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Abstract – Alarm systems are critically important for safety and efficiency of industrial plants. 

Not designed properly or not receiving the attention they deserve, alarm systems suffer from poor 

performances.  Alarms notify the operator of the abnormality on the plant. Unfortunately, most of 

these alarms are false and nuisance, they can be a real distraction to the operator and may 

additionally mask vital alarms. Deadbands, filters and delay timers are industrial techniques 

proposed by the industrial community to reduce false and nuisance alarms. In this paper, we 

investigate the use of three different delay timers; conventional delay timer, generalized delay 

timer and multi-setpoint delay timer; in the process and compared their effects on accuracy and 

detection delay. False alarm rate (FAR), Missed alarm rate (MAR) and average alarm delay 

(AAD) are the three performance indices used to design optimal alarm system. Simulation results 

show that alarm performances can be improved and even optimized via delay-timer with proper 

choice of the delay timer order. 

 

Keywords: Alarm systems, Average alarm delay, False alarm rate, Generalized delay timer, 
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I. Introduction 

The inefficiency of alarm systems is the main cause 

of incidents and accidents such as the explosion of BP 

Texas City refinery in March 2005[13] and the 

Buncefield incident in December 2005[14]. Alarm 

system design has received substantial interest from 

industrial practices and academic researchers. The 

primary objective of an alarm system is to alert, inform 

and guide the plant operator who must decide about 

what to do during plant upset. 

Many organizations developed and published some 

standards and guidelines to be used for designing and 

managing alarm systems. The Engineering Equipment 

and Materials Users’ Association produced the 

document EEMUA-191 Alarm Systems: A Guide to 

Design, Management, and Procurement [9]. The 

standards ANSI/ISA-18 were proposed by the 

International Society of Automation [8]. Investigation 

reports that many industrial plants annually lose 

millions of dollars because of unexpected shutdown, 

damage of equipment and operation failures. Most 

plants prefer to avoid a shutdown if it could be done 

without risk [18].  

Timely detection and isolation of a fault are essential 

functional requirements for good alarm system. Yet, it 

is rarely the case in reality; alarm systems suffer from 

low executions, misleading, and markedly alarm 

overloading where a large number of alarms are raised 

and thus difficult to be handled (ten, hundreds of alarms 

per hour). Most of those alarms are nuisance (false) 

alarms. Some modifications on the alarm generation are 

needed to reduce the occurrence of these alarms. 

Deadbands [10], [15], filters [16], delay timers [19] are 

some of the simple industrial techniques deployed in 

practice to get rid of chattering and nuisance alarms, 

improve alarming accuracy and sensitivity. 

Delay timers are extensively utilized in distributed 

control systems (DCS) for their ease of use and 

straightforward work on alarms. In [19], the authors 

presented a procedure for designing a conventional 

on/off alarm delay based on FAR, MAR and EDD. In 

paper [17], a new procedure is introduced to 

appropriately select the delay timer when the historical 

data of the alarm event and the corresponding 'Back to 

Normal' (RTN) information are used. 

Accuracy is significantly better when using a 

(combined) delay timer rather than using on-delay timer 

or off-delay timer of the same length [17]. In this paper, 

three different delay timers, namely, conventional delay 

timer, generalized delay timer [11] and multi-setpoint 

delay timer [12], have been used and modeled via 

Markov chains. We will evaluate and discuss the 

performance of these delay timers by comparison using 

a simple case study.  The main goal here is to find the 

best delay timer for designing an optimal alarm system 

under some specifications.  

II. Markov chain 

 

Markov chain, known as a Discrete-Time Markov 

Chain (DTMC) or Markov process, is the simplest 

mathematical model for random phenomenon evolving 
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in time [1]. It is a system of countable states set S= { i0, 

i1, …., in } and probabilities. The transition to the future 

state is essentially dependent on its current state and not 

on how the system attained the current state. 

Markov chains have been applied in various fields; 

chemistry [2], biology [3], economics [4] and finance 

[5]. 

