
Multi-objective workflow scheduling in cloud computing: trade-off
between makespan and cost

Ali Belgacem1
• Kadda Beghdad-Bey2

Received: 20 March 2021 / Revised: 1 July 2021 / Accepted: 24 September 2021
� The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract
Recently, modern businesses have started to transform into cloud computing platforms to deploy their workflow appli-

cations. However, scheduling workflow under resource allocation is significantly challenging due to the computational

intensity of the workflow, the dependency between tasks, and the heterogeneity of cloud resources. During resource

allocation, the cloud computing environment may encounter considerable problems in terms of execution time and

execution cost, which may lead to disruptions in service quality given to users. Therefore, there is a necessity to reduce the

makespan and the cost at the same time. Often, this is modeled as a multi-objective optimization problem. In this respect,

the fundamental research issue we address in this paper is the potential trade-off between the makespan and the cost of

virtual machine usage. We propose a HEFT-ACO approach, which is based on the heterogeneous earliest end time (HEFT),

and the ant colony algorithm (ACO) to minimize them. Experimental simulations are performed on three types of real-

world science workflows and take into account the properties of the Amazon EC2 cloud platform. The experimental results

show that the proposed algorithm performs better than basic ACO, PEFT-ACO, and FR-MOS.

Keywords Cloud computing � Workflow scheduling � Resource allocation � Makespan � Cost � ACO algorithm

1 Introduction

Information technology (IT) and the Internet have become

essential elements for human life. However, in the last

years, the IT sector became very large and complex, which

necessitated migrating users from traditional software

models to cloud computing. Cloud is a popular IT model

that can afford to process large volumes of data. It stems

from a long history of research and takes grid computing as

a basic structure. Today, cloud computing holds a pri-

mordial place in distributed computing. Indeed, it allows

access to large amounts of computing power in a fully

virtualized manner by aggregating resources and offering a

single system view [1].

Virtualization is a necessary technique to make the

cloud more automatic and agile. It allows returning a

physical operating system, the computing device (server),

storage device, or network devices to virtual devices. In

other words, virtualization is the transparent emulation of

an IT resource-producing to its consumers’ benefits that

were unavailable in its physical form [2]. Datacenter vir-

tualization is a primordial process to make the cloud more

efficient and scalable. Whereas virtual machines (VMs) are

the fundamental components of the cloud. They are formed

according to the software layer added to a real machine. By

doing so, VM can circumvent the real machine compati-

bility and hardware resource constraints [3].

The cloud is a large pool of shared resources with free

access in a dynamic, scalable manner and with guaranteed

quality of service [4–6]. It aims to provide users with

resources for an agreed period of time and satisfy both the

needs of users and service providers. The strong evolution

of the Cloud and the migration of many network services to

such an elastic environment make it a crucial research

subject. Resource allocation is one of the important

research trends that must be targeted to maintain quality of

& Ali Belgacem

a.belgacem@univ-boumerdes.dz

Kadda Beghdad-Bey

k.beghdadbey@gmail.com

1 M’hamed Bougara University, Boumerdes, Algeria

2 École Militaire Polytechnique, Algiers, Algeria

123

Cluster Computing
https://doi.org/10.1007/s10586-021-03432-y(0123456789().,-volV)(0123456789().,-volV)

http://orcid.org/0000-0002-5929-7510
http://crossmark.crossref.org/dialog/?doi=10.1007/s10586-021-03432-y&domain=pdf
https://doi.org/10.1007/s10586-021-03432-y

service (QoS). Formally, this problem involves a set of

tasks planned to execute on a set of resources. While this

operation is subjected to a set of constraints to optimize an

objective function. Therefore, the ultimate goal is to build a

plan which specifies when and on what resource each task

will be executed. In general, there are no algorithms that

can produce an optimal solution in polynomial time for

these kinds of problems [7]. Moreover, since the solutions

are based on exhaustive research that is very expensive and

restrictive, the allocation of resources in a cloud environ-

ment belongs to a category of problems called NP-hard.

On the other hand, workflow software application

technology continues to be subjected to on-going growth in

business and science areas. It is designed as a set of

automating depending tasks. Its design can involve con-

siderations such as the type of tasks involved, their inter-

action, and the sequence in which they need to be

completed (i.e. sequential or parallel) [8]. Workflows are

divided into business and scientific categories. The first is a

group of operations to perform a task comprising at least

two human factors. While the second is used in medicine,

meteorology, etc. Workflows differ based on their type

(business or scientific) and type of dependencies among

their tasks [9]. Indeed, cloud providers have often designed

and hosted workflow platform services. Furthermore, the

workflow scheduling process is subjected to two main

strategies. The first is the ready task selection phase.

During this stage, the tasks that can be scheduled at the

same time without dependent constraints are extracted

using different techniques. In the second stage, the sched-

ule is generated, and each task is mapped onto the best-

suited resource [10].

Resources management is considered an important

aspect to obtain the desired objective behind resource

allocation. This issue is solved using techniques based on

metaheuristics. They allow providing almost optimal

solutions within a reasonable time. Many researchers have

approached these techniques while trying to improve cer-

tain points and satisfy different metrics. Particularly and in

the context of dependent tasks, metaheuristics have many

advantages which facilitate the processing of a workflow.

The ant colony is widely used due to its good results in

solving different combinatorial problems. It is considered

one of the most powerful metaheuristics [11]. Its strength

comes from the fact that it adopts a constructive method to

obtain better results.

Our contribution in this study is to propose an algorithm

for workflow scheduling in cloud infrastructure. The pro-

posed approach is developed on the basis of an ant colony

algorithm aimed to minimize the makespan and cost. The

rest of the paper is organized as follows: Sect. 2 presents

related work of workflow scheduling. The studied problem

is described and formulated in Sect. 3. In Sect. 4 we

introduce the proposed approach processes. Section 5

presents an experimental evaluation of the performance of

our heuristic. Section 6 discusses the advantages and limits

of this work. Section 7 concludes the paper.

2 Related work

The workflow scheduling problem is an important topic to

research in the cloud computing area. It is characterized by

its task dependencies which make researchers solve it in

different ways according to the targeted objective

(Table 1). For example, in [12], researchers proposed a

heuristic approach that combines the modified analytic

hierarchy process (MAHP), bandwidth aware divisible

scheduling (BATS) ? BAR optimization, longest expected

processing time preemption (LEPT), and divide-and-con-

quer to perform task scheduling and resource allocation.

This approach gives accepted results in terms of turnaround

time and response time. In the paper [13], they deal with

the challenges of scheduling workflows to improve both

makespan and robustness, using the Dynamic Earliest-

Finish-Time (DEFT) algorithm. To our knowledge, this

algorithm needs to be further improved to be more suited to

failure tasks. A new heuristic scheduling algorithm called

Budget Deadline Aware Scheduling (BDAS) is introduced

in work [14]. It addressed the scheduling of the scientific

workflow in accordance with budget constraints and

deadlines. BDAS significantly reduces the workload on

instances.

