 cases
respectively for alpha = 0.05.

In order to better show the differences between the
three tests and their respective approximations for obtaining
the p-value (also named unadjusted p-values), of every
hypothesis, we will compute the unadjusted p-values
for the selected algorithms. Numerous dissimilarities can
be clarified; Friedman test shows a lower power than
the Friedman aligned test (the unadjusted p-values are
considerably lower). Within a multiple comparisons tests
the p-values are not appropriate because it does not consider
the remaining comparisons going to the family, it just
represent the probability error of a certain comparison.

Adjusted p-values can treat this problem. They are
suitable to be employed since they offer more information
in a statistical analysis. They assume the accumulated
family error, also they can be evaluated directly with every
selected significance level α. Therefore, Tables 8, 9 and
10 show the p-values obtained, using the ranks computed
by the Friedman, Friedman aligned, and Quade tests,
respectively for the eight considered post hoc procedures
for the D − 10, D − 20 and D − 40 cases respectively.

Table 5 Holm-Hochberg-Hommel (H-H-H)/Holland/Rom/Finner/Li table for α = 0.05 in D − 10

i Algorithm z = R0−Ri
SE

p H-H-H Holland Rom Finner Li

FRIEDMAN

6 SFLA 5.5122 3.5425E-8 0.0083 0.00851 0.0087 0.0085 0.0461
5 CS 4.4098 1.0346E-5 0.01 0.0102 0.0105 0.0169 0.0461
4 FDPSO 3.7416 1.8281E-4 0.0125 0.0127 0.0131 0.0253 0.0461
3 ACO 2.5389 0.0111 0.01666 0.0169 0.0166 0.0336 0.0461
2 FLFBA 2.1380 0.0325 0.025 0.0253 0.025 0.0418 0.0461
1 MFO 1.5367 0.1243 0.05 0.05 0.05 0.05 0.05

ALIGNED FRIEDMAN

6 SFLA 4.360 1.2973E-5 0.0083 0.0085 0.0087 0.0085 0.0318
5 CS 4.1543 3.2625E-5 0.01 0.0102 0.0105 0.0169 0.0318
4 FDPSO 3.6943 2.2042E-4 0.0125 0.0127 0.0131 0.0253 0.0318
3 ACO 2.1157 0.0343 0.0166 0.0169 0.0166 0.0336 0.0318
2 FLFBA 1.4718 0.1410 0.025 0.0253 0.025 0.04184 0.0318
1 MFO 0.8516 0.3944 0.05 0.05 0.05 0.05 0.05

QUADE

6 SFLA 3.0777 0.002 0.0083 0.0085 0.0087 0.0085 0.0252
5 CS 2.3514 0.0186 0.01 0.0102 0.0105 0.0169 0.0252
4 FDPSO 1.9870 0.0469 0.0125 0.0127 0.0131 0.0253 0.0252
3 ACO 1.3674 0.1714 0.0166 0.0169 0.0166 0.0336 0.0252
2 FLFBA 1.2418 0.2142 0.025 0.0253 0.025 0.0419 0.0252
1 MFO 0.6425 0.5205 0.05 0.05 0.05 0.05 0.05



Fractional Lévy flight bat algorithm for global optimisation 109

Table 6 Holm-Hochberg-Hommel (H-H-H)/Holland/Rom/Finner/Li table for α = 0.05 in D − 20

i algorithm z = R0−Ri
SE

p H-H-H Holland Rom Finner Li

FRIEDMAN

6 SFLA 5.6124 1.9944E-8 0.0083 0.0085 0.0087 0.0085 0.0028
5 CS 4.1425 3.4346E-5 0.01 0.0102 0.0105 0.0169 0.0028
4 FDPSO 3.5412 3.9829E-4 0.0125 0.0127 0.0131 0.0253 0.0028
3 ACO 2.07127 0.0383 0.0166 0.0169 0.0166 0.0336 0.0028
2 FLFBA 1.8708 0.0613 0.025 0.0253 0.025 0.0418 0.0028
1 MFO 0.0668 0.9467 0.05 0.05 0.05 0.05 0.05

ALIGNED FRIEDMAN

6 SFLA 4.5994 4.2365E-6 0.0083 0.0085 0.0087 0.0085 0.0401
5 CS 4.3798 1.1876E-5 0.01 0.0102 0.0105 0.0169 0.0401
4 FDPSO 3.5252 4.2310E-4 0.0125 0.0127 0.0131 0.0253 0.0401
3 FLFBA 2.8041 0.0050 0.0166 0.0169 0.0166 0.0336 0.0401
2 ACO 2.5371 0.0111 0.025 0.0253 0.025 0.0418 0.0401
1 NBA 1.1810 0.2375 0.05 0.05 0.05 0.05 0.05