A Discrete-Time Markov Chain is a stochastic 

process satisfying the Markov property: 

)(),......,( 111100   nnnnnnnn iXiXPiXiXiXP   (1) 

X0, X1,…., Xn are random variables and t=0, 1, 2, …, n  

is the discrete-time interval of Markov chain [6]. The 

jump from state i to state j is characterized by the one-

step transition probability: 

)( 1 iXjXPp nnij                         (2) 

The pij is the ij
th

 element of the n×n matrix P known 

as the transition probability matrix.  P is a stochastic 

matrix where its entries are the one-step transition 

probabilities and satisfying: 

nji pij  ,1,10                          (3) 
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Rows represent the actual state and columns the next 

state. After n-step transitions, the transmission 

probability matrix will be P
n
.  

The stationary distribution π is a probability vector 

satisfying the equation: 

πPπ                                      (6) 

Where 

                            
],,,[ 21 nππ π π                              (7) 

π is the left eigenvector of the matrix P with unity 

eigenvalue [7]. 

Direct graphs are used to represent Markov chain by 

defining all states and the one step probability hopping.   

III. Conventional delay timer 

A delay timer is a simple technique used in practice 

to reduce chattering and nuisance alarms [8].  

ON delay timer is deployed to get rid of nuisance 

alarms; an alarm is raised if and only if n consecutive 

samples overshooting the alarm limit. OFF delay timer 

is utilized to avoid chattering alarms; the alarm status 

returns to the no alarm state if m consecutive samples go 

below the established alarm limit. Hence, some delays 

have been introduced in raising and clearing an alarm. 

The main design parameter in delay timer is the length 

of the ON/OFF delay timer.  

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig.1. Markov chain of n samples ON\OFF delay timer. 

 

According to the type of process signal, some delays 

have been proposed in [9].  

Table 1 highlights the EEMUA recommendations [9]. 

Table-1: EEMUA recommendation for delay timer 

Signal type Delay 

Flow 15 sec 

Level 60 sec 

Pressure 15 sec 

Temperature 60 sec 

 

In this work, we consider the process variables 

independent and identically distributed (i.i.d) and the 

probability distribution of normal and abnormal statuses 

are known. 

Fig. 2 shows two distribution functions (PDFs) of one 

process variable under normal (solid) and abnormal 

(dashed) situations. Five set points, XNL, XAL, Xtp, XNH, 

and XAH are selected where NL and NH refer to the low 

and high limits of process variable operating under 

normal conditions, respectively. In a similar way, 

respectively, AL and AH represent the low and high 

limits for which the process is considered abnormal.      
If the plant is operating under the normal conditions 

and an alarm is raised, the probability managing this 

situation is called a False Alarm Rate (FAR) whereas 

the probability when an alarm is not activated in the 

presence of a fault is a Missed Alarm Rate (MAR). 

Detection Delay is the time difference between the 

particular moment of fault incident (tf) and the time an 

alarm is activated (ta) [10]. 

fad ttT                                       (8) 

Fig. 2 shows an example of a distribution function of 

a process variable under normal and abnormal 

conditions where it is configured for a high alarm limit. 

The Probability calculation of variable in each range is 

demonstrated in equations (9)-(14):  

1321  qqq                                 (9) 
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Fig.2. The distribution functions of normal data (solid), 

abnormal data (dashed) and alarm limits (vertical lines). 
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q3 denotes the probability of false alarms whereas p1 the 

probability of missed alarms. 

NSqR 11                                        (17) 

AN SpSqR 122                           (18) 

AN SpSqR 233                           (19) 

ASpR 34                                        (20) 

SA and SN are the statistical probabilities of process 

operating in a normal and abnormal manner, 

respectively [12]. 

According to (11)-(20), the one step transition 

probability matrix Q R
2n×2n

 of the Markov chain in 

Fig.1 is: 
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Fig.3. 3 out of 4 generalized on-delay timer. 

 

To find the FAR formula, we use the one step 

transition probability matrix Q in normal condition (21) 

which is obtained by setting SN=1 and SA=0. 

The analytic expression of FAR for the n-sample delay 

timer is: 

)A(P....)A(P)A(pFAR 1n1           (22) 
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MAR and AAD are related with p1, p2 and p3. The one 

step transition probability matrix Q in abnormal 

condition where SN=0 and SA=1. 

The analytic expression of MAR and AAD for the n-

sample delay timer are: 

)NA(P....)NA(P)NA(pMAR 1n1        (24) 
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Where h is the sample period. 

