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An investigation has been conducted to address the surface integrity optimisation and prediction issue 
by applying the polynomial regression method for a variety of experiments and cutting conditions. A 
higher correlation coefficient (R²) was obtained with a cubic regression model, which had a value of 
0.9480 for Ra. The use of the response surface optimisation and composite desirability show that the 
optimal set of machining parameters values are (250m/min, 0.2398 mm/rev and 2.3383 mm) for cutting 
speed, feed and depth of cut, respectively. The optimised surface roughness parameter and productivity 
are Ra =2.7567 µm and Q = 95.341*103 mm3/ min, respectively. Results show that the models developed 
can accurately predict the roughness  on the basis of measured cutting conditions as input parameters, 
and can also be used to control the surface roughness by making a comparison between measured and 
estimated values. Furthermore, operators can benefit from the proposed models if the aim is the reverse 
determination of the cutting conditions corresponding to the requested roughness profile. 
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 Introduction 

A machined surface is the result of the geometric 
and kinematic reproduction of the shape and 
trajectory of the tool tip. As a result, the surface 
texture contains parallel lays (precisely helical texture) 
that characterises the surface roughness. Surface 
quality is one of the most relevant aspects of 
machining operations, since it represents the final 
phase in the production cycle for improving the 
degree of surface finish on mechanical parts. It is 
important, therefore, to be aware of the influence of 
the various factors involved in the cutting process in 
order to choose the appropriate parameters that 
achieve the desired quality of the surfaces and which 
depend on the geometry of the tool, cutting 
conditions and factors involved during cutting, 
because even small changes in any of these factors, 
however small they may be, are susceptible to have a 
significant effect on the produced surface[1]. Surface 
integrity considerations lead to the development of 
accurate predictive models of the surface roughness, 
thus significantly contributing to improving the 
surface quality of manufactured parts as well as 
reducing the total production cost. Accordingly, 
modelling and optimisation are necessary for 
understanding and controlling any process. It is 
therefore important for researchers to model and 
quantify the relationship between roughness and the 

parameters affecting it. Modelling with polynomial 
regression, surface response and neural networks have 
become the most appropriate methods.  Several 
investigations have been made to model surface 
roughness as a function of various process parameters. 
One of the first empirical models to estimate surface 
roughness variation considers a combination of a 
geometric factor and a cutting parameter [1, 2]. A 
more elaborate empirical model for surface roughness 
takes the form of an exponential function of feed (f), 
tool nose radius (r), cutting speed (Vc) and depth of 
cut (Ap) as suggested by Fang and Safi-Jahanshaki[3]. 
However, the results of these empirical models were 
not very satisfactory, and cannot cater for the complex 
interactions of the various factors. For this reason, the 
use of new models and methods has become necessary 
to resolve the problem. Many models of surface 
roughness prediction, using Polynomial Regression, 
Surface Response, Taguchi methods, Statistical 
methods and Neural Networks have been developed. 
A study by Fang and Safi-Jahanshaki [3] was 
conducted for a new algorithm to establish general 
predictive surface roughness equations to cater for the 
effects of different tool chip breakers and work 
materials. They showed that the second order model 
is the most accurate model, compared to the 
developed linear and exponential models, giving the 
best fit to the experimental results. Choudhury and El-
Baradie [4], have developed a model for surface 
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roughness prediction using the Response Surface 
Method (RSM) by combining their methodology with 
factorial design of experiments. Their results showed 
that the effect of the feed on the surface roughness, is 
much more pronounced than that of the cutting speed 
and depth of cut. Prediction and control of surface 
roughness in CNC (computer numerically controlled) 
lathe using artificial neural network was the aim of a 
study by Durmus Karayel [5] who developed a control 
system for surface roughness. Mathematical models 
that relate the roughness value, the cutting parameters 
and  the hardness of the materials were established for 
different types of steel such as AISI 1020, AISI 1045 
and AISI 4140, by Munoz and Cassier[6]. They found 
that surface finish could be improved by increasing 
cutting speed and tool nose radius and by decreasing 
the feed rate. The Taguchi method has been used by 
Paulo Davim [7] who showed that cutting speed had a 
greater influence on the roughness followed by the 
feed, while the depth of cut had no significant 
influence on surface roughness. With the intent to 
develop a surface roughness prediction model of AISI 
410 steel in order to investigate the influence of 
machining parameters, based on a statistical method 
under various cutting conditions, using the response 
surface methodology and a (34) full factorial design of 
experiments, Makadia and Nanavati [8] have 
developed a quadratic model with a 95% confidence 
level. Özel and Karpat [9] used regression and artificial 
neural network models for predicting the surface 
roughness and tool wear in hard turning of AISI H11 
steel with Cubic Boron Nitride (CBN) tools inserts. 
The results showed that decreasing the feed rate and 
increasing the cutting speed resulted in a better surface 
roughness . Hamdi Aouici et al. [10] have analysed the 
effects of the cutting speed, feed rate,  work piece 
hardness and depth of cut on the surface roughness 
and cutting force components in the hard turning of 
AISI H11 steel  hardened to (40, 45 and 50) HRC, 
using cubic boron nitride tool. Their results showed 
that the cutting force components are influenced 
principally by the depth of cut and work piece 
hardness. On the other hand, both the feed rate and 
the work piece hardness have statistically significant 
influence on the surface roughness. Optimising the 
turning of raw workpieces of low-carbon steel with 
low cold pre-deformation to achieve acceptable 
surface roughness was the object of a study by Kopac 
et al. [11]. They considered the cutting speed, cutting 
tool material, feed rate and depth of cut as cutting 
parameters in machining of C15 E4 steel on a lathe. 
They used the Taguchi orthogonal array methods and 
the quality determinant of (the smaller the better) to 
calculate the signal to noise ratio. They observed that 
the cutting speed is the most powerful control factor 
of the process and the depth of cut is the third most 
influential factor. Ilhan Asilturk and Harun Akkus [12] 

