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Abstract i 
 

Abstract 

 

Cardiac diseases rank first in the cases of death all over the world; Electrocardiogram 

(ECG) bears valuable information about the person health state. Therefore, ECG became a 

standard tool for heart disease exploration. Beats segmentation is a necessary step before 

disease type identification. The segmentation is based on the QRS detection. In this thesis, we 

proposed three different methods for ECG segmentation. First, an optimized Pan-Tompkins 

algorithm is developed, in which the parameters of the benchmark algorithm are optimized 

using the particle swarm optimization (PSO). Second, the QRS is detected in the time-scale 

domain; the stationary wavelet transform is applied to the filtered ECG signal to enhance the 

QRS wave, and then thresholding is carried out to extract the wanted signal. Finally, a 

machine learning technique is used to identify the QRS. In particular, a deep learning 

autoencoder is trained by standard datasets for the purpose of QRS detection. 

 

 

Keywords: Electrocardiogram (ECG), Pan-Tompkins algorithm, Stationary Wavelet 

Transform, Autoencoders, QRS, Deep learning. 
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I.  Introduction 

 

Human is constantly working toward commodities and modeling features for easier 

adaptation. Human can think, and his intelligence is very developed in comparison with other 

mammals, it seems that this intelligence is his principal adaptation tool, and over thousands of 

years, it gave him a clear dominance advantage over all other species on this planet. 

Moreover, since human existence, he elaborated many tools and instruments at the aim of 

simplifying his daily life. Hence, from fire discovery to silicon-based technology, long time 

duration, many efforts and crucial resources have been exploited to make this progress 

possible. 

Computer engineering society incidence is very important regarding the influence of its 

algorithms on daily life and the large usage of electronics devices embedding software used in 

different fields. Indeed, computers are present on all administrations, universities, and many 

other offices, also embedded devices find their integration in special fields, e.g., avionics, 

cars, telecommunications, factories, oil extraction, hydraulic instruments, etc. Thus, silicon-

based instruments are now part of human life, and are indispensable for human, each time a 

computer or an electronic instrument is introduced, tasks will be rapidly executed, efforts 

become considerably reduced and human intervention will be restricted or completely not 

required, especially, with the emerging revolutionary filed of artificial intelligence, which 

completely changes the human perception of machines on its environment, from biometric 

recognition to person speech identification, passing by autopilot and self-driving cars, 

artificial intelligence begin to impose itself and will invade many unexplored fields in the near 

future. In particular, we mention the emerging field of electronics or medical instruments 

based on computers. These instruments make clinicians confidant, faster in their decisions, 

and anticipate emergency situations. For instance, while automatic cancer detection from 

scanner imaging systems can identify cancer regions, the majority of medical staff misses 

them. 

The computer speed and the memory size are increasing since decades; this allowed the 

design of more accurate intelligent techniques, also emerging systems with high precision 

offered opportunity to better physical phenomena monitoring and anticipation. 

Signal processing techniques offer a precious decision maker by the hidden information 

extraction and the features fed to the classifier. In deep learning, huge training set size 

provides robust and more accurate prediction, opening large horizons for semi-perfect 

systems and instruments redefining completely the field of the artificial intelligence, and the 

human vision about machines. Furthermore, the automatic features extraction on that way 

reduces engineer’s intervention, decreases the algorithmic complexity for possible 

implementation on embedded devices and decreases in many cases the execution time to a 

reasonable duration. 
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I. 1. Motivations 

The Electrocardiogram is by far the most used tool for the purpose of diagnosis. Therefore, 

a large number of scientists have attempted to develop automatic algorithms to help the 

medical staff in obtaining fast and accurate decisions. The two major fields regarding the 

ECG analysis are the QRS waveform detection and arrhythmia classification. The reported 

results on common databases are very promising for the future of automatic ECG signal 

exploitation. However, the challenge remains, and the problem of perfect ECG analyzer is 

still open. Indeed, ECG signal variability is the main challenge. Although, it seems that the 

ECG signal is periodic, it is in fact varying from one person to another (inter variability), and 

varies from one beat to another for the same person (intra variability). Factors such as stress, 

respiration and instruments imperfections generate additive noise at different frequencies, 

which increase automatic processing failures probability. Hence, necessity of investigation of 

automatic ECG processing field is indispensable. Moreover, heart diseases are the first human 

mortality cause. In addition, reaction time for certain cardiac pathologies, like tachycardia, is 

crucial and each second is important, hence elaboration of an accurate and fast automatic 

analysis tool is necessary. 

I. 2. Approach 

The content of this thesis focuses on our developed techniques. It is an attempt to 

constructing an automatic analysis tool for arbitrary ECG signals. We will give more details 

of the proposed QRS algorithms and their comparison with the state-of-the-art algorithms. 

The developed algorithms throughout this thesis preparation are parts to be integrated on a 

global system. We project to design and implement a fully automated arrhythmia 

classification software and hardware suitable for implementation on different environments 

and machine architectures, all interconnected with possibility of data exchange under 

availability of a network interface or external storage memories. It is worth noting that the 

main challenge of the developed system is the accuracy of detection, either for QRS 

waveform or arrhythmia classification. Initially, our main concern was the design and 

development of new algorithms for beat separation commonly called QRS detection. Beat 

separation is very important as it has a big impact on the final result of any automatic 

arrhythmia classification.  

The work realized throughout the present thesis could be inserted in an automatic diagnosis 

system as shown in Fig. 1. The developed software can be implemented on computers and 

Android devices. It can acquire the ECG signal from any kind of recording devices such as 

USB storage or SD Card storage, in addition, database is included on the software for patient 

history retracing, permitting future stored statistics processing. Also, devices and machines 

under the same router can exchange data, detection and classification results for database 

saving in addition to possibility of data visualization either on smartphone or computers. 

Moreover, mobility offered by this software when installed on Smartphone or tablets can be 

very useful especially for ambulatory recordings. Our major contribution on Fig. 1 is an 

artificial intelligence block, which consists in developing an automatic system for ECG signal 

processing that involves a QRS detector and arrhythmia identification. 
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Fig.  1 : Ambitious automatic heart health decision diagram 

I. 3. Major Contributions 

The main works that have been done in the frame of this Ph. D. dissertation could be 

summarized in the following: 

 Introduction of the Particle Swarm Optimization (PSO) algorithm to the Pan and 

Tompkins algorithm for an optimal QRS detection. Regarding the simplicity and 

low complexity of the well-known Pan-Tompkins algorithm, we started from the 

fact that a number of parameters are not optimal; hence the improvement of the 

detection is still possible. After the optimization by the PSO algorithm, the 

detection error decreased from 0.675% to 0.169% on the MIT benchmark database, 

confirming the validity of our hypothesis. 

 A robust QRS detector using the Stationary Wavelet Transform (SWT) is proposed. 

The developed scheme uses solely the first decomposition level SWT coefficients. 

It turns out that the scheme is suitable for noise-free signals and noisy 
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environments. A very promising QRS detection error rate of 0.228% was obtained 

using the benchmark MITDB. Furthermore, the performance on noisy 

environments surpasses all existing methods evaluated on NSTDB, with 10.12% of 

detection error, confirming superiority of this method. 

 A deep learning neural network to QRS detection algorithm containing Stacked 

Autoencoder (SA) and MLP classifier was developed. Levenberg-Marquardt has 

been used for the training of the Stacked Autoencoder in the aim of better results 

than gradient descent. AAMII recommendation training and testing samples have 

been enlarged with samples from SVDB, INCART DB and EDB for a more general 

and efficient learning scheme. The proposed architecture was tested on a huge 

number of samples collected from many widely used datasets. RR intervals and 

initial estimation features are inputted to second and third stages MLP estimation 

for final QRS positions identification. The obtained detection error rate is 0.82% 

using more than 1400000 beats from five different databases demonstrating the 

good learning of our proposed architecture for the real features present on training 

set, guaranteed by the potentially global convergent LM optimization algorithm and 

enlargement of training dataset. 

 Implementation of a complete software tool operating under Android environment 

or computers for patient health monitoring: The developed methods, especially for 

QRS detection, have been embedded in medical software; realized in the purpose to 

aid the medical staff, especially cardiologists in their daily tasks. 

I. 4. Dissertation Organization 

This thesis has been organized into six chapters, the first one helps the reader to understand 

the interest by the elaboration of this document, and the second presents a historical 

description of the chronological appearance and evolution of the sensing instrument. The 

electrocardiogram, classification delimitation, QRS detection, and proposed schemes are 

described on chapter three. Chapter four explains the proposed solutions to identify the 

arrhythmia. The last chapter presents the achievements of the present dissertation and the 

remaining challenges to surmount. 
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II.  State of The Art Overview 

II. 1. Introduction 

Early on the 80s, field leader engineers have investigated automatic analogue and digital 

ECG signal processing [1-2]. They addressed field challenges exploiting an important number 

of mathematical and algorithmic tools [1-2]. Throughout this chapter, we will review the 

proposed methods for QRS detection, alternatively called signal delineation or segmentation. 

During this investigation, we revealed that some published papers were distinguished by 

quality, importance of the introduced contributions, originality of the research and the 

obtained results. We divided the published methods into four categories corresponding to the 

nature of the processing to extract QRS positions, and the domain in which the detection is 

done. The categories are: time-domain, frequency domain, scale-domain, and learning-based 

approach.  

II. 2. Time Domain Methods 

A number of time-domain QRS detection methods have been proposed in the literature. 

This type of methods was introduced first before any other type. Consequently, this kind of 

methods has attracted the attention of researchers for a long period of time. Perhaps this is due 

to their high accuracy, low complexity and simplicity of implementation. Furthermore, the 

parameters of time-domain methods are obtained analytically from global knowledge of target 

characteristics of the processed signal, and conditions of signal recording. Whereas, other 

methods like learning approaches are data dependent. 

In the following, we describe several works for the identification of the different QRS 

complexes present on the input signal. Hamilton and Tompkins [3] proposed a scheme shown 

in Fig. 2 determining the influence of varying QRS detection rules on the final detection error. 

The proposed detection rules were optimized for an optimal detection. 

 

Fig.  2 : Hamilton and Tompkins’s Block diagram QRS detector algorithm. The preprocessor does linear and 

nonlinear digital filtering and peak analysis to produce event vectors. The vectors are processed by decision rules to 

locate QRS complexes [3] 
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Fig.  3 : Gutiérrez-Rivas’s et al block diagram of the proposed detector [5] 

 

Fig.  4 : Block diagram of the preprocessing stage for the Gutiérrez-Rivas method [5] 

 

Fig.  5 : Block diagram of the proposed FSM (Finite State Machine) for the Gutiérrez-Rivas method [5] 

The noise on their developed chain is attenuated using a baseline removal comprising low-

pass and high-pass filters, and in parallel, peak detection with fiducial mark location is done. 

Simultaneously, the peak detection process extracts peaks positions, when fiducial mark 

examine and estimate the acceptable temporal occurrences of the QRSs. Then, from peaks 

positions and height and fiducial marks, an optimized version of the algorithm presented on 

[4] to determine the most probable QRS positions. Gutiérrez-Rivas et al [5] elaborated a 

simple processing scheme, with only a derivative, integrator and squarer, slightly different 

from the Pan-Tompkins algorithm [4] (see Fig. 3, 4), with a state machine of three states for 

thresholding as shown in Fig. 5, with low complexity, low resources consumption and better 

accuracy. Benmalek et al [6] utilized the same filtering steps like Pan-Tompkins [4], the chain 

illustrated in Fig. 6 is based on the fractional-order operators to determine the QRS positions. 

The elementary processing for this method are differentiation, squaring and smoothing. Two 

fractional order differentiators were used to decide about the appropriate positions of QRSs. 
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In particular, the input ECG signal is filtered for noise attenuation using the steps illustrated in 

Fig. 7. This filtering scheme is based on triangular filtering and the fractional order 

differentiation. Concerning the QRS positions identification strategy, fusion  of two parallel 

fractional order differentiation are employed (see Fig. 8), one of order comprised between 0.5, 

and 1, and the second in the interval 1 < 2𝛼 < 2; the QRS positions are then the maximum 

detected peaks. Ruha et al. [7] utilized amplitude gain amplification, a set of filters, and a 

noise suppressor filter. They also proposed a new strategy for decision on QRS positions. 

Ravanshad et al. [8] exploited an analogue to digital converter for noise suppression, and a 

level-crossing for QRS positions identification. In addition, two adaptive thresholds determine 

the real QRS positions. In [9], the detection of the QRS complexes from the input signal is 

done by MaMeMi filter developed by Castells-Rufas et al. This algorithm utilizes 

morphological filters to detect the present QRS complexes, and an adaptive thresholding 

extracts QRS positions. Saadi et al [10] introduced an interesting method, their optimized 

scheme shown in Fig. 9 for QRS detection has been validated on a very large set of data to 

guarantee reliability and efficiency. The proposed chain has been embedded on e-Patch 

system for real use. Indeed, the design and optimization of the proposed method is assessed 

over the MIT/BIH Arrhythmia and eTDB databases for the consistency of them, and its 

validation is done over the European ST-T database for its long duration to overcome the 

challenge of the variability of the ST-T segments. The different processing steps used to  

 

Fig.  6 : Benmalek’s preprocessing scheme [6] 

 

Fig.  7 : Digital Band-pass Filter Diagram for the method of [6] 
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Fig.  8 : Block diagram of the R-wave detector for the method of [6] 

estimate the appropriate QRS positions are shown in Fig. 10. The input ECG signal is first de-

noised with an FIR bandpass filter removing components outside the interval [5,22] Hz, the 

main goal of this processing is to enhance the QRS complexes and reduce noise components. 

Bandpass and lowpass filters have been designed to do this task; in addition, absolute value is 

applied to make the polarity positive. Then, smoothing operation consisting of an FIR average 

filter with an order of 8 is carried out to center the signal and gather all ECG waves on a 

unique slope. QRS complexes are identified making use of a search back procedure. This 

procedure exploits RR intervals estimations for long and short time and identifies QRSs from 

prescribed rules. Yakut and Bolat [11] proposed a very light QRS detector in terms of 

computation, the same thing for Tekeste et al. [12] where a low complex method for QRS 

detection and ECG compression has been developed. In [13], Nguyen et al. proposed the 

triangle template matching for the finding the QRS positions. Three different schemes have 

been proposed for QRS detection by Poli et al. [14], genetic algorithm optimization approach 

has been utilized to optimize the coefficients of linear and nonlinear filters introduced to 

detect QRSs and a final decision stage estimate the positions. 

Time-domain methods involve a variety of developed detectors. Of particular interest is the 

Pan and Tompkins algorithm [4], which is one of the widely used algorithms for QRS 

detection. It is an accurate method utilizing only differentiation, integration, and nonlinear 

transformation in addition to a thresholding strategy. It keeps a running estimation of the 

signal and noise levels. It uses a search back procedure to look for missed positions by initial 

knowledge of the interval between two successive beats. Christov et al. [15] used two 

adaptive approaches to distinguish between QRSs and no QRSs; the first approach computes 

the difference between amplitudes sum of one or more leads and a defined adaptive threshold. 

The second approach takes into consideration the interval between two successive beats. In 

[16], a wavelet denoising was used to suppress additive noise. In addition to a second noise 

suppression stage with a low and high pass filters. Finally, a decision stage is used to 

determine the QRS positions. Besides, the method of Suarez et al. [17] is based on the 

geometrical distance. It detects the QRS positions based on the knowledge of complex 

geometry represented by a genetic algorithm optimized model, then the signal is segmented 

using moving window, when a classifier extract the QRS complexes positions.  
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Fig.  9 : Saadi’s schematic overview of the study design [10] 

 

Fig.  10 : Schematic overview of the designed QRS complex detection algorithm of Saadi’s method. 𝑹𝑹𝒏 indicates the 

current RR interval, if a QRS complex is detected at the current sample, n [10]. 

Arzeno et al. [18] used differentiation, integration, and nonlinear transformation; their 

processing steps resemble Hamilton and Tompkins work [3] and the Hilbert transform. 