IV. Generalized delay timer 

The condition of n consecutive samples above the 

alarm limit for alarm annunciation is difficult to satisfy 

since chattering and repeating alarms exists in process 

plant. Adnan, et al. introduced a new delay timer by 

relaxing the condition to n1 out of n samples exceeding 

the alarm limit [11]: 

 n1 out of n samples generalized on-delay: if n1 out of 

n consecutive samples cross the alarm limit, an 

alarm will be raised. 

 

 m1 out of m samples generalized off-delay: if m1 out 

of m consecutive samples fall below the alarm limit, 

an alarm will be cleared. 
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Fig.4. 2 out of n generalized delay timer. 

 

Fig. 3 presents information about the generalized on-

delay timer with n1=3 and n=4. The conventional 3 on-

delay timer has only one path to reach the alarm state 

(A) from no alarm state (NA1) in contrary of the 3 out of 

4 generalized on-delay timer which has three different 

paths. The generalized delay timer is more complex 

than the traditional one since it has more paths and 

intermediate states as we increase n.  

In this paper, we will take the case 2 out of n 

generalized delay timer for simplicity. Based on 

equations (9)-(18), the one step transition probability 

matrix P
n2n2R   of Fig. 4 is: 
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The analytic expression of FAR for the 2 out of n 

generalized delay timer: 
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Fig.5. n-sample multi-setpoint delay timer. 
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V. Multi-setpoint delay timer 

Su et al. proposed another delay timer in order to 

improve alarming accuracy and alarming sensitivity. By 

employing the additional set points shown in Fig.2, the 

transition in Markov chain from no alarm state (NA) to 

alarm state (A) is direct and in one step. This will 

improve the flexibility of status transitions. Markov 

chain of an n-m-order multi-set point delay timer is 

demonstrated in Fig.5. If the process variable goes 

above (below) the alarm limit with probability q3 (p1), 

an alarm will be raised (cleared) immediately [12].  
The one step transition probability matrix K ∊R

2n×2n
 of 

Fig. 5 is: 
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Fig.6. Probability distribution functions of the process variable 

in normal and abnormal conditions. 

 

The FAR, MAR and AAD equations for the n-sample 

multi-set point delay timer [12]: 
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VI. Alarm system design 

Designing an alarm system using delay timer requires 

finding an optimal delay timer as well as the alarm limit 

that improves significantly the accuracy and latency of 

this system.  

Adding delay timers to a system with bad design of 

alarm limit will aggravate the situation.  

This work examines the performance of the three 

techniques commonly used to reduce nuisance alarms. 

We can determine the optimal parameter (the alarm 

delay) to reach the desired probabilities in case the 

wanted probabilities of the three performance indices 

are available. 

To find the optimal design, we will use a weighted-sum 

loss function J.  

mAAD

AAD
c

mMAR

MAR
c

mFAR

FAR
cJ 321         (35) 

Where mFAR, mMAR and mAAD are the requirements 

of FAR, MAR and AAD respectively. c1, c2 and c3 are the  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig.7. FAR vs xtp with the use of various delay timers. 

 

 

weights of FAR, MAR and AAD respectively. 

‘Optimality’ means that J is minimal. 

For simplicity, let the process variable X follows a 

normal distribution with a mean change at t0, 

0
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The PDFs of the process variable in normal and 

abnormal conditions is shown in Fig. 6. 

The performances of the three delay timers are shown 

in Fig.7, Fig.8 and Fig.9. 

When increasing the order (n) of the delay timers in 

Fig.7 and Fig.8, two striking observations can be drawn 

from these figures. The first observation is that 

conventional and multi-setpoint delay timer will 

significantly reduce FAR and MAR in contrary of the 

generalized one which will increase FAR and MAR for 

fixed n1=2. The second observation is that the multi-

setpoint delay timer has far more effect on FAR/MAR 

compared to the conventional delay timer. We can 

explain this by the direct (one step) transition from NA 

(A) state to A (NA) state when condition is satisfied.  

It is clear from Fig.9 that the generalized delay timer 

is much better in terms of latency compared to the two 

other delay timers. It can be justified by the property of 

the generalized delay timer; having different path to 

reach the A state (NA) from NA (A) state.  

The trade-off between FAR/MAR and AAD always 

hold; better accuracy (less FAR/MAR) induces bad 

latency (more delay).  