To improve the reliability of scientific workflow exe-

cution, researchers at [15] proposed a Fault Tolerant

Workflow (DFTWS) scheduling approach with hybrid

spatial and temporal re-execution schemes. The main

advantage of DFTWS is to make a compromise between

high reliability and low-cost objectives. However, the

workflow is not flexibly scheduled. In [16], they designed a

new algorithm named FDHEFT for the workflow

scheduling problem. Its goal is to minimize costs and

makespan simultaneously under the precedence constraints

of workflow tasks. FDHEFT can achieve a significantly

better cost-makespan trade-off with remarkably higher

Hypervolume and can run up to hundreds of times faster

than existing algorithms. However, this solution did not

take into account the overhead time related to communi-

cation between the nodes. In work [9], the authors pro-

posed a model for task scheduling and fragmentation in

scientific workflows. They solved the problem studied in

terms of bandwidth and memory costs by taking into

account the runtime conditions and the number of VMs

without considering the heterogeneity of resources.

A new solution for workflow scheduling based on a

multi-objective genetic algorithm is proposed in work [17].

Cluster Computing

123

It addressed the conflicting interests of cloud stakeholders,

such as makespan, execution costs, power consumption,

and resource utilization regardless of the communication

time between tasks. To our knowledge, this solution needs

to be further improved to schedule the workflow. In order

to minimize the total execution price (TPE) and total

execution time (TET) of the workflow, the authors of work

[18] proposed an S-CEDA strategy. S-CEDA is imple-

mented to meet the deadline constraints in a stochastic

environment. However, this solution needs to be compared

to other existing work to prove its effectiveness. Similarly,

in work [19], the researchers implemented the Jaya opti-

mization algorithm to minimize the cost of execution and

makespan with neglecting the deadline.

In [20], the authors focused on investigating a dynamic

scheduling method for concurrent workflows named DSM.

DSM aims to reduce the time overhead and maximize

resource utilization. However, other necessary factors must

be taken into account, including transmission time and

resource characteristics. The work [21] concedes the bud-

get constraint factor to schedule a complex workflow. This

issue is formulated as an integer programming problem,

which uses the Markovian chain stationary probabilities to

measure the properties of the workflow tasks. However, the

authors did not use a deep analysis of the structural char-

acteristics of different workflows. In work [22], the

researchers proposed a new approach for multi-purpose

workflow scheduling that aims to optimize the workflow

makespan and cost simultaneously. This work did not

consider the data transmission cost.

Due to the increasing complexity of the workflow

application, researchers in [23] used the Predicted Earliest

finish time (PEFT) with the ACO algorithm to solve it. This

approach allows for reducing costs and saving energy

consumption. However, it showed poor performance in

terms of execution time for a high workload. Moreover, in

[24], they used two scheduling algorithms Ant Colony

Optimization and Black Hole Algorithm, to reduce the

makespan and total execution cost to the user. However,

this solution needs more experiments to prove its effec-

tiveness. The multi-objective scheduling algorithm with

fuzzy resource utilization (FR-MOS) proposed in [25]

aimed to minimize cost and makespan considering the

reliability constraints. FR-MOS gives a better performance

in terms of success rate and monetary cost. In order to

minimize execution cost under a user-defined deadline, the

authors of [26] propose two list scheduling algorithms

named Look-back Workflow Scheduling (LBWS) and

Structure AwareWorkflow scheduling (SAWS). However,

both works are shown unsatisfactory results in terms of

makespan. In paper [17], the authors addressed the conflicts

that may be between makespan, execution cost, energy

consumption, and resource utilization. While in [27], they

proposed a Firefly algorithm (FA) to deal with multiple

conflicting objectives including, the workload of cloud

servers, makespan, resource utilization, and reliability. The

researchers treated different objectives at the same time,

which affect worse in the quality of results. Also, these

works still need more evaluation to prove their effective-

ness for resource allocation in the cloud.

There are recent works that apply new methods belongs

to a modern branch of science, such as deep learning and

decision-making techniques to optimize the scientific

research problems. For example, a new prediction method

presented in [28] aimed to reduce air pollution. It is used

deep analysis and dataset for intelligent computing of the

error between actual and predicted values. In the same

trend, a dynamic mathematical model is proposed in [29].

It combines data mining algorithms and Fuzzy All Per-

mutation Rule Base (FARB) for intelligent data analysis

for huge and small datasets. In addition, a statistical tool

generating the key of the stream cipher system was

Table 1 Treating the dependency of tasks constraint in workflow

Works Dependency of tasks for workflow scheduling

[36] Go through the workflow and find the parallel tasks in order to schedule them at the same time

[37] Critical paths (critical path first, dynamic critical path, critical-path-on-a-processor)

[38] The workflow is divided into several levels that can be executed sequentially, and tasks within one level do not do depend on each other.

Thereby the tasks are assembled in clusters.

[39] Assemble the ready tasks of each workflow into a priority queue according to the priority of the workflow to which they belong.

[22] Using a first-come, first-served (FCFS) queue to schedule the workflow

[21] Using a plain upward rank, where each task is represented by the accumulated processing time of successors on its critical path and its

weight (the stationary probability) which gives the importance of the task in the global DAG topology.

[9] Critical path lookup

[20] Horizontal, vertical, and diagonal fragmentation of workflow

[16] Task prioritizing using HEFT algorithm

Cluster Computing

123

improved in the paper [30]. Likewise, in [31], the

researchers proposed a smart data analysis model to

schedule the activities of smartphones and smartwatches. It

uses a Random Forest-Data Mining (RF-DM) algorithm for

Key generator.

Another method named developed random forest and

local least squares (DRFLLS) is presented in [32].

DRFLLS aimed to estimate missing values of various

datasets. While the multi-objective method presented in the

article [33], focused on improving the production of elec-

trical energy from wind. Similarly, a predicted tool based

on developing MARS data mining technique is introduced

in [34] to solve a multi-objectives optimization problem. In

the same vein, paper [35] gave a new nature-inspired

algorithm to find the optimal proteins generated through

DNA synthesis. However, these recent algorithms have not

been tested to schedule workflow under resource allocation

in cloud computing environments.

3 Cloud workflow scheduling formulation

The proposed HEFT-ACO approach is designed to improve

QoS requirements, namely, makespan and cost. We con-

sider the cloud system model consists of three layers

named, the cloud user, the workflow scheduler, and the

cloud resource, as illustrated in Fig. 1. The first layer

consists of a set of the cloud user, who submits the

workflow tasks to the scheduler. The second layer contains

the scheduling algorithm. The last layer of the proposed

model is the cloud resource (Infrastructure as a Service

(IaaS)). The cloud user submits the workflow to the waiting

list, which operates on a first-come-first-served basis and

according to the available virtual machines. The workflows

are sent to the scheduling algorithm, which is used to find

the optimal solution for two contradictory objectives the

makespan and the cost. Then the resources are allocated

according to the plan generated by the algorithm. After

that, the corresponding user is served. The main symbols

used in this study are summarized in Table 2.

