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Abstract: A Phasor Measurement Unit (PMU)  is  a  monitoring  device,  which  serves  in  
checking  the  power    system condition    by    measuring    voltage    and    current    phasors    
along  with  frequency    at    a  particular    node.  The  basic  structure  of  PMU  consists  of  
Synchronization  Unit,  Measurement  Unit  and  Data Transmission Unit. The Measurement Unit 
has three components: Anti-aliasing filters, Analog-to-Digital Converter and Phasor measurement 
Unit/ Processor.  An anti-aliasing filter ensures that all the analog signals have the same phase 
shift and attenuation thus  assuring  that  the  phase  angle  differences  and  relative  magnitudes  
of  the  different  signals  are unchanged. Anti-aliasing filters made up  of  an  analog  front  end  
and  a  digital  decimation  filter  are  far  more  stable  as  far  as  aging  and  temperature 
variations are concerned.  IEEE C37.118 standard stipulates  that  it  is  mandatory  to  use  the  
filter  for  avoiding  any  aliasing  errors.  Out of  various  analog filters,  the  Butterworth  has  been  
preferred  due  to  its  flat  response  in  pass-band  as  compared  to  other filters. In this work, it is 
attempted to design anti-aliasing filters to be used in PMUs. The design problem is  formulated  as  
an  optimization  task  that  is  solved  using  the  Taguchi  method.  The  results  show  better 
performance  in  terms  characteristics  compared  to  the  conventional  filters.  The designed 
filters may be employed as building blocks in modern PMUs. 
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1. INTRODUCTION 
Filtering in its raw definition is any of the 
various mechanical, physical, electrical or 
biological operations that separate solids 
from fluids liquids or gases by adding a 
medium through which only the fluid can 
pass. The fluid that passes through is called 
the filtrate. In circuit theory, a filter is a circuit 
capable of passing or amplifying certain 
frequencies while attenuating other 
frequencies. Thus, a filter can extract 
important frequencies from signals that also 
contain undesirable or irrelevant frequency. 
Filters can be placed in one of two classes: 
analog or digital. Analog filters can be 
passive where circuits contain passive 
elements like capacitors, inductors and 
resistors or active in which the circuits use an 
operational amplifier (op amp) as an active 
device in combination with some resistors 
and capacitors. Digital filters are 
implemented in software using a digital 
computer or special purpose digital hardware 
[2,13,14].    
Ideally, filters are classified into four basic 
filter types: low-pass, high-pass, band-pass 
and all-pass. They are classified according to 
theirs magnitude and phase responses [1-
15]. Some states of art practical 

approximations have been proposed [2-3]. 
The first filter approximation is the 
Butterworth or maximally-flat response. It 
exhibits a nearly flat pass-band with no ripple 
and the roll off is smooth [3,7,14]. Another 
approximation to the ideal filter is the 
Chebychev or equi-ripple response. This filter 
has ripple in the pass-band amplitude 
response [3,7,14]. A third filter is the Bessel 
filter characterized by a linear phase 
response with respect to frequency [3,7,14].  
Due to the presence of the denominator of 
the transfer function, the stability condition of 
the filter should be taken into account in the 
optimal design [16], [17–22], [23–26], [27–
33], [34], [35], [36], resulting in a constrained 
optimization problem. Several sufficient 
conditions [17–19], [21], [25], [27], [33] have 
been established for the parameterization 
that represents the filter’s denominator by a 
single polynomial. The triangle-based stability 
conditions [16] are necessary and sufficient 
and have been incorporated into several 
design procedures [26], [28], [29] that 
formularize the filter’s denominator by 
cascaded second-order sections (SOSs).  
In [28], variable transformation is used to 
convert the finite stability region into the 
entire coefficient space, such that the original 
constrained design problem becomes an 
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unconstrained one in the transformed space. 
However, the transformation increases the 
nonlinearity of the objective function, which 
makes it hard to find good (global optimum) 
solutions in general. In [29], a perturbed 
stability triangle is proposed to guarantee the 
SOS to have its zeroes inside a circle of 
given radius. It is combined with the Gauss–
Newton strategy, resulting in an improved 
design. In [30], the conditions presented for 
the SOS with zeroes inside a circle of given 
radius enclose a triangular stability domain 
and can be easily incorporated into any 
constrained optimization formulations based 
on the SOS parameterization.  A method that 
divides the overall design of an IIR filter into 
successive designs of its second-order 
sections is presented in [35], where one 
section is first designed, and then, another 
section is appended until all sections are 
designed. 
The goal of this paper is to employ the 
Taguchi optimization technique to design 
anti-aliasing filters that can be embedded 
within a Phasor Measurement Unit (PMU). 
The design criteria are to meet some set 
properties that are: maximum passband 
flatness; an acceptable passband-to-
stopband transition and to have a linear 
phase response. The designed filters are 
compared to the state of art designs such as 
the Butterworth, Chebychev and Bessel 
types. It is found that the proposed approach 
produces filters with better properties as the 
state of art prototypes meet a single objective 
at a time from the set of objectives in the 
optimization task. The designed filters exhibit 
a compromise between these properties and 
hence are very useful for practical PMUs. 
 