Morphological filters have been used for the detection of the QRSs by Zhang et al. [19]. Their 

thresholding strategy is based on the maximum amplitude. The method of [19] is illustrated 

by the processing blocks shown in Fig. 11. In particular, a 3M morphological filter extracts 

the shape and size information from the input signal, the differentiator works as a baseline 

drift removal, then differential absolute value is computed, similar to energy transformation, 
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Fig.  11 : Block diagram of Zhang’s QRS detection algorithm [19] 

this aims to attenuate extra QRS complexes waves influence, and finally, rules based on 

maximum regions amplitudes are fixed to decide about the final output, and the estimation of 

the appropriate QRS complex positions. In [3], a QRS detection scheme has been proposed 

involving a low pass filter, a high pass filter, an integrator and a nonlinear transformation. 

Zhang et al. [20] contributed to the QRS detection field by the implementation on an FPGA 

device of a designed QRS detector. Manikandan et al. [21] made use of a noise removal, and a 

Gaussian function for R peaks location extraction. 

II. 3. Frequency Domain 

Frequency analysis based methods generally produce poor performance. This is due to the 

nonstationary behavior of the ECG signal. However, some researchers attempted the QRS 

detection using frequency domain representation. The use of the standard Fourier transform is 

not possible because the time information is totally lost in the frequency domain. 

Alternatively, a time-frequency approach is used, which is the short time Fourier transform 

(STFT).  The STFT preserves the time information over a predefined window. Uchaipichat et 

al [22] applied thresholding on the resulting STFT components to keep dominant frequencies 

only. Then R peaks decision stage is apply to identify the R peaks positions. Manikandan et al 

[23] detected QRSs in the frequency domain, making use of Shannon energy and Hilbert 

transform. 

II. 4. Time-Scale Domain Methods 

Time-scale domain methods are characterized by their accuracy and high ability of slopes 

identification, which is the main feature of the R peak. In addition, by scale variation, 

frequency range variation is guaranteed. While wavelet-based methods could change their 

basis to match the analyzed input signal, the Fourier transform bases are restricted to 

sinusoidal functions only. Time-scale domain techniques demonstrated their efficiency in 

more than a field of application, such as image processing (Road extraction, object 

detection…). In general, very interesting works have been proposed for QRS detection. For 

instance, Shivappriya et al. [24] relies on the detection of R waves at the second scale from 

the de-noised ECG signal, employing approximation coefficients at the third decomposition 

level. In addition to a differentiator, squaring operation, and a moving window average 

process were used. Merah et al [25] method involves a number of processing steps based on 

wavelets for the identification of the center of the QRS complex, the R peak. They used the 

Stationary Wavelet Transform (SWT) at the ninth decomposition level with the Symlet-4 
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mother wavelet. In [26], the same mother wavelet as [25] and SWT have been used till the 

sixth decomposition level. Then, an inverse SWT is performed after zeroing/modifying some 

coefficients, before final identification of the QRS positions using a well-known thresholding 

strategy. Li et al [26] utilized the decomposition levels from 1 of the discrete wavelet 

transform to separate the QRS from P and T waves, and then thresholding was applied to 

extract QRS positions. Also, we can find one of the first wavelet-based methods, Kadambe et  

 

Fig.  12 : Flow chart of Kadambe’s DyWT-based QRS detector [27] 
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al [27], which segments the input signal using a hamming window as depicted in Fig. 12, so 

the detection of QRSs is performed employing a cubic split mother wavelet. The level of 

decomposition is estimated instantly by comparing the results of different decomposition 

levels. Bouaziz et al [28] proposed the detection strategy shown in Fig. 13 and made use of 

the Daubechies 6 mother wavelet and the detailed coefficients at levels from one to seven for 

the identification of the different QRS complexes present on the input signal; decomposition 

levels one, two and eight have been used for noise identification and suppression. Power 

spectrum computation of the fourth and fifth decomposition levels allow the detection of the 

QRS complexes by the thresholding rules shown in Fig. 14. The decomposition steps for this 

method were performed using the discrete wavelet transform (DWT), also from thresholding 

diagram (see Fig. 14), thresholding level is fixed to be 10% of a computed function value g, 

and this threshold is applied to determine QRS positions. The detection is achieved by 

considering the maximum amplitude for segments of 58 samples (about 0.161 seconds). 

Behbahani et al [29] and Haddadi et al [30] also employed multi-level decompositions for the 

identification of the QRS complexes. Behbahani et al [29] used the levels from three to five, 

in addition to a new thresholding scheme as a decision rule. Haddadi [30] exploited the 

approximation coefficients of levels one to eight to de-noise the signal with the ‘db4’ mother 

 

Fig.  13 : Block diagram of Bouaziz’s QRS detection algorithm [28] 
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Fig.  14 : Flowchart of R-wave detection algorithm for Bouaziz’s method [28] 

wavelet, and then level four details coefficients are computed for QRS complex dominance. A 

new thresholding strategy was developed for the identification of QRS complexes. Jenkal et al 

[31] used first and second level details coefficients for the de-noising of the input signal. 

Then, third, fourth and fifth levels were used for thresholding to determine the QRS 

complexes. In [32], authors utilized the fourth and fifth levels of decomposition for the 

detection of QRSs, and the seventh for de-noising; the ‘db6’ has been used for this algorithm, 

and a thresholding scheme has been proposed taking into consideration the amplitude and the 

interval between two successive R peaks. Martínez et al [33] made use of the DWT with 

levels from 1 to 4, before final estimation using thresholding rules. Karimipour et al. [34] 

proposed a new QRS detection algorithm; they used wavelets for de-noising and detected 

QRS using curves interpretation as shown in Fig. 15. The input signal is segmented with a 

window length of 256 samples, corresponding to a sampling frequency of 360 Hz to 711 ms, 

so wavelet de-noising using the discrete wavelet transform (DWT) is done on the window for 

noise suppression by means of the daubechies 4 (db4). They used the decomposition levels 

from one to eight, first derivative curve, area and average curve in addition to arc length 
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Fig.  15 : Block diagram of Karimipour’s real-time P-QRS-T detection–delineation algorithm [34] 
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Fig.  16 : Kholkhal’s QRS complex detection approach [35] 

curve, estimating the necessary elements for this scheme to decide about the presence of the 

QRSs. A number of rules were used to estimate the exact QRS complex positions. Kholkhal et 

al. [35] detected the QRS complex from the scheme illustrated in Fig. 16; they detected the 

QRS from wavelet coefficients after filtering for de-noising. They fused two filters, the first is 

a median filter for noise removal, and the second is a low-pass filter with a cutoff frequency 

of 25 Hz for better purification. To make QRS complex waves dominant for efficient 

thresholding, they used the continuous wavelet transform (CWT) with a reverse biorthogonal 

wavelet mother, especially the ‘rbio2.2’. It has been found that scale 3 is appropriate for 

detection with good attenuation of the P and T waves. The nonlinear filtering involved an 

absolute function for positive parity, an averaging filter with a window length of 10, a median 

filter with a window length of 20, and a dynamic threshold over periods of length T = 2s. 

II. 5. Learning Technics 

II. 5. 1.  Traditional Artificial Intelligence Technics 

The number of published algorithms based on traditional artificial intelligence is limited 

compared to the signal processing approaches. The traditional artificial intelligence methods 

can be organized into two categories, namely, the Hidden Markov Models (HMM) and the 

Artificial Neural Networks (ANN). Therefore, our description considers only those two 

categories. As a sample of the HMM-based approach to QRS detectors, Andreão et al [36] 

manually selected samples from different databases for the training and the construction of the 

detection models. Then, the input signal is preprocessed using the continuous wavelet 

decomposition (CWT) for signal waves taking form for training and testing. The Gaussian 

density function deviation was used to model P, QRS, and T wave characteristics forms from 

a structured architecture for HMMs states. Later, the same author Andreão et al [36] presented 

a new work which can be considered as an extension of the previous one [37]. The first part is 

similar to the previous one, while the second consists of a set of stages. Generally, models 

illustrated in Fig. 17 and Fig. 18 provides an overview of the schematic and modeled ECG 

waves by the authors to describe and predict all the ECG cycle occurrences. Six states have 

been modeled, namely, isolation (ISO) corresponding to the transition from the T to the P 

wave, P, QRS and T states represent the P, QRS and T waves, and transition to one of those 

states when being on the PQ or ST states correspond to a transition state between ECG waves. 

Thomas et al [38] trained six knowledge-based models to represent the different QRS wave 

forms and non QRS wave forms. They conditioned the input signal using the CWT transform 

with Haar mother wavelet. In [39], the authors developed a number of architectures with a 

dynamic running recursive model parameters adaptation. They improved their initial proposal 
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Fig.  17 : Andreão’s et al Left-right HMM model of a normal beat [36] 

 

Fig.  18 : Beat model composed of connected HMM of each beat waveform and 

segment. The transition from P to ISO models ECG signals with P waves not 

conducted by a ventricular activity. The transition from ISO to PQ models ECG 

signals with supraventricular arrhythmias without visible P wave. [36] 

by time-domain preprocessing where they trained the HMMs models by forward-backward 

algorithm; a model for QRSs and another for non-QRSs. They considered the QRS process as 

Markovian and defined an HMM states machines for it. The detection is based on Viterbi 

algorithm and maximum probabilities following the maximum-likelihood rule, with a 

consideration of minimum durations of the QRSs and the non-QRSs. 

On the other side, detection through Artificial Neural Networks (ANN) is faster and low cost 

compared to HMM-based methods. Unfortunately, this method is far from being accurate, 

which is its main drawback. However, many methods have been proposed in the literature 

based on ANNs. For example, Xue et al [40] one of the first works introducing ANNs to QRS 

detection. This method consists of an ANN network and a de-noising filter to identify QRSs 

with processing steps shown in Fig. 19. The processing scheme of this approach consists of 

FIR filters and artificial neural networks. The two adaptive filters remove noise and feed a 

matched neural network filter. In [4], authors employed squaring, moving averaging and 

thresholding. Saini et al. [41] used the K- nearest neighbor (KNN) classifier to detect the 

QRSs from the gradient curve of a bandpass-filtered signal as depicted in Fig. 20. They pre-

trained the KNN classier on record MA1-001 of the CSE database and record 100m of the 

MIT database. The QRS complexes were detected by binary classification. 
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Fig.  19 : Block diagram of ANN-based adaptive matched filter for detection of QRS complexes [40] 

II. 5. 2.  Deep Learning Techniques 

The deep learning (DL) approaches improve by far the classification of QRSs and non QRSs. 

Indeed, they offer new opportunities to developers and researchers to push further the 

frontiers to new limits. DL approaches enable researches to determine the appropriate class to 

an input attribute directly without any preprocessing, whereas traditional algorithms perform 

very poor. Actually, DL approaches are able to determine autonomously the appropriate 

features without any intervention of humans. Furthermore, DL requires large number of 

training samples and produces high generalization of the extracted features. Also, deep 

learning techniques began to be largely used in the ECG signal processing and classification 

field. Thus, the use of deep learning approaches started invading the field of biomedical signal 

processing. Subsequently, we will try to present some prominent works in this domain. Šarlija 

et al. [42] developed a 300-points convolutional neural network (CNN) and clustering on the 

neural output for QRS detection, the input signal is preprocessed using baseline wander 

removaland normalization is used to prevent incomprehensible results. Zhong et al. [43] used 

a CNN architecture for a reliable fetal QRS complex detection using only a single channel or 

single lead, without preprocessing the incoming ECG signal. The CNN has been used another 

time for QRS detection by Xiang et al. [44], this time employing its 1D variant. They used a 

temporal domain differentiation as an input feature to the deep neural, see Fig. 21, and two 

CNNs with architecture shown in Fig. 22 to determine the appropriate automatic features for 

detection. The first used differentiation input and the second used differentiation and 

averaging. Finally, the extracted features fed a multi-layer perceptron (MLP) classifier for the 

estimation of QRS positions. 
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Fig.  20 : Saini’s et al Schematic representation of intermediate steps for KNN algorithm implementation [41] 

 

Fig.  21 : Xiang’s QRS complex detection method [44] 

II. 1. Conclusion 

Several automatic techniques for the QRS detection have been reviewed throughout this 

chapter. A brief description of each method, its main features and some results have been 

presented. Many challenges have been overcome during the last three decades in term of QRS 

or R peak detection, accurate techniques have been proposed to resolve this physiological 

obstacle toward perfect heart state health analysis and interpretation. Now, a solid background 

of knowledge has been constructed. Among these methods, Martínez et al [33], Saadi et al 

[10], Gutiérrez-Rivas et al [5] and Kholkhal et al [35] achieved high accuracy when assessed 

on validation sets. However, disregarding achievements, many developed methods produce 

catastrophic results on certain scenarios of ECG signals. Also, high complexity of the 

processing steps of many algorithms increases significantly the detection time, which makes 

them unsuitable for real-time applications. Therefore, many improvements of those methods 
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can be considered. Hence, this field of research is still open to contributions and developing 

new methods that hopefully would overcome the present shortcomings. The coming chapters 

are an attempt to fill this gap. Indeed, we proposed three methods for the QRS detection. 

 

Fig.  22 : Xiang’s 1-D CNN structure of the QRS detection [44] 
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III.  Swarm Intelligence Approach to QRS Detection 

III. 1. Motivations and Approach 

Among the accurate QRS detection algorithms that have been introduced to the literature 

during the last decades is the Pan-Tompkins algorithm. Its main features are the simplicity of 

implementation and low algorithmic complexity. At the aim of investigating the time-domain 

field, which does not require high skills and advanced transformations, we believe that many 

parameters of the well-known Pan and Tompkins algorithm were not optimal. Therefore, we 

used the particle swarm optimization algorithm to search for the set of the parameters that 

produce the minimum error of QRS detection. 

III. 2. Introduction 

New method development requires the choice of the appropriate development model. I 

used the cyclic model shown on Fig. 23 for the design and development of the different 

proposed algorithms during my dissertation. The adopted approach is advantageous compared 

to other models like spiral or V models. It allows feedback to rectify imperfections and 

perform enough tests to ensure the efficiency of the developed algorithm. Further, for the 

development of each method, a thorough literature review is carried out, then we choose 

appropriate tools and datasets. After that, we design and code independently the different 

units. Finally, we evaluate the obtained results, if they are competetive, we pass to the 

development of another method, otherwise, we improve the present one. 

- 
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A great importance is given to the detection of the QRS wave shown on Fig. 24, 

comprising Q, R, and S waves, as it is essential for heart rate determination and beat type 

segmentation and recognition. The detection of the R wave, which is the peak of the QRS, is 

tricky since it has a time-varying morphology and is subject to physiological variations due to 

the patient state and noise [16]. The RR interval is the interval between two successive R 

peaks; identifying RR intervals permits to segment the ECG records. 

Usually, the ECG signal is corrupted by many sources of noise. Among common types of 

noise, we name the 50/60 Hz power line interference, the baseline drift due to respiration, 

and the electrode contact noise. To attenuate these disturbances and enhance the QRS 

components, many suggestions of the bandpass filtering have been proposed with the 

following frequency ranges, [5, 15] Hz, [8, 15] Hz or [8, 20] Hz, etc. [54]. 

A variety of processing steps have been adopted for QRS detection before the decision 

process, which is usually carried out by thresholding. These processing steps can be 

categorized according to the domain in which the detection is done. The two major categories 

are the signal processing category and the learning techniques category. In this chapter, we 

explore time-domain methods. The ECG signal is not exclusively composed of the QRS  

 

Fig.  25 : The five operations of the Pan-Tompkins algorithm. 

complex wave alone. Hence, we need to attenuate the P and T waves and enhance the QRS 

complex wave. Usually, the signal processing steps consist of differentiation, integration and 

nonlinear transformation. The only remaining issue to implement the detector is the type of 

filters and their frequency range, as well as the number of samples per window for integration.  
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We think that the performance of many existing algorithms could be enhanced if the 

filtering parameters were optimized. In particular, many parameters of the Pan and Tompkins 

algorithm [4] are selected empirically. For example, the cutoff frequencies of the bandpass 

filter were determined by knowledge of an estimated band frequency of different sources such 

as muscle artifacts and stress. Also, the length of the averaging window and the parameters of 

the threshold are selected empirically. Since the problem at hand cannot be formulated in a 

closed-form formula, traditional optimization methods that rely on the computation of the 

gradient cannot be used. Therefore, we resort to evolutionary computational optimization 

methods. Among these methods, Particle Swarm Optimization (PSO) has gained a lot of 

popularity during the last two decades. The popularity of the PSO may be due to its 

simplicity, few code lines, and it provides potential solutions in many complex situations. 