conducted a parameters optimisation in CNC turning 
hardened AISI 4140 (51 HRC) with coated carbide 
cutting tools based on the Taguchi method to 
minimise surface roughness (Ra and Rz).The statistical 
methods of signal to noise ratio (SNR) and the analysis 
of variance (ANOVA) are applied to investigate the 
effects of the cutting speed, feed rate and depth of cut 
on the surface roughness. Results indicated that the 
feed rate has the most significant effect on Ra and Rz. 
In addition, the effects of two factor interactions of 
the feed rate-cutting speed and depth of cut-cutting 
speed appear to be important. They have also 
developed a model in order to determine the optimum 
cutting parameters for minimum surface roughness. 
The Taguchi optimisation of surface roughness and 
flank wear during the turning of DIN 1.2344 tool steel 
was used by Fuat Kara [13], where the optimum 
machining conditions were determined by 
investigating the surface roughness and flank wear 
depending on the machining parameters. The effects 
of the machining parameters on surface roughness 
and flank wear were found using the analysis of 
variance (ANOVA). Work by Abdul-lateef Al-
Abdullah et al.[14], showed that the surface roughness 
measured on all tools increased in parallel with 
increasing feed rate. Increasing the feed rate causes the 
cutting forces and vibration to increase along with an 
escalation of the chip volume lifted by the unit, all of 
which lead to increased surface roughness. In 
addition, the increase in the feed rate causes the 
temperature at the cutting tool-workpiece interface to 
rise. As with the cutting speed, the temperature 
increase in the interface also causes tool wear and, 
consequently, leads to surface roughness and 
deformation.The  study of Tourab Mohamed et al.[15] 
was conducted to determine a mathematical models 
statistically based on experimental design which allows 
to give the relationship between the two out 
parameters surface roughness and hardness, caused by 
the four internal roller-burnishing parameters called: 
burnishing speed, force, feed and number of passes of 
the tool. Their results showed that feed, burnishing 
force and speed are the most important and significant 
parameters to improve roughness surface, and feed, 
speed, burnishing force and number of passes are the 
most important and significant parameters to improve 
superficial hardness of S 355 J0 steel specimens. 
Analysis of the effect of machining parameters on 
surface roughness of stainless steel X153CrMoV12-1 
in CNC milling of slope surfaces with sintered carbide 
tool was the object of the research of Ondřej Bílek et 
al.[16]. They  have also determined linear regression 
models and probability dendrograms of similarities for 
cutting conditions, cutting tools and slope of 
machined surfaces. 

