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Abstract 

 

This work deals with the study of the stabilization process of a nonlinear 

control system taking a certain model and derive state space equations through 

implementation of kinetic and dynamic equations where we present a challenging tool 

known as backstepping controllers based on Energy functions concept as presented by 

the famous Russian mathematician Lyaponuv. Simulation of the obtained results is 

done with Simulink.    
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General Introduction 
 

 

 

 In the last few decades UAV’s use has become considerably famous in its 

applications along the technical and other domains. Because of the maneuverability 

and simple hovering ability that comes optimally costless many researchers and 

engineers in control and automatic field put much efforts and cast more focus in order 

to achieve advances and more usage comfort. 

 The general topic of this thesis is to study the stability process of the entire 

dynamics of the quadcopter while applying nonlinear controllers. 

 The work presented in this project starts by introducing some generalities on 

quadcopters technology and history, while in the second chapter working and flying 

principles are to be concisely explained in terms of degrees of freedom and system 

actuation summing up by a simple model known as DROUIN which will be 

highlighted in more details in chapter three where BACKSTEPPING command is to 

take place. By the end we will show simulation results of both regulation and tracking 

of the altitude control. 
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1.1 Introduction 

A Quadcopter also named quadrotor is avertical take-off and landing vehicle, classified as 

rotorcraft as it requires four rotors to provide lift throughout the flight; quadcopters are 

usually mounted in a cross symmetrical configuration, they have several advantages over the 

fixed wing aircrafts, can move in any direction and are capable of hovering and flying at low 

speeds. 

Each rotor of a quadrotor plays a specific role for controlling the system, either directional or 

lift control, rotors are also responsible for a certain amount of thrust and torque about their 

center of rotation, as well as for a drag force opposite to the rotorcraft’s direction of flight. 

The quadrotor’s propellers are divided in two pairs, two pusher and two puller blades that 

rotate in opposite direction. As a consequence, the resulting net torque can be null if all 

propellers turn with the same angular velocity, thus allowing the aircraft to remain still around 

its center of gravity. 

Nowadays, quadcopters are more and more used in various environments;surveillance, search 

and rescue, construction inspections,agricultural surveying, post natural disaster analysis, 

amusements and several other applications. 

1.2 Objectives and Motivation  

This work will focus on the modeling and the control of an Unmanned Aerial Vehicle “UAV” 

type quadrotor. The reason of choosing the quadrotor is due to its advantages that will be 

addressed later,in addition to that; most of studies done on quadrotors use linear flight 

controllers, these controllers can only perform when the quadrotor is flying around an 

operating point, they suffer from a huge performance degradation whenever the latter leaves 

the nominal conditions or performs aggressive maneuvers, the purpose is to go beyond these 

limits and control the system as it is. 

Quadrotor is an under actuated system, it has six Degrees Of  Freedom (DOF) and only four 

actuators (motors). The research field is still facing challenges in controlling quadrotors as 

being highly nonlinear multivariable systems, they are very difficult to control due to the 

nonlinear coupling between the actuators and the degrees of freedom.  
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1.3 Unmanned Aerial Vehicles 

UAVs are small aircrafts that are flown without a pilot. They can either be remotely operated 

by a human or be autonomous; autonomous vehicles are controlled by an onboard computer 

which can be preprogrammed to perform different or a specific task; while in other literatures, 

UAVs may refer to powered or unpowered, tethered or untethered aerial vehicles.  

1.3.1 History of UAV’s  

UAVs were first manufactured by Lawrence and Sperry (USA) in 1916. Its name was the 

Aviation Torpedo as shown in Figure 1.1.It could be flown for a distance of 30 miles. It was 

reported that Lawrence and Sperry used a gyroscope to balance the body [1]. 

 

 

 
1.3.1.1 Military History 

A great interest was shown by the USA to develop UAVs to be used in the World War I 

(WWI) and two projects where funded. The first was by Elmer Sperry to develop the “Flying 

Bomb” UAV and the second project was the “Kettering Bug” manufactured by General 

Motors. Both projects were cancelled and the funding stopped as they proved unsuccessful. 

This is due to the fact of the absence of the required technological advances in the fields of 

guidance systems and engines. Development of UAVs started increasing tremendously by the 

end of the 1950s; the USA deployed them during the Vietnam War to decrease the casualties 

in pilots when flying over hostile territories. After their success, the USA and Israel decided 

to invest more to build smaller and cheaper UAVs, they used small motors like those found in 

motorcycles to result in smaller sized and lighter UAVs.  

Figure 1.1:Lawrence and Sperry UAV  
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In addition, a video camera was added on the UAVs to transmit images to the ground 

operator. In 1991, the USA used UAVs extensively in the Gulf War, and the most famous 

model was the Predator shown in Figure 1.2. UAVs were intensively used by the USA in 

many conflicts and wars in the late 1990’s and early 2000’s and later on, UAVs were used 

abundantly in the war against Iraq. 

 

 

 

 

1.3.1.2 Civil History  

The use of UAVs was not only confined to military use; in 1969, NASA grew a concern to 

automatically control an aircraft, the first trials was the PA-30 program. The program was 

successful but they had a pilot onboard to take over the control of the aircraft in case anything 

went wrong. Other research programs followed the success of the PA-30 program like: 

Drones for Aerodynamic and Structural Testing (DAST) and Highly Maneuverable Aircraft 

Technology (HiMAT) programs [8]. Following that era, in the 1990’s NASA then partnered 

with industrial companies to develop a nine-year long research project called the 

Environmental Research Aircraft and Sensor Technology Project (ERAST). They developed 

several UAVs models that were able to fly for altitudes up to 30 Km and endured flights up to 

6 months. The resulting UAV models included the: Pathfinder, Helios, Atlus and Perseus B. 

The developed UAVs carried several sensors to carry out environmental measurements, the 

onboard sensors included a camera, a digital Array Scanned Interferometer (DASI) and an 

active detect, see and avoid (DSA) system. 

 

 

 

Figure 1.2:Predator Military UAV 
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1.3.2 Application of UAVs   

In addition to the military use, UAVs can be used in many civil or commercial applications 

that are too dull, too dirty or too dangerous for manned aircrafts. These uses include but not 

limited to: 

Earth Science observations from UAVs can be used side-to-side with that acquired from 

satellites. Such missions include: 

 (a) Measuring deformations in the Earth’s crust that may be indications to natural disasters 

like earthquakes, landslides or volcanoes.  

(b) Cloud and Aerosol Measurements.  

(c) Troposphere pollution and air quality measurements to determine the pollution sources 

and how plumes of pollution are transported from one place to another 

 (d) Ice sheet thickness and surface deformation for studying global warming. 