Thus, we propose to use the particle swarm optimization algorithm to look for the best values 

of the parameters of the popular Pan-Tompkins algorithm such as cut off frequencies of the 

bandpass filter, the length of the averaging window, the threshold, etc, to improve its 

capability of detection for the QRS complexes. 

III. 3. Pan & Tompkins Algorithm 

Since our contribution is about improving the Pan-Tompkins algorithm, we start by 

describing the main steps involved in this algorithm. The main steps of the original Pan-

Tompkins algorithm are depicted in Fig. 25. The algorithm comprises five steps which we 

will briefly describe in the following. The bandpass filter eliminates noise from the input raw 

ECG signal. The differentiator is introduced to detect abrupt variations in the signal. The 

nonlinear transformation is the square of the differentiated signal used to reduce the 

amplitudes of the T and P waves compared to the R peak amplitude wave (after 

normalization) and to make the values of the signal positive. The aim of the moving window 

integration is to make the P, Q, R, S, and T peaks appear together in a unique peak in order to 

reduce the number of false detections.  

The decision strategy relies on the use of two main parameters which are the signal level 

and the noise level. The former is computed from a running estimation of the signal level 

whereas the latter is computed from a running estimation of the noise level. In particular, the 

first type of thresholding which is a running level of the separation between the amplitudes of 

the signal and the amplitudes of noise is formed by combining the estimated levels of the 

signal and noise. This type is used in normal cases. When no R peak is detected in a long time 

using the first type of thresholding, a search back procedure is launched with another type of 

thresholding. This second type of thresholding uses new rules for R peak detection.  

In the training phase of our optimization algorithm, we estimate the threshold levels of the 

signal and noise from the few first seconds of the ECG input signal. First, we search for all 

the peaks present in this time interval and the minimum interval between them. We decide 

that a peak is an R wave if its amplitude is greater than the threshold level, and we update the 

level of the signal. Otherwise, if the amplitude of the peak is greater than the threshold level 

and the mean of amplitudes in this region is less than or equal to a certain percentage of the 

mean of amplitudes in the region of the previously detected R wave, and the interval between 

the current peak and the last detected R peak is within a certain value, then the current peak is 
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a T wave and we update the noise level. If the amplitude of the current peak is less than the 

level of the search back threshold, it is a noise peak; we update the level of noise then. At 

each peak, we test if a search back is needed, and we update the threshold levels according to 

the levels of the signal and noise. 

The search back procedure checks if the current RR interval is within a predefined interval. 

Otherwise, we reduce the level of the signal, if the current RR interval is greater than a 

predefined limit, then a search back is needed, we update the level of the signal. If the 

maximum amplitude between the last detected peak and the current peak is greater than or 

equal to the threshold level of the search back procedure, the corresponding position is 

considered as an R peak. 

III. 4. The Particle Swarm Optimization (PSO) 

PSO is a heuristic algorithm, inspired by fish flocking and birds flying. It has been used in 

a variety of optimization problems and usually delivers interesting results. It involves many 

characteristics that are common to heuristics search algorithms such as initial population, 

calculation of the current outputs, and mutation of the population to potentially reach better 

solutions. The PSO algorithm has many advantages; among them, we cite fast convergence, 

simplicity of implementation using only a few lines of code, and a reduced number of 

parameters. The potential solutions of the population of the PSO are called particles; they are 

usually initialized with random values. Each particle (pi) has its proper knowledge of its 

environment, represented by the present values that are the input values to the fitness 

function, and the values that are the best set of parameters that give the best output value (pbi) 

for a certain particle. The present values of a particle are adjusted at each generation by the 

velocity vector (vi). 

The algorithm possesses a global best (pg), which is updated during each generation; it 

represents the best solution found so far, which is social knowledge. The steps involved in the  

 

Fig.  26 : The steps involved in the PSO algorithm. 
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PSO algorithm is illustrated in the block diagram of Fig. 26. 

During each generation, the PSO algorithm updates its velocity vector and particles 

positions according to the following two equations. 

𝑣𝑖(𝑡 + 1) = 𝑤𝑣𝑖(𝑡) + 𝑐1𝑟1(𝑡)(𝑝𝑏𝑖(𝑡) − 𝑝𝑖(𝑡)) + 𝑐2𝑟2(𝑡) (𝑝𝑔(𝑡) − 𝑝𝑖(𝑡)) …(3) 

𝑝𝑖(𝑡 + 1) = 𝑝𝑖(𝑡) + 𝑣𝑖(𝑡 + 1) …(4) 

Where w stands for the inertia factor introduced as a regularization factor in (1) to prevent 

premature convergence. r1 and r2 are random numbers drawn from a uniform distribution in 

[0, 1], c1 and c2 are constants. 

III. 5. The Proposed Optimization Approach 

III. 5. 1.  PSO Setup 

As mentioned above the parameters of the PanTompkins are selected empirically. In 

particular, the coefficients involved in the design of the low pass and high pass filters are  

 

Fig.  28 : Flowchart showing the steps involved in the proposed optimization scheme. 

chosen to be integers in order to reduce the computation load of the algorithm and make it 

appropriate for real-time implementation on microprocessors. 
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Fig.  27 : Optimization strategy particle update diagram. 
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Also, the frequency response of the final resulting bandpass filter is approximately 5-11 Hz 

[4]. We think that this range is so narrow to represent the QRS wave complex which needs a 

wider range to represent its abrupt change in the time domain. Hence, we propose a new 

procedure to look for optimal values of the Pan-Tompkins algorithm which allows better QRS 

detection. For this purpose, we formulate the optimization problem as a space of parameters 

searched employing the PSO algorithm. 

We opted to a multi-mono optimization approach as shown in Fig. 27. The multi 

optimization approach drives the algorithm near the global optimum. Then the mono 

optimization approach minimizes the error of each parameter. 

Given the raw ECG signal which contains 24 hours of recording of the MIT-BIH Dataset, 

we applied the Pan-Tompkins algorithm with initial values of [4]. Our PSO-based algorithm 

tries to change the values of the Pan-Tompkins parameters to look for potential new best 

values for the next iteration. The main steps of the proposed optimization procedure are 

depicted in Fig. 28. The proposed scheme is driven by the performance of the ability of the 

Pan Tompkins algorithm to detect the QRS complex. The PSO adjusts the parameters of the 

Pan-Tompkins algorithm in such a way that the detection of the QRS complex improves with 

time. 

In general, the most challenging thing in the application of the PSO is finding the 

appropriate fitness function. In our optimization scheme which relies on the PSO algorithm, in 

order to explore the solution space which depends on many parameters, we investigated three 

different fitness functions. The first fitness function is the total error, the second and the third 

ones use the sensitivity and the positive predictive value with different weights. In particular, 

the first fitness function is given by 

F1(X) =
FP+FN

TP+FP+FN
     …(5) 

Where X is the vector of the parameters, F1(X) considers only the total detection error. In 

Equation (5), TP stands for true positive beats, which is the number of beats effectively 

present in the record and effectively detected by the algorithm. False Positive (FP) is the 

number of beats detected by the algorithm, but not effectively present in the record. False 

Negative (FN) is the number of beats not detected by the algorithm, but present in the record. 

The second fitness function is given by 

F2(X) = (100 − Se)2 + (100 − PPV)2   …(6) 

It is the Euclidian distance of the error based on the Sensitivity (Se) and the positive 

predictive value (PPV). The third fitness function is given by 

F3(X) = 0.75 ∗ (100 − Se)2 + 0.25 ∗ (100 − PPV)2  …(7) 

It is the weighted Euclidian distance of the error. In Equation (7) more importance is given 

to the sensitivity as compared to the positive predictive value due to the major attention given 

to this ratio by medical practitioners. In Equations (6) and (7); the sensitivity and the positive 

predictive value are defined as 
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Se =
TP

TP+FN
      …(8) 

PPV =
TP

TP+FP
      …(9) 

Sensitivity expressed by Equation (8) measures the ability of our detector to extract QRS 

complex positions. Indeed, the sensitivity increases with the reduction of the number of 

missed beats. Likewise, the positive predictive value described by Equation (9) measures the 

ability of our detector to reduce false detections; this is reflected by an increase in positive 

predictive value when FP decreases. Equations (8) and (9) are exploited in Equations (6) and 

(7) with different weights to measure their effectiveness in driving the optimization algorithm.  

Applying our proposed procedure using the adopted three fitness functions on the MIT-

BIH dataset has led to the results shown in Fig. 29. It is the variation of the fitness value as a 

function of the iteration number. We can see that F3(X)) converges faster than F1(X) and 

F2(X). Moreover, from Fig. 30, Equations (6) and (7) minimize better the error rate, and 

Equation (7) converges much faster than Equation (6). Furthermore, from Fig. 31 and 32, 

which represent the evolution of the sensitivity and positive predictive value, respectively, it 

is clear that using Equation (7) for optimization allows both the sensitivity and the positive 

predictive value increasing faster, while Equation (5) does not achieve a considerable 

improvement of the positive predictive value which gives rise to higher error rate than the 

other variants. 

In summary, after extensive simulations, for the rapid convergence, and the best 

approximation of the minimum error rate, we selected (7) as a fitness function for our 

proposed optimization approach. 

III. 5. 2.  Procedure 

The main steps of the proposed scheme are detailed in the following algorithm. 

Initialization 

 Set initial values for different parameters of the Pan-Tompkins algorithm (e.g., low 

cutoff frequency, high cutoff frequency, filter order, number of samples for the 

integration window, etc.,) to be the initial population of the PSO algorithm. 

 Choose a random initial value for the velocity vector. For each particle, evaluate 

the fitness function given by (5). 

 Store the position of each particle and label it as the best local position. 

 Save the position of the particle with the largest fitness function value as the best 

global position. 

Search Process (Parameters Update) 

 Update the values of the velocity of each particle using (1). 

 Update the position of each particle using (2). 

 Using the new particle coordinates compute the new fitness function of each 

particle. 



 

Swarm Intelligence Approach to QRS Detection 29 
 

 Update the best local positions and save the coordinates of the particle with the 

minimum fitness function as the best global position. 

Convergence check 

 Repeat the “search process” steps until the user pre-defined number of iterations or 

predefined accuracy is reached (convergence check). 

III. 6. Experimental Results and Discussions 

III. 6. 1.  Dataset Description 

For the sake of the assessment of the proposed optimization procedure, we conducted 

experiments based on the benchmark MIT-BIH dataset available online at [45]. It consists of  

 

Fig.  29 : The fitness function vs. the number of iterations. 
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Fig.  30 : The total error vs. the number of iterations. 

 

Fig.  31 : The sensitivity vs. the number of iterations. 
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Fig.  32 : positive predictive value vs. the number of iterations. 

48 records acquired from 47 subjects. Each record is 30 minutes long. The total number of 

beats used in our experiments is 109494. 

It covers a wide range of arrhythmia; hence, it contains a wide range of QRS shapes that 

constitute a big challenge for any detection system. The dataset was annotated independently 

by two experts. 

III. 6. 2.  Experimental Setup 

The PSO empirical parameters were selected according to the following configuration: The 

size of the swarm was fixed to 20 and the number of iteration was set to 550. The number of 

iterations has been set after many trials where it has been observed that the proposed 

algorithm converges after 500 iterations. The inertia weight was set to w=0.4 and both the 

cognitive coefficient c1 and the social coefficient c2 are set to 1. 

It is worth noting that the band-pass filter used in our optimization scheme is a Finite 

Impulse Response (FIR) filter. We preferred the FIR filter because of its intrinsic 

characteristics of stability. Though Infinite Impulse Response (IIR) filters design results in a 

lower filter order, it is necessary to check for stability every time the filter coefficients are 

updated. 

It is common to adopt as measures for the performance assessment of any QRS detection 

algorithm three measures, which are the total error represented by Equation (3), the sensitivity 

represented by Equation (6), and the positive predictive value given by Equation (7). 

III. 6. 3.  Results 

The obtained results at convergence for the optimized parameters of the Pan-Tompkins 

algorithm are summarized in Table 1. We note that most of the original Pan-Tompkins 

parameters were not optimal as the obtained results confirm. This is because the parameters 

were selected empirically. Our claim is supported by the results obtained by the proposed 
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optimization scheme evaluated on the MIT BIH dataset shown in Table 2. As expected, the 

obtained bandpass filter cutoff frequencies by our procedure [4, 24] Hz are wider than the 

ones of the original Pan-Tompkins algorithm, [5, 15] Hz. This allowed the detection of many 

QRS waves that were missed by the Pan-Tompkins algorithm. Overall, our scheme failed in 

detecting 185 beats only. Whereas, the optimization scheme converged to the same length of 

the averaging window (30 samples) and the same number of the average RR intervals (8 

intervals). 

Table 1 : The obtained Parameters of the Pan-Tompkins Algorithm at Convergence Using the Proposed Optimization 

Scheme. Initial Value Refers to The Value of The Parameter In Pan-Tompkins. 

Parameter New value(initial guess)(Unit) 

The low cutoff frequency of the bandpass filter 4 (5) (Hz) 

The high cutoff frequency of the bandpass filter 24 (15) (Hz) 

Order of the FIR bandpass filter 250 (3 IIR) 

Window length of the integrator 30 (30) (samples) 

Minimum two successive peaks distance 99 (72) (samples) 

Length of the window RR averaging 8 (8) (samples) 

Search back signal level percentage from the normal signal 

level 
1.5326 (2) 

Current peak update factor in the search back procedure 0.4427 (0.25) 

Signal level update factor in the search back procedure 0.7546 (0.75) 

Distance between the current sample and the last detected R 

peak in the search back procedure 
139 (72) (samples) 

Distance between the current sample and the current peak in the 

search back procedure 
83 (72) (samples) 

RR LOW LIMIT percentage from RR AVERAGE2 90.7% (92%) 

RR HIGH LIMIT percentage from RR AVERAGE2 116.74 % (116%) 

RR MISSED LIMIT percentage from RR AVERAGE2 160.44 % (166%) 

Distance between the current peak and the last detected R peak 119 (130) (samples) 

Length of the current peak region 31 (27) (samples) 

The factor of mean amplitudes of the R peak region 0.5634 (0.5) 

Current peak update factor for noise level estimation 0.2316 (0.125) 

Signal level update factor for noise level estimation 1.8228 (0.875) 
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Table 2 : Obtained Results over MIT/BIH Arrhythmia for the Optimal Proposed Scheme. The error is determined by 

DER(%) = 100*(FP+FN)/(TP+FP+FN). 

File 
Nb 

beats 
TP FPs FNs DER PPV Se 

100m 2273 2272 0 1 0.04 100 99.96 

101m 1865 1865 0 0 0 100 100 

102m 2187 2187 0 0 0 100 100 

103m 2084 2084 0 0 0 100 100 

104m 2229 2229 5 0 0.22 99.78 100 

105m 2572 2571 21 1 0.86 99.18 99.96 

106m 2027 2027 0 0 0.1 100 100 

107m 2137 2134 0 3 0.14 100 99.86 

108m 1763 1763 8 0 0.45 99.54 100 

109m 2532 2532 0 0 0 100 100 

111m 2124 2123 0 1 0.05 100 99.95 

112m 2539 2539 0 0 0 100 100 

113m 1795 1794 4 1 0.28 99.78 99.94 

114m 1879 1878 4 1 0.27 99.79 99.95 

115m 1953 1952 0 1 0.05 100 99.95 

116m 2412 2398 0 14 0.58 99.96 99.42 

117m 1535 1535 0 0 0 100 100 

118m 2278 2278 1 0 0.04 99.96 100 

119m 1987 1987 0 0 0 99.95 100 

121m 1863 1862 0 1 0.05 100 99.95 

122m 2476 2476 0 0 0 100 100 

123m 1518 1518 0 0 0 100 100 

124m 1619 1619 0 0 0 100 100 

200m 2601 2599 2 2 0.15 99.92 99.92 

201m 1963 1953 3 10 0.66 99.85 99.49 

202m 2136 2133 0 3 0.14 100 99.86 

203m 2980 2963 3 17 0.67 99.9 99.43 

205m 2656 2653 0 3 0.11 100 99.89 

207m 1860 1855 4 5 0.48 99.79 99.73 

208m 2955 2945 2 10 0.41 99.93 99.66 

209m 3005 3005 0 0 0 100 100 

210m 2650 2643 1 7 0.3 99.96 99.74 

212m 2748 2748 0 0 0 100 100 

213m 3251 3250 0 1 0.03 100 99.97 

214m 2262 2261 0 1 0.04 100 99.96 

215m 3363 3360 0 3 0.09 100 99.91 

217m 2208 2208 0 0 0 100 100 



 

Swarm Intelligence Approach to QRS Detection 34 
 

219m 2154 2154 0 0 0 100 100 

220m 2048 2048 0 0 0 100 100 

221m 2427 2426 0 1 0.04 100 99.96 

222m 2483 2483 19 0 0.77 99.24 100 

223m 2605 2605 0 0 0 100 100 

228m 2053 2052 8 1 0.44 99.66 99.95 

230m 2256 2256 0 0 0 100 100 

231m 1571 1571 0 0 0 100 100 

232m 1780 1780 11 0 0.73 99.39 100 

233m 3079 3078 0 1 0.03 100 99.90 

234m 2753 2753 1 0 0.04 99.96 100 

Total 109494 109406 97 88 0.169 99.91 99.92 

 

For a fair comparison with the existing methods, we compared our optimization scheme 

with the state-of-the-art methods. As shown in Table 3, our optimization scheme outperforms 

all time-domain methods including the well-known Pan-Tompkins algorithm when using 

approximately the same number of test beats. The only exception which produced the best 

result (0.15% of error) used only 101579 beats, which is less than our total number of test 

beats by more than 7900 beats. It is worth noting that our optimization scheme produced 

99.92% of sensitivity and 99.91% of predictivity. We developed this optimization approach to 

enhance the monitoring of heart disease which is the leading cause of death and to contribute 

to the improvement of the detection process. Generally, repeated failures of the QRS detector 

influence the disease detection process and this has a bad influence on the diagnosis result. 