 In this paper, the principal objective is to predict 
and optimise the surface roughness values, of heat 
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treatable steel AISI 1050, in terms of cutting 
parameters such as the cutting speed, feed, and depth 
of cut with the search for the best appropriate models 
using Polynomial Regression, Surface Response and 
Statistical methods (ANOVA). It is also intended to 
determine the effects of the cutting parameters on the 
surface roughness. To calculate the constant and 
coefficients of these models, a calculation code on 
Matlab is used. From the above literature survey, it can 
be seen that no study has been carried out to study the 
effect of machining parameters using a third order 
polynomial model. The developed models (linear, 
quadratic and cubical) have been analysed and 
compared based on the increase of the correlation 
coefficient R², decrease of root mean square error 
(RMSE) and the analysis of the variance (ANOVA). 
At the end of the paper the cubic model of response 
surface optimisation was utilised to find the optimum 
cutting parameters values which correspond to the 
surface roughness and metal-removal rate optimal 
values. 

 Material and experimental conditions  

2.1 Material 

The tested material is a Heat treatable steel AISI 
1050 for which the chemical composition is given in 
Table 1. The hardness is equal to 188 HV. The studied 
material is supplied in the form of 60 mm diameter 
cylindrical rolled bars. This steel is used in the 
mechanical engineering after normalisation, 
improvement and surface hardening, for a variety of 
parts (crankshafts, connecting rods, camshaft and 
pinions). In the normalised state, it has a high 
resistance compared to low carbon steel but its 
ductility is lower. 

2.2 Machining of specimens and cutting tool used 

Our work is based on obtaining experimental 
results and setting up resources for turning a heat 
treatable AISI 1050 steel with general purpose carbide 
insert tool P15 type DNMG 15-06-08 with three 
cutting edges and mechanically fixed. This turning 
insert has been used during the whole experiment by 
rotating it to minimise the effect of cutting edge wear. 

The turning was carried out on a parallel universal 
lathe of the " MONDIALE GALLIC 16 N Center 
Lathe" type, with a maximum spindle rotation speed 
of 2000 rpm and a 7.5KW motor drive. The 
wortkpiece was mounted in a mixed assembly to 
ensure its good rigidity during machining (Fig.1). 
During this operation, lubrication is provided by 
means of an electric pump to preserve the mechanical 
and metallurgical characteristics of the material. 

The machining tests are conducted considering 
three cutting parameters: the cutting speed (Vc), the 
feed (f) and the depth of cut (Ap) with 5 variation 

levels. In doing so, a total of (53 = 125) cutting 
experiments are carried out as shown in Table 2.

2.3 Roughness measurement  

The surface roughness obtained after machining 
with the conditions mentioned above, is measured on 
the surfaces separated by grooves on the same test 
piece using a roughness tester of the SURFTEST SJ-
310 type with electronic inductive diamond sensor 
(Fig.2). The measurements were carried out normal to 
the cutting direction. To avoid roughness 
measurement errors, the same path is used with only 
one direction of the left or right probe [17]. The center 
line average parameter Ra is used to characterise the 
roughness. It is defined as the average arithmetic mean 
deviation of the ridges and furrows. The length 
examined is 4.0 mm with a 0.8 mm basic span. This 
roughness was directly measured on the work piece, 
without dismounting from the lathe, to minimise 
measurement uncertainty due to carrying on 
operations. Each measurement was repeated three 
times at least to increase the average value accuracy. 
The experimental results and the standard deviation of 
the measured roughness Ra are shown in Fig.3. A low 
standard deviation can be seen which indicates that 
the values tend to be close to the mean of set. 