 (e) Gravitational acceleration measurements, since the gravitational acceleration varies near 

Earth, UAVs are used to accurately measure gravitational acceleration at multiple places to 

define correct references. 

 (f) River discharge is measured from the volume of water flowing in a river at multiple 

points. This will help in global and regional water balance studies.  

Search and rescue UAVs equipped with cameras are used to search for survivors after 

natural disasters like earthquakes and hurricanes or survivors from shipwrecks and aircraft 

crashes.  

Wild fire suppression UAVs equipped with infrared sensors are sent to fly over forests prone 

to fires in order to detect it in time and send a warning back to the ground station with the 

exact location of the fire before it spreads. 

Law enforcement UAVs are used as a cost efficient replacement of the traditional manned 

police helicopters. 

 Border surveillance UAVs are used to patrol borders for any intruders, illegal immigrants or 

drug and weapon smuggling.  

Research UAVs are also used in research conducted in universities to proof certain theories. 

Also, UAVs equipped with appropriate sensors are used by environmental research 

institutions to monitor certain environmental phenomena like pollution over large cities. 

Industrial applications UAVs are used in various industrial applications such as pipeline 

inspection or surveillance and nuclear factories surveillance. 
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Agriculture development UAVs also have agriculture uses such as crops spraying 

[2]. 

 

1.3.3 Classification of UAVs   

There are different ways to classify UAVs, either according to their range of action, 

aerodynamic configuration, size and payload or according to their levels of autonomy. 

1.3.3.1 Range of Action Classification 

UAVs can be classified into 7 different categories based on their maximum altitude and 

endurance as follows [4]: 

(a) High-Altitude Long-Endurance (HALE): they can fly over 15000 m high with an 

endurance of more than 24 hr. They are mainly used for long-range surveillance missions. 

(b) Medium-Altitude Long-Endurance (MALE): they can fly between 5000- 15000 m of 

altitude for a maximum of 24 hr. MALE UAVs are also used for surveillance missions.  

(c) Medium-Range or Tactical UAV (TUAV): They can fly between 100 and 300 km of 

altitude. They are smaller and operated with simpler systems that their HALE and MALE 

counterparts. 

(d) Close Range UAV: They have an operation range of 100 km. They are mainly used in the 

civil application such as powerline inspection, crop-spraying, traffic monitoring, homeland 

security, etc. 

(e) Mini UAV (MUAV): They have a weight of about 20 kg and an operating range of about 

30 km. 

(f) Micro UAV (MAV): They have a maximum wingspan of 150 mm. They are mainly used 

indoors where they are required to fly slowly and hover. 

(g)Nano Air Vehicles (NAV): They have a small size of about 10 mm. they are mainly used 

in swarms for applications such as radar confusion. They are also used for short range 

surveillance if equipped with an equally small camera [3]. 

1.3.3.2 Aerodynamic Configuration Classification 

UAVs can be classified into two main categories based on their aerodynamic configuration as 

follows: 
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(a) Fixed-wing UAVs: require a run-way to take-off and land. They can fly for a 

long time and at high cruising speeds. They are mainly used in scientific applications such as 

meteorological reconnaissance and environmental monitoring, shown in Figure 1.3 

 
 

 

(b) Rotary-wing UAVs: they can take off and land vertically. They can also hover 

and fly with high maneuverability. The Rotary-wing UAVs can be further classified into four 

groups. 

 

 
 

 

 

 

(i) Single-rotor: they have a main rotor on top and another rotor at the tail for 

stability, same like the helicopter configuration. Shown in Figure 1.4 (a).  

(ii) Coaxial: they have two rotors rotating in opposite directions mounted to the same 

shaft. Shown in Figure 1.4(b).  

Figure 1.3: Fixed Wings UAVs 

 

 

(a) Single Rotor                (b) Coaxial 

 

Figure 1.4: Rotary Wings UAVs 

 

 

(c) Quadrotor                       (d) Multi-Rotor 
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(iii) Quadrotor: they have four rotors fitted in a cross-like configuration. Shown in 

Figure 1.4(c).  

(iv) Multi-rotor: UAVs with six or eight rotors. They are agile type and fly even 

when a motor fails, as there is redundancy due to the large number of rotors. Shown in Figure 

1.4(d).  

Increasing the number of rotors in turn increases the payload and maximum altitude of 

the UAVs but it comes at the cost of increasing the size and power consumption. 

1.4 Quadrotors 

The quadrotor concept for aerial vehicles was developed a long time ago. It was 

reported that the Breguet-Richet quadrotor built in 1907 had actually flown. A quadrotor is 

considered to be a rotary-wing UAV due to its configuration that will be discussed later. 

1.4.1 The Quadrotor Concept      

A quadrotor consists of four rotors, each fitted in one end of a cross-like structure as shown in 

Figure 1.5. Each rotor consists of a propeller fitted to a separately powered DC motor. 

Propellers 1 and 3 rotate in the same direction while propellers 2 and 4 rotate in an opposite 

direction leading to balancing the total system torque and cancelling the gyroscopic and 

aerodynamics torques in stationary flights. 

 

 
 

The quadrotor is a 6 DOF object, thus 6 variables are used to express its position in space (x, 

y, z, φ, θ and ψ). x, y and z represent the distances of the quadrotor’s center of mass along the 

x,y and z axes respectively from an Earth fixed inertial frame. Φ, θ and ψ are the three Euler 

angles representing the orientation of the quadrotor. φ is called the roll angle Which is the 

Figure 1.5: Quadrotor Configuration 
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angle about the x-axis, θ is the pitch angle about the y-axis, while ψ is the yaw angle about the 

z-axis. Figure 1.6 clearly explains the Euler Angles. The roll and pitch angles are usually 

called the attitude of the quadrotor, while the yaw angle is referred to as the heading of the 

quadrotor. For the linear motion, the distance from the ground is referred to as the altitude and 

the x and y position in space is often called the position of the quadrotor.  

 

 
 

To generate vertical upwards motion, the speed of the four propellers is increased together 

whereas the speed is decreased to generate vertical downwards motion. To produce roll 

rotation coupled with motion along the y-axis, the second and fourth propellers speeds are 

changed while for the pitch rotation coupled with motion along the x-axis, it is the first and 

third propellers speeds that need to be changed. One problem with the quadrotor configuration 

is that to produce yaw rotation, one need to have a difference in the opposite torque produced 

by each propeller pair. For instance, for a positive yaw rotation, the speed of the two 

clockwise turning rotors need to be increased while the speed of the two counterclockwise 

turning rotors need to be decreased. Figure 1.7 shows how different movements can be 

produced, note that a thicker arrow means a higher propeller speed. 