The obtained results for QRS detection presented in this manuscript give us more confidence 

in the computerized methods for disease identification. 

Table 3 : Comparison of the Performance of the Proposed Scheme with State-of-the-Art Methods. Here DER 

(%)=100*(FP+FN)/(TP+FP+FN). 

Method 
Nb of 

beats 

DER  

(%) 
Se % PPV % 

Geometrical matching [17] 60431 2.92 97.94 99.13 

Zero crossing [8] 109428 1.71 97.44 99.13 

Short Time Fourier Transform [22] 109982 1.3 99.1 99.6 

Moving average [16] 102654 0.96 99.6 99.78 

STFT using Adap. Threshold [46] 109011 0.93 99.56 99.52 

MaMeMi filter [9] 109494 0.88 99.68 99.44 

Adaptative Thresholding [5] 109949 0.72 99.54 99.74 

Pan-Tompkins [4] 109809 0.68 99.76 99.56 

Hamilton [3] 109267 0.54 99.69 99.77 
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Concerning the execution time, the proposed scheme requires 1.3 seconds to detect 2273 

beats from the 100m MIT/BIH record, which has a duration of 30 minutes and contains 

650000 samples, using an Intel i5 M480 2.67 GHz with 4GB of RAM running on MATLAB 

software, corresponding to 57.19 ms to detect a beat, or 2 µs to process a sample, making our 

scheme suitable for real-time and embedded systems. Our detector outperforms all existing 

methods except two works, Nguyen et al. [13] with 0.16 seconds to process 30 minutes of 

recording, and 0.43 seconds at mean reported by Elgendi [47]. However, the proposed scheme 

is superior in detection and accuracy. On the benchmark MIT arrhythmia, our algorithm 

generates 0.17% of DER error, where Nguyen et al. [13] reported 0.49% of error. Also, in 

terms of sensitivity and positive predictive value, the work of Elgendi [47] is inferior to ours 

with 99.78% of sensitivity and 99.87% of positive predictive value, where our detector 

achieved 99.92% of sensitivity and 99.91% of positive predictive value. 

For the other knowledge works, no method is faster than our scheme. For instance, the 

method of Bal et al. [48] spends 1.92 seconds, Hashim et al. [49] spends 2.97 seconds, Xiang 

et al. [44] spends 14.53 seconds, and Karimipour et al. [34] spends 18.18seconds to process 

30 minutes of ECG record, respectively. Also, the algorithm of Kholkhal et al. [35] requires 

1476 seconds to detect 15027 beats, which means that it needs 223.26 seconds to process 

2273 beats. Finally, the work of Saadi et al. [10] requires 2.3 hours to process 4271185 

samples, which is equivalent to 1260.07 seconds to process 650000 samples. Therefore, our 

scheme is the best and is suitable for low cost and mobile devices. 

III. 7. Conclusions 

In this chapter, we proposed an optimization scheme that exploits the features of the PSO 

algorithm to search for the optimized parameters of the well-known Pan-Tompkins algorithm. 

Despite the simplicity of the PSO algorithm, it allowed us to find a set of optimal parameters 

for enhancing the QRS complex and then setting the value of the thresholding to minimize the 

number of false detection all in only one global optimization approach. In particular, the 

proposed scheme efficiently determines a set of parameters using an optimization algorithm 

driven by sensitivity and positive predictive value. The main contribution of our paper [50] is 

Low cost [13] 109494 0.49 99.8 99.71 

Morphological filtering(VLSI) [20] 109510 0.43 99.76 99.82 

Multiscale morphological filtering [19] 109510 0.39 99.81 99.8 

Two moving averages [47] 109985 0.35 99.78 99.87 

CNN Detector [44] 105078 0.32 99.77 99.91 

Efficient Detection  [35] 106310 0.29 99.76 99.95 

Fractional order operator [6] 107632 0.29 99.86 99.86 

Shannon energy envelope estimation [23] 109809 0.2 99.93 99.88 

Proposed optimized 109494 0.17 99.92 99.91 

Wavelet Detection [26] 101579 0.15 99.89 99.94 
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the generation of the parameters of the detection algorithm automatically. Whereas, the 

parameters of other algorithms are set empirically. 

To the best of our knowledge, the PSO algorithm has not been used to optimize the 

parameters of the QRS detection scheme. Our proposed scheme outperforms the state-of-the-

art time-domain algorithms that are published in the literature so far. 

The accuracy and low complexity of the developed algorithm are features that allow the 

embedding of the presented scheme on ambulatory instruments. In particular, the low 

complexity feature offers the opportunity to integrate this algorithm on emergency and 

healthcare low energy consumption instruments. Thus, our proposed algorithm can be 

exploited as an efficient module for medical healthcare to help practitioners in their daily 

tasks. Also, the developed scheme could be incorporated in the Holter arrhythmia detection 

chain. 

The high detection rate achieved by our proposed approach may help clinicians in 

improving the heartbeat segmentation process which is time-consuming if done manually. 

Further work could be something related to developing a parallel scheme to further reduce the 

processing time. 

The next chapter uses the transform domain to detect the QRS waveform.  
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IV.  A Robust QRS Detection Approach Using Stationary Wavelet 

Transform 

IV. 1. Motivations and Approach 

The Wavelet Transform (WT) is widely used in the literature for QRS detection. Most of 

the existing QRS detectors are based on the dyadic discrete wavelet transform (DWT) [51]. 

Few works have exploited the stationary wavelet transform (SWT) for QRS detection. We 

will show through this contribution that the SWT provides almost the same accuracy as the 

DWT, yet it is more robust in noisy environments. Moreover, the developed method in the 

present work used solely the first decomposition level, hence it is computationally efficient. 

IV. 2. Introduction 

The popularity of wavelet transforms in the signal processing field has attracted 

researchers to utilize this tool to develop automatic algorithms for ECG signal analysis. The 

wavelet transform offers the possibility to explore the signal characteristics in different scales. 

In this work, to address the problem of environment change, we develop a simple algorithm 

that tackles the QRS complex detection in normal recordings, long term recordings, and noisy 

environments. The developed algorithm is robust, delivers high accuracy, and has low 

complexity. Indeed, we present an extension of our previously developed approach for QRS 

detection [52]. We propose a noise-robust scheme based on the accurate decomposition 

feature of the SWT to determine the QRS positions. We use solely the approximation 

coefficients of the first decomposition level. We emphasize that the details coefficients are not 

used; this reduces considerably the complexity of the proposed scheme. Then, a squaring 

operation is performed on the resulting coefficients. After this, the SWT is applied again. 

Finally, a dynamic thresholding procedure is used to identify QRS positions. The main 

advantage of the proposed approach, since only approximation coefficients of the first 

decomposition level are calculated, is reduced computational complexity. The proposed 

algorithm is tested on the whole benchmark MIT-BIH database without excluding any record 

from the assessment in contrast to many works that drop out some records in order to reduce 

the total error of their algorithms. Furthermore, our algorithm outperforms all state-of-the-art 

algorithms when tested on noisy records of the NSTMIT database. 

IV. 3. Proposed method 

Algorithms intended for QRS complex detection perform the ECG signal analysis whether 

in the time domain, frequency domain, or time-frequency domain. The time-frequency 

domain algorithms deliver the best performance. They are more appropriate for QRS 

detection because the QRS complex is localized in time and has a good frequency 

concentration. Fourier methods decompose the signal into a series of sine and cosine 

functions. The wavelet decomposition is more flexible because the mother wavelet shape can 

be selected to approximate the shape of the analyzed signal. Also, the Fourier-based methods 

are poor in the detection of localized events and slope localization. In the proposed scheme, 

the QRS detection is carried out in the scale domain. That is, no reconstruction is required. In 

the following, we will present some theoretical background of the wavelet transform. 
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IV. 3. 1.  The Continuous Wavelet Transform 

The continuous wavelet transform at a scale ‘a’ and shift ‘b’ is expressed by the following 

integral [53] 

𝑊ѱ𝑓(𝑎, 𝑏) = 1
√𝑎

⁄ ∫ 𝑓(𝑡)ѱ(𝑡 − 𝑏
𝑎⁄ ) 𝑑𝑡

ℝ
    …(10) 

The function ѱ(t) is the mother wavelet and the function 𝑓(𝑡) is the input signal to be 

analyzed. One notices that the general form of the wavelet transform given by Eq. (1) is 

similar to the Fourier transform. The only difference is that the Fourier transform decomposes 

the signal of interest into a linear combination of sinusoids. While the wavelet transform 

decomposes the signal into a combination of wavelet functions at different scales. The 

wavelet transform is characterized by two parameters, the scale factor ‘a’ and the shift factor 

‘b’. The factor ‘a’ introduces the compression/dilation in the shape of the mother wavelet. The 

influence of varying factors ‘a’ and ‘b’ is shown in Fig. 33 (b) and (c). Consequently, varying 

‘a’ and ‘b’ results in different shapes and positions, this allows more flexibility in matching 

arbitrary signals. However, the selection of the right type of mother wavelet to analyze 

arbitrary signals remains an open issue in the signal processing community; in the present 

work, we used the Daubechies wavelet of order 14. Furthermore, the appropriate 

decomposition level highly depends on the information to be extracted from the analyzed 

signal; in this paper, we used the first decomposition level to reduce the algorithm 

complexity. 
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Fig.  33 : A typical example of a continuous wavelet. 

IV. 3. 2.  The Stationary Wavelet Transform (SWT) 

The main drawback of the CWT is the presence of many parameters to be selected. 

Therefore, its application is not straightforward. Also, the CWT requires a high computational 

capability, which limits its application in signal processing and is used only when both the 

mother wavelet and the signal to be analyzed have closed-form formulae. The stationary 

wavelet transform (SWT) is a discrete wavelet decomposition that does not use decimation. 

The length of the output after the decomposition is twice the length of the input; this occurs as 

a result of using the filter bank structure (see Fig. 34). This length of the output results in the 

conservation of information which may be lost by the decimation of the coefficients. In 

continuous wavelet decomposition, the scale and shift factors vary over continuous intervals  

∈ ℝ+ − {0}, 𝑏 ∈ ℝ . In the discrete wavelet decomposition, scale and shift factors range over 

discrete values = 2𝑗 , 𝑏 = 𝑘2𝑗 , (𝑗, 𝑘) ∈ ℤ2 ; where 𝑗 is the decomposition level and k is the 
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discrete-time index. A flowchart illustrating the steps involved in the SWT decomposition at 

different levels is shown in Fig. 34. The SWT decomposes signals into a low pass frequency 

component and high pass frequency component; the resulting coefficients after low pass 

filtering are referred to as approximation coefficients, while the resulting coefficients after 

high pass filtering are known as details coefficients. The decomposed signal at level j can be 

reconstructed by the sum of the approximations coefficients and details coefficients at level 

𝑗 + 1. That is 

𝑐𝐴𝑗 = 𝑐𝐴𝑗+1 + 𝑐𝐷𝑗+1      …(11) 

Where cAj’s are the approximation coefficients at level j, cAj+1’s are the approximation 

coefficients at level j + 1, and cDj+1’s are the details coefficients at level j + 1. 

IV. 3. 3.  Methodology 

In this part, we describe the proposed QRS detector along with we give the steps involved 

in the feature extraction. It is well-known that the time-frequency analysis is an effective tool 

for the analysis of the ECG signal. Therefore, we have applied the SWT to the ECG signal in 

order to detect QRS complexes. The proposed QRS detector consists of two main stages: 1) 

preprocessing, which involves bandpass filtering and squaring of the wavelet coefficients, 2) 

decision, which involves dynamic thresholding. The proposed method is illustrated by the 

flowchart shown in Fig. 35. 

IV. 3. 4.  Noise Cancelation 

In this paper, we used a different interval of the bandpass filter, which is [4, 24] Hz. We 

note that this frequency interval is used for the first time in our recently published paper [50] 

and it has not been used in the literature. This frequency band has been determined by a 

stochastic search method based on the particle swarm optimization (PSO) algorithm. We 

observed that this band of frequency enhances the QRS detection task. A finite impulse 

response (FIR) was used to implement the bandpass filter. The FIR filter was preferred 

because of its intrinsic stability as opposed to IIR filters. 

IV. 3. 5.  Wavelet Selection 

The application of the SWT to the filtered ECG requires two things. First, which mother 

wavelet should be used? Second, at which level (scale) should we stop the decomposition of 

the signal? Ideally, it is intended to select a mother wavelet having a shape similar to the QRS 

wave shape and a level (scale) that contains the frequency band of the QRS wave. That is, the 

wavelet coefficients are obtained by convolving the mother wavelet and the ECG signal, this 

operation results in high coefficients amplitudes where the two signals match and low 

amplitudes where the two signals differ. To determine the appropriate mother wavelet that  
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Fig.  34 : The stationary wavelet transform using multi-level decomposition. 

resembles the QRS complex shape we sketch a synthetic shape of a typical cycle of an ECG 

signal as shown in Fig. 24 and the mean QRS of one record from the MIT-BIH database. 

We note that it is not possible to find a single mother wavelet that fits all possible normal 

and abnormal ECG waveforms. After extensive experimentation, we observed that the 

Daubechies wavelet of order 14 is a suitable choice that delivers good performance. A close 

inspection of the Daubechies mother wavelet shown in Fig. 36, the QRS wave of Fig. 24, and 

the mean QRS of record 233 (MIT-BIH database) shown in Fig. 37, suggests a high similarity 

between the QRS shape and the adopted mother wavelet shape. The Daubechies mother 

wavelet of order 14 is shown with its scaling function in Fig. 36. 

To explore the information content of different decomposition levels, especially 

purification of the signal from unwanted components, we computed the approximation 

coefficients of the ECG signal until level 6. By inspecting Fig. 38, it is clear that the response 

changes with the change in the decomposition level. In particular, we observe that we can 

distinguish the QRS wave positions starting from the first decomposition level to the fifth 
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Fig.  35 : A block diagram of the proposed method. 

decomposition level. This observation is justified by the high amplitudes of the coefficients 

obtained in these scales. 

IV. 3. 6.  Procedure 

In this work, we use the time-frequency representation as a framework, from which we 

extract the QRS complex. In the following, we will detail the role of each step of the proposed 

algorithm. Our method is illustrated by the flowchart in Fig. 35. The raw ECG signal is first 

bandpass-filtered to eliminate the disturbances. The second step consists of transforming the 

signal to the time-frequency domain by the wavelet transform. The stationary wavelet 

transform is applied to the filtered signal, only approximations coefficients are stored for 

further processing. We used solely the first decomposition level in order to reduce the 
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complexity of the detector. This makes our algorithm advantageous as others use very deep 

decomposition levels. Then, the obtained coefficients are squared to enhance the QRS wave 

and attenuate the P and T waves. To give more dominance to the QRS complexes, we applied 

another stationary wavelet transform to the squared coefficients. An example that illustrates 

graphically the steps an arbitrary signal undergoes using the proposed algorithm is shown in 

Fig. 39. We notice from Fig. 39 (b) that the wavelet coefficients of the bandpass-filtered 

signal enhance considerably the QRS complexes. The squaring operation (Fig. 39 (c)) clearly 

allows dominance of the R peaks that appear with high amplitudes. The application of the 

wavelet transform to the squared signal enhances more the QRS waves and attenuates high-

frequency components as shown in Fig. 39 (d). Finally, the adaptive thresholding scheme of 

the well-known Pan-Tompkins algorithm is applied to determine the presence and locations of 

the QRS complexes. In the following, we will briefly explain the Pan-Tompkins thresholding 

scheme. 