Tab. 1 Chemical composition of AISI 1050 Steel 

Elements C% Mn% SI% S% P% 

Composition 
in % 

0.48 0.6 0.25 0.030 0.027 

Tab. 2 Cutting parameters 

Depth of cut 
(mm) 

Feed 
(mm/rev) 

Cutting 
speed(m/min) 

0.5 0.05 50 

1.0 0.1 100 

1.5 0.15 150 

2.0 0.2 200 

2.5 0.25 250 

 

Fig. 1 Tool-Piece assembly on the lathe 
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Fig. 2 Roughness measuring tool assembly 

 Polynomial regression  

The aim of this section is to show details of the 
Bivariate and trivariate polynomial regression models 
(BPR and TPR) developed to estimate surface 
roughness using cutting conditions. When there are 
more than one independent variable, the model is 
called a multiple regression model and the regression 

is termed as multivariate regression. In the following, 
we develop the multiple regression models (BPR and 
TPR) and calculate their parameters. Two and three 
variables polynomial regression of total degree n 
models can be constructed respectively as follows [18]: 
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Where:  x, y and z represent the cutting conditions 

(Ap, f and Vc) and P represent the surface roughness 
Ra. 

Using the above models we can estimate the sur-
face roughness with Bivariate Quadratic Polynomial 
Regression Model, Bivariate Cubic Polynomial Re-
gression Model, Trivariate Quadratic Polynomial Re-
gression Model and Trivariate Cubic Polynomial Re-
gression Model, shown in table 3 (appendix). 

  

Fig. 3 Standard deviations of surface roughness measurement 

 Modeling, analysis and discussion of re-
sults   

Modeling and analysis of experimental data 

The models obtained take into consideration the 
linear, quadratic, cubic and interaction effects. The 
regression coefficients of these models allow the 
relationship between the surface roughness and the 
three studied parameters (feed f, depth of cut Ap and 
cutting speed Vc) to be expressed. These coefficients 
are obtained using a calculation code on Matlab.  

Table 3 gives the set of models obtained and their 

coefficients of determination (correlation) R², which 
define the variation ratio of the results of the model 
and those of the experiment. When this coefficient 
(R²) approaches unity, this means that the model is 
perfectly suited to the measurement results of the 
envisaged output responses. The Root Mean Square 
Error (RMSE) is also an evaluation factor for the 
model. Variables are gradually introduced into the 
model according to a criterion based on the increase 
in the coefficient R². Their selection can be challenged 
after introduction of a new variable according to the 
same (R²) criterion. 
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These models (linear, quadratic and cubic) 
generated for the same experimental data sets are 
compared and are shown in Fig 4. It should be noted 
that in models combining two variables (linear, 
quadratic and cubic) the two most influential factors 
are the feed (f) and the cutting speed (Vc). 

For the models with all variables and their 
interactions, the cubical model given in eq.3 is the 
most appropriate model with a correlation coefficient 
R²=0.9480, AdjustedR²= 0.9385 and RMSE= 0.4723. 
This means that 93.85% of the roughness variations 
are explained by the model, and 6.15% consequently 

remain unexplained. The value of the adjusted 
determination coefficient (AdjustedR²) of this surface 
roughness model represents a correction of R², which 
allows taking into account the number of variables 
used in the model. Both ratios show a good correlation 
between this model and the experimental data. So, 
The cubic model was, therefore used for further 
analysis. The second most appropriate model is still 
the cubic one with only two variables f and Vc (R²= 
0.9303, AdjustedR²= 0.9249 and RMSE= 0.5464). 
This leads us to suggest that the feed and the cutting 
speed are the most influential parameters.
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In order to confirm the effect of the input 
parameters on the surface roughness, an analysis of 
variance (ANOVA) was applied on the selected 
model. The model is considered to be statistically 
significant if the probability (p-value) is less than 0.05 
(95% confidence). A low p-value indicates statistical 
significance for the corresponding source of 
responses. The percentage contribution of machining 
parameters was estimated based on the sum of squares 
of responses. The relative importance of factor Ap 

influencing the surface roughness was computed as 
the percentage contribution (PCAp) using: 

 100´=
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SS
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PC  (4) 

The sum of squares due to a factor is equal to its 
total squared deviation from the overall mean. In the 
present study, there were 25 experiments for each 
factor at each level. The sum of squares due to factor 
Ap (SSAp) was computed using:
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Where, RaAp1, RaAp2, RaAp3, RaAp4 and  RaAp5 are the 
mean of Ra at the levels 1, 2, 3, 4 and  5 of the factor 
Ap, respectively, and  Ram is the mean of responses. 
Similarly, the total sum of squares due to factor f (SSf) 
and Vc (SSVc) and their respective percentage 
contribution PCf  and PCVc were computed as detailed 

above. 
The total sum of squares (SSTotal) was computed 

using:  