3.1 Workflow application model

The workflow application is modeled as a Directed Acyclic

Graph (DAG). DAG represents the relationship between the

tasks of the workflow graph (WG). More precisely, WG ¼
ðE; T ;DtÞ is structured by a set of directed edges E ¼
e1; e2; . . .; ehf g defining the dependency between a set of

tasks T ¼ T1; T2; . . .; Tmf g. The eij represents a precedence
constraint that the task Ti cannot start its execution before

Tj completes and sends all the needed output data (Dt) to

the task Ti. Therefore, a task Ti may have multiple prede-

cessors (Pr) and multiple successors (Sc) tasks defined as

PrðTiÞ and ScðTiÞ, respectively. For a given WG, its entry

task is noted as T0, where PrðT0Þ ¼ ;. Also, its output task
is noted as Tend where 9Ti 2 T : Tend 2 ðTiÞ _ ScðTendÞ ¼ ;
and Dt ¼ Ti;PrðTiÞjTi 2 Tf g.

3.2 Cloud resource manage model

The cloud environment adopted in this study is similar to

that of Amazon Elastic Compute Cloud (EC2) used to

perform workflow tasks. EC2 provides complete control of

the computing resources and allows users to choose dif-

ferent processors, RAM, and bandwidth configurations.

The EC2 instance (running a virtual machine) can be

equipped with a temporary instance store to provide suf-

ficient space for the data files resulting from the execution

of the tasks [40]. In this way, the EC2 platform easily

manages the large interconnection between tasks.

Based on the foregoing, our hardware platform is rep-

resented by a set of heterogeneous virtual machines (VMs).

They can be of any type as provided by an IaaS provider.

The virtual machines are configured with different

parameters of resources. Moreover, they can be placed in

different physical machines (Hosts), the average bandwidth

between them denoted BW (it is assumed different

according to VM type). Each VMr from the set VM ¼
VM1;VM2; . . .;VMnf g is characterized by its own CPU and

memory configuration. Where the CPU performance is

presented by the parameter ’’Million Instructions Per Sec-

ond (MIPS)’’.

3.3 Time model

This study takes into consideration different time types due

to the dependence constraint between tasks, as shown in the

following:

Fig. 1 Problem description

Cluster Computing

123

3.3.1 Execution time (u)

The execution time of a given task in the workflow is

defined as the time spent by a virtual machine to complete

that task. It is expressed as a relationship shown in Eq. 1.

uir ¼
Wi

MIPSr
ð1Þ

where W is the weight (length) of the task.

3.3.2 The data transfer time (Du)

The data transfer between tasks is calculated using the

following equation:

Duij ¼

0 if Ti and Tj are executed on the same machine

Tfilei
BWj

otherwise

8
>><

>>:

ð2Þ

where Tfile is the data transferred through the edge eij.

3.3.3 Start time (Su)

It corresponds to the maximum execution time of the last

task among the previous tasks of Ti and their sum of data

transfer time (Eq. 3).

Sui ¼ Max uðTjÞ
� �

þ
Xh

j¼0

Duij; where Tj 2 PrðTiÞ

ð3Þ

3.3.4 Finish time (Fu)

It is the relationship between execution time and the start

time of task (Ti)(Eq. 4).

Fui ¼ uir þ Sui ð4Þ

3.3.5 Makespan

The overall time to complete workflow is called a make-

span. It is defined as the maximum duration of execution of

all workflow tasks (Eq. 5).

makespan ¼ MaxðFuÞ ð5Þ

3.4 Cost model

The cost of scheduling workflow is computing according to

the following:

3.4.1 Task execution cost (/)

The executing cost of a given task is calculated by multi-

plying the total time spent running the task on the selected

virtual machine by the price of that VM (Eq. 6).

/ir ¼ Cr � ðFui � Sui þ IrÞ ð6Þ

where Cr is the price of using the VMr. While I is the

virtual machine preparation time.

3.4.2 Workflow execution cost

The overall cost of running workflow is the sum of the

execution cost of all its tasks (Eq. 7).

Cost ¼
Xm

i¼0

/i ð7Þ

Table 2 Symbols
Symbols Signification Symbols Signification

Pr Predecessors u Execution time

Sc Successor W Task weight

Dt Output data u Execution time

WG Workflow graph Du Data transfer time

BW Bandwidth Su Start time

m Tasks number Fu Finish time

n VMs number / Execution cost

h Precedent edges number Cw Communication weight

r VMs order j Predecessors of Ti order

ph The pheromone value Eu Eearliest execution time estimation

E/ Cost estimation Cd Crowding distance

Cluster Computing

123

3.5 Objective function

The objective function aim is to minimize the overall

completion time and the overall cost of task executions.

h ¼ Minðmakespan; costÞ ð8Þ

Subject to:

Fuij þ Sui þ Ir [
X

Fuj 8j 2 PrðTiÞ ð9aÞ

Xn

i¼0

Ti ¼ 1 ð9bÞ

Constraint 8a ensures that the task does not run only

after its previous tasks have been completed and all

required inputs have been received. While constraint 8b

means each task is assigned to one virtual machine.

4 Proposed workflow scheduling approach

This work focuses on the application of a metaheuristic

algorithm to find a better solution that assigns workflow

tasks to VMs. The workflow schedule is doing mainly

according to two phases. The first aimed to rank the

dependent tasks. While the second is used to schedule

ready tasks. The flowchart of the proposed approach is

given in Fig. 2.

4.1 Workflow tasks ranking phase

To determine the execution tasks rank and to avoid the

random execution tasks rank at the same level, the tech-

nique of weighting is used. This technique is based on the

upward rank heuristic and is used on acyclic graphs

directed by the HEFT algorithm (heterogeneous earliest

finish time) [41]. Since the task weight rank can affect the

performance of our algorithm, for each task, it is calculated

by the formula:

Ranki ¼ �ui þ maxðCwij þ rankðTjÞÞ; Tj 2 ScðTiÞ
ð10Þ

�ui ¼
1

n

Xn

r¼0

uir ð11aÞ

Cwij ¼
P

Duij
P

PrðTjÞ
ð11bÞ

where Cwij is the communication weight via the edges eij.

�ui is the average execution time of the task Ti on all the

VMr. In this phase, the majority of the parameters are

initialized in order to perform the calculation of the

weights and maintain a robust order of the tasks (Fig. 3).

Other main results of this phase are execution time uir

matrix and cost matrix /ir.

Fig. 2 HEFT-ACO diagram

Cluster Computing

123

uir ¼

u1;1 u1;2 � � � u1;m

u2;1 u2;2 � � � u2;m

..

. ..
.

� � � ..
.

..

. ..
.

� � � ..
.

un;1 un;2 � � � un;m

0

B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
A

;

/ir ¼

/1;1 /1;2 � � � /1;m

/2;1 /2;2 � � � /2;m

..

. ..
.

� � � ..
.

..

. ..
.

� � � ..
.

/n;1 /n;2 � � � /n;m

0

B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
A

ð12Þ

4.2 Resources allocation phase

After determining the execution order of each task, the

second phase starts by integrating the Ant Colony Opti-

mization (ACO) in order to find a better assignment. This

approach was introduced by Dorigo in 1992 [42]. ACO

principle is based on the walk of ants amid their colony and

the food source. During this movement, the pheromone

intensity on the passages increases with the number of ants

passing through and drops with the evaporation of pher-

omone. In this manner, ants find the shortest track to the

food.

The main ACO algorithm steps are the construction of

the solution, the management of traces of pheromones, and

additional techniques such as local search. Additionally,

data structures and parameters must be initialized as well as

some statistics factors must be kept, as discussed in the

following subsections.