IV. 3. 7.  Pan and Tompkins Thresholding 

We have seen in the preceding steps that the ECG signal undergoes bandpass filtering and 

the application of the SWT followed by the squaring and another SWT applied to the 

approximation coefficients. At this stage, the obtained signal is ready for the QRS extraction 

by thresholding. Inspired by the adaptive thresholding of the pioneering paper of Pan-

Tompkins [4], we are going to exploit the approximation coefficients of the SWT throughout 

thresholding to detect the QRS complexes. In the following, we give a brief description of the 

used thresholding method. The adaptive thresholding proposed in [4] is designed to float over 

the noise level. That is, from a running estimation of the signal and noise levels, the algorithm 

adapts the value of the threshold according to the changing values of the record under 

consideration. As a starting point, the level of the signal SPKI is fixed as half of the maximum 

amplitude of the first two seconds of the signal under consideration. Likewise, the level of 

noise NPKI is fixed at one third (1/3) of the mean value of the first two seconds. Each time a 

new QRS wave is detected, if the amplitude of the current peak PEAK_L is greater than the 

current level of the threshold, the level of the threshold is updated in the following way 

 

Fig.  36 : Waveforms of the Daubechies wavelet of order 14 ’db14’. 
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SPKI =  0.125 ∗  PEAK_L +  0.875 ∗  SPKI    …(12) 

Otherwise, the noise level is computed by: 

NPKI =  0.125 ∗  PEAK_L +  0.875 ∗ NPKI    …(13) 

During each iteration, we update the value of the threshold 𝑇𝐻𝑅𝐸𝑆𝐻𝑂𝐿𝐷 𝐼2 as: 

THRESHOLD I1 =  NPKI +  0.25 ∗  (SPKI −  NPKI)         …(14) 

THRESHOLD I2 =  THRESHOLD I1/2     …(15) 

An illustration of the algorithm workflow is shown in Fig. 40. The initial estimation of 

signal and noise levels is carried out by the pre-estimation stage, more precisely, maximum 

signal amplitude and mean signal amplitude of the first two seconds of the recorded signal as 

it clearly appears on the detailed analytic formula diagram of Fig. 41. Also, Fig. 40 and Fig. 

41 make in evidence that the threshold level is necessary to identify QRS positions. Then, 

peaks positions with amplitudes greater than or equal to its instantinous thresholding level are 

designated as QRS positions, otherwise, the current peak position is a candidate to be T wave 

position and this assumption is validated if the amplitude is greater than or equal to the noise 

thresholding level value, so noise level is updated in this case. 

 

Fig.  37 : The mean of the QRS complex of record 203 and its frequency response. 
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If we encounter a long time duration segment without any QRS detection, then highly 

probably we missed a QRS wave. In this case, we search for missed QRSs. For this purpose, 

let us denote the interval between two successive R peaks by RR interval, and let us define 

three RR interval durations, namely RR LOW LIMIT, which is the minimum length for the RR 

interval; RR HIGH LIMIT, which is the maximum length for the RR interval; and an interval 

to decide that a QRS wave is missed denoted by RR MISSED LIMIT. Let us denote the mean 

of the eight most recent RR intervals by RR AVERAGE1. If RR AVERAGE1 falls in the 

interval [RR LOW LIMIT, RR HIGH LIMIT], then this value becomes the reference to decide 

about occurrences of RR interval and it is denoted by RR AVERAGE2. Consequently, the 

parameters are determined in the following way 

RR LOW LIMIT =  92% RR AVERAGE2    …(16) 

RR HIGH LIMIT =  116% RR AVERAGE2                   …(17) 

RR MISSED LIMIT =  166% RR AVERAGE2      …(18) 

If the RR AVERAGE1 is greater than or equal to RR MISSED LIMIT, a search back is 

needed and an R peak is potentially present between the last found R peak position and the 

current search position. Its position corresponds to the maximum amplitude in this region and 

is validated if its value is greater than or equal to the search back threshold level 

THRESHOLD I2. 

IV. 1. Results and Discussions 

For the evaluation of the performance of the proposed algorithm, we used the most 

common metrics, which are: 1) Sensitivity (Se) is the proportion of QRS complexes that are 

correctly detected, 2) Positive predictive value (PPV) is the proportion of non QRS complexes 

that are correctly identified, and 3) Detection error rate (DER) is the total error percentage. 

Most of the published papers use the three metrics to give a quantitative measure of the 

obtained results [4][25][26][27][28] 

Sensitivity (%)  =  TP / (TP +  FN)    …(19) 

Positive predictive value (%)  =  TP / (TP +  FP)    …(20) 

DER (%)  =  (FP +  FN) / Total number of QRSs              …(21) 

Where TP stands for true positives, which is the number of QRS complexes effectively 

present in the record and effectively detected by the algorithm. FP stands for false positives, 

which is the number of QRS complexes detected by the algorithm but not effectively present 

in the record. FN stands for false negatives, which is the number of QRS complexes not 

detected by the algorithm but exists in the record. We performed a thorough assessment of the 

proposed approach on three publicly available datasets. The first one is the MIT/BIH 

benchmark dataset. The obtained results show a total detection error rate (DER) of 0.228%, a 

sensitivity of 99.83%, and a positive predictive value of 99.94%, the detailed results for each 

record are given in Table 4. 
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Fig.  38 : Plots of different levels using the SWT approximation coefficients for the record 203m from the 140th second to the 145
th

 

second. 
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Fig.  39 : Feature extraction steps by the proposed method. 

The results of Table 4 indicate that the proposed algorithm outperforms most state-of-the-

art algorithms including the two pioneering works of the Pan-Tompkins algorithm [4] and 

Merah et al [25] and achieves similar performances in terms of QRS detection as state-of-the-

art algorithms. In summary, there are only 64 false positives and 186 missed QRSs, a total 

detection failure of 250 beats. More interestingly, the proposed algorithm achieved excellent 

sensitivity (99.94%), positive predictive value (99.83%), and the detection error rate 

(0.22%). The obtained results are very satisfying and the detection error rate (DER) per 

record does not exceed 1% for all records of the database. Most of the errors occurred in 

record 203 (46 FN) which contains abrupt changes, and record 210 (53 FN) which contains 

irregular rhythmic patterns. In greater detail, while the proposed algorithm achieved perfect 

performance in 15 records, the Pan-Tompkins algorithm achieved perfect performance in 11 

records only. 

In particular, while the proposed algorithm produced FP+FN=9 for record 108m and 

FP+FN=6 for record 222m, the Pan-Tompkins algorithm produced FP+FN=223 and 182, 

respectively. This shows a significant improvement in records where most existing algorithms 

suffer from poor performance. 

Furthermore, to confirm the robustness of our algorithm, and to test our method in 

abnormal conditions, we used the MIT-BIH noise stress test database (NSTDB), which 

contains records 118m and 119m of the MIT/BIH database disturbed by additional noise. The 

number after the letter ‘e’ in the name of the file for each record represents the signal to noise 

ratio ([file_name]e[SNR]m). As shown in Table 5, the proposed algorithm achieved very 

well results and shows robustness to QRS detection in the presence of noise. The proposed 

algorithm behaves very well and keeps the total detection error rate (DER) under 5% for a 

reasonable signal to noise ratios and exceeds 10% of DER only when the signal is totally  
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buried in noise. Our method fails in detecting 290 beats and produces 2300 false positive 

beats. 

To sum up, our algorithm achieved 91.01% of sensitivity, 98.77% of positive predictive 

value, and 10.12% of error rate. Based on this result, the proposed approach outperforms 

state-of-the-art works in terms of the detection error rate in noisy environments. 

Finally, we used a third dataset, which is the European ST-T dataset. This dataset is very 

large and is used to test the performances of the proposed approach on the Holter 

environment; it contains more than 790000 beats. The detailed results obtained by the 

proposed algorithm are summarized in Table 6. The proposed method achieved 99.91% of 

positive predictive value, 98.87% of sensitivity, and an error rate of 1.23% over 734555 

beats. In light of these results, we can say that our method ranks very well compared with 

state-of-the-art methods. 

The superiority of the proposed scheme in delineating the QRS positions either on MIT 

arrhythmia or MIT noise stress test databases is shown in Table 7. For the MIT arrhythmia, 

our method outperforms all existing QRS detection methods except the works of Slih et al 

[56] and Manikandan et al [23]. However, the authors of [56] said in the abstract:" Mostly 

used records in the online ECG database (MIT-BIH Arrhythmia) have been used to evaluate 

the new technique.", besides they did not mention explicitly the number of beats used in the 
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Compute signal and noise thresholding 
levels 

Pre-estimate of signal and noise levels 

Find all peaks present on the signal 

If (peak amplitude >= 

signal threshold level) 

 

Yes 

Update signal level 

Update noise level 

If (peak amplitude >= 
noise threshold level) 

QRS 
Position 

Not QRS 
Position 

No 

Fig.  40 : Pan & Tompkins algorithm thresholding strategy diagram 
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assessment of their algorithm. So, they excluded some records, maybe many of them, and the 

number of test beats in the assessment of their algorithm is limited. These two facts indicate 

that the real performance of their algorithm [56] is far less than the published results. 

Therefore, the algorithm of [23] does not outperform our algorithm. On the other hand, while 

the algorithm of [23] produces 86 false positives, our algorithm produces only 64 false 

Table 4 : MIT/BIH results using the proposed SWT-based algorithms. 

File 
Nb 

beats 
TP FPs FNs DER PPV Se 

100m 2273 2271 0 2 0.09 100 99.91 

101m 1865 1863 0 2 0.11 100 99.89 

102m 2187 2187 0 0 0 100 100 

103m 2084 2084 0 0 0 100 100 

104m 2229 2228 5 1 0.27 99.78 99.96 

105m 2572 2572 6 0 0.23 99.77 100 

106m 2027 2026 1 1 0.1 99.95 99.95 

107m 2137 2134 0 3 0.14 100 99.86 

s_l, s : Signal level                       Peak_amp : Current peak amplitude 
n_l, n : Noise level                       Samp_amp : Current sample amplitude  
s_l_l : Long term signal level     th_l : Threshold level 
th_n : Noise threshold level      n_l_l : Long term noise level                    
cstN : Constant number N         th_ss : Short time signal level 
th_ns : Short term noise level    th_s : Signal threshold level 

QRS 

s_l = 0.125 * peak_amp  + 0.875 * 

n_l 

n_l = 0.125 * peak_amp  + 
0.875 * n_l 

Not QRS 
Position 

s_l = The half of the maximum amplitude for first 2*Fs signal samples  
n_l = The half of the mean amplitude for first 2*Fs signal samples  

th_s = n_l + (s_l - n_l) / 4 
th_n = th_s / 2 

Find all peaks present on the signal 

If (peak_amp >= 

th_s) 

No Yes 

If (peak_amp 
<= th_n) 

Yes 

Fig.  41 : Detailed diagram of the Pan & Tompkins algorithm thresholding strategy 
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108m 1763 1762 8 1 0.51 99.55 99.94 

109m 2532 2532 0 0 0 100 100 

111m 2124 2123 0 1 0.05 100 99.95 

112m 2539 2539 0 0 0 100 100 

113m 1795 1794 0 1 0.06 100 99.94 

114m 1879 1877 3 2 0.27 99.84 99.89 

115m 1953 1953 0 0 0 100 100 

116m 2412 2398 1 14 0.62 99.96 99.42 

117m 1535 1535 0 0 0 100 100 

118m 2278 2277 1 1 0.09 99.96 99.96 

119m 1987 1987 1 0 0.05 99.95 100 

121m 1863 1863 0 0 0 100 100 

122m 2476 2476 0 0 0 100 100 

123m 1518 1517 0 1 0.07 100 99.93 

124m 1619 1619 0 0 0 100 100 

200m 2601 2599 1 2 0.12 99.96 99.92 

201m 1963 1959 15 4 0.97 99.24 99.8 

202m 2136 2131 0 5 0.23 100 99.77 

203m 2980 2934 0 46 1.54 100 98.48 

205m 2656 2651 0 5 0.19 100 99.81 

207m 1860 1858 3 2 0.27 99.84 99.89 

208m 2955 2939 1 19 0.68 99.97 99.36 

209m 3005 3005 0 0 0 100 100 

210m 2650 2597 0 53 2 100 98.04 

212m 2748 2748 0 0 0 100 100 

213m 3251 3249 0 2 0.06 100 99.94 

214m 2262 2260 0 2 0.09 100 99.91 

215m 3363 3359 0 4 0.12 100 99.88 

217m 2208 2207 0 1 0.05 100 99.96 

219m 2154 2154 0 0 0 100 100 

220m 2048 2047 0 1 0.05 100 99.96 

221m 2427 2426 0 1 0.04 100 99.96 

222m 2483 2480 3 3 0.24 99.88 99.88 

223m 2605 2604 0 1 0.04 100 99.96 

228m 2053 2052 11 1 0.59 99.46 99.95 

230m 2256 2255 0 1 0.04 100 99.96 

231m 1571 1571 0 0 0 100 100 

232m 1780 1780 0 0 0 100 100 

233m 3079 3076 0 3 0.1 100 99.90 

234m 2753 2753 0 0 0 100 100 
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Total 109494 109308 64 186 0.228 99.94 99.83 

 

 

Fig.  42 : Bar performances graph. 

positives. This shows that the proposed algorithm is the best in terms of positive predictive 

value (99.94%). For noisy environments, the proposed algorithm has the best performance 

(see Table 7). It is clear that the proposed SWT based method using only approximation 

coefficients resulted in a robust detection method over the MIT noise stress test database and 

outperformed state-of-the-art algorithms. The numerical results of Table 7 need some effort to 

be analyzed by the reader. To simplify the analysis and interpretation of the results, 

Table 5 : Obtained results by the proposed algorithm on the MIT-BIH noise stress test database. 

Record 
Number 

of beats 
TP FP FN 

DER 

% 
PPV Se 

118e24m 2278 2277 2 1 0.13 99.91 99.96 

118e18m 2278 2277 3 1 0.18 99.87 99.96 

118e12m 2278 2277 13 1 0.62 99.43 99.96 

118e06m 2278 2277 130 1 5.75 94.29 99.95 

118e00m 2278 2241 348 37 16.9 84.72 98.12 

118e-6m 2278 2135 574 143 31.48 74.80 92.26 

119e24m 1987 1987 1 0 0.05 99.95 100 

119e18m 1987 1987 1 0 0.05 99.95 100 

119e12m 1987 1987 7 0 0.35 99.65 100 
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119e06m 1987 1987 203 0 10.22 89.78 100 

119e00m 1987 1976 433 11 22.35 78.20 99.30 

119e-6m 1987 1892 585 95 34.22 70.56 93.65 

Total 25590 25300 2300 290 10.12 91.67 98.87 

 

we use the bar chart to allow a visual comparison of our algorithm with the existing 

algorithms. For this purpose, we plot the numerical results of Table 7 in Fig. 42. The bar chart 

is organized in increasing order, from the least to the best performance, from left to right. 

Also, we plot the percentage accuracy (Acc) instead of the detection error rate (DER), 

[ACC(%)  =  1 −  DER]. From the visual inspection of Fig. 42, the proposed method 

outperforms state-of-the-art methods in many aspects. 

Table 6 : Obtained results by the proposed algorithm over the European ST-T Database. 