 
( )å -=

125

1

2

1 amaApAp RRSS , (6) 

 
Fig. 4 Surface Roughness evolution with cutting conditions 

 
The results of the ANOVA are summarised in ta-

ble 4. It is important to observe that the p-values are 
less than 0.05 in most of cases. So obtained model is 

considered to be statistically significant. It can be seen 
that the terms chosen in the model have significant 
effects on the responses. More precisely, it is 
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established that the cutting speed and the feed are the 
most influential. This confirms the suggestion made in 
modelling and analysis (section 4.1). Some terms are 
less significant on generation of surface roughness:  
(f.^2, f^2.*Vc, f.^3, Ap.*f, Ap.*f.^2, Ap.^2.*f, Ap.^3 
and Ap.*f.*Vc). Similar observations  were also made 
by Dureja et al. [19], H. Aouici et al. [10]. and  S. 
Benlahmidi, et al[20], especially for second order 
terms and bi- interaction parameters , except cutting 
speed Vc with Dureja and Aouici which is not 
significant parameter in their model. The result of the 
percentage contribution of cutting conditions on 
response surface roughness is shown in Fig.5. 

The principal aim of this study is to predict the sur-
face roughness values corresponding to the cutting pa-
rameters but we can also determine the effects of 
cutting parameters on surface roughness. The surface 
roughness obtained can be analyzed in three different 
states according to the variation of cutting parameters: 
Firstly the parameters were simultaneously variable as 
shown in Fig.6. In this case we have a complex repre-
sentation which makes the interpretation difficult.  
The second state is that one of the parameters is vari-
able while the other two are constant. This represen-
tation has been preferred for the analysis of the effects 
of cutting parameters on surface roughness, and some 
plots of surface roughness according to this configu-
ration have been presented in Fig.7 (a–c), Fig.8 (a–c) 
and Fig.9 (a–c). Thirdly, one parameter is kept con-
stant as the other two parameters are variable. It is 
thus possible here to plot 3D surface graphs for the 
surface roughness as shown in Fig.10 (a-c) and they 
are essential. The plots of these 3D surfaces can be 
used to approximate the surface roughness values for 
any appropriate combination of the input parameters 
such as cutting speed, feed and depth of cut. 

 
Fig. 5 Percentage contribution of parameters  

 
Fig.7 shows that a good surface roughness can be 

obtained for a higher cutting speed and it is clear that 
the surface roughness decreases quickly with 
increasing cutting speed. In Fig.8 it can be seen that 
reducing the feed improves the surface roughness and 

more particularly at a cutting speed of Vc=50 m/min.  
The depth of cut has a slight effect on the surface 

roughness whose variation curve is roughly horizontal 
as shown in Fig.9. 

 
Fig. 6 Effects of cutting parameters on surface roughness 

 

 

 
Fig. 7 Effects of cutting parameters on surface roughness vary-
ing cutting speed while keeping depth of cut and feed are con-

stant 
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Tab. 4 Analysis of Variance 