4.2.1 Data initialization

In this step, the ants are initialized where each of them

represents a class instance comprising the two already

mentioned matrices (cost and execution time). We keep the

same order of tasks established during the first phase. The

pheromone matrix is initialized according to Eq. 16. While

the assignment list is initially null. The number of

Fig. 3 An example of tasks rank

on a workflow application

Cluster Computing

123

ants representing the size of the ants’ list. It is

determined according to preliminary tests.

By analyzing the behavior of our algorithm during

experiments, we found that it can give better performance

when the number of ants equals the number of VMs (n).

This because if the number of ants is lower than n can lead

to a local optimum; since a VM that does not have the best

result in each iteration will have a low probability of being

selected. While if the number is greater than n, it consid-

erably increases the complexity, slows down the conver-

gence of the algorithm, and does nothing more for

performance. This step places all ants at the starting VMs

randomly. The initial set of ants used during the opti-

mization is preserved in the following matrix:

an ¼

a1;1 a1;2 � � � a1;m

a2;1 a2;2 � � � a2;m

..

. ..
.

� � � ..
.

..

. ..
.

� � � ..
.

an;1 an;2 � � � an;m

0

B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
A

ð13Þ

where: ai;j 2 ½0; 1�.

4.2.2 Solutions construction

Each ant in the initialized list (matrix 13) independently

builds its own allocation plan in an asynchronous manner.

The solution is established in a constructive way such that

the tasks are traveled in order of priority. In other words,

the ant examines the probability (Pij) of the current map-

ping of a selected task on a virtual machine in the set of

ready VMs based on the formula 14. After that, the roulette

wheel method is used to choose the matching VM for the

current task, then keep the selected VM to the taboo table.

Pij ¼
phaij � Eu

b
2

ij � E/
b
2

ij

P
phaij � Eu

b
2

ij � E/
b
2

ij

ð14Þ

– phij the value of the pheromone.

– Euij the estimated time of the earliest execution times.

– E/ij the cost calculated from the estimates of the

earliest starts and finish.

To maintain the balance between the heuristic factors (ph,

Eu, E/), b and a are random natural numbers. In our case,

we experimentally use the computation of the earliest and

later execution finish time; instead of classical heuristic

methods (widely used in the literature [23, 43]). However,

we opted for the earliest finish execution time estimation,

which gave the best results.

4.2.3 Non-dominated solutions extraction

Since our algorithm deals with a multi-objective problem,

the choice of a solution is a decisive step. Seeing that we do

not have a priori knowledge of user preferences (mini-

mizing the duration at the expense of the cost or vice

versa), we cannot apply the classical methods such as

(weighted aggregation, minimization of regret, constraint

method, etc). These methods transform the multi-objective

problem into one dimension [44].

In this work, the Pareto principle is adopted for the

allocation of resources to workflows in a Cloud environ-

ment. To describe the concept of Pareto, the following

definitions are used:

– Definition 1 (Pareto dominant) A decision

vector x2S is said to be Pareto optimal if there is no

other decision vector x 2 S such that fiðxÞ� fiðxÞ, 8i 2
1; 2; . . .; kf g and fiðxÞ\fiðxÞ for at least one i 2
1; 2; . . .; kf g [45].

– Definition 2 (Pareto front) The Pareto front

(Yf) is defined as Yf = f ðxÞ 2 Rk; x 2 Po
� �

, where Po is

called the Pareto optimal set, and f(x) is the entire

feasible solutions in the objective space.

For each iteration, the solutions that belong to the Pareto

front are extracted. These solutions will be used to retain a

single ant according to the selection criterion chosen at the

crowding distance.

– Crowding distance (Cd) It is an estimate of the

density around a particular solution on the Pareto front,

introduced in the NSGA II algorithm [46]. It is

calculated according to the following equation:

Cdi ¼
uðiþ 1Þ � uðiþ 1Þ

umax � umin

þ /ðiþ 1Þ � /ðiþ 1Þ
/max � /min

ð15Þ

The best solution according to this criterion is the one with

the greatest distance. This distance is adopted after its

experimentally better results given to the detriment of other

metrics. The Crowding distance criterion draws its strength

from the fact that it favors the exploitation of non-con-

gested regions; this avoids premature convergence (falls on

a local optimum).

Cluster Computing

123

4.2.4 The global Pareto front construction

Although our algorithm has a convergent aspect, the multi-

objective nature makes membership in the list of the global

Pareto front possible by solutions of intermediate itera-

tions. For each iteration, the local Pareto front adds to the

global list. Once the set of all the iterations is finished, the

global Pareto front is calculated. The best ant on the global

front will also be selected according to the crowding dis-

tance, and its allocation plan will be executed. Knowing

that the ants are reinitialized at the end of each iteration.

4.2.5 Pheromone management

In order to attract the ants toward the higher fitness path

and to obtain the optimal solution as frequently as possible,

it is required to manage the pheromones as follow:

– Initialization of the pheromone The pheromone of

each ant is initialized by formula 16. This makes it

possible to avoid premature convergence and the

unjustified excess of the iterations number.

ph ¼ n

g ð16Þ

where n is the number of ants, and g is the length of a

path generated. Indeed, if the initial values of the

pheromones are too low, the search is quickly biased by

the first rounds generated via the ants. This generally

leads to the exploration of the lower areas of the search

space. Correspondingly, if the initial values of the

pheromone are too high, then many iterations are lost

while waiting for the evaporation of the pheromones to

further reduce its quantities; so that the pheromone

added by the ants can start to guide the search.

– Pheromone update After each iteration, the phero-

mone traces are updated, first reducing the value of the

pheromones on all edges with a constant factor

(Eq. 17). In this manner, when an ant reaches the

determined VM for all tasks, the pheromone on the

chosen path of the matching scheme is updated

locally, using the following rule:

phiir ¼ phi�1
ir � ð1� qÞ ð17Þ

where q indicates the pheromone volatility per unit

time. 1� q specify the degree of residual pheromone,

knowing that 1\q\0. The greater the q , the faster the

pheromone volatilizing. On the other hand, to incre-

ment the pheromone time of the path between Ti and

VMj, we add pheromone on the edges of the best locally

chosen ant. This leads to the update on the global

optimal scheme. The update rule is as follows:

phiir ¼ phi�1
ir þ k

uir þ /ir

ð18Þ

where k is a constant greater than 0 (k[0).

4.3 Stop criteria

The program stops if the termination condition is reached.

We adopt a maximum number of iterations as a stop cri-

terion. This mainly relies on the size of the workflow

(proportional to the number of workflow tasks). So, if the

current number of iterations is less than the maximum

number of iterations, the taboo table will be cleared and

return to the data initialization step. Otherwise, the iteration

is terminated, and the best solution will be displayed.

Algorithm 1 shown the pseudocode of the proposed

approach.

Cluster Computing

123

5 Implementation and results

5.1 Experiment environment

In the experiments, the WorkflowSim-1.0 toolkit is used.