We can design the alarm delay so that the alarm 

system requirements are met. 

Let’s assume the alarm limit to be Xtp=2.5 1.0mFAR

1.0mMAR .h2mAAD   
The objective is to choose an optimal delay timer that 

ensures false and missed alarms less than 1% and 

average alarm delay less than 2h. 
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Fig.8. MAR vs xtp with the use of various delay timers. 

 

Table-2: optimal design of various delay-timers. 

Delay 

timer 

n FAR MAR AAD J 

Conven-

tional 
delay 

timer 

n=3 

n=6 

n=8 

 

9.624×10-4 

6.426×10-7 

4.129×10-9 

 

0.1205 

0.0155 

0.0033 

4.5586 

24.380 

56.682 

3.493 

12.34 

28.37 

2 out of n 

General-
ized 

delay 

timer 

n=3 

n=6 

n=8 

 

0.0162 

0.0314 

0.0382 

0.2434 

0.2898 

0.2999 

1.4917 

1.2833 

1.2759 

3.341 

3.854 

4.019 

Multi 

setpoint 

delay 
timer 

n=3 

n=6 

n=8 

 

5.296×10-4 

1.768×10-7 

7.981×10-10 

 

0.0529 

0.0017 

1.63×10-4 

 

1.689 

1.882 

1.890 

1.379 

0.958 

0.946 

 

Using the weighted-sum loss function defined in (35), 

we can find the optimal design of alarm delay where 

FAR, MAR and AAD are equally treated; the weights are 

chosen as 1321  ccc . 

For Xtp=2.5, the resulting FAR, MAR and AAD are 

shown in table-2. It is observed that the 8-sample multi 

setpoint delay timer gives the best performances where 

the function J is minimal. 

Considering the priority given to FAR, MAR and AAD 

for different situations in practice, several optimization 

criteria can be developed. If we are more interested on 

the AAD (setting c3 larger) , the generalized delay timer 

will give more choices to satisfy requirements. 

VII. Conclusion 

In this paper, we reviewed three different delay 

timers; conventional delay timer, generalized delay 

timer and multi-setpoint delay timer. The effect of 

adding those techniques on alarm system performances 

was discussed. It has been shown that the performance 

of multi-setpoint delay timer is much better than the two 

other delay timers when it comes to accuracy (less FAR, 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig.9. AAD vs xtp with the use of various delay timers. 

 

less MAR). On the other hand, generalized delay timer 

performs better results when it comes to latency by 

efficiently reducing the AAD.  The weighted-sum loss 

function J has been used to choose the efficient delay 

timer where FAR, MAR and AAD are equally treated, we 

concluded with the multi-setpoint as a best choice for 

optimal design.  
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pij 
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NA 

XNL 

 

XAL 

 

Xtp 

XNH 

 

XAH 

 

FAR 

MAR 

AAD 

f(x) 

g(x) 

h 

R1 

 

R2 

 

R3 

 

 

Countable set of states. 

Random variable. 

Transition probability from ith state to jth state. 

Stochastic transition probability matrix. 

Left eigenvector of the stochastic matrix P. 

Number of consecutive samples exceeding the alarm  

limit in a delay timer. 

Alarm state. 

No alarm state. 

Low limit of probability density function of normal  

data.  

Low limit of probability density function of abnormal  

data. 

Alarm limit. 

High limit of probability density function of normal  

data. 

High limit of probability density function of abnormal  

data. 

Probability of false alarms. 

Probability of missed alarms. 

Average alarm delay 

Probability density function (PDF) of normal data. 

Probability density function (PDF) of abnormal data. 

Sample period. 

Range between the low limits of probability density  

functions of normal and abnormal data.  

Range between the low limit of probability density  

function of normal data and the alarm limit.  

Range between the alarm limit and high limit of  

probability density function of normal data. 
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R4 

 

SA 

 

SN 

 

J 

mFAR 

mMAR 

mAAD 

Range between the high limits of probability density  

functions of normal and abnormal data.  

Statistical probability of process operating under  

normal condition. 

Statistical probability of process operating in an  

abnormal manner. 

Weighted-sum loss function. 

Required FAR value to satisfy.  

Required MAR value to satisfy. 

Required AAD value to satisfy. 
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