Source DF Seq SS Contribution% Adj SS Adj MS F-Value P-Value 

Regression 19 507.825 94.8% 507.825 26.7276 100.67 0.000 

Ap 1 0.524 0.1% 1.728 1.7275 6.51 0.012 

f 1 83.66 15.62%  2.96 2.96 11.15 0.001 

Vc 1 247.447 46.19% 18.864 18.8643 71.05 0.000 

Ap.^3 1 0.959 0.18%  0.702 0.7023 2.64 0.107 

Ap.^2.*f 1 0.102 0.02% 0.38 0.38 1.43 0.234 

Ap.^2.*Vc 1 0.203 0.04% 5.323 5.3227 20.05 0.000 

Ap.^2 1 0.593 0.11% 1.157 1.1567 4.36 0.039 

Ap.*f.^2 1 0.445 0.08% 0.002 0.0017 0.01 0.936 

Ap.*f.*Vc 1 14.808 2.76% 0.134 0.1339 0.5 0.479 

Ap.*f 1 1.2 0.22% 0.121 0.1208 0.46 0.501 

Ap.*Vc.^2 1 74.589 13.92% 1.352 1.3517 5.09 0.026 

Ap.*Vc 1 27.921 5.21% 5.903 5.9029 22.23 0.000 

f.^3 1 0.145 0.03% 0.796 0.7964 3 0.086 

f^2.*Vc 1 3.562 0.66% 0.065 0.0655 0.25 0.621 

f.^2 1 0.414 0.08% 0.738 0.7378 2.78 0.098 

f.*Vc.^2 1 8.662 1.62% 7.297 7.2971 27.48 0.000 

f.*Vc 1 11.112 2.07% 7.003 7.0027 26.38 0.000 

Vc.^3 1 1.391 0.26% 30.948 30.9478 116.56 0.000 

Vc.^2 1 30.089 5.62% 30.089 30.0895 113.33 0.000 

Error 105 27.878 5.2% 27.878  0.2655 

Total 124 535.703      100.00% 

 

 

 
Fig. 8 Effects of cutting parameters on surface roughness vary-
ing feed while keeping depth of cut and cutting speed constant 
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Fig. 9 Effects of cutting parameters on surface roughness vary-
ing depth of cut while keeping cutting speed and feed constant 

4.2 Response surface  

The relationship between the different operating 
variables and the studied response is illustrated in the 
three-dimensional representations of the response 
surfaces below. Figs.10.a gives 3D surface graphs for 
the surface roughness while the feed and cutting speed 
vary and the depth of cut is kept constant at a value of 
Ap = 0.5 mm. It indicates that surface roughness 
decreases when cutting speed increases whereas it 
increases with increase in feed. It can also be deduced 
from this figure, that the surface roughness (Ra) is 
statistically significant (Table 4). Fig.10. (b and c) give 
the graphs of the area for surface roughness at a feed 
of 0.2 mm/rev and Vc= 50 m/min respectively. They 
indicate that the depth of cut generally has a small 
influence on the surface roughness, only for some case 
(f=1.5mm/rev) explained by tool wear or machine 
vibration. In Fig.10 (a and c) it can also be observe that 
while Vc =50 m/min, the effect of feed (f) is very 
important relatively to other cutting speed values. The 
cutting speed increase from 50 to100 m/min rapidly 
reduces the surface roughness due to the reduction in 
built up edge (BUE) formation tendency. which is in 
agreement with the results found by D. P. Selvaraj et 
al. [21]. Work conducted by Kopac et al. [11] showed 
that cutting speed is the most powerful controlling 
factor for achieving the desired surface roughness in 
fine turning process, higher cutting speeds resulting in 

smoother surfaces. The effect of feed (f) on surface 
roughness is also very important. Similar results were 
also made by Paulo Davim [7]. He showed that cutting 
speed has a greater influence on the roughness 
followed by the feed, while the depth of cut has no 
significant influence on surface roughness. 

 

 

 

Fig. 10 3D Surface graphs for (Ra): (a) as the cutting speed 
and feed vary, (b) as the depth of cut and cutting speed vary, 

and (c) as the depth of cut and feed vary 

 Response optimisation 

One of the most important aims of the experi-
ments is to optimise values of cutting parameters (cut-
ting speed, feed and depth of cut) which corresponds 



November 2020, Vol. 20, No. 5 MANUFACTURING TECHNOLOGY ISSN 1213–2489 

 

600  indexed on: http://www.scopus.com  

to optimal surface roughness and productivity (metal-
removal rate MRR). To this regard, the use of the re-
sponse surface optimisation and composite desirabil-
ity is an ideal technique to identify the combination of 
input variable settings (cutting parameters) that jointly 
optimise the surface roughness and productivity val-
ues in the turning process. In the present study the 
goal is to minimise surface roughness (Ra) and max-
imise the metal-removal rate. The Metal Removal Rate 
(MRR) Q (mm3/min) was calculated by the relation-
ship below.  

 cVfApQ ´´´=1000  (7) 

The RSM optimisation results for the surface 
roughness parameter (Ra) and productivity are shown 
in Fig.11 and Table.5. The optimal set of cutting pa-
rameters values are (250m/min, 0.2398 mm/rev and 
2.3383 mm) for cutting speed, feed and depth of cut, 
respectively. The optimised surface roughness param-
eter and productivity are:  

Ra =2.7567 µm and Q = 95.341*103 mm3/ min. 