QUADE

6 SFLA 3.5555 3.7716E-4 0.0083 0.0085 0.0087 0.0085 0.0112
5 CS 2.4432 0.0145 0.01 0.0102 0.0101 0.0169 0.0112
4 FDPSO 2.1274 0.0333 0.0125 0.0127 0.0131 0.0253 0.0112
3 ACO 1.3444 0.1787 0.0166 0.0169 0.0166 0.0336 0.0112
2 FLFBA 1.3336 0.1823 0.025 0.0253 0.025 0.0418 0.0112
1 NBA 0.2699 0.7871 0.05 0.05 0.05 0.05 0.05

Table 7 Holm-Hochberg-Hommel (H-H-H)/Holland/Rom/Finner/Li table for α = 0.05 in D − 40

i Algorithm z = R0−Ri
SE

p H-H-H Holland Rom Finner Li

FRIEDMAN

6 SFLA 6.6147 3.7226E-11 0.0083 0.0085 0.0087 0.0085 0.0214
5 CS 5.2784 1.3030E-7 0.01 0.0102 0.0105 0.0169 0.0214
4 FDPSO 5.1447 2.6783E-7 0.0125 0.0127 0.0131 0.0253 0.0214
3 FLFBA 3.4075 6.5541E-4 0.0166 0.0169 0.0166 0.0336 0.0214
2 NBA 1.4699 0.1415 0.025 0.0253 0.025 0.0418 0.0214
1 MFO 0.5345 0.5929 0.05 0.05 0.05 0.05 0.05

ALIGNED FRIEDMAN

6 SFLA 4.3679 1.2540E-5 0.0083 0.0085 0.0087 0.0085 0.0278
5 CS 4.2997 1.7101E-5 0.01 0.0102 0.0105 0.0169 0.0278
4 FDPSO 3.6379 2.7476E-4 0.0125 0.0127 0.0131 0.0253 0.0278
3 FLFBA 3.4896 4.8369E-4 0.01666 0.0169 0.0166 0.0336 0.0278
2 NBA 1.9080 0.05638 0.025 0.0253 0.025 0.0418 0.0278
1 ACO 0.7210 0.4708 0.05 0.05 0.05 0.05 0.05

QUADE

6 SFLA 3.7067 2.0993E-4 0.0083 0.0085 0.0087 0.0085 0.0078
5 CS 2.7348 0.0062 0.01 0.0102 0.0105 0.0169 0.0078
4 FDPSO 2.6025 0.0092 0.0125 0.0127 0.0131 0.0253 0.0078
3 FLFBA 1.9681 0.04905 0.0166 0.0169 0.0166 0.0336 0.0078
2 NBA 0.6479 0.5170 0.025 0.0253 0.025 0.0418 0.0078
1 ACO 0.1889 0.8501 0.05 0.05 0.05 0.05 0.05
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Table 8 Adjusted p-values (FRIEDMAN/ALIGNED FRIEDMAN/QUADE) in D − 10

i Algorithm Unadjusted p pBonf pHolm pHoch pHomm pHoll pRom pFinn pLi

FRIEDMAN

1 SFLA 3.5424E-8 2.1254E-7 2.1254E-7 2.1254E-7 2.1254E-7 2.1254E-7 2.0210E-7 2.1254E-7 4.0455E-8
2 CS 1.0346E-5 6.2076E-5 5.1730E-5 5.1730E-5 5.1730E-5 5.1729E-5 4.9195E-5 3.1038E-5 1.1815E-5
3 FDPSO 1.8281E-4 0.0010 7.3124E-4 7.3124E-4 7.3124E-4 7.3104E-4 6.9725E-4 3.6558E-4 2.0872E-4
4 ACO 0.0111 0.0667 0.03335 0.03335 0.03335 0.0329 0.0333 0.0166 0.0125
5 FLFBA 0.0325 0.1950 0.0650 0.0650 0.0650 0.0639 0.0650 0.0388 0.0357
6 MFO 0.1243 0.7461 0.1243 0.1243 0.1243 0.1243 0.1243 0.1243 0.1243

ALIGNED FRIEDMAN

1 SFLA 1.2973E-5 7.7840E-5 7.7840E-5 7.7840E-5 7.7840E-5 7.7837E-5 7.4013E-5 7.7837E-5 2.1422E-5
2 CS 3.2625E-5 1.9575E-4 1.6312E-4 1.6312E-4 1.63125E-4 1.6311E-4 1.5513E-4 9.7873E-5 5.3871E-5
3 FDPSO 2.2042E-4 0.0013 8.8170E-4 8.8170E-4 8.8170E-4 8.8141E-4 8.4071E-4 4.4080E-4 3.6385E-4
4 ACO 0.0343 0.2062 0.1031 0.1031 0.1031 0.0995 0.1031 0.0511 0.0537
5 FLFBA 0.1410 0.8464 0.2821 0.2821 0.2821 0.2622 0.2821 0.1668 0.1889
6 MFO 0.3944 2.3664 0.3944 0.3944 0.3944 0.3944 0.3944 0.3944 0.3944