2. PROBLEM FORMULATION 
Practically, an active Filter transfer function 
can be written as 

i
ii sbsa
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)1(
)( 2

0         (1) 

Where i denotes the second order section. A0 
is the OPAMP gain. ai and bi denote the 
coefficients of the second order section of the 
overall filters and s is the Laplace transform 
operator. 
The transfer function in (1) evaluated on the 
j axis is a complex quantity. Hence, it has 

amplitude (called the magnitude response) 
and an argument (called the phase 
response). Both quantities are functions of 
the frequency . Ideally, the magnitude and 
phase responses of a low-pass filter can be 

optimized to satisfy the following three 
criteria: 
1)   A maximum passband flatness, 
2)   An immediate passband-to-stopband 
transition, 
3)   A linear phase response. 
A typical practical lowpass filter magnitude 
response is shown in Fig.1.a. Ideally, the 
designed filter must have a magnitude 
response like the one shown in Fig. 1.b. 
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Fig. 1 Low-Pass filter magnitude response:  
(a) Practical filters. (b) Ideal Filters 

 
It is clear that to achieve this (although not 
practically realizable), the designer must 
make the passband as flat as possible and 
the transition band as small as possible. 
To satisfy the two set objectives, the 
following sub-objective functions are used: 

- The maximum flatness is ensured if the least 
squares error between the designed filter and 
the flat response in the passband (set as 1) is 
minimized. This is given mathematically as: 

n
pGainf 2

1 )1(               (2) 

- The smallest possible transition band is 
obtained if the difference between the ending 
frequency of the passband and the starting 
frequency of the stopband is minimized. This 
is formulated mathematically as: 

psf2                   (3) 

To satisfy the three criteria, a weighted 
function is used in the optimization task 
written as: 
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21 fffobj                     (4) 
To formulate the design problem as an 
optimization task, the following steps apply: 
1. Define filter specifications: The order, 
frequency of operation, cutoff frequency, 
bandpass maximum ripple, transition 
bandwidth, bandstop maximum ripple and the 
OPAMP gain.  
2. Decide on the sectioning pattern of the 
filter (depending on whether the order is odd 
or even.) 
3. Set the limits of the coefficients in each 
section. 
4. Apply the Taguchi method using the 
function in (4).    
 

3. THE TAGUCHI OPTIMIZATION 
METHOD 

Thanks to the rapid development of computer 
technology, many optimization techniques 
such as genetic algorithm (GA), particle 
swarm optimization (PSO), simulated 
annealing (SA), artificial neural network 
(ANN), and gradient-based techniques have 
been implemented by computer codes. 
Taguchi’s method was developed based on 
the concept of the orthogonal array (OA), 
which can effectively reduce the number of 
tests required in a design process [37]. It 
provides an efficient way to choose the 
design parameters in an optimization 
procedure.  
Before presenting the Taguchi procedure, it 
is worth understanding what OAs are and 
how are they generated [37]. Let S be a set 
of s symbols or levels (the simplest symbols 
are integers 1, 2, 3…). A matrix A of N rows 
and k columns with entries from S is said to 
be an OA with s levels and strength t (0< t< k 
) if in every N×t subarray of A, each t-tuple 
based on S appears exactly the same times 
as a row. The notation OA(N, k, s, t) is used 
to represent an OA. 

Initialization procedure 

The optimization procedure starts with the 
problem initialization, which includes the 
selection of a proper OA and the design of a 
suitable fitness function. The selection of an 
OA(N, k, s, t) mainly depends on the number 
of optimization parameters. In general, to 
characterize the nonlinear effect, three levels 
(s = 3) are found sufficient for each input 
parameter. Usually, an OA with a strength of 
2  (t = 2) is efficient for most problems 
because it results in a small number of rows 
in the array.  
 