File 
Nb 

beats 
TP FPs FNs DER PPV Se 

e0103 7296 7274 0 22 0.3 100 99.7 

e0104 7696 7686 0 10 0.13 100 99.87 

e0105 6629 6622 3 7 0.15 99.95 99.94 

e0107 7029 7005 2 24 0.37 99.97 99.69 

e0108 6597 6592 0 5 0.08 100 99.92 

e0110 6971 6970 3 1 0.06 99.96 99.97 

e0111 7535 7448 92 87 2.38 98.78 98.84 

e0112 5506 5480 153 26 3.25 97.22 99.52 

e0113 8946 8939 0 7 0.08 100 99.92 

e0114 5543 5540 2 3 0.09 99.96 99.95 

e0115 11313 11307 0 6 5.39 100 99.95 

e0116 4494 4477 62 17 1.76 98.62 99.62 

e0118 7080 7076 9 4 0.18 99.87 99.94 

e0119 7718 7698 32 20 0.67 99.56 99.97 

e0121 10629 10618 0 11 0.1 100 99.9 

e0122 11363 11353 0 10 0.09 100 99.91 

e0123 9175 9175 0 0 0 100 100 

e0124 9213 9208 0 5 0.05 100 99.95 

e0125 9066 9064 0 2 0.022 100 99.98 

e0126 8291 8290 0 1 0.012 100 99.99 

e0127 9391 9391 0 0 0 100 100 

e0129 5568 5560 35 8 0.77 99.37 99.86 

e0133 6570 6547 16 23 0.44 99.76 99.65 

e0136 7044 7040 3 4 0.1 99.96 99.94 

e0147 6374 6369 0 5 0.08 100 99.92 

e0148 6676 6640 13 36 0.72 99.8 99.46 
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e0151 7546 7545 0 1 0.013 100 99.99 

e0154 6782 6764 17 18 0.52 99.75 99.74 

e0155 8125 8076 32 49 0.99 99.61 99.4 

e0159 9196 9005 66 191 2.79 99.61 97.96 

e0161 8858 8855 0 3 0.03 100 99.97 

e0162 10616 10597 1 19 0.19 99.99 99.82 

e0163 7616 7607 3 9 0.16 99.96 99.88 

e0166 6399 6397 0 2 0.03 100 99.97 

e0170 8824 8821 1 3 0.045 99.99 99.97 

e0203 10165 10163 0 2 0.2 100 99.98 

e0204 11472 11435 1 37 0.33 99.99 99.68 

e0205 11807 11778 1 29 0.25 99.99 99.76 

e0206 10916 10816 0 100 0.92 100 99.09 

e0207 7197 7186 4 11 0.21 99.94 99.85 

e0208 8695 8688 2 7 0.1 99.98 99.92 

e0210 8739 8731 4 8 0.14 99.95 99.91 

e0211 14970 13428 0 1542 10.3 100 90.66 

e0212 10829 10815 0 14 0.13 100 99.87 

e0213 11070 10876 6 194 1.8 99.95 98.28 

e0302 10340 10333 2 7 0.09 99.98 99.93 

e0303 8874 8870 1 3 0.05 99.99 99.97 

e0304 8358 8341 14 27 0.49 100 99.96 

e0306 7903 7901 2 2 0.05 99.98 99.98 

e0403 9297 9290 0 7 0.08 100 99.92 

e0404 6940 6939 0 1 0.014 100 99.99 

e0406 8945 8935 0 10 0.11 100 99.89 

e0408 9037 9035 0 2 0.022 100 99.98 

e0409 12885 10109 0 2776 21.54 100 82.27 

e0410 7527 7522 0 5 0.066 100 99.93 

e0411 9934 9898 0 36 0.36 100 99.64 

e0413 8149 8141 0 8 0.098 100 99.9 

e0415 11407 11226 15 181 1.72 99.87 98.44 

e0417 9253 9250 0 3 0.032 100 99.97 

e0418 11706 11701 0 5 0.043 100 99.96 

e0501 7758 7751 0 7 0.09 100 99.91 

e0509 8091 8089 0 2 0.022 100 99.98 

e0515 10694 10680 1 14 0.14 99.99 99.87 

e0601 8769 8742 0 27 0.023 100 99.69 

e0602 11128 11009 1 119 1.8 99.99 98.94 

e0603 7935 7927 2 8 0.13 99.97 99.9 
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e0605 11386 10613 0 773 6.79 100 93.64 

e0606 9624 9553 0 71 0.74 100 99.27 

e0607 10266 10261 0 5 0.049 100 99.95 

e0609 9321 9313 0 8 0.09 100 99.91 

e0610 7999 7993 0 6 0.075 100 99.93 

e0611 5812 5809 1 3 0.07 99.98 99.95 

e0612 6887 6874 0 13 0.19 100 99.81 

e0613 7726 7721 0 5 0.065 100 99.94 

e0614 11107 10600 0 507 4.56 100 95.64 

e0615 7193 7189 0 4 0.06 100 99.94 

e0704 9718 9677 0 41 0.42 100 99.58 

e0801 9388 9383 0 5 0.05 100 99.95 

e0808 11075 11050 18 25 0.39 99.84 99.77 

e0817 7554 7332 24 222 3.26 99.68 97.14 

e0818 10129 10126 0 3 0.3 100 99.97 

e1301 8740 8584 13 156 1.93 99.85 98.24 

e1302 8350 8347 1 3 0.05 99.99 99.96 

Total 734555 726184 647 8371 1.23 99.91 98.86 

 

Table 7 : Comparison of the proposed approach to state-of-the-art works. 

Method 
Number 

of beats 
TP FP FN 

DER 

% 
PPV Se 

MIT arrhythmia Database 

Geometrical matching [17] 60431 59185 - - 0.86 99.13 97.94 

Low-Complexity [5] 109949 109447 289 502 0.72 99.73 99.54 

First derivative [18] 109504 109150 405 354 0.69 99.63 99.68 

Lowpass-RR intrv [55] 109336 108960 218 376 0.54 99.80 99.66 

Quantitative eval [3] 109267 108927 240 340 0.54 99.78 99.69 

VLSI Friendly [20] 109510 109311 279 199 0.43 99.82 99.76 

Adaptative thresold [15] 110050 109811 240 239 0.43 99.78 99.78 

Optimize [47] 109985 - - - - 99.87 99.78 

Digital fractional order [6] 109494 109338 153 156 0.34 99.86 99.86 

SWT [25] 109494 109316 126 178 0.28 99.88 99.84 

Proposed SWT-based  109494 109308 64 186 0.228 99.94 99.83 

Wearable QRS Detector [21] 109496 109402 86 94 0.164 99.92 99.91 

Novel approach [56] 116137 116073 31 64 0.08 99.97 99.95 

Noise Stress Test Database 

Optimize [47] 26370 - - - - 90.25 95.39 

SWT [25] 25590 24388 1563 1202 10.81 95.3 93.98 

Proposed SWT-based 25590 25300 2300 290 10.12 91.01 98.77 
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IV. 2. Conclusion 

In this chapter, we developed a very simple yet efficient algorithm based on the stationary 

wavelet algorithm. In particular, the first contribution resides in exploiting solely the 

approximations coefficients of the SWT to enhance the QRS complex waveform and keep a 

low complexity scheme. The second contribution is the robustness of the developed algorithm 

to the environment change. Experiments were implemented to assess the performance of the 

proposed algorithm using three benchmark datasets. Indeed, the proposed algorithm 

outperformed state-of-the-art methods on the MIT noise stress test database by achieving 

10.12% of DER and 98.77% of sensitivity. For normal functioning conditions, the proposed 

algorithm achieved 0.228% of DER, 99.94% of positive predictive value, and 99.83% of 

sensitivity. This result ranks our algorithm among the top algorithms for QRS detection. For 

long-term ECG recordings (Holter environment), we achieved 1.23% of DER, 99.91% of 

positive predictive value, and 98.87% of sensitivity over more than 734000 beats, this proves 

the efficiency of the developed algorithm. It turns out that our algorithm is simple and 

performs similarly to state-of-the-art algorithms on benchmark databases and outperforms 

state-of-the-art algorithms in noisy environments. 

As a continuation of the current work, we intend to use other types of wavelets that match 

more the QRS shape. Also, we will try to develop new thresholding procedures. 
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V.  An Approach to QRS Complex Detection using Deep Neural Networks 

Autoencoder 

V. 1. Motivations and Approach 

Deep learning (DL) techniques outperform, in more than a field, traditional techniques in 

terms of classification and prediction. Moreover, DL methods extract abstract features directly 

from raw signals without any preprocessing. The success of DL in a variety of applications is 

behind our motivations to develop a QRS detector based on this promising technique. Indeed, 

an accurate QRS detector using Staked Autoencoder has been developed, characterized by a 

small number of layers and neurons. We trained the developed architecture by a huge number 

of training samples in order to build a system with high generalization characteristics. 

Furthermore, the hidden information in RR intervals is exploited to support the decision 

process. 

V. 2. Introduction 

Deep learning has revolutionized the field of machine vision, and human-machine 

imitation by new training rules [57]. In recent years, DL techniques won many contests and 

achieved superhuman vision performance [57]. DL architectures proved their superiority in 

many applications [58] such as road extraction [59-62], speech recognition [63-67], and 

biomedical signal processing [68-74]. In this paper, a DL approach is used to determine the 

QRS complex from the electrocardiogram (ECG) signal which is one of the widely used tools 

for precise healthcare. An ECG signal, properly recorded, purified from additive noise and 

distortions, is a reliable tool for identifying numerous diseases. 

While conventional machine learning algorithms fail to process natural data in their raw 

form [2], deep learning is characterized by learning features directly from raw data without 

any intervention of an expert. Most of the QRS detectors preprocess the input ECG signal 

before deep neural features extraction, or model and extract signal features before deep neural 

features extraction. Hence, they do not take benefit of the advantage of using deep learning.  

In this chapter, we propose a fully automated method operating directly on the raw 

recorded signal for QRS detection, making use of a semi-supervised stacked autoencoder. We 

train the proposed architecture on a huge number of beats to guarantee the good learning of 

the deep neural network to model all QRS and non QRS occurrences scenarios. The simplicity 

of implementation and low complexity were also crucial criteria in our development phase to 

accelerate the full arrhythmia identification process. 

The main contributions of the proposed DL QRS detector are:  

1) To the best of our knowledge, this is the first time a stacked autoencoder is used for 

QRS detection, 

2) New simple and low complexity architecture, 

3) Fully automatic feature extraction and QRS detection, 
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Table 8 : The Number of Training Samples from Four Datasets 

Attribute type MIT EDB INCART SVDB ∑ 

QRS 
51043 111995 18773 23439 205250 

NOT QRS 
231052 528460 80085 93791 933388 

∑ 282095 640455 98858 117230 1138638 

 

4) It processes ECG signals with an arbitrary sampling frequency (no re-sampling is 

required), 

5) It is trained on a huge number of beats. 

6) It is tested on many unseen databases to prove the generalization of the developed 

architecture. 

7) It works directly on raw data, without any preprocessing phase which, in general, slows 

down the execution of the algorithm. 

8) There are no empirical parameters such as thresholding and search back procedure. 

V. 3. Semi-Supervised Stacked Autoencoder 

Deep learning techniques proved their efficiency in more than a domain. The stacked 

autoencoder neural network has been utilized in our detector; it is a concatenation of 

homogenous and heterogeneous neural networks. The homogenous networks are encoder 

layers. The heterogeneous part is the softmax classifier placed after the last encoder layer. A 

basic (shallow) autoencoder consists of three layers, namely, the first layer is the input, the 

second layer is the hidden layer, and the last layer is the reconstruction layer (output). 

Usually, if the autoencoder comprises more than one hidden layer, it is trained greedily. Fig. 

43 shows general stacked autoencoder architectures. Given an input X, the corresponding 

output Y of a neural network is 

𝑌 = 𝐹(𝑊𝑋 + 𝐵)     …(22) 

Where the rows of the matrix W are the weights linking the input nodes to the 

corresponding node from the hidden layer, B is the bias vector, and F is the activation 

Table 9 : The Number of Test Samples from Four Datasets 

Attribute type MIT EDB INCART SVDB ∑ 

QRS 
49707 679387 160840 160402 1050336 

NOT QRS 
233234 3187601 633488 633926 4688249 

∑ 282941 3866988 794328 794328 5738585 
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function. The aim of the optimization consists of finding the weight matrix We that maps the 

input to the hidden layer (encoder) and the weight matrix Wd that reconstructs the input from 

the hidden layer (decoder), that is 

min𝑊𝑒,𝑊𝑑
(𝐹𝑑(𝑊𝑑𝐹𝑒(𝑊𝑒𝑋 + 𝐵𝑒) + 𝐵𝑑) − 𝑋)2   …(23) 

In essence, the autoencoder neural network is an unsupervised learning system that tries to 

reproduce a copy of its input at the output without the need for labeled samples. The main 

goal of building autoencoder architecture is to seek an inherent representation of the input 

which cannot be discovered by hand-crafted features. The bottleneck hidden layer is exploited 

as an efficient set of automatic features. As mentioned above, each hidden layer is pre-trained 

alone, and then all layers are stacked together to build the recognition system. In practice, 

only the encoder layers are used for the stacked autoencoder. After concatenating the softmax 

classifier layer to the encoder layers, the whole system is fine-tuned in a supervised setup. 

The training of autoencoders is achieved by minimizing the sum of squared differences 

between the input and the output. That is 

𝐸𝑟𝑟𝑜𝑟 =  
1

2
∑ (𝑦𝑖 − 𝑡𝑖)

2𝑁
𝑖=1      …(24) 

Where yi’s represent the predicted outputs, ti’s the targets (desired outputs) and N is the 

number of outputs. 

The scaled conjugate gradient optimization algorithm was used for greedy training phases. It 

was chosen for its simplicity of implementation and low algorithmic complexity. Besides, the 

scaled conjugate gradient is more robust, against initial guess choices, than a simple gradient 

descent approach. The gradient update of the weights is performed by the 

 

Fig.  43 : (Top) Single-Hidden layer, (Bottom) Multi-Hidden layer autoencoder architecture. 
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following equations: 

𝑊𝑘+1
(𝑖)

= 𝑊𝑘
(𝑖)

+ 𝛼𝛻𝐺(𝑖)     …(25) 

In eq. (177), the weights of layer i during the kth iteration are updated by the gradient 

descent ∇G, following a step size α. 

The gradient descent is computed starting from the output layer in the backward direction 

until reaching the input layer. This computation is repeated several times until convergence is 

reached. It has been proved in many studies that the back-propagation is very efficient in 

training multilayer architectures. The value of the gradient which minimizes the error is given 

by: 

𝛻𝐺(𝑖) = 𝑚𝑖𝑛𝑊(𝑖) 𝐸(𝑖) = −
𝑑𝐸(𝑖)

𝑑𝑊(𝑖)    …(26) 

Indeed, the encoder layers pre-training accuracy is not crucial. Always, a fine-tuning phase 

is performed involving all previously pre-trained neural network layers. However, for the 

final fine-tuning phase, the Levenberg-Marquardt is used instead for its high accuracy, 

convergence robustness, and semi-independency from the initial guess. 

In practice, the back-propagation approach to minimizing the mean squared error attains 

good performance at the expense of slow convergence. To accelerate the convergence, the 

cross-entropy function was used to estimate the error at the output of the softmax layer, which 

is the final resulting feature from the encoder layers.  

V. 4. Dataset Description 

In an attempt to build a robust and reliable deep neural network, and knowing that deep 

neural networks require huge training sets, we used in this study many publicly available 

benchmark databases. Developing a method evaluated on a single database leads in many 

cases to poor results when tested on unseen data. This problem arises because the ECG signal 

differs from one person to another. In particular, ECG signal characteristics such as beat 

interval, shape, frequency content, vary not only from a given database to another but also 

from an individual to another, which raises several challenges for ECG signal analysis 

methods. To overcome these challenges, a big number of beats has been exploited for the 

training of the proposed deep neural network. Four datasets for training and test were used, 

namely, MIT/BIH Arrhythmia Database, MIT Supraventricular database, INCART database, 

and the European ST-T Database. The training and test samples contain 1255586 QRS waves 

embedded in 6877223 attributes (5621637 non QRS waves). More precisely, the training is 

composed of DS1 from MIT/BIH arrhythmia dataset following the AAMI recommendation 

[83], 11% of the INCART database, 13% of the Supraventricular database, and 14% of the 

European ST-T Database (see Table 8). The training samples were randomly selected except 

MIT/BIH Arrhythmia database; the remaining samples of each dataset were used to test the 

developed architecture (see Table 9). Furthermore, the considered datasets have different 

sampling frequencies; this proves that the proposed approach operates in different sampling 

frequencies fact makes our method applies to signals with arbitrary sampling frequency. In 
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other words, there is no need for re-sampling different datasets to make them operate on a 

single sampling frequency as many existing methods do. As a further step to prove the 

robustness of the proposed deep network, six unseen databases have been used as validation, 

namely, QTDB, Apnea DB, NSRDB, LTSTDB, Fantasia, and Challenge 2014. This is to 

evaluate clinical environment potential issues.  