 
 

 
 

 

Figure 1.6: Euler Angles for a Quadrotor UAV 

 

 

Figure 1.7:Generated Motion of the Quadrotor 
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1.4.2 Advantages and Drawbacks of Quadrotors 

Some advantages of the quadrotor over helicopters is that the rotor mechanics are simplified 

as it depends on four fixed pitch rotors unlike the variable pitch rotor in the helicopter, thus 

leading to easier manufacturing and maintenance. Moreover, due to the symmetry in the 

configuration, the gyroscopic effects are reduced leading to simpler control. Stationary 

hovering can be more stable in quadrotors than in helicopters due to the presence of four 

propellers providing four thrust forces shifted a fixed distance from the center of gravity 

instead of only one propeller centered in the middle as in the helicopters structure. More 

advantages are the vertical take-off and landing capabilities, better maneuverability and 

smaller size due to the absence of a tail; these capabilities make quadrotors useful in small 

area monitoring and buildings exploration. Moreover, quadrotors have higher payload 

capacities due to the presence of four motors thus providing higher thrust. On the other hand, 

quadrotors consume a lot of energy due to the presence of four separate propellers. Also, they 

have a large size and heavier than some of their counterparts again to the fact that there is four 

separate propellers. 

1.4.3 Hardware Components of Quadrotor  

Quadcopter hardware componentsvary and are application dependent. Standard components 

are: microcontrollers, sensors, motors, Global Positioning System (GPS) power supply and 

telemetry devices. The arms and center plate of the quadcopter frame is in most cases made of 

carbon fiber. Connections between the center plates and arms, as well as the motor mounts 

can be made of Aluminum. The modular integration of the frame allows components to be 

replaced easily if necessary. The propulsion system is mounted directly onto this frame. 

Another important part is the propulsion unit. The propulsion unit for the quadrotor consists 

of four brushless DC motors and four electronic speed controllers. The power source for the 

system can be cell lithium polymer battery. Propellers mounted on the motors must be several 

cm lengths and have a fixed pitch angle. This propulsion configuration allows safe operations 

of the frame and ensures excellent lift and thrust performance for all of the flight.  

Addressing other sensors like accelerometer and barometer that measure linear acceleration 

and altitude from the ground respectively is essentially important. 
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1.5 Future of the industry 

Technological improvements will make UAVs faster, stronger and safer. Recent innovations 

such as hydrogen fuel cells promise to keep them flying for hours. But the real innovations 

will not come from the aircraft itself, but from its equipment, the analysis of the data gathered 

and the algorithms that make UAVs react to the external environment. A team of scientists 

has demonstrated that UAVs were able to build a rope bridge, assemble items to create a 

structure, or detect and catch an object in the air. These improvements in capabilities are still 

at an experimental stage but they open up great perspectives for applications in the 

engineering and construction industries in the coming decade. 

1.6 Conclusion  

Quadcopter is a special kind of vehicle, which can be implemented in different applications. 

Quadcopters could be used for a variety of new policing functions. They could be used for 

safety inspections, perimeter patrols around prisons and thermal imaging to check for 

cannabis being grown in roof lofts and other not easy to access locations. The police could use 

them to capture number plates of speeding drivers, for detecting theft from cash machines, 

railway monitoring, combat fly-posting, fly tipping, abandoned vehicles, waste management. 

Future research will be in field of search and rescue. In future an effort will be directed to 

development of a system for defining evacuation/safe path in case of natural disasters and 

accidents and many other fields. 
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2.1 Introduction  

In control system, the model is necessary for the analysis and the design; it is essentially a 

mathematical description which consists of differential equations that can be derived using 

mathematical and physical laws. This model must be as simple as possible and provides 

sufficient information about the system behavior. 

In the following chapter we will mainly describe all the nonlinear dynamics of a quadcopter, 

as well as present different models and end up by showing the model used. 

2.2 Rotations and Angular Velocities Representation. 

The quadcopter structure is presented in Figure 2.1 including the corresponding angular 

velocities, torques and forces created by the four rotors (numbered from 1 to 4) 

 

Figure 2.1 The inertial and body fixed frame of Quadcopter. 

The absolute linear position of the quadcopter is defined in the inertial frame x,y, and z axes 

with ξ. The attitude (the angular position) is defined in the inertial frame with three Euler 

angles η. Pitch angle θ determines the rotation of the quadcopter around the y-axis. Roll angle 

φ determines the rotation around the x-axis and yaw angle ψ around the z-axis. Vector q 

contains the linear and angular position vectors. 

𝜉 =  [
𝑥
𝑦
𝑧

],  ƞ =  [
ɸ
𝜃
𝜓

],𝑞 = [
𝜉
ƞ

].    (2.1) 

The origin of the body frame is in the center of mass of the quadcopter. In the body frame, the 

linear velocities are determined byVB and the angular velocities by 𝑉𝑎. 
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   VB= [
𝑢
𝑣
𝑤

]   𝑉𝑎 =  [
𝑝
𝑞
𝑟

] 

 

The rotation matrix from the body frame to the inertial frame is: 

                          R =  [

cφcθ cφsθsψ − sφcψ cφsθcψ + sφsψ
sφcθ sφsθsψ + cφcψ sφsθcψ − cφsψ
−sθ        cθsψ       cθcψ

]                         (2.2) 

In which Sx = sin(x) and Cx = cos(x). The rotation matrix R is orthogonal thus R−1 = RT which 

is the rotation matrix from the inertial frame to the body frame[5]. 

 

Instantaneous angular velocity: With 3 angles, we can obtain an instantaneous angular 

velocity with three components𝜑,̇ 𝜃 ̇ , 𝜓̇. The reference being linked to the center of gravity, the 

vector v is expressed as follows: 

Va =  [
𝑝
𝑞
𝑟

] = [
𝜑̇
0
0

] + R(x,𝜑)-1[
0
𝜃̇
0

] + (R(y,𝜃)R(x,𝜑))-1[
0
0
𝜓̇

] 

We can write: 

[
𝑝
𝑞
𝑟

] = [
𝜑̇
0
0

] + [

0
𝐶𝜑𝜃̇

−𝑆𝜑𝜃̇

] + [

−𝑆𝜃𝜓̇

𝐶𝜃𝑆𝜑𝜓̇

𝐶𝜃𝐶𝜑𝜓̇

] 

So: 

                                                 

                                                          𝑃 =  𝜑̇− 𝑆 𝜃𝜓 ̇                                (2.3)                                                                     

           𝑞 =  𝐶𝜑𝜃̇ + 𝐶𝜃𝑆𝜑𝜓̇                       (2.4)                                               

                                                                                     𝑟 =  − 𝑆𝜑𝜃̇ + 𝐶𝜃𝐶𝜑𝜓̇                         (2.5) 

We inversely deduce: 

                           𝜑̇= p + tan(𝜃) sin(𝜑) 𝑞 +  tan(𝜃) cos(𝜑)  𝑟              (2.6) 

                               𝜃̇ =  cos(𝜑)  𝑞 −  sin(𝜑)  𝑟                                           (2.7) 

                            𝜓̇ =  
sin(𝜑)

cos(𝜃)
 𝑞 +  

cos(𝜑)

cos(𝜃)
 𝑟                                                      (2.8) 
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2.3 Forces and Moments 
2.3.1 Thrust Force 

 

The thrust force is the force that enables the quadcopter to lift up and fly at some height. 
The quadcopter is assumed to have symmetric structure with the four arms aligned with the 
body x- and y-axes. 