The approaches are coded in Java language and executed

on an Intel (R) Core (TM) i7 processor with 3.00 GHz and

6 GB of RAM. The workflowSim is an extension of

CloudSim, which offers the possibility to simulate an

environment dedicated to the execution of the scientific

workflow. It is proposed by ’’Weiwei Chen’’ and ’’Ewa

Deelman’’ from the Institute for Information Studies in

Southern California University. WorkflowSim follows the

pegasus model which essentially relies on three

components: a Workflow Mapper, a Workflow Engine to

manage data dependencies, and a Workflow Scheduler to

match tasks to resources instantly [47]. The simulations of

our approach and the other approaches are made under the

same conditions to establish an objective comparison of the

results. The experiments are done on three real-world

workflow applications from diverse scientific areas. They

are Montage workflow for astronomical physics, Cyber-

shake workflow for earthquake hazards, and Ligo work-

flows for detecting gravitational waves [48].

Cluster Computing

123

5.1.1 Environment setup

To evaluate the performance of the HEFT-ACO algorithm,

the IaaS provider is modeled by providing a single data

center and different types of VM (Table 3). VMs are

configured based on Amazon EC2 instances [49]. The

storage of each VM is considered large enough to support

all of the allocated tasks, while the average bandwidth

between virtual machines changes from 5, 10, and 25 Gb/s.

Moreover, the virtual machine preparation time is consid-

ered between 1 and 1.5 s.

5.1.2 Parameterization of algorithms

The performances of the proposed HEFT-ACO algorithm

are compared to the standard ACO, PEFT-ACO, and FR-

MOS algorithms. They are implemented according to the

works [11, 25, 50] but constructively considering the

parameters and formulations of this paper. PEFT-ACO is

selected because it gives optimized results in terms of

makespan and cost. While the FR-MOS algorithm has

shown good behavior for multi-objective problems related

to makespan and cost. Appropriate parameter values are

determined based on preliminary experience. Therefore,

the parameters are determined as a = 1, b= 1, k=2, and
number of iterations = 350. ACOs do not need a large

population that the population size set, as the number of

ants = 10 is commonly used [11]. The same configuration

for all algorithms is kept to ensure an objective compari-

son. In each experiment, the test is repeated ten times then

the average value is taken.

5.1.3 Wilcoxon test

Wilcoxon signed-rank test is used to check if two samples

represent two different populations. It is a nonparametric

procedure used in hypothesis testing situations and

involving a two-sample design. This evaluation represents

a pairwise test that includes a null hypothesis H0 and

another hypothesis H1, where H0 is a declaration of non-

significant difference between the two algorithms and H1

denotes the presence of a significant difference between the

two algorithms [51]. The difference between the perfor-

mance values of the two algorithms on a problem with n

values is denoted di. The differences are classified

according to their absolute values. Let Rþ be the sum of the

ranks for the problems in which the first algorithm has

surpassed the second (Eq. 19), and R� the sum of the ranks

for the opposite (Eq. 20). Ranks of di ¼ 0 are split evenly

among the sums; if there is an odd number of them, one is

ignored [51].

Rþ ¼
X

di [0

rankðdiÞ þ 1=2
X

di¼0

rankðdiÞ ð19Þ

R� ¼
X

di\0

rankðdiÞ þ 1=2
X

di¼0

rankðdiÞ ð20Þ

During the test, a level of significance is set to 0.05. If the

p-value (determined from the Rþ and R� scores) is less or

equal than 0.05, then H0 is rejected in favor of H1. But, if

the value of p is greater than 0.05, then H0 is not rejected.

5.2 Optimization metrics

As our algorithm represents a multi-objective approach

based on the Pareto principle, we chose Q-metric and FS-

metric to analyze the compromise solutions and compare

them to the results of the other algorithms (ACO, PEFT-

ACO, FR-MOS). In other words, the quality of Pareto-

optimal fronts is compared with those of other algorithms.

5.2.1 Q-metric

The metric Q is used to measure the convergence of non-

dominated solutions found by two algorithms; It is calcu-

lated according to Eq. 21 defined in [52].

QðA;BÞ ¼ uj j
cj j ð21Þ

where A and B represent two sets of Pareto-optimal solu-

tions found respectively by two different algorithms [52]. c
is the set of solutions not dominated in A [B and u = A \
c. The Pareto-optimal front found by one algorithm has

better convergence towards the true Pareto-optimal front

than that found by the other algorithm, if and only if

QðA;BÞ[0:5 or QðA;BÞ[QðB;AÞ.

5.2.2 FS-metric

The metric FS indicates the size of the space covered by

the optimal Pareto front found by an algorithm [53]. We

calculate FS-metric as follow:

Table 3 Types of used virtual machines

Type CPU MIPS Cost ($/h) BW (Gb/s)

a1.medium 1 4400 0.0255 10

a1.large 2 8800 0.051 10

a1.xlarge 4 17,600 0.102 10

t3.xlarge 4 17,600 0.1664 5

m5n.2xlarge 8 35,200 0.476 25

m5zn.3xlarge 12 52,800 0.991 25

Cluster Computing

123

Fs ¼
ffi

minðx1;x2Þ2Aðuiðx1Þ � uiðx2ÞÞ2 þ minðx1;x2Þ2Að/iðx1Þ � /iðx2ÞÞ2
q

ð22Þ

A large value of FS-metric is preferable, which means that

the optimal Pareto solutions found by an algorithm are

widely distributed along the true Pareto front.

5.3 Results and discussions

In the first series of experiments, each objective (cost or

makespan) is evaluated independently. The algorithms are

executed for three workflow types (Montage, Cybershake,

Ligo) with a number of tasks equal to 100 and 300. The

results of the average of the 100 executions carried out for

each type are mentioned in Table 4.

From the results obtained, we can see that the standard

ACO algorithm has poor performance in terms of make-

span and overall cost for the three types of workflows. In

addition, the HEFT-ACO approach outperforms the two

other algorithms (PEFT-ACO, FR-MOS) in terms of

makespan and cost for all types of workflows. The differ-

ence is more significant in terms of makespan. Indeed,

HEFT-ACO can search the solution space more efficiently

and globally. Also, it relies on ’’crowding and right optimal

front-end’’ processing. These make it possible to obtain a

low cost and a short implementation time.

Figure 4 visualizes the makespan and cost average

results for 500 tasks. The graphs confirm that our algorithm

surpasses the other algorithms in terms of cost and even

makespan. It can be seen that the makespan of HEFT-ACO

is the minimum. However, it shows acceptable results in

terms of cost.

The second series of experiments is the statistical tests.