In the following, we give a brief description of the four databases used in the training. 

V. 4. 1.  MIT/BIH Arrhythmia 

MIT/BIH database is commonly used for QRS and arrhythmia detection. It is a two-lead 

ECG signal recording database. Lead I is recorded from MLII or V5, and lead II from V1, V2, 

V4, V5, or MLII. The database contains more than 110000 beats corresponding to 24 hours of 

recording. It consists of 48 records; each record is 30 minutes long, collected from 47 patients 

at a sampling frequency of 360 Hz. MIT/BIH database is divided into DS1 and DS2 according 

to the AAMI recommendation [198]. DS1 set is used solely for training, whereas the DS2 set 

is used for the test only (49707 beats).  

V. 4. 2.  European ST-T (EDB) 

EDB contains more than 802000 beats, independently annotated by two cardiologists. This 

database required 79 patients to be constructed, for a total of 90 fully annotated records, all 

sampled at a frequency of 250 Hz with a duration of 120 minutes each. It contains two leads 

with a signal voltage level of ± 20 millivolts coded on 12 bits. 

V. 4. 3.  In Cardiology Saint Petersburg 

INCART DB was developed for ischemia, coronary artery disease, conduction 

abnormalities, and arrhythmias. This database consists of 75 ECG fully annotated records 

sampled at 257 Hz. Each record is 30 minutes long. The database was collected from 32 

patients; it comprises more than 175000 beats. A total of 11% of samples from INCART DB 

were randomly chosen to serve as training and the remaining 89% were used for the test. 

Moreover, the twelfth lead or V6 lead is used for the totality of this database for signal-to-

noise ratio and signal waveform correspondence with the MLII or V5 lead. 

 

Fig.  44 : ECG attributes extraction rules plotting 
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V. 5. Proposed QRS Detection 

The efficiency of an automated arrhythmia delineator depends on the accuracy of the QRS 

detector. Therefore, a robust QRS detector is vital for building a reliable ECG automatic 

recognition system. In this work, the proposed QRS detector is fed with 54 samples as input 

to the neural network. These samples are collected from the region around the peaks of a raw 

ECG signal. We keep only those peaks that are separated by at least 0.1 seconds (see Fig. 44). 

 

Fig.  45 : The proposed QRS Detection architecture. 
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The architecture of the proposed QRS detector is shown in Fig. 45. The design consists 

mainly of a stacked autoencoder, which is the most important part of the automatic feature 

extraction process, it contains two hidden layers. The autoencoder is followed by two multi- 

layer perceptrons (MLP) layers. The first MLP consists of 20 neurons and the second MLP 

consists of 4 neurons. The 20-neurons MLP is fed with the output of the autoencoder and the 

eight peaks around the peak under consideration (3 precedent peaks, current peak, and 4 peaks 

after). The second MLP is fed with the eight current peaks like the first MLP and the eight RR 

intervals. The QRS presence estimation is obtained from the output of the second MLP. 

Through extensive experimentation, we revealed that RR intervals and peaks amplitudes are 

important features for the detection of the QRS complexes.  

We note that during the initialization of the detector, we wait for the four first peaks to 

occur, for our test set with a peaks interval of 0.145 seconds at the mean, the user needs to 

wait for less than 0.6 seconds until the system initialization finishes. Also, at the end of the 

recording, we create redundancy in the peak region to allow the processing of the last signal 

peaks. 

V. 6. Experimental Results 

Deep neural networks performance is seriously influenced by the number of layers and the 

number of neurons by layer. For this purpose, we investigated many configurations to select 

the optimal one. After extensive experimentation, we found that the best deep network 

configuration is achieved with two layers; 75 neurons in the first layer and 15 neurons in the 

second layer. 

The assessment of the proposed scheme is carried out in terms of sensitivity 

(Se=TP/(TP+FN)), positive predictivity (PPr=TP/(TP+FP)), detection error rate 

(DER=(FN+FP)/(TP+FP+FN)), and overall accuracy (OA= (TP+TN)/( TP+TN +FP+FN)). In 

Table 10 : Comparison of State-of-the-Art Algorithms Performance Obtained on the MIT/BIH Dataset 

 

 

 

 

 

 

 

 

 

 

Method # of beats Se PPr DER(%) 

Geometrical matching [17] 60431 97.94 99.13 2.92 

2 Input CNN [76] 100724 99.36 98.99 1.64 

Pan-Tompkins [4] 109809 99.19 99.41 1.39 

Large CNN – LOO [77] N/A 99.22 99.38 N/A 

Proposed on DS2 49707 99.76 99.24 1.00 

Wavelet Delineator [33] 109428 99.8 99.86 0.34 

CNN [44] 105078 99.77 99.91 0.32 

Preprocess CNN[42] 49653 99.81 99.93 0.25 

Wearable Monitor [21] 109496 99.91 99.92 0.1644 

Deep model [201] N/A 99.94 99.97 0.09 
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general, the developed QRS detection scheme produced 0.82% of DER on six unseen datasets 

(Table 11) which contain more than 1470000 beats and produced 1.95% of DER on four test 

datasets (Table 12), which contain more than one million beats. These results prove the 

generalization of the proposed scheme. 

In particular, the details of the results of the benchmark MIT/BIH arrhythmia dataset are 

shown in Table 13, where the proposed scheme produced 1.0% of DER and 99.8% of OA. 

Moreover, the accuracy by record is always greater than 99%. In Table 10, the performance of 

the proposed algorithms using the MIT/BIH dataset is compared with state-of-the-art methods 

(mostly deep CNN). It is clear that the developed scheme is competitive with all other 

algorithms. In our experiment, we followed the AAMI recommendations [83] that are violated 

by all shown methods except [42]. However, [42] utilized many preprocessing steps such as 

baseline wander removal and signal normalization. Also, [42] excluded the flutter segments of 

MITDB from the test and it is computationally demanding. 

The achieved results of the proposed scheme using EDB sound good as shown in Table 12. 

We note that EDB contains a big number of beats and the real challenge with this dataset 

resides in the poor quality of the signal and the diversity of the ST-T wave change and the 

diversity of arrhythmia. Although Martinez et al. [33] attained a good result, their method 

uses empirical thresholds and search back procedure, also they use deep wavelet 

decomposition levels, thus increasing the complexity of their algorithm. Our scheme achieved 

2.24% without any thresholding or search back. Totally, 1044598 beats were used in the test. 

The achieved total DER is 1.94% with high sensitivity (99.73%) and positive predictivity 

(98.31%). In particular, the proposed algorithm achieved 1.34% of DER on SVDB using 

160402 beats. The result is a good achievement compared to Elgendi [47]. Likewise, the same 

performance is observed on the INCART dataset, where 1.46% of DER is achieved using 

160840 beats. Table 12 shows the confusion matrix of the QRS detection evaluated on the 

four test datasets. 

Finally, the results of the proposed algorithm on six unseen datasets are shown in Table 11. 

The obtained results on QTDB show low DER (1.03%) and very competitive Se (99.71%) 

Table 11 : The Achieved QRS Detection Results Using Six Unseen Datasets 

 

 

 

 

 

 

 

Validation set # of beats Se PPr DER(%) 

Apnea 647816 99.27 99.47 1.26 

NSRDB 191053 99.92 99.65 0.43 

QTDB 80499 99.71 99.26 1.03 

LTSTDB 357373 99.90 99.76 0.34 

Fantasia 121128 99.50 99.85 0.65 

Challenge 14 72415 99.74 99.91 0.34 

Overall 1470284 99.66 99.52 0.82 
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Table 12 : The Obtained QRS Detection Results Using Four Test Datasets 

 

 

 

 

 

 

 

 

 

 

 

and PPV (99.26%). Using NSRDB, we obtained Se (99.92%) and PPV (99.65%), these 

results outperform Elgendi [47]. The worst individual DER error is 1.26% (Apnea dataset), 

which is acceptable taking into consideration that 647816 beats were involved in the 

classification. The best performance is obtained on the LTSTDB and Challenge 2014 

databases, with only 0.34% of DER. Overall; a very good DER of 0.82% is obtained using the 

six validation datasets. It is worth noting that the achieved results by the proposed algorithm 

outperform state-of-the-art results on Long Term ST and Challenge 2014 datasets. We remind 

here that Long Term ST and Challenge 2014 datasets were not involved in the training phase. 

This proves the generalization of the proposed algorithm. 

Cross-validation on the training dataset prevents neural networks from overfitting. Thus, 

we divided the training set into 70% for pure training, 15% for validation, and 15% for test. 

Fig. 46 shows the decrease in the error for training, test, and validation. While Fig. 47 and 

Fig. 48 show the error for the first and second stages of MLP, respectively. The mean square 

error decays exponentially from the beginning until epoch 45 (Fig. 46). Then, the error slows 

down and optimization keeps refining the values of the optimal weights. The convergence is 

reached after 103 learning epochs. For the first and second MLPs layers, the decrease in the 

error is very fast during the three first iterations, and then a slow convergence is observed (see 

Fig.47 and Fig. 48). 

Table 13 : DS2 (MIT-BIH) record detailed performance produced by our QRS detector. 

Test database # of beats Se PPr DER(%) 

SVDB 

This work 160402 99.60 99.06 1.34 

Elgendi [47] 184744 99.96 99.80 N/A 

INCART DB 

Elgendi [47] 175918 99.03 97.09 N/A 

This work 160840 99.73 98.82 1.45 

CNN [44] 170000 99.86 99.89 0.25 

EDB 

This work 677756 99.70 98.05 2.28 

Wavelet Delineator [33] 787103 99.61 99.48 0.9 

Overall 

This work 1042309 99.73 98.31 1.95 

File Nb Beats TP FP FN Se PPr DER 

100m 2273 2273 1 0 99.96 100 0.04 

103m 2084 2084 0 0 100 100 0 
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Fig.  46 : Error evolution during the deep learning phase. 

105m 2570 2553 37 17 98.56 99.3 2.09 

111m 2124 2124 5 0 100 100 0.24 

113m 1795 1793 0 2 100 99.89 0.11 

117m 1535 1535 1 0 99.94 100 0.07 

121m 1863 1863 95 0 94.8 100 5.1 

123m 1518 1517 3 1 99.8 99.93 0.26 

200m 2601 2563 8 38 99.69 98.56 1.74 

202m 2136 2135 7 1 99.67 99.95 0.37 

210m 2647 2642 70 5 97.36 99.8 2.83 

212m 2748 2746 0 2 100 99.93 0.07 

213m 3251 3245 1 6 99.97 99.82 0.22 

214m 2262 2261 10 1 99.56 99.96 0.49 

219m 2154 2153 1 1 99.95 99.95 0.09 

221m 2427 2425 9 2 99.63 99.92 0.45 

222m 2483 2481 25 2 98.99 99.92 1.09 

228m 2053 2018 69 35 96.64 98.27 4.98 

231m 1571 1571 0 0 100 100 0 

232m 1780 1776 1 4 99.94 99.78 0.28 

233m 3079 3075 33 4 98.93 99.87 1.2 

234m 2753 2753 2 0 99.93 100 0.07 

Total 49707 49586 378 121 99.24 99.76 1.00 

Epochs 

Performance MSE Error 
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Fig.  47 : Error evolution during first stage MLP learning. 

 

Fig.  48 : Error evolution during second stage MLP learning. 

The real-time processing and the implementation of algorithms on embedded medical 

instruments with low processing capability and reduced memory are important in modern 

intelligent healthcare systems.  Therefore, we evaluated the proposed detector time execution 

using CPU and GPU (Graphical processing unit). 

On a computer that has an Intel i7-2670QM processor with 2.2 GHz and a GeForce 650 

GTX 2GB graphical computation unit, the execution time required to process four datasets 

that contain 1044598 beats is 98.97 s (CPU), this corresponds to 94.95µs per one beat. 

Employing GPU CUDA acceleration, the execution time is reduced to 25.32 seconds for 

processing 1044598 beats, which corresponds to 24.23 µs per one beat. The reported values 

are the mean of three executions to overcome the execution time variations. To compare the 

proposed algorithm with state-of-the-art works, we collected some works that are based on 

deep learning in Table 15. In addition to the execution time spent by each method to detect  

Table 14 : The Proposed QRS Detection Results on Four Test Datasets. 

 

 

 

 

waveform QRS Not QRS ∑ 

QRS 
1026148 4150  

NOT QRS 
16161 4708971  

∑ 1042309 4713121 5755430 

Performance MSE Error 

Epochs 

Performance MSE Error 

Epochs 
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Table 15 : Execution Time Comparison With State-of-the-Art works. 

Method 
SE 

DER 
Execution Time for 30-minutes duration 

record (second) 

DEEP QRS [75] 
N/A 1.1 1260 

CNN [76] 
99.36 1.65 810 

2 LEVEL CNN [44] 
99.77 0.32 14.53 

Prep CNN [42] 99.81 0.25 30.6 

DETEC [10] 
99.87 N/A 19.44 

CNN [79] 
98.52 N/A 3.6 

THIS WORK 
99.76 1.0 0.055 

the presence of the QRS complex on 30 minutes duration, we displayed the sensitivity and the 

detection error rate. It is clear that the proposed method outperforms all the methods shown in 

Table 15. In particular, in terms of overall accuracy, our method surpasses state-of-the-art 

works on two datasets, while being 65x faster on GPU inference than the fastest method of 

[79]. 

This offers the possibility of embedding this method on mobile devices. The low time-

execution of our method is due to the simple deep architecture and the small number of 

weights of the stacked autoencoder. 

V. 7. Conclusion 

An automatic QRS detector is developed without any preprocessing. To the best of our 

knowledge, this is the first time a stacked autoencoder deep neural network is used for QRS 

detection directly from the raw ECG. Furthermore, the proposed architecture is simple and 

contains two hidden layers only with a reduced number of neurons. The proposed algorithm is 

faster than state-of-the-art methods and suitable for embedded systems implementation. The 

achieved experimental results, using many benchmark datasets, prove the generalization and 

high performance of the proposed algorithm. 

As future work, the developed QRS detector will be incorporated in an automatic system 

for arrhythmia classification. 
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VI.  Multi-platform Interactive Arrhythmia Classifier 

VI. 1. Motivations and Approach 

The implementation of a stand-alone system, which could be used for diagnosis by health 

practitioners or non-specialized persons, has been a fundamental objective of this Ph. D. 

dissertation. This intelligent tool comprises many parts; each of which is still an open research 

area. Many methods have been developed for either QRS detection or arrhythmia 

classification. We attempted to integrate our own proposed algorithms to implement a reliable 

system. We selected the deep learning-based method for both QRS detection and arrhythmia 

classification. The fast feature of DL algorithms at inference motivates this choice. Besides, 

many features have been integrated into this software to meet users’ requirements. 

VI. 2. Introduction 

The prediction and anticipation of physical and physiological events constitute a challenge 

to researchers and engineers. Physical and physiological phenomena are events recorded 

using transducers and detectors. These instruments provide information about the measured 

events. The objective of artificial intelligence and signal processing techniques is to improve 

the quality of the generated signal and extract useful information, which is used later for 

decision and monitoring. The implementation of developed algorithms aims at exploiting 

artificial intelligence in helping humans in their daily life. Another important factor is 

resource consumption, which alters directly the cost and mobility of the final product. Many 

features attract the attention of the customer, e.g., memory space, connection to the internet, 

reading external storage memories, connection to other instruments, easy to use, etc. 

The developed system in the present chapter is intended to be able to detect precisely the 

ECG beats and deliver arrhythmia classification. The implemented system is a Holter Android 

arrhythmia classifier program, which comprises a graphical user interface with the possibility 

to observe the recorded signal and the result of segmentation and classification visually. The 

software saves the entire report of the estimated QRS positions and predicted arrhythmia for 

each beat. 

VI. 3. Proposed System 

During the realization of our diagnosis system, we have put a lot of effort to make the 

applications fully automatic. The developed system runs on PCs, MACs, or Android devices. 