The angular velocity of rotor i, denoted with ωi, creates a force Fi in the direction of the rotor 
axis. 

In General, the thrust force is written as Fi =  Cαωi
2 (αi −  βi) proportional to the difference 

between the collective pitch αi and the blade orientation βi, the lift coefficient Cα and the 
square of the angular speed. 

Most of authors reduce the calculation of the lift force to 𝐹𝑖 = 𝑘𝑖 𝜔𝑖
2 where ki is the lift 

constant. 

It should be noted that Bi= Cst when dealing with quadcopters since there is no adjustment of 
the collective pitch. 

The lift coefficient Cα is still present, however, rarely used, we simply integrated into the lift 
constant ki. 

The total lift force is expressed as follows: 

                                                   𝐹 =  ∑ 𝐹𝑖 
4
𝑖=1 =  ∑ 𝑘𝑖

4
𝑖=1 𝜔𝑖

2                     (2.9)     

2.3.2 Drag Moment 
 

The drag moment is a force acting opposite to the relative motion of a quadcopter moving 
with respect to a surrounding gas/air. 
Clearly, the aerodynamic forces and moments depend on the geometry of the propeller and 
the air density. Since for the case of quadrotors, the maximum altitude is usually limited, thus 
the air density can be considered constant. 

The drag force can be written as 

                                                    Di =  kdωi
2                                   (2.10) 

where kd is the drag constant; which can be determined experimentally for each propeller 
type. 
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2.3.3 Gyroscopic effect 
 

It is necessary to underline the importance of this effect as far as the rotors have a significant 
rotation. The propellers of quadcopters are very weak so if one needs to deliver a precise input 
signal that is flawless of this effect then taking the weight of the motor rotors is of great 
importance  

2.3.4 Ground effect 
 

Besides the lift force and the drag moment, which are the predominant aerodynamic forces 
and moments created by a rotor, there exist another external aerodynamic influences which 
acts on a propeller,it is called ground effect. This refers to the variation of the lift coefficient 
when the rotor is in close proximity to the ground. Due to its complexity, this effect is only 
considered for single rotor helicopters. 

2.4 Six DOF equations of motion 
 

The equations that determine a 6 DOF body are: 
Forces: 

             𝑚 [𝑢̇ − 𝑣𝑟 + 𝓌𝑞 − 𝓍𝐺(𝑞2 +  𝑟2) +  𝑦𝐺(𝑝𝑞 − 𝑟̇) + 𝑧𝐺(𝑝𝑟 +  𝑞̇)] = 𝑋            (2.13) 

            𝑚 [𝑣̇ − 𝓌𝑟 + 𝑢𝑟 − 𝑦𝐺(𝑟2 +  𝑝2) +  𝑧𝐺(𝑞𝑟 −  𝑝̇) + 𝑥𝐺(𝑞𝑝 +  𝑟̇)] = 𝑌               (2.14) 

            𝑚 [𝓌̇ − 𝑢𝑞 + 𝑣𝑝 − 𝑍𝐺(𝑝2 + 𝑞2) + 𝑥𝐺(𝑟𝑝 −  𝑞̇) + 𝑦𝐺(𝑟𝑞 +  𝑝̇)] = 𝑍              (2.15) 

Moments: 

                𝐼𝑥𝑝̇+ (𝐼 𝑧 −  𝐼𝑦)𝑞𝑟 − (𝑟̇+ 𝑝𝑞)𝐼 𝑥𝑧 + (𝑟2 −  𝑞2)𝐼𝑦𝑧 + (𝑝𝑟 − 𝑞̇)𝐼 𝑥𝑦  

+ 𝑚[𝑦𝐺(𝓌̇− 𝑢𝑞 + 𝑣𝑝) − 𝑧 𝐺(𝑣̇− 𝓌𝑝 + 𝑢𝑟)] = 𝐾                 (2.16)  

𝐼𝑦𝑞̇+ (𝐼 𝑥 −  𝐼𝑧)𝑟𝑝 − (𝑝̇+ 𝑞𝑟)𝐼 𝑥𝑦 + (𝑝2 −  𝑟2)𝐼𝑧𝑥 + (𝑞𝑝 − 𝑟̇)𝐼 𝑦𝑧

+ 𝑚[𝑧𝐺(𝑢̇− 𝑣𝑟 + 𝓌𝑞) − 𝑥 𝐺(𝓌̇− 𝑢𝑞 + 𝑣𝑝)] = 𝑀              (2.17)  

𝐼𝑧𝑟̇+ (𝐼 𝑦 −  𝐼𝑥)𝑝𝑞 − (𝑞̇+ 𝑟𝑝)𝐼 𝑦𝑧 + (𝑞2 −  𝑝2)𝐼𝑥𝑦 + (𝑟𝑞 − 𝑝̇)𝐼 𝑧𝑥

+ 𝑚[𝑥𝐺(𝑣̇− 𝓌𝑝 + 𝑢𝑟) − 𝑦 𝐺(𝑢̇− 𝑣𝑟 + 𝓌𝑞)] = 𝑁           (2.18)  

XG, YG, ZG will disappear if we consider the calculations at the center of gravity:                                                       

                                                 𝑚 [𝑢̇− 𝑣𝑟 +  𝓌𝑞 ] = 𝑋        (2.19) 

                                                             𝑚 [𝑣̇− 𝓌𝑝 +  𝑢𝑟 ] = 𝑌        (2.20) 

𝑚 [𝓌̇− 𝑢𝑞 +  𝑣𝑝 ] = 𝑍         (2.21) 