Fig. 5 shows the trade-off cost over the makespan for three

different workflow types of size 400 tasks. From the

graphs, HEFT-ACO shows a good trade-off compared to

Table 4 Evaluation of the makespan and cost averages of the algorithms

Workflow

type

Tasks

number

ACO PEFT-ACO FR-MOS HEFT-ACO

Makespan

(s)

Cost ($/h) Makespan

(s)

Cost ($/h) Makespan

(s)

Cost ($/h) Makespan

(s)

Cost ($/h)

Ligo 100 710.86 78.70 695.87 69.70 609.50 46.94 567.19 33.48

300 896.73 77.23 888.09 64.41 823.41 42.85 702.53 27.95

Cybershake 100 695.05 70.27 578.56 57.73 513.73 40.70 495.91 22.19

300 872.42 53.51 701.82 43.96 659.43 32.16 635.93 20.07

Montage 100 654.38 52.20 625.86 25.64 614.78 15.97 473.96 14.99

300 708.32 30.10 693.49 20.19 679.43 13.84 595.64 9.44

(a) The makespan (b) The cost

Fig. 4 Makespan and costs average for 500 tasks

Cluster Computing

123

the other algorithms. This reflects the ability of the pro-

posed approach to make the best decisions in the existing

tasks on the available virtual machines. Generally, it allows

giving a good compromise between cost and execution

time duration in the allocation process. More precisely, the

proposed approach shows a slight improvement compared

to FA-MOS for Ligo and Cybershake due to the complex

shape of the latter, as well as there is great interdependence

between the tasks. However, the improvement in HEFT-

ACO remains significant, especially in Montage.

Table 5 shows the test results for three types of work-

flow with varying the number of tasks where ‘‘[’’ meaning

that HEFT-ACO surpasses the other algorithm with a sig-

nificant difference. ‘‘\’’ signifies that the second algorithm

surpasses our algorithm with a significant difference. ‘‘¼’’

signifies that there is no sign of active difference between

the two algorithms. It presents the Rþ, R�, and p-values

computed for all the pairwise comparisons concerning

HEFT-ACO (the p-values have been computed by using

SPSS).

From this table, we can obviously see that the HEFT-

ACO algorithm has a higher number of ‘‘[’’ then the other

comparative algorithms with the absence of signs ‘‘=’’ and

‘‘\’’ (only ‘‘\’’ with some exceptions). This means that

HEFT-ACO is different from the compared approaches

according to the Wilcoxon rank sum test. Clearly, it shows

significant improvement over ACO, PEFT-ACO, and FR-

MOS.

Table 6 shows the value of Q-metric and the value of

FS-metric for a number of tasks equal 200 and 900. They

are calculated according to Eqs. 21 and 22 , respectively.

The value of Q-metrics Q(HEFT-ACO) is ’’true’’ for three

(a) Ligo 400 tasks (b) Montage 400 tasks

(c) Cybershake 400 tasks

Fig. 5 The trade-off comparison of algorithms

Cluster Computing

123

types of workflows. This indicates that the Pareto solutions

of the HEFT-ACO have a ranking each time higher than in

the FR-MOS algorithm, which implies that the HEFT-ACO

algorithm has the best result in terms of convergence of the

multi-objectives. As regards FS-metric, the HEFT-ACO

approach has higher values compared to FR-MOS for the

considered workflows. The FS values of HEFT-ACO are

higher than those of FR-MOS, which led to the conclusion

that our approach generates better diversity than FS-MOS.

In most tests, HEFT-ACO significantly outperforms the

compared approaches. HEFT-ACO conserve pheromone

and heuristic information for every VM, which explains the

long time spent when dealing with Ligo workflow. How-

ever, HEFT-ACO maintains its efficiency in small and long

scale workflows. Also, it outperforms the other three

although the variety of tasks number. This may be because

HEFT is a greedy heuristic, so it can easily handle the local

optimum in large-scale problems, while HEFT-ACO keeps

diversity well to examine the search space. The execution

time of montage workflow is low because it has many

parallel tasks, which results in large availability of VMs.

6 Hypothesis and limitations

The significance of HEFT-ACO is strongly reflected in the

multi-objective aspect. It is very effective in dealing with

high-quality compromise solutions and providing rapid

convergence for resource allocation problems. Another

importance appears in the way of classifying workflow

tasks. It allows creating an adapted ranking list of tasks,

organized in the order of how they should be executed; thus

gets rid of a task dependency constraint. From the cloud

user perspective, makespan and cost are very important,

Table 5 Wilcoxon test results

Workflow type Tasks number HEFT-ACOjACO HEFT-ACOjPEFT-ACO HEFT-ACOjFR-MOS

Rþ R� p-value/result �10�3 Rþ R� p-value/result �10�3 Rþ R� p-value/result �10�3

Ligo 50 34 16 0.32/[41 8,9 0.021/[28 22 23.014/\
200 195 95 0.0253/[177 23 0.0145/[123 77 0.0488/[
600 434 166 0.0371/[417 183 0.05 /[332 268 0.0465 /[
1000 890 110 0.058/[731 269 0.029/[519 481 0.048/[

Cybershake 50 42 6,09 0.0492/[41 9 0.0171/[33 17 0.138/[
200 180 20 0.034/[135 47 0.012/[147 53 0.0278/[
600 553 47 0.0147 551 49 0.026/[438 162 0.045/[
1000 978 22 0.0141/[978 125 0.048/[558 442 0.056/[

Montage 50 43 7 0.0463/[47 3 0.84/[23 22 84.148/\
200 113 87 0.0261/[156 44 0.0267/[106 94 0.0148/[
600 578 22 0.0378/[488 112 0.0173/[356 244 0.0434/[
1000 751 249 0.0324/[738 262 0.033/[604 396 0.0236/[

Table 6 Q and FS metrics

results
Workflow type Tasks number Q/FS metrics HEFT-ACO FR-MOS

Ligo 200 Q-metric / True

FS-metric 0.29 0.20

900 Q-metric / True

FS-metric 0.43 0.34

Cybershake 200 Q-metric / True

FS-metric 0.52 0.47

900 Q-metric / True

FS-metric 0.7 0.63

Montage 200 Q-metric / True

FS-metric 0.81 0.74

900 Q-metric / True

FS-metric 0.97 0.87

Cluster Computing

123

which are used as significant metrics for quality of service

in cloud computing. The proposed approach showed a high

proportion of improvement in workflow scheduling com-

pared to other algorithms. This is an important point for

developing cloud-based systems, which are highly growing

nowadays. Furthermore, the efficient trade-off between

execution time and execution cost could enhance resource

utilization, which is a primary metrics that must be ame-

liorated in recent years.

Correspondingly, the main limitations are that the

behavior of HEFT-ACO on load balancing was not taken

into account in this study. Its impact is also assessed just

for three types of workflows. Moreover, this work does not

consider the properties of workflow such as balanced or

unbalanced (asymmetric) workflow graph. On the other

hand, this study does not consider an operational model for

fault-tolerant. In addition, power consumption can be

enhanced by adjusting the state of virtual machines.

Likewise, the QoS can be improved by introducing the

deadline factor.

7 Conclusion

Resource allocation is crucial for Cloud Computing,

especially with regard to workflows. In this paper, we have

addressed the issue of resource allocation for workflow in

cloud computing to improve the quality of services. We

have proposed an approach named HEFT-ACO, which is a

mixture between two algorithms to minimize makespan

and cost at the same time. ACO algorithm is adopted to

optimize resource allocation, while HEFT is employed to

deal with the dependency of workflow tasks. We have

designed the pheromone update rules to deal with non-

dominant solutions, thus maintaining diversity and ensur-

ing research efficiency. In addition, this approach used the

Pareto technique for multi-objective optimization and

crowding distance, which makes it efficient to solve the

studied problem.

The experiments are performed using instances of the

Amazon EC2 cloud platform and three types of real

workflows from different scientific fields. HEFT-ACO is

evaluated with standard ACO, PEFT-ACO, and FR-MOS.