QUADE

1 SFLA 0.0020 0.0125 0.0125 0.0125 0.0125 0.0124 0.0119 0.0124 0.0043
2 CS 0.0186 0.1121 0.0934 0.0934 0.0934 0.0900 0.0889 0.0550 0.0375
3 FDPSO 0.0469 0.2815 0.1876 0.1876 0.1876 0.1748 0.1789 0.0916 0.0891
4 ACO 0.1714 1.0289 0.5144 0.4285 0.3429 0.4312 0.4285 0.2458 0.2634
5 FLFBA 0.2142 1.2856 0.5144 0.4285 0.4285 0.4312 0.4285 0.2512 0.3088
6 MFO 0.5205 3.1231 0.5205 0.5205 0.5205 0.5205 0.5205 0.5205 0.5205

Table 9 Adjusted p-values (FRIEDMAN/ALIGNED FRIEDMAN/QUADE) in D − 20

i Algorithm Unadjusted p pBonf pHolm pHoch pHomm pHoll pRom pFinn pLi

FRIEDMAN

1 SFLA 1.9944E-8 1.1966E-7 1.1966E-7 1.1966E-7 1.1966E-7 1.1966E-7 1.1378E-7 1.1966E-7 3.7438E-7
2 CS 3.4346E-5 2.0607E-4 1.7173E-4 1.7173E-4 1.7173E-4 1.7172E-4 1.6331E-4 1.0303E-4 6.4433E-4
3 FDPSO 3.9829E-4 0.0023 0.0015 0.0015 0.0015 0.0015 0.0015 7.9642E-4 0.0074
4 ACO 0.0383 0.2299 0.1149 0.1149 0.0920 0.1106 0.1149 0.0569 0.4184
5 FLFBA 0.0613 0.3682 0.1227 0.1227 0.1227 0.1189 0.1227 0.0731 0.5353
6 MFO 0.9467 5.6803 0.9467 0.9467 0.9467 0.9467 0.9467 0.9467 0.9467

ALIGNED FRIEDMAN

1 SFLA 4.2365E-6 2.5419E-5 2.5419E-5 2.5419E-5 2.5419E-5 2.5419E-5 2.4169E-5 2.5419E-5 5.5568E-6
2 CS 1.1876E-5 7.1259E-5 5.9382E-5 5.9382E-5 5.9382E-5 5.9381E-5 5.6472E-5 3.56295E-5 1.5577E-5
3 FDPSO 4.2310E-4 0.0025 0.0016 0.0016 0.0016 0.0016 0.0016 8.4602E-4 5.5465E-4
4 FLFBA 0.0050 0.0302 0.0151 0.0151 0.0151 0.0150 0.0151 0.0075 0.0065
5 ACO 0.0111 0.0670 0.0223 0.0223 0.0223 0.0222 0.0223 0.0133 0.0144
6 NBA 0.2375 1.4255 0.2375 0.2375 0.2375 0.2375 0.2375 0.2375 0.2375

QUADE

1 SFLA 3.7716E-4 0.0022 0.0022 0.0022 0.0022 0.0022 0.0021 0.0022 0.0017
2 CS 0.0145 0.0873 0.0727 0.0727 0.0727 0.0706 0.0692 0.0430 0.0640
3 FDPSO 0.0333 0.2003 0.1335 0.1335 0.1335 0.1270 0.1273 0.0656 0.1356
4 ACO 0.1787 1.0727 0.5363 0.3646 0.3575 0.4461 0.3646 0.2558 0.4565
5 FLFBA 0.1823 1.0938 0.5363 0.3646 0.3646 0.4461 0.3646 0.2558 0.4613
6 NBA 0.7871 4.7230 0.7871 0.7871 0.7871 0.7871 0.7871 0.7871 0.7871
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Table 10 Adjusted p-values (FRIEDMAN / ALIGNED FRIEDMAN / QUADE) in D − 40

i Algorithm Unadjusted p pBonf pHolm pHoch pHomm pHoll pRom pFinn pLi

FRIEDMAN

1 SFLA 3.7226E-11 2.2335E-10 2.2335E-10 2.2335E-10 2.2335E-10 2.2335E-10 2.1237E-10 2.2335E-10 9.1461E-11
2 CS 1.3030E-7 7.8185E-7 6.5154E-7 6.5154E-7 6.5154E-7 6.5154E-7 6.1961E-7 3.9092E-7 3.2015E-7
3 FDPSO 2.6783E-7 1.6070E-6 1.0713E-6 1.0713E-6 1.0713E-6 1.0713E-6 1.0215E-6 5.3567E-7 6.5804E-7
4 FLFBA 6.5541E-4 0.0039 0.0019 0.0019 0.0019 0.0019 0.0019 9.8296E-4 0.0016
5 NBA 0.1415 0.8494 0.2831 0.2831 0.2831 0.2631 0.2831 0.1673 0.2580
6 MFO 0.5929 3.5578 0.5929 0.5929 0.5929 0.5929 0.5929 0.5929 0.5929