𝐼𝑥𝑝̇+ (𝐼 𝑧 −  𝐼𝑦)𝑞𝑟 − (𝑟̇+ 𝑝𝑞)𝐼 𝑥𝑧 + (𝑟2 −  𝑞2)𝐼𝑦𝑧 + (𝑝𝑟 − 𝑞̇)𝐼 𝑥𝑦 = 𝐾              (2.23) 
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𝐼𝑦𝑞̇+ (𝐼 𝑥 −  𝐼𝑧)𝑟𝑝 − (𝑝̇+ 𝑞𝑟)𝐼 𝑥𝑦 + (𝑝2 −  𝑟2)𝐼𝑧𝑥 + (𝑞𝑝 − 𝑟̇)𝐼 𝑦𝑧 = 𝑀              (2.24) 

𝐼𝑧𝑟̇+ (𝐼 𝑦 −  𝐼𝑥)𝑝𝑞 − (𝑞̇+ 𝑟𝑝)𝐼 𝑦𝑧 + (𝑞2 −  𝑝2)𝐼𝑥𝑦 + (𝑟𝑞 − 𝑝̇)𝐼 𝑧𝑥 = 𝑁              (2.25) 

Considering that the inertia Ixy = Ixz= Iyz = 0, the model will be simplified: 

𝑚 [𝑢̇− 𝑣𝑟 +  𝓌𝑞 ] = 𝑋               (2.26) 

𝑚 [𝑣̇− 𝓌𝑝 +  𝑢𝑟 ] = 𝑌              (2.27) 

𝑚 [𝓌̇− 𝑢𝑞 +  𝑣𝑝 ] = 𝑍               (2.28) 

𝐼𝑥𝑝̇+ (𝐼 𝑧 −  𝐼𝑦)𝑞𝑟 = 𝐾               (2.29) 

𝐼𝑦𝑞̇+ (𝐼 𝑥 −  𝐼𝑧)𝑟𝑝 = 𝑀               (2.30) 

𝐼𝑧𝑟̇+ (𝐼 𝑦 −  𝐼𝑥)𝑝𝑞 = 𝑁                  (2.31) 

The quadcopter is assumed to have symmetric structure Ix =Iy , and the model is further 
reduced to: 

𝑚 [𝑢̇− 𝑣𝑟 +  𝓌𝑞 ] = 𝑋            (2.32) 

𝑚 [𝑣̇− 𝓌𝑝 +  𝑢𝑟 ] = 𝑌             (2.33) 

𝑚 [𝓌̇− 𝑢𝑞 +  𝑣𝑝 ] = 𝑍              (2.34) 

𝐼𝑥𝑝̇+ (𝐼 𝑧 −  𝐼𝑦)𝑞𝑟 = 𝐾                 (2.35) 

𝐼𝑦𝑞̇+ (𝐼 𝑥 −  𝐼𝑧)𝑟𝑝 = 𝑀              (2.36) 

𝐼𝑧𝑟̇= 𝑁                                         (2.37) 

Speed terms such as vr, wp,…are of the 2nd order and often over looked, even they are at the 
origin of couplings. We obtain then a system of equations very simplified 

𝑚 𝑢̇= 𝑋                 (2.38) 

𝑚 𝑣̇= 𝑌                 (2.39) 

𝑚 𝓌̇= 𝑍              (2.40) 

𝐼𝑥𝑝̇= 𝐾                 (2.41) 

𝐼𝑦𝑞̇= 𝑀                 (2.42) 

𝐼𝑧𝑟̇= 𝑁                  (2.43) 
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2.5 Drouin  Model  
Drouin uses a model that neglects the gyroscopic effect, ground effect as well as a negligible air 

density effects . 

𝑘2 =  
(𝐼𝑧− 𝐼𝑦)

𝐼𝑥
              (2.44) 

𝑘4 =  
(𝐼𝑥− 𝐼𝑧)

𝐼𝑥
               (2.45) 

Ix, Iy and Iz being the moments of inertia in body-axis and m the total mass of the rotorcraft.  
The moment equations can be written as [6]: 

𝑝̇=  (
𝑙

𝐼𝑥
) (𝐹4 − 𝐹2) + 𝑘2 𝑞 𝑟                (2.46) 

𝑞̇=  (
𝑙

𝐼𝑦
) (𝐹1 − 𝐹3) + 𝑘4 𝑝 𝑟             (2.47) 

𝑟̇=  (
𝑘

𝐼𝑧
) (𝐹2 − 𝐹1 + 𝐹4 − 𝐹3 )             (2.48) 

The Euler equations are given by: 

                                    𝜙̇ = 𝑝 + tan(𝜃) sin(𝜙) 𝑞 + tan(𝜃) cos(𝜙) 𝑟             (2.49) 

                                   𝜃̇ = cos(𝜙) 𝑞 − sin(𝜙) 𝑟                                               (2.50) 

                                 𝜓̇ = (
sin(𝜙)

cos(𝜃)
) 𝑞 + (

cos(𝜙)

cos(𝜃)
) 𝑟                                            (2.51) 

Where θ, φ, and ψ are respectively the pitch, roll and yaw angles. 

The acceleration equations written directly in the local Earth reference system are such as: 

𝑥̈=  
1

𝑚
(cos(𝜓) sin(𝜃) cos(𝜙) + sin(𝜓) sin(𝜙))𝐹                     (2.52) 

𝑦̈=  
1

𝑚
(sin(𝜓) sin(𝜃) cos(𝜙) − cos(𝜓) sin(𝜙))𝐹                     (2.53) 

𝑧̈= −𝑔 +
1

𝑚
cos(𝜃) cos(𝜙) 𝐹                                                              (2.54) 

Where x, y and z are the center of gravity coordinates  
Where: 

𝐹 = 𝐹1 + 𝐹2 + 𝐹3 + 𝐹4                     (2.55) 

With the constraints: 

0 ≤ 𝐹𝑖 ≤ 𝐹𝑚𝑎𝑥         𝑖 ∈ {1,2,3,4} 
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2.6 DC Motors 
The DC-motor is an actuator which converts electrical energy into mechanical energy and 
vice versa. It is composed of two interactive electromagnetic circuits.The first one called 
rotor, is free to rotate around the second one that is called stator which is fixed instead. 
 

2.6.1 Brushed DC Motors 
 
In the rotor, several groups of copper windings are connected in series and are externally 
accessible through a device called commutator. In the stator, two or more permanent magnets 
impose a magnetic field which affects the rotor. By applying a DC-current flow into the 
windings, the rotor turns because of the force generated by the electrical and magnetic 
interaction.The rotor and commutator geometries, keeps the motorturning while supplied by a 
DC-voltage on its terminals.  
 