The results demonstrate that HEFT-ACO is a promising

approach to address the QoS issues associated with

resource allocation for workflow in the cloud. It outper-

forms all other algorithms for most carried out tests. This is

confirmed by the results obtained by the non-parametric

’Wilcoxon’ test; it shows efficient performance compared

to other algorithms regarding the trade-off between

makespan and cost.

As a perspective, we plan to expand the set of goals to

include other metrics, such as fault tolerance. We will

increase the number of tasks and VMs in the experiments,

testing other types of workflow, and consider further fac-

tors such as cloud users’ satisfaction (deadline). The

deployment of our solution on a real Cloud or multi-cloud

environment will also be a future step in our work.

References

1. Buyya, R., Broberg, J., Goscinski, A.M.: Cloud Computing:

Principles and Paradigms, vol. 87. Wiley, Hoboken (2010)

2. Arregoces, M., Portolani, M.: Data Center Fundamentals. Cisco

Press, Indianapolis (2003)

3. Smith, J.E., Nair, R.: The architecture of virtual machines.

Computer 38(5), 32–38 (2005)

4. Belgacem, A., Beghdad-Bey, K., Nacer, H., Bouznad, S.: Effi-

cient dynamic resource allocation method for cloud computing

environment. Clust. Comput. 23, 1–19 (2020)

5. Belgacem, A., Beghdad-Bey, K., Nacer, H.: Dynamic resource

allocation method based on symbiotic organism search algorithm

in cloud computing. IEEE Trans Cloud. Comput. (2020). https://

doi.org/10.1109/TCC.2020.3002205

6. Noor, T.H., Zeadally, S., Alfazi, A., Sheng, Q.Z.: Mobile cloud

computing: challenges and future research directions. J. Netw.

Comput. Appl. 115, 70–85 (2018)

7. Belgacem, A., Beghdad-Bey, K., Nacer, H.: Task scheduling in

cloud computing environment: a comprehensive analysis. In:

Proceedings of the International Conference on Computer Sci-

ence and its Applications, pp. 14–26. Springer (2018)

8. Sprinks, J., Wardlaw, J., Houghton, R., Bamford, S., Morley, J.:

Task workflow design and its impact on performance and vol-

unteers’ subjective preference in virtual citizen science. Int.

J. Hum.-Comput. Stud. 104, 50–63 (2017)

9. Momenzadeh, Z., Safi-Esfahani, F.: Workflow scheduling

applying adaptable and dynamic fragmentation (WSADF) based

on runtime conditions in cloud computing. Future Gen. Comput.

Syst. 90, 327–346 (2019)

10. Rodriguez, M.A., Buyya, R.: Deadline based resource provi-

sioningand scheduling algorithm for scientific workflows on

clouds. IEEE Trans. Cloud Comput. 2(2), 222–235 (2014)

11. Dorigo, M., Gambardella, L.M.: Ant colony system: a coopera-

tive learning approach to the traveling salesman problem. IEEE

Trans. Evol. Comput. 1(1), 53–66 (1997)

12. Gawali, M.B., Shinde, S.K.: Task scheduling and resource allo-

cation in cloud computing using a heuristic approach. J. Cloud

Comput. 7(1), 4 (2018)

13. Jiang, H., Song, M., et al.: Dynamic scheduling of workflow for

makespan and robustness improvement in the iaas cloud. IEICE

Trans. Inf. Syst. 100(4), 813–821 (2017)

14. Arabnejad, V., Bubendorfer, K., Ng, B.: Budget and deadline

aware e-science workflow scheduling in clouds. IEEE Trans.

Parallel Distrib. Syst. 30(1), 29–44 (2018)

15. Na, W., Zuo, D., Zhang, Z.: Dynamic fault-tolerant workflow

scheduling with hybrid spatial-temporal re-execution in clouds.

Information 10(5), 169 (2019)

16. Zhou, X., Zhang, G., Sun, J., Zhou, J., Wei, T., Shiyan, H.:

Minimizing cost and makespan for workflow scheduling in cloud

using fuzzy dominance sort based heft. Future Gen. Comput.

Syst. 93, 278–289 (2019)

17. Rehman, A., Hussain, S.S., Zia ur Rehman, S.Z., Shamshirband,

S.: Multi-objective approach of energy efficient workflow

scheduling in cloud environments. Concurr. Comput. Pract. Exp.

31(8), e4949 (2019)

Cluster Computing

123

https://doi.org/10.1109/TCC.2020.3002205
https://doi.org/10.1109/TCC.2020.3002205

18. Haidri, R.A., Katti, C.P., Saxena, P.C.: Cost-effective deadline-

aware stochastic scheduling strategy for workflow applications on

virtual machines in cloud computing. Concurr. Comput. Pract.

Exp. 31(7), e5006 (2019)

19. Gupta, S., Agarwal, I., Singh, R.S.: Workflow scheduling using

Jaya algorithm in cloud. Concurr. Comput. Pract. Exp. 31(17),
e5251 (2019)

20. Xue, S., Peng, Y., Xiaolong, X., Zhang, J., Shen, C., Ruan, F.:

Dsm: a dynamic scheduling method for concurrent workflows in

cloud environment. Clust. Comput. 22(1), 693–706 (2019)

21. Zhang, H., Zheng, X., Xia, Y., Li, M.: Workflow scheduling in

the cloud with weighted upward-rank priority scheme using

random walk and uniform spare budget splitting. IEEE Access 7,
60359–60375 (2019)

22. Gao, Y., Zhang, S., Zhou, J.: A hybrid algorithm for multi-ob-

jective scientific workflow scheduling in iaas cloud. IEEE Access

7, 125783–125795 (2019)

23. Sinha, N., Srivastav, V., Ahmad, W.: Deadline constrained

workflow scheduling optimization by initial seeding with ant

colony optimization. Int. J. Comput. Appl. 155(14), 24–29 (2016)

24. Jethava, A.N., Desai, M.R.: Optimizing multi objective based

dynamic workflow using aco and black hole algorithm in cloud

computing. In: Proceedings of the 2019 3rd International Con-

ference on Computing Methodologies and Communication

(ICCMC), pp. 1144–1147. IEEE (2019)

25. Farid, M., Latip, R., Hussin, M., Hamid, N.A.W.A.: Scheduling

scientific workflow using multi-objective algorithm with fuzzy

resource utilization in multi-cloud environment. IEEE Access 8,
24309–24322 (2020)

26. Han, P., Chenglie, D., Chen, J., Xiaoyan, D.: Minimizing mon-

etary costs for deadline constrained workflows in cloud envi-

ronments. IEEE Access 8, 25060–25074 (2020)

27. Adhikari, M., Amgoth, T., Srirama, S.N.: Multi-objective

scheduling strategy for scientific workflows in cloud environ-

ment: a firefly-based approach. Appl. Soft Comput. 93, 106411
(2020)

28. Al-Janabi, S., Mohammad, M., Al-Sultan, A.: A new method for

prediction of air pollution based on intelligent computation. Soft

Comput. 24(1), 661–680 (2020)