ALIGNED FRIEDMAN

1 SFLA 1.2540E-5 7.5243E-5 7.5243E-5 7.5243E-5 6.2702E-5 7.5241E-5 7.1544E-5 7.5241E-5 2.3699E-5
2 CS 1.7101E-5 1.0260E-4 8.5506E-5 8.5506E-5 8.5506E-5 8.5503E-5 8.1315E-5 7.5241E-5 3.2318E-5
3 FDPSO 2.7476E-4 0.0016 0.0010 0.0010 9.6738E-4 0.0010 0.0010 5.4945E-4 5.1900E-4
4 FLFBA 4.8369E-4 0.0029 0.0014 0.0014 0.0014 0.0014 0.0014 7.2544E-4 9.1328E-4
5 NBA 0.0563 0.3383 0.1127 0.1127 0.1127 0.1095 0.1127 0.0672 0.0963
6 ACO 0.4708 2.8251 0.4708 0.4708 0.4708 0.4708 0.4708 0.4708 0.4708

QUADE

1 SFLA 2.0993E-4 0.0012 0.0012 0.0012 0.0012 0.0012 0.0011 0.0012 0.0013
2 CS 0.0062 0.0374 0.0312 0.0312 0.0249 0.0308 0.0296 0.0186 0.0399
3 FDPSO 0.0092 0.0555 0.0370 0.0370 0.0370 0.0365 0.0352 0.0186 0.0581
4 FLFBA 0.0490 0.2943 0.1471 0.1471 0.1471 0.1400 0.1471 0.0726 0.2465
5 NBA 0.5170 3.1021 1.0340 0.8501 0.8501 0.7667 0.8501 0.5824 0.7752
6 ACO 0.8501 5.1006 1.0340 0.8501 0.8501 0.8501 0.8501 0.8501 0.8501

The Friedman test illustrates a significant performance of
FSLA over the remaining algorithms while the Friedman
aligned test validate its improvement for each post-hoc
procedure considered except Bonferroni-Dunn which fails
to emphasise the significant differences between them. It
Should be noted that NBA and MFO are interchangeably
omitted from the results due to their worst scores.
The Finner and Li tests have the lowest p-values in
the comparisons displaying the most powerful behaviour.
Finally, the Quade test also confirms the order of the three
first performing algorithms, i.e. FSLA, CS and FDPSO,
and indicates different position between FLFBA and ACO.
This result support the conclusion that, FSLA performed
better than the remaining algorithms while FLFBA had an
intermediate position in the scores tables.

5 Conclusions

This paper introduces an hybrid version of BA that
is called FLFBA. The proposed algorithm is based on
FC and LF techniques with DE strategies for solving
optimisation problems. FLFBA has been validated using
several benchmarks functions and compared to five
algorithms that are CS, FDPSO, SFLA, ACO, MFO and
NBA. Several non-parametric statistical tests using an
average of the difference between the computed optimal
fitness function value and the true global optimum function
value were conducted in order to analyse the performance
of the FLFBA algorithm.

FLFBA showed a distinguished performance in
comparison to MFO and NBA but failed to provide similar
or better results than FSLA, CS, and FDPSO. Also studies
on the time taken to perform the iterations for each
algorithm indicate that the FLFBA was in most of the cases
much faster than FSLA, CS and FDPSO, but slower than
NBA and MFO.

As shown with our experiments FLFBA uses a balanced
combination of the advantages of the successful proprieties
of FC, LF and DE which provides a superior performance
than the NBA algorithms in terms of accuracy and
efficiency.

The effects of parameters settings on the performance
of FLFBA will be conducted in future studies. An
investigation on the effects of different population update
mechanisms or their combinations should be established.
Furthermore, FLFBA will be applied to several real
applications in sciences and engineering.
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Yilmaz, S. and Küçüksille, E.U. (2015) ‘A new modification
approach on bat algorithm for solving optimization
problems’, Applied Soft Computing, March, Vol. 28, No. C,
pp.259–275.

Zhou, Y., Ionescu, C. and Machado, J.A.T. (2015) ‘Fractional
dynamics and its applications’, Nonlinear Dynamics, June,
Vol. 80, No. 4, pp.1661–1664.

View publication statsView publication stats

https://www.researchgate.net/publication/340504789