Tab. 5 Response optimisation for surface roughness parameter and productivity 

Parameters Goal 
Optimum Combina-

tion Lower Target 
Up-
per 

Predict re-
sponse 

Individual 
desirability 

d Ap f Vc 

Ra(µm)) 
Mini-
mum 2.3383 

 
0.2398 

 
250 

 

 0.62 10.58 2.7567 0 .785 

Q(mm3/min) 
Maxi-
mum 

1.25*103 156.25*103  95.341*103 0.607 

Composite desirability  D = 0.6905 

 

Fig. 11 Plot of response optimisation for surface roughness parameter and productivity

 Conclusion 

The objective of developing surface roughness 
models is to provide a quantifiable reference so that 
the effects of different cutting conditions can be 
quantified. In the present study an attempt has been 
made to investigate the effect of cutting parameters on 
surface roughness and to develop models for 
predicting the surface roughness. Different models 
have been developed, namely linear, quadratic and 
cubical models with the interaction of two or all 
studied cutting conditions using polynomial 
regression. To evaluate these models and quantify the 

effects of cutting parameters on surface roughness, 
statistical analysis and surface response were used 
respectively. The study shows that: 

 The third order polynomial model (cubical model) 
developed with three variables, despite its complexity, 
was the best appropriate model that gives the best fit 
to experimental results,  whereas the predicted surface 
roughness from this model is very close to the values 
measured experimentally with a determination 
coefficient R²=0.9480. 

Whatever the number of variables considered the 
cubic model offered the best performance.  
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The statistical analysis ANOVA indicate that most 
model terms are significant and only few terms are less 
significant to the generation of surface roughness. The 
most significant factor on the parameter Ra is cutting 
speed Vc in the first position with a contribution at 
46.19% of the total variation. The next largest 
contribution on Ra comes from the feed f and 
interaction of depth of cut  with cutting speed 
Ap.*Vc.^2 with a 15.62% and 13.92% contribution 
respectively. The depth of cut Ap present also a 
statistical significance on surface roughness 
parameters but with a value less than 0.10%.   

The value of surface roughness is directly related 
to the feed and inversely related to cutting speed. 

The optimum combination of machining 
parameters input values have given the optimal 
surface roughness and metal-removal rate  when using 
response surface optimisation and composite 
desirability.   

Acknowledgement 

The authors would like to thank the General Di-
rectorate of Scientific Research and Technologi-
cal Development (DGRSDT, Algeria) in acknowl-
edgement of their support to the present work 
(PRFU N° A11N01UN35012018004). 

References 

 BOOTHROYD, G.W.A. (2006). Knight, funda-
mentals of machining and machine tools, third ed., 
CRC press, Taylor & Francis Group. ISBN 1-
57447-659-2. 

 WHITEHOUSE, D.J. (1994). Handbook of Sur-
face Metrology, Institute of Physics Publishing, 
Bristol, UK. ISBN 0-7503-0039-6. 

 FANG, X. D.; SAFI-JAHANSHAHI, H. 
(1997). A new algorithm for developing a refer-
ence-based model for predicting surface rough-
ness in finish machining of steels, International 
Journal of Production Research, 1997, Vol. 35: Nr.1, 
pp. 179-199. 

 CHOUDHURY, I.A., EL-BARADIE, M.A. 
(1997). Surface roughness in the turning of 
high-strength steel by factorial design of exper-
iments. Journal of Material Processing Technology, 
1997, Vol. 67, pp. 55– 61. 

 DURMUS, K. (2009). Prediction and control of 
surface roughness in CNC lathe using artificial 
neural network, Journal of materials processing tech-
nology, 2 00 9, pp. 3125–3137.   

 ESCALONA, P.M., CASSIER, Z. (1998). In-
fluence of critical cutting speed on the surface 

finish of turned steel, Wear, 1998, Vol. 218, pp. 
103–109.

 DAVIM, J.P. (2001). A note on the determina-
tion of optimal cutting conditions for surface 
finish obtained in turning using design of ex-
periments, J. Mater. Process. Technol., 2001, Vol. 
116, pp. 305–308. 