The circuit of the DC-motor is controlled by a real voltage generator 𝑣[𝑉]which gives the 
control input. In theory, another resistor should be added in series of the voltage generator 
representing the driver losses. However, in a good project, the generator losses are kept low 
therefore it is possible to neglect the min the model. The basic electrical circuit which 
describes the steady state behavior of the DC motor is shown in figure 2.2 

 
Figure 2.2 Simple Example of a Motor Circuit 

 

2.6.2 Brushless DC Motors 
 

Instead of brushes, the BLDC motor accomplishes commutation electronically using rotor 
position feedback to determine when to switch the current. Feedback usually entails an 
attached Hall sensor or a rotary encoder. The stator windings work in conjunction with 
permanent magnets on the rotor to generate a nearly uniform flux density in the air gap. This 
permits the stator coils to be driven by a constant DC voltage (hence the name brushless DC). 
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2.6.3 Use of DC Motors in Quadcopters 
 

Most of Quadcopters use BLDC motors as they offer several advantages over brushed DC 
motors which include more torque per weight, reduced noise, increased reliability, longer life 
time and increased efficiency. 
 
The motors should be selected in such a way that it follows thrust to weight relationship. 

Ratio =  Thrust Weight⁄ = 𝑚𝑎 𝑚𝑔⁄ =  𝑎 𝑔⁄                (2.56) 

Thus, vertical take-off and vertical landing (VTOL) is possible only when, (a/g) > 1 or in 
other words, the total thrust to total weight ratio should be greater than 1 so that the 
quadcopter can accelerate in the upward direction [7] 

Total Thrust = 2*(Total weight of Quadcopter)             (2.57)  

Propellers size however is also very important and it is controlled by its two dimensions 
length and pitch, large propellers are efficient and energy consuming. They can fly to higher 
altitudes but the increase and the decrease of speed is different in time than the small 
propellers as opposed. 

Quadcopters aerodynamics is majorly affected by the thrust drag. And these forces are 
constantly impacted by the angular velocity at which the motor blades turn and the two 
respective coefficients that go with. 

                    Di =  kdωi
2𝐹𝑖 = 𝑘𝑖 𝜔𝑖

2                                 (2.58) 
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2.7 Sensors 
 

Mainly we have mainly two types of sensors, Accelerometers that determine the position 
and the direction of the flight and the gyroscope that senses the orientation of the aircraft and 
allow a good measuring unit for attitude control, in our work however the simulation afforded 
an easy master over all the dynamics of the system where we showed a simple access to state 
manipulation and control. 

 

2.7.1 Accelerometer 

Accelerometers measure the lateral acceleration of the sensor, in a quadcopter they are 
called a Microelectromechanical systems (MEMS) 

 

2.7.2 Gyroscope 
 

This sensor however does a slightly different job since it measures the attitude angles 
taking the angular velocity as a data and develop a basic integrator block to find the angular 
position.  

 
 
 
 
 

2.8 Conclusion 

Mathematical models are inherently nonlinear and making use of this, systematically 

require the application of linear control by linearizing these models. In this quadcopter 

however we are going to deal with the nonlinear system in the most natural way as Drouin 

stated. The grounding effect and gyroscopic effect may present other terms of nonlinearities 

that if a designer set nonlinear controllers these nonlinearities are for sure going to be 

compensated and dealt with for granted. Unfortunately for simplicity reasons this model pays 

attention to the moment and acceleration equations that we will tend to control in the next 

chapter as our main focus will be to control the altitude of the quadcopter while pitch, roll and 

yaw angles will be null and allow our model to hover and attempt trajectory tracking along 

one axis.  
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3.1 – Introduction to Nonlinear Systems 

Physical systems are inherently nonlinear, and the study of matters where nonlinearities 

are to be handled carefully and widening the operating range has recently showed a strong 

interest in areas like Aircraft and Spacecraft control, robotics, and biomedical engineering.  

In the past, applications of nonlinear control have been limited due to the lack of 

analytical computations faced, however with advances in computer technology a great 

enthusiasm has born for researchers and engineers and came to reveal many uncompensated 

nonlinearities problems by designing their suitable nonlinear controllers. 

We distinguish two types of nonlinearities, inherent or natural nonlinearities that come 

with the system’s hardware and motion and which have undesirable effects, the intentional 

nonlinearities which are artificially introduced by the designer 

Nonlinearities can be classified mathematically as continuous and discontinuous 

nonlinearities which cannot be locally approximated by linear functions and that are known 

by hard nonlinearities. We have many types of hard nonlinearities (such as, e.g. dead zone, 

hysteresis or on off nonlinearities) 

The subject of nonlinear control is of a great interest to automatic and control 

applications; it helps a control engineer to get acquainted with practical applications while 

presenting more significant ways and tools for analysis and systems control. 

3.1.1 - Nonlinear Systems Representation 

A nonlinear dynamic system is usually represented by a set of nonlinear differential 

equation        

ẋ =  f(x, t)(3.1) 

Where f is a (n x 1) nonlinear vector function, and x is the (n x l) state vector. The 

number of states n is called the order of the system. A solution x (t) of the equations (3.1) 

corresponds to a curve in state space as t varies from zero to infinity, this curve is referred as 

the phase plan as seen and discussed before for the case where n = 2. 

The latter can represent the dynamic system where no control signal is involved which is 

the case for a swinging pendulum. And it is directly applicable to feedback control systems if 
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it is to be representing the closed-loop dynamic of a control system, with the input being a 

control of state x and time t which disappears if the plant dynamic is 

ẋ = f(x, u, t) 

With some control of 

u = g(x, t) 

The closed loop dynamics turn into 

ẋ = f(x, g(x, t) , t) 

Which can be written of the form of equation (3.1) 

3.2 – Fundamentals of Lyaponuv Theory  

Given a control system, stability is the most crucial property one might question himself 

about, because an unstable system literarily makes no use and a stable system is the one that if 

starting it somewhere near its operating point implies that it will stay in the neighborhood of 

this point. So namely the trajectory that a designer wants his control system whether linear or 

nonlinear to track is characterized by the operating point in the absence of disturbance, so at a 

given moment if the quadcopter is disturbed by air gust and it deviates from the assigned 

trajectory and never comes back we say the system is unstable. 

The general problem of motion stability was introduced in late 19th century by the great 

Russian mathematician AlexandrMikhailovichLyapunov which extends for two essential 

works (Linearization and Direct method). The linearization is restricted for local motion as it 

draws conclusions about the stability of the system as linearly approximated. However the 

Direct method is a powerful tool for design purpose mainly and which consists of forming 

and making restrictions for stability boundaries by analyzing the Energy like functions. 
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3.2.1 - Stability Concepts 

Stability is a fundamental issue in control system analysis and design. Essentially we 

have three types of stability, stability in the Lyaponuv sense or marginal stability, asymptotic 

stability and exponential stability. 