Design of input parameters 

The input parameters need to be selected to 
conduct the experiments. When the OA is 
used, the corresponding numerical values for 
the three levels of each input parameter 
should be determined. 
In the first iteration, the value for level 2 is 
selected at the center of the optimization 
range. Values of levels 1 and 3 are 
calculated by subtracting/adding the value of 
level 2 with a variable called level difference 
(LD). The level difference in the first iteration 
(LD1) is determined by the following 
equation: 

 
1levels ofNumber 1

MinMaxLD      (5) 

Where Max is the upper bound of the 
optimization range and Min is the lower 
bound of the optimization range. 

Conduct Experiments and Build a Response 
Table 

After determining the input parameters, the 
fitness function for each experiment can be 
calculated. These results are then used to 
build a response table for the first iteration by 
averaging the fitness values for each 
parameter n and each level m using the 
following equation: 

mniOAi
iav f

N
sF

),(,

                     (6) 

Identify Optimal Level Values and Conduct 
Confirmation Experiment 

Finding the largest fitness value ratio in each 
column can identify the optimal level for that 
parameter. When the optimal levels are 
identified, a confirmation experiment is 
performed using the combination of the 
optimal levels identified in the response table. 
This confirmation test is not repetitious 
because the OA-based experiment is a 
fractional factorial experiment, and the 
optimal combination may not be included in 
the experiment table.  The fitness value 
obtained from the optimal combination is 
regarded as the fitness value of the current 
iteration. 

Reduce the Optimization Range 

If the results of the current iteration do not 
meet the termination criteria, the process is 
repeated in the next iteration. The optimal 
level values of the current iteration are used 
as central values (values of level 2) for the 
next iteration. To reduce the optimization 
range for a converged result, the LDi is 
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multiplied with a reduced rate (rr) to obtain 
LDi+1 for the (i + 1)th iteration: 

iii LDiRRLDrrLD )(1      (7) 
Where RR(i ) is called reduced function. 
When a constant rr is used, RR(i)  =rri . The 
value of rr can be set between 0.5 and 1 
depending on the problem. The larger rr is, 
the slower the convergence rate.  
If LDi is a large value, and the central level 
value is located near the upper bound or 
lower bound of the optimization range, the 
corresponding value of level 1 or 3 may 
reside outside the optimization range. 
Therefore, a process of checking the level 
values is necessary to guarantee that all level 
values are located within the optimization 
range. If an excessive situation happens, 
reassigning the level value for the parameter 
will be performed. A simple way is to use the 
boundary values directly. 

Check the Termination Criteria 

When the number of iterations is large, the 
level difference of each element becomes 
small from equation (7). Hence, the level 
values are close to each other and the fitness 
value of the next iteration is close to the 
fitness value of the current iteration. The 
following equation may be used as a 
termination criterion for the optimization 
procedure: 

  valueconverged
1LD

LDi               (8) 

Usually, the converged value can be set 
between 0.001 and 0.01 depending on the 
problem. The iterative optimization process 
will be terminated if the design goal is 
achieved or if equation (8) is satisfied. 

4. RESULTS AND DISCUSSIONS 

From the previous discussions, the design of 
the analog anti-aliasing filter aims at finding 
the coefficients ai’s and bi’s in equation (1) so 
that: 

- The magnitude response in the 
passband is as flat as possible; 

- The transition band is as small as 
possible; and 

- The phase response is linear in the 
passband. 

A  6th order filter is to be designed. For 
simplicity, we consider A0 to  be  1.   A  
comparison of the Butterworth, Chebychev 
and Bessel state of art filters in terms of 
magnitude and phase responses is shown in 
Fig. 2. 
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Fig. 2 Magnitude and phase responses of 
benchmark filters: (a) Magnitude response;  

(b) Phase response 

To test the designed filter, a synthetic test 
signal has been applied to it and Fig. 3 
shows both the input and filtered waveforms. 
It can be seen that the designed filter 
succeeded in filtering properly the waveform 
and a purely sinusoidal waveform has been 
produced. 
 

 

 

 

 

 

 

 
Fig. 3 The designed filter under test signal 

5. CONCLUSION 

The application of the Taguchi optimization 
method to design an anti-aliasing filter has 
been dealt with in this paper.  The objectives 
of the filter design were to match a desired 
magnitude response while having a linear 
phase. The Taguchi optimization method has 
succeeded in reaching the optimal design in 
terms of the desired requirements by 
achieving a compromise between them. The 
optimized filter has been tested and it 
showed good performance with required 
characteristics which makes it of practical 
use in Phasor Measurement Units. 
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