 MAKADIA A.J.,  NANAVATI, J.I. (2013). 
Optimisation of machining parameters for 
turning operations based on response surface 
methodology, Measurement, 2013, Vol. 46, pp. 
1521–1529. 

 OZEL, T., KARPAT, Y. (2005). Predictive 
modeling of surface roughness and tool wear in 
hard turning using regression and neural net-
works, International Journal of Machine Tools & 
Manufacture, 2005, Vol. 45, pp. 467–479.  

 HAMDI, A., MOHAMED A.Y., KAMEL C., 
TAREK M., JEAN-FRANÇOIS R. (2012).  
Analysis of surface roughness and cutting force 
components in hard turning with CBN tool: 
Prediction model and cutting conditions opti-
mization, Measurement, 2012, Vol. 45, pp. 344–
353. 

 KOPAC, J., BAHOR, M., SOKOVIC, M. 
(2002). Optimal machining parameters for 
achieving the desired surface roughness in fine 
turning of cold preformed steel work pieces, 
Int. J. Mach. Tools Manuf., 2002, Vol. 42, pp. 707–
716.  

 ILHAN, A., HARUN, A.  (2011). Determining 
the effect of cutting parameters on surface 
roughness in hard turning using the Taguchi 
method, Measurement, 2011, Vol. 44, pp.1697–
1704 

 FUAT, K., (2017). Taguchi optimization of sur-
face roughness and flank wear during the turn-
ing of DIN 1.2344 tool steel”, Material Testing, 
2017, Vol. 59, Nr.10, pp. 903-908.

 ABDUL-LATEEF, A., HAMID, A., CHEE, 
P.L., WISAM A.Y. (2018). Force and tempera-
ture modelling of bone milling using artificial 
neural networks, Measurement, 2018, Vol. 116, 
pp. 25-37. 

 BÍLEK, O., PATA, V., KUBIŠOVÁ, 
M.,,ŘEZNÍČEK, M. (2018). Mathematical 
methods of surface roughness evaluation of ar-
eas with a distinctive inclination, Manufacturing 
Technology, Vol.18, No. 3, pp. 363-368. 

 Mohamed, T., Hamid, H., Salah, A., Salim, 
B.(2017). Effect of Roller Burnishing Parame-
ters on Roughness Surface and Hardness of 



November 2020, Vol. 20, No. 5 MANUFACTURING TECHNOLOGY ISSN 1213–2489 

 

602  indexed on: http://www.scopus.com  

Unalloyed S 355 J0 Steel by Using Response 
Surface Methodology. Manufacturing Technol-
ogy, vol. 17, pp. 602-610. 

 BLOUL,  B., BOURDIM, A., AOUR, B., 
HARHOUT, R. (2017). Measurement default 
diagnostics of a oughness meter with TS100 
head using a rectified specimen and solved by 
fuzzy logic estimator, Int J Adv Manuf Technol, 
2017, Vol. 92, pp. 673–684. 

 BOJANOV, B., XU, Y. (2003). On polynomial 
interpolation of two variables, J. Approximation 
Theory, 2003, Vol. 120, pp. 267–282. 

 DUREJA, J.S., GUPTA, V.K., DOGRA, M. 
(2009). Design optimization of cutting condi-
tions and analysis of their effect on tool wear 
and surface roughness during hard turning of 

AISI-H11 steel with a coated mixed ceramic 
tool, J. Eng. Manuf., 2009, Vol. 223, pp. 1441–
1453. 

 BENLAHMIDI, S.,  AOUICI, H.,  
BOUTAGHANE, F.,  KHELLAF, A.,  
FNIDES, B.,  YALLESE M.A. (2017). Design 
optimization of cutting parameters when turn-
ing hardened AISI H11 steel (50 HRC) with 
CBN7020 tools, Int J Adv Manuf Technol, 2017, 
Vol. 89, pp. 803–820. 

 PHILIP, S. D., CHANDRAMOHAN, P.,  
MOHANRAJ, M. (2014). Optimization of sur-
face roughness, cutting force and tool wear of 
nitrogen alloyed duplex stainless steel in a dry 
turning process using Taguchi method, Measure-
ment, 2014, Vol. 49, Nr. 1, pp. 49205–215. 

 
  