Given the nonlinear system ẋ = f{x(t)}and the equilibrium point x = 0 

A simplifying formulation of the stability concept is to illustrate the systems stability by a 

simple spherical region where the state is initially excited within a certain operating range of 

the inner BallBϵ, known for local excitation. (Ball) isdefined by ‖x‖ =  δ is Bδ 

 

Figure 3.1 Spherical representation of the concept of stability  

 

Definition 1: the equilibrium point x=0 is stable in the Lyaponuv sense (marginal 

stability) if  ∀∈> 0, ∃δ > 0 such that ‖x(0)‖ <∈  => ‖x(t)‖ < δ  for all t ≥ 0 [8] 

 

 

So if the initial state starts somewhere not far from the operating range, as time goes 

by if the state at t ≥ 0 remains in the neighborhood of the operating point x = 0 then we say 

the operating point x = 0 is marginally stable. 

 

 

In some applications marginal stability is limited and is not of a great interest. From a 

control engineering optic if we consider our quadrotor to track a certain reference formulated 

by the designer in case intentional nonlinearities take places and attempt to perturb the system 
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and we want to maintain the altitude with the respect to the fixed inertial framex, y the state 

may deviate from its trajectory, respecting the inner stability process but not knowing how to 

come back to the origin x = 0. 

 

Asymptotic stability will therefore guarantee the return of the aforementioned and 

enable the nonlinear controller to rapidly compensate the process of current deviation. 

 

Definition 2: Equilibrium point 0 is asymptotically stable if it is stable, and if in 

Addition there exists some r > 0 such that ‖x(0)‖ < r implies thatx(t) → 0 ast → ∞ 

 

one may question the need of stability requirements, as viewed in asymptotic stability which 

brings the concept of trajectory convergence toward 0. In some applications the trajectory 

convergence speed is needed to be estimated and carefully studied and in for this concept we 

introduce the so-called exponential stability.  

 

Definition 3: Equilibrium point 0 is exponentially stable if there exists two strictly 

positive numbers α, λ such that, 

 

∀t > 0, ‖x(t)‖ ≤ α‖x(0)‖e−λ t 

 

In some ball Bϵaround the origin, so the above definitions are formulated to 

characterize the local behavior of the system, however if asymptotic or exponential stability 

holds for any initial state then we say that the system is globally asymptotically or 

exponentially stable.   
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3.2.2 – Lyaponuv Direct Method  

 
Central idea of Lyaponuv’s theory is when system is at rest its energy is zero and 

small perturbation might provide the system with a certain amount of energy and observing 

the latter yield to three different choices. Energy remains constant as time goes by, energy 

dissipates and the state returns to the equilibrium point = 0, energy increases which 

eventually yield to an unstable system. 

 

3.2.2.1 – Local Stability  

Theorem: If, in a ball Bϵ centered at x = 0 we can find a function V(x) with 

continuous first partial derivative such that [10] 

i) V(x) is locally positive definite in Be 

ii) V̇(x)is negative semi definite in Be 

Then the equilibrium point 0 is stable in the Lyaponuv sense. If, actually, the derivative 

of energy like function V̇(x) is locally negative definite inBϵ, then the system is 

asymptotically stable. 

 

3.2.2.2 – Global Stability  

Theorem: Assume there exists a function 𝑉(𝑥) with continuous first partial derivative 

such that, 

i) 𝑉(𝑥) is globally positive definite 

ii) 𝑉̇(𝑥)is globally negative definite 

iii) lim
‖𝑥‖→∞

𝑉(𝑥) =  ∞ 

Then the equilibrium point 0 is stable is globally asymptotically stable. 
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Along the same lines, it is important to realize that the theorems in Lyapunov 

analysis are all sufficiency theorems. If for a particular choice of Lyapunov function 

candidate V, the conditions on V are not met, one cannot draw any conclusions on the 

stability or instability of the system - the only conclusion one should draw is that a 

differentLyapunov function candidate should be tried. [9] 

 

3.2.3 – Control Design Based on Lyapunov's Direct Method 

In the previous sections we were only dealing with the stability analysis on the basis of 

a real lyaponuv candidate function, now we move to the design where someone needs to use a 

nonlinear controller, hypothesize the Lyaponuv function and guarantee its usefulness by 

setting a control law to justify the use and make the lyaponuv function a real lyaponuv 

candidate to asymptotically stabilize the system and yield to practical nonlinear feedback 

control application. 

Many feedback control techniques are based on the idea of designing the feedback 

control in such a way that a Lyapunov function, or more specifically the derivative of a 

Lyapunov function, has certain properties that guarantee boundededness of trajectories and 

convergence to an equilibrium point or an equilibrium set. Backstepping is a recursive 

technique that normally breaks the design problem into subsystems of lower order, by 

exploiting the flexibility of lower order and even scalar system 

 

3.3– Backstepping Command   

Backstepping is an iterative algorithm that relax the stabilization of a nonlinear control 

system by exciting it with the appropriate control law, while verifying Lyaponuv energy like 

functions and nominating them as a real candidate and that’s by meeting asymptotic stability 

conditions.   

 

We consider this basic second order approach 

 𝑥̇1 =  𝑥2(3.2) 𝑥̇2 =  𝑢 
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Step 1: We desire 𝑥1 to track our desired state 𝑥1𝑑 , we consider 𝑥2 as the first input to 

the system and we denote it by 𝛼, we shall now write the first error equation [11] 

     ϵ1 = x1d − x1                    (3.3) 

 

Let 𝑉1(𝑥) be a function of 𝑥, 𝑉1(𝑥) is said to be lyaponuv function if  

i) 𝑉1(𝑥) is positive definite 

ii) 𝑉1̇(𝑥) is locally negative definite  

We define the first lyaponuvfunction  and its first derivative  

𝑉1(𝑥) =
1

2
𝜖1

2                  (3.4) 

𝑉̇1(𝑥) = 𝜖1𝜖1̇                   (3.5)        

By deriving the error and using relation (3.2) we get 

𝜖1̇ = 𝑥̇1𝑑 − 𝑥2                 (3.6) 

By plugging (3.6) in (3.5)  and replacing 𝑥2by  𝛼 we get 

𝑉1̇ = 𝜖1(𝑥̇1𝑑 − 𝛼)           (3.7)                      

So that the system converges and Lyaponuv  condition is valid for asymptotic 

stability these two conditions suffice  

𝑉1(𝑥) > 0 ∀𝑥 

 

𝑉̇1(𝑥) < 0 ∀𝑥 

To guarantee 𝑉̇1(𝑥) < 0 (Convergence condition) the following condition must be 

verified. 