The programming environment is programmed under the JAVA language. Then generated 

Byte code, interpreted with a virtual machine, can be executed under Windows, Linux, or 

Macintosh recent versions operation system. This flexibility allows using our product without 

migration to other hardware and permits also a large population of users. 

The possibility of exploiting the developed system under Android devices offers wide 

mobility and users; especially cardiologists and veterinary personals will be able to decide 

about a patient’s state of health directly from their Smartphone or Tablet automatically, no 

need to be in an office behind a monitor. Moreover, our software contains a big number of 

facilities (see Fig. 49), it offers the possibility to read ECG binary file stored on SD external 
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memory or flash disk, or acquiring data from another device through a wireless connection. A 

variety of recording devices that are compatible with previously cited storage norms could be 

used for data acquisition. Also, an intuitive graphical user interface (GUI), integrated into our 

software, offers its users the possibility to choose the data acquisition mode. Therefore, we 

offer a signal plot to let the user enjoy the input signal shape.  The developed system displays 

the normal or arrhythmia type for each detected beat. The detected arrhythmia is plotted on 

the top of the detection position. For post-decision, the software interface offers the user the 

possibility to save the resulting QRS positions and their identified pathologies on binary, pdf, 

or text file formats. Hence, the user has the opportunity to correct, if he is an expert, the 

wrong pathology or QRS position, after visualizing the plot. Another feature that the 

developed software provides is the computation of the Heart Rate (HR), which is the number 

of beats per minute. The graphical user interface shown in Figs. 50 and 51 of the developed 

software running on a Smartphone and emulated on PC gives an initial feeling of a user-

friendly software that permits an easier manipulation. Employing icons for each feature, the 

user does not require advanced knowledge of medical or computer science disciplines. 

 

Fig.  49 : Software devices interactions. 
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Fig.  50 : Overview of the Android software user interface. 

 

Fig.  51 : User interface overview on the PC emulator. 

VI. 4. Numerical Results 

While a user-friendly user interface and diverse functions for any software are 

indispensable, accurate QRS detection and arrhythmia classification are mandatory features. 

The classification accuracy is the main challenge in this kind of intelligent systems. The 

primary aim of utilizing this software by experts or any category of users is to determine the 

heart state health. Besides, the execution time is crucial; short processing time is required in 

order to have quick decisions. That is, if the processing time is greater than necessary, the 

cardiologists will not benefit from the software. In this case, the software will be useful only 

for analyzing long-duration recordings that require tedious work for their analysis. 

Tables 16, 17, and 18 show QRS detection and arrhythmia accuracy performance. For the 

QRS detection, the proposed classification scheme is very accurate (0.82% of DER error, with 

99.66% of sensitivity and 99.52% of positive predictive value) over more than 1400000 

unseen beats, especially when the evaluation is done on databases completely not used on 

training, this proves the robustness of our method and the generalization of the proposed 

architecture. 
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Table 16 : The Achieved QRS Detection Results using Six Unseen Datasets. 

Validation set 
# of 

beats 
Se PPr 

DER 

% 

Apnea 647816 99.27 99.47 1.26 

NSRDB 191053 99.92 99.65 0.43 

QTDB 80499 99.71 99.26 1.03 

LTSTDB 357373 99.9 99.76 0.34 

Fantasia 121128 99.5 99.85 0.65 

Challenge 14 72415 99.74 99.91 0.34 

Overall 1470284 99.66 99.52 0.82 

 

Table 17 : Test and Unseen sets Arrhythmia Classification Accuracies. 

Approach Accuracy 

Test dataset 

MITDB 97.5 

INCART DB 96.9 

SVDB 98.6 

EDB 99.7 

Unseen dataset 

Challenge 2014 99.8 

QTDB 84.3 

 

For the arrhythmia classification, the proposed method achieved an overall accuracy of 

99% over more than 670000 beats. The training and test beats were collected from four well-

known databases for ECG signal processing and classification. Besides, the results of Table 

17 indicate good learning of the signal characteristics and the accuracy of the proposed 

scheme on the different test and validation sets. More precisely, the accuracy on test sets is 

around an average of 98.5%; the accuracy on MITDB test set is 97.5%, 96.9% on INCART 

DB, 98.6% on SVDB, and 99.7% on EDB. Thus, the obtained results are very promising for 

arrhythmia classification. Moreover, 99.8% of accuracy for Challenge 2014 DB, and 84.3% 

for QTDB confirm the efficiency of our method on unseen data and the robustness of our 

method for ECG signal. The confusion matrix of Table 18 presents an overall view of the 

global arrhythmia classification results, including QRS detection.  
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VI. 5. Conclusion 

The developed software can resolve many cardiologists’ problems; it can be a valuable tool 

for auto-diagnosis. Finally, we can say that we achieved most of the planned objectives. The 

developed system is accurate and fast. Moreover, it has a diverse number of functions and a 

short execution time. Also, mobility and multi-platform targeting constraints are met.  

 

 

 

 

 

 

 

 

Table 18 : Confusion Matrix for Testing set Based on Subject-Oriented Representation 

Pathology 
0 N 

Q A V J F R L E e A j S  

0 4708971 86 0 0 22 0 0 0 5 0 0 0 0 1  

N 2964 581734 12 367 1125 14 121 27 24 1 3 15 59 1038  

Q 17 0 0 0 0 0 0 0 0 0 0 0 0 0  

A 17 126 0 446 5 0 1 33 0 0 0 2 4 1  

V 947 1497 6 36 6969 0 105 20 31 20 0 12 0 120  

J 0 0 0 0 0 0 0 0 0 0 0 0 0 0  

F 33 28 0 1 5 0 49 0 0 0 0 0 0 0  

R 16 40 1 34 12 3 0 2004 0 0 0 0 0 0  

L 91 51 0 13 10 0 0 1 1560 0 0 1 0 0  

E 8 0 0 0 0 0 0 0 0 0 0 0 0 0  

e 0 0 0 0 0 0 0 0 0 0 0 0 0 0  

a 58 0 0 0 0 0 0 0 0 0 0 0 0 0  

j 0 0 0 0 0 0 0 0 0 0 0 0 0 0  

S 0 1037 2 0 93 0 1 0 0 0 0 0 0 1498  

∑ 4713121 584599 21 897 8241 17 276 2085 1620 21 3 30 63 2658 5313652 
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VII.  Global Results and Conclusions 

In this chapter, we report the achievements of our dissertation and a thorough comparison 

of the obtained results with state-of-art methods. In addition, we mention the remaining 

challenges and potential extensions of some methods. 

VII. 1. QRS Detection Results 
Table 19 : Comparison of the proposed methods with state of the art. 

Method 
# of 

beats 
TP FP FN PPV Se DER 

MITDB 

Geometrical matching [17] 60431 N/A N/A N/A 97.94 99.13 2.92 

Zero crossing [8] 109428 N/A N/A N/A 97.44 99.13 1.71 

Short Time Fourier Transform 

[22]  
109982 N/A N/A N/A 99.1 99.6 1.3 

An Approach to QRS Complex 

Detection using Deep Neural 

Network Autoencoder 

49707 49586 378 121 99.24 99.76 1.00 

Moving average [16] 102654 N/A N/A N/A 99.6 99.78 0.96 

MaMeMi filter [9] 109494 N/A N/A N/A 99.44 99.68 0.88 

New QRS Detection Algorithm 

Using Discrete Wavelet 

Transform and Statistical 

Estimation [80] 

109494 109067 486 427 99.56 99.61 0.83 

An Improved QRS Detection 

Method Using Hidden Markov 

Models [81] 

44510 44232 52 278 99.38 99.88 0.741 

Adaptive Thresholding [5] 109949 109447 289 502 99.54 99.74 0.72 

First dervitaive [18] 109504 109150 405 354 99.63 99.68 0.69 

Pan-Tompkins [4] 109809    99.56 99.76 0.68 

Lowpass-RR intrvals [18] 109336 108960 218 376 99.80 99.66 0.54 

Quantitative evaluation [3] 109267 108927 240 340 99.78 99.69 0.54 

C CUDA Acceleration of a New 

PSO Optimized Wavelet QRS 

Detector [81] 

109494 109201 309 293 99.72 99.73 0.5498 

Characteristic Templates [34] 116137 N/A N/A N/A 99.81 99.70 0.49 

Morphological filtering(VLSI) 

[20] 
109510 N/A N/A N/A 99.82 99.76 0.43 

Adaptative thresold [15] 110050 109811 240 239 99.78 99.78 0.43 

Optimize [47] 109985 N/A N/A N/A 99.87 99.78 N/A 

Wavelet Delineator [33] 109428 N/A N/A N/A 99.8 99.86 0.34 

Digital fractional order [6] 109494 109338 153 156 99.86 99.86 0.34 

CNN [44] 105078 N/A N/A N/A 99.77 99.91 0.32 

SWT [25] 109494 109316 126 178 99.88 99.84 0.28 

Fractional order operator [6] 107632 N/A N/A N/A 99.86 99.86 0.29 

Prep CNN[42] 49653 N/A N/A N/A 99.81 99.93 0.25 

A New Method For QRS 

Detection Using Stationary 

Wavelet Transform 

109494 109308 64 186 99.94 99.83 0.228 

Embedded Detector [10] 91285 N/A N/A N/A 99.87 99.9 N/A 

Swarm Intelligence Approach 

to QRS Detection [50] 
109494 109406 97 88 99.91 99.92 0.169 

Wearable Monitor [21] 109496 N/A N/A N/A 99.91 99.92 0.1644 

MFO DFOD [204] 109949 N/A N/A N/A 99.93 99.92 0.1507 

EDB 

Swarm Intelligence Approach 

to QRS Detection [50] 
704656 697169 827 7487 99.88 99.06 1.18 

An Approach to QRS Complex 

Detection using Deep Neural 

Network Autoencoder 

677756 674774 12445 2982 99.7 98.05 2.28 

A New Method For QRS 

Detection Using Stationary 

Wavelet Transform 

734555 726184 647 8371 99.91 98.87 1.23 

Wavelet Delineator [33] 983423 N/A N/A N/A 99.66 99.56 0.78 

NSTDB 

Swarm Intelligence Approach 

to QRS Detection [50] 
25590 24803 4422 787 82.72 96.42 20.36 

Optimize [47] 26370 N/A N/A N/A 90.25 95.39 N/A 
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SWT [25] 25590 24388 1563 1202 95.3 93.98 10.81 

A New Method For QRS 

Detection Using Stationary 

Wavelet Transform 
25590 25300 2300 290 91.01 98.77 10.12 

SVDB 

Optimize [47] 184744 N/A N/A N/A 99.96 99.80 N/A 

An Approach to QRS Complex 

Detection using Deep Neural 

Network Autoencoder 

160402 159763 1514 639 99.6 99.06 1.34 

INCART 

CNN [44] 170000 N/A N/A N/A 99.86 99.89 0.25 

Swarm Intelligence Approach 

to QRS Detection 
138891 137161 74 1730 99.95 98.82 1.3 

An Approach to QRS Complex 

Detection using Deep Neural 

Network Autoencoder 

160840 160432 1824 408 99.73 98.82 1.45 

Optimize [47] 175918 N/A N/A N/A 99.03 97.09 N/A 

QTDB 

Swarm Intelligence Approach 

to QRS Detection 
80056 79989 957 67 99.92 98.82 1.279 

An Approach to QRS Complex 

Detection using Deep Neural 

Network Autoencoder 

80499 80266 597 233 99.26 99.8 1.03 

HMM [38] 61414 N/A N/A N/A 99.79 99.96 0.25 

Wavelet Delineator [33] 86824 N/A N/A N/A 99.92 99.88 0.2 

Optimize [47] 111201 N/A N/A N/A 99.99 99.67 N/A 

Normal Sinus Rhythm 

Optimize [47] 183092 N/A N/A N/A 99.99 99.96 N/A 

An Approach to QRS Complex 

Detection using Deep Neural 

Network Autoencoder 

191053 190896 669 157 99.92 99.67 0.43 

Adaptive Thresholding [5] 192389 N/A N/A N/A 99.97 99.99 0.04 

Fantasia 

Adaptive Thresholding [5] 79484 N/A N/A N/A 99.99 99.94 N/A 

An Approach to QRS Complex 

Detection using Deep Neural 

Network Autoencoder 

121125 120512 177 613 99.85 99.9 0.65 

Challenge 2014 

Adaptive Thresholding [5] 72309 N/A N/A N/A 99.94 99.75 N/A 

An Approach to QRS Complex 

Detection using Deep Neural 

Network Autoencoder 

72415 72229 62 186 99.74 99.91 0.34 

 

Table 20 : The execution time of our developed algorithms. 

Method 
Execution Time (100m) 

(2274 beats) (seconds) 

CPU  

Swarm Intelligence Approach to QRS 

Detection 
1.3 

An Approach to QRS Complex Detection 

using Deep Neural Network Autoencoder 
0.216 

GPU  

C CUDA Acceleration of a Newest PSO 

Optimized Wavelet QRS Detector 
0.126 

An Approach to QRS Complex Detection 

using Deep Neural Network Autoencoder 
0.06 

 

Our proposed QRS detection algorithms achieved a DER in the range of 0.169-1.0 % on 

the MIT/BIH arrhythmia database (see Table 1). This ranks the proposed algorithms among 

the best state- of- the-art algorithms. In particular, two of our introduced methods achieved 

the best performance over the MIT/BIH Arrhythmia database, namely, the swarm intelligence 

optimized method and the SWT based method, with 0.169% of error for the first, and 0.228% 

for the second. Thus, taken into consideration that the MITDB is a benchmark for the QRS 
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detection, this achievement is a significant contribution to enriching the field of QRS 

detection research field.  

For the assessment on the MIT Noise Stress database, for noise robustness evaluation, the 

proposed QRS Detection Using Stationary Wavelet Transform method outperforms state-of-

the-art algorithms in terms of DER (10.12%). The result of the SWT based algorithm obtained 

under normal and abnormal noisy environments makes our algorithm unique in this field; 

while the algorithms designed for the QRS detection in noisy environments perform well only 

for this type of conditions, they produce very poor results for normal ECG signals. For 

instance, the error delivered by the swarm approach [50] is 20.36%, which is 2x the error of 

the SWT method. The SWT based method produced only 0.228% of DER on the MITDB set. 

The above results show that the SWT based algorithm is suitable for both normal and noisy 

environments. The assessment on long duration datasets has been carried out on the European 

database (EDB). The best offline result achieved by our SWT based algorithm is 1.23% of 

DER using more than 734000 beats, which confirms that our developed algorithm is 

appropriate for large validation datasets. 

For Fantasia DB and challenge 2014 DB, our DL approach achieved 0.64% and 0.34% of 

DER, respectively. These achievements are state-of-the-art results in this domain. During our 

assessment, we used 121125 and 72415 beats, whereas Gutiérrez-Rivas et al [5] used only 

79484 and 72309 beats. Therefore, our results are more reliable. For QTDB, SVDB and 

INCART, the reported results are not the best, but still rank well among state-of-the-art 

algorithms. Summing up, the deep learning proposed method achieved 0.82% of DER using 

more than 1470000 beats. 

Among the developed methods throughout this dissertation, we believe that the deep 

learning approach is the most adequate for a potential implementation. This is due to the 

achieved high performance over a wide range of standard databases and the low execution 

time required at inference (Table 3).  

VII. 2. Achievements and Perspectives 

Throughout this dissertation, we developed many algorithms for QRS detection, an 

arrhythmia classification scheme, and a user-friendly diagnosis system. The first contribution 

is an optimization procedure of the Pan-Tompkins algorithm parameters. The second is a 

time-frequency method using the stationary wavelet transform, which is a state-of-the-art 

method for noisy ECG signals. The third is a new DL approach using stacked autoencoders. 

The DL approach produced very promising performance over a variety of standard datasets. 

Our proposed diagnosis system has many features and it is user-friendly. It can be used as a 

tool that helps the practitioners in delivering accurate and fast decision. In particular, it can 

help in the analysis of long duration recordings, which is a common method used to collect 

information about patients suffering from ECG disorders. 

For further extensions, as the DL techniques are invading many fields of research, we 

believe that other architectures are possible based on CNNs in conjunction with LSTM. 

Besides, time-frequency performance might be improved if we use adaptive wavelets that are 

tailored to the ECG signal shape. 

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Raquel%20Guti%C3%A9rrez-Rivas.QT.&newsearch=true
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