29. Al-Janabi, S., Alwan, E.: Soft mathematical system to solve black

box problem through development the farb based on hyperbolic

and polynomial functions. In: Proceedings of the 2017 10th

International conference on developments in eSystems engi-

neering (DeSE), pp. 37–42. IEEE (2017)

30. Ali, S.H.: Novel approach for generating the key of stream cipher

system using random forest data mining algorithm. In: Proceed-

ings of the 2013 sixth international conference on developments

in esystems engineering, pp. 259–269. IEEE (2013)

31. Al-Janabi, S., Salman, A.H.: Sensitive integration of multilevel

optimization model in human activity recognition for smartphone

and smartwatch applications. Big Data Mining Anal. 4(2),
124–138 (2021)

32. Al-Janabi, S., Alkaim, A.F.: A nifty collaborative analysis to

predicting a novel tool (drflls) for missing values estimation. Soft

Comput. 24(1), 555–569 (2020)

33. Al-Janabi, S., Alkaim, A.F., Adel, Z.: An innovative synthesis of

deep learning techniques (dcapsnet & dcom) for generation

electrical renewable energy from wind energy. Soft Comput.

24(14), 10943–10962 (2020)

34. Alkaim, A.F., Al-Janabi, S.: Multi objectives optimization to gas

flaring reduction from oil production. In: Proceedings of the

International conference on big data and networks technologies,

pp. 117–139. Springer (2019)

35. Alkaim, A.F., Al-Janabi, S.: A comparative analysis of dna pro-

tein synthesis for solving optimization problems: a novel nature-

inspired algorithm. Adv. Intell. Syst. Comput. 1372 (2020)

36. Kliazovich, D., Pecero, J.E., Tchernykh, A., Bouvry, P., Khan,

S.U., Zomaya, A.Y.: Ca-dag: modeling communication-aware

applications for scheduling in cloud computing. J. Grid Comput,

14(1), 23–39 (2016)

37. Lee, Y.C., Han, H., Zomaya, A.Y., Yousif, M.: Resource-efficient

workflow scheduling in clouds. Knowl. Based Syst. 80, 153–162
(2015)

38. Malawski, M., Figiela, K., Bubak, M., Deelman, E., Nabrzyski,

J.: Scheduling multilevel deadline-constrained scientific work-

flows on clouds based on cost optimization. Sci. Program. 2015, 5
(2015)

39. Maciej, M.: Cost-and deadline-constrained provisioning for sci-

entific work flow ensembles in iaas clouds. In: Proceedings of the

International Conference on High Performance Computing,

Networking, Storage and Analysis. IEEE Computer Society Press

(2012)

40. On line: Amazon ec2 instance store. Accessed (2 Jun 2021).

(https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/)

41. Zhao, H., Sakellariou, R.: An experimental investigation into the

rank function of the het- erogeneous earliest finish time

scheduling algorithm. In: Proceedings of the European Confer-

ence on Parallel Processing, pp. 189–194. Springer (2003)

42. Dorigo, M., Di Caro, G.: Ant colony optimization: a new meta-

heuristic. In: Proceedings of the 1999 congress on evolutionary

computation-CEC99 (Cat. No. 99TH8406)

43. Zhou, Y., Huang, X.: Scheduling work flow in cloud computing

based on ant colony opti- mization algorithm. In: Proceedings of

the 2013 Sixth International Conference On Business Intelligence

And Financial Engineering, pp. 57–61. IEEE (2013)

44. Tabucanon, M.T.: Multiple Criteria Decision Making in Industry,

vol. 8. Elsevier Science Ltd, New York (1988)

45. Giagkiozis, I., Fleming, P.J.: Pareto front estimation for decision

making. Evol. Comput. 22(4), 651–678 (2014)

46. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.A.M.T.: A fast

and elitist multiobjective genetic algorithm: Nsga-ii. IEEE Trans.

Evol. Comput 6(2), 182–197 (2002)

47. Chen, W., Deelman, E.: Workflowsim: a toolkit for simulating

scientific work flows in distributed environments. In: Proceedings

of the 2012 IEEE 8th International Conference on E-Science,

pp. 1–8. IEEE (2012)

48. Juve, G., Chervenak, A., Deelman, E., Bharathi, S., Mehta, G.,

Vahi, K.: Characterizing and profiling scientific workflows.

Future Gen. Comput. Syst. 29(3), 682–692 (2013)

49. On line: Amazon ec2 on-demand pricing. Accessed (24 Apr

2021). (https://aws.amazon.com/ec2/pricing/on-demand/)

50. Kaur, A., Kaur, B..: Load balancing optimization based on hybrid

heuristic-metaheuristic techniques in cloud environment. J. King

Saud Univ. Comput. Inf. Sci. (2019)

51. Derrac, J., Garcı́a, S., Molina, D., Herrera, F.: A practical tutorial

on the use of nonparametric statistical tests as a methodology for

comparing evolutionary and swarm intelligence algorithms.

Swarm Evol. Comput. 1(1), 3–18 (2011)

52. Wei, J., Zhang, M.: A memetic particle swarm optimization for

constrained multi-objective optimization problems. In Proceed-

ings of the 2011 IEEE Congress of Evolutionary Computation

(CEC), pp. 1636–1643. IEEE (2011)

53. Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a

comparative case study and the strength pareto approach. IEEE

Trans. Evol. Comput. 3(4), 257–271 (1999)

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Cluster Computing

123

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/
https://aws.amazon.com/ec2/pricing/on-demand/

Ali Belgacem currently serves as

an Associate Professor in the

Department of Computer Sci-

ence at the University of

M’hamed Bougara in Algeria.

He received his Ph.D. degree

from Military Polytechnic

School, Algeria, in 2020. His

project of research investigates

to determine an optimal solution

for dynamic resource allocation

in cloud computing

environments.

Kadda Beghdad-Bey Bey

received his M.S. degree in

Industrial Computer Science

from Military Polytechnic

School in 2003. He received his

Ph.D. in Computer Science

from USTHB University,

Algiers in 2010. Current, He is

the Professor and Head of the

Laboratory of Distributed and

Complex Systems at M.

P. School. His areas of research

includes biometrics identifica-

tion, parallel and distributed

computing, Meta-heuristics

techniques and task scheduling, and resources allocation in cloud

commuting.

Cluster Computing

123

	Multi-objective workflow scheduling in cloud computing: trade-off between makespan and cost
	Abstract
	Introduction
	Related work
	Cloud workflow scheduling formulation
	Workflow application model
	Cloud resource manage model
	Time model
	Execution time (\varphi)
	The data transfer time (D\varphi)
	Start time (S\varphi)
	Finish time (F\varphi)
	Makespan

	Cost model
	Task execution cost (\phi)
	Workflow execution cost

	Objective function

	Proposed workflow scheduling approach
	Workflow tasks ranking phase
	Resources allocation phase
	Data initialization
	Solutions construction
	Non-dominated solutions extraction
	The global Pareto front construction
	Pheromone management

	Stop criteria

	Implementation and results
	Experiment environment
	Environment setup
	Parameterization of algorithms
	Wilcoxon test

	Optimization metrics
	Q-metric
	FS-metric

	Results and discussions

	Hypothesis and limitations
	Conclusion
	References