−𝜖1𝐾1 = (𝑥̇1𝑑 − 𝛼)                  (3.8)            

if𝐾1 > 0 is positive then the condition is fulfilled and we get the law forOur pseudo-

entry. 

𝛼 = (𝑥̇1𝑑+𝜖1𝐾1) 
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Which is from equation (3.3) equals  

𝛼 = (𝑥̇1𝑑 + 𝐾1  (𝑥1𝑑 − 𝑥1))         (3.9) 

So classically if we wish that 𝑥1 to track 𝑥1𝑑 and remain at this value then,𝑥̇1𝑑 = 0, 

therefore 𝑥̇1 = 0,  

+𝐾1  𝑥1𝑑 − 𝐾1  𝑥1= 0 then 𝑥1 =  𝑥1𝑑 

Step 2 : First step implies that if 𝛼 = (𝑥̇1𝑑+𝜖1𝐾1) then this yield to this equality 𝑥1 =

 𝑥1𝑑 

Meanwhile there exists another possibility for 𝑥2 to deviate from 𝛼 and form a second 

error 𝜖2 

𝜖2 = 𝛼-𝑥2 

Take the derivative of the second error, 

𝜖2̇ = 𝛼̇ − 𝑥̇2                             (3.10) 

We have from the derivative of the first error  

𝜖1̇ = 𝑥̇1𝑑 − 𝑥2 

𝜖1̇ = 𝑥̇1𝑑 + 𝜖2 − 𝛼                    (3.11) 

And also from state space equation (3.2) we have  

𝜖2̇ = 𝛼̇ −  𝑢 

𝜖2̇ = 𝑥̈1𝑑+𝜖1̇𝐾1 − 𝑢               (3.12) 

Now we exert another Lyaponuv function bearing in mind the two errors  

𝑉2(𝑥) =
1

2
𝜖1

2 +
1

2
𝜖2

2                        (3.13)    

We obtain the first derivative with respect to time  

𝑉̇2(𝑥) = 𝜖1𝜖1̇ + 𝜖2𝜖2̇                       (3.14) 

 

Putting (3.11) and (3.12) and by substitution equation  𝑉̇2(𝑥) becomes, 

𝑉̇2(𝑥) = −𝐾1𝜖1
2 + 𝜖2(𝜖1 + 𝐾1𝜖1̇ + 𝑥̈1𝑑 − 𝑢) 

If wecould have  
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(𝜖1 + 𝐾1𝜖1̇ + 𝑥̈1𝑑 − 𝑢) = −𝐾2𝜖2 

Second Lyaponuv function becomes 

𝑉̇2(𝑥) = −𝐾1𝜖1
2 − 𝐾2𝜖2

2 < 0 

And the command law is of the form: 

𝒖 = 𝝐𝟏 + 𝑲𝟏𝝐̇𝟏 + 𝒙̈𝟏𝒅 + 𝑲𝟐𝝐𝟐           (3.15)  

3.3.1 – Quadcopter reviewed dynamics   

Used Model is called the Drouin model as described precisely in chapter two where the 

gyroscopic effect is not taken into account and the latter will alleviate much complexity on the 

conducted study of the following technique.  

𝑘2 =  
(𝐼𝑧 −  𝐼𝑦)

𝐼𝑥
 

𝑘4 =  
(𝐼𝑥 −  𝐼𝑧)

𝐼𝑥
 

For the adopted vector state, state variables are of this approach 

𝑋̇ = [ɸ, ɸ̇ , 𝜃, 𝜃̇,  𝜓, 𝜓̇, 𝑧, 𝑧̇, 𝑦, 𝑦̇, 𝑥, 𝑥̇]𝑇] 

With a system of differential equation as the following, the acceleration equations written 

directly in the local Earth reference system [6] 

𝑥̇ = 𝑢 

𝑦̇ = 𝑣 

 𝑧̇ = 𝑤 

𝑢̇ =
1

𝑚
(cos(𝜓) sin(𝜃) cos(𝜙) + sin(𝜓) sin(𝜙))𝐹 

v̇ =  
1

𝑚
(sin(𝜓) sin(𝜃) cos(𝜙) − cos(𝜓) sin(𝜙))𝐹 

𝑤̇ = −𝑔 +
1

𝑚
cos(𝜃) cos(𝜙) 𝐹 
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Ix, Iy and Iz being the moments of inertia in body-axis and m the total mass of the 

quadcopter.  

The moment equations can be written as:  

ɸ̇ = 𝑝 

𝜃̇ = 𝑞 

𝜓̇ = 𝑟 

From Chapter two, 

𝑝̇ =  (
𝑙

𝐼𝑥
) (𝐹4 − 𝐹2) + 𝑘2𝑞𝑟 

𝑞̇ =  (
𝑙

𝐼𝑦
) (𝐹1 − 𝐹3) + 𝑘4𝑝𝑟 

𝑟̇ =  (
𝑘

𝐼𝑧
) (𝐹2 − 𝐹1 + 𝐹4 − 𝐹3 ) 

 

3.3.2 - Control Law Design  

Now we can attempt to apply the backstepping mentioned above in both Euler angles not 

which yield mainly to nonlinearities compensation within the system. 

Our main mission is to find the total control input denoted by𝑈 = [𝑈1 𝑈2 𝑈3 𝑈4], 

bearing in mind that our used model is the model described both in chapter 2 and chapter 3 in 

the above section which takes the drouin model for simplicity reasons. 

Recall the state vector is𝑋̇ = [ɸ, ɸ̇ , 𝜃, 𝜃̇,  𝜓, 𝜓̇, 𝑧, 𝑧̇, 𝑦, 𝑦̇, 𝑥, 𝑥̇]𝑇 

Now we shall present the four second order subsystems 

ɸ̇ = 𝑝 

𝑝̇ =  (
𝑙

𝐼𝑥
) (𝐹4 − 𝐹2) + 𝑘2𝑞𝑟                      (3.16) 

 

𝑈1=(𝐹4 − 𝐹2) 

𝜃̇ = 𝑞 

𝑞̇ =  (
𝑙

𝐼𝑦
) (𝐹1 − 𝐹3) + 𝑘4𝑝𝑟                     (3.17) 

𝑈2=(𝐹1 − 𝐹3) 
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𝜓̇ = 𝑟 

                                    𝑟̇ =  (
𝑘

𝐼𝑧
) (𝐹2 − 𝐹1 + 𝐹4 − 𝐹3 )                (3.18) 

𝑈3=(𝐹2 − 𝐹1 + 𝐹4 − 𝐹3 ) 

And last the 4th subsystem which attempts to regulate the altitude of this quadcopter along 

the z Axis. 

𝑧̇ = 𝑤 

                                 𝑤̇= −𝑔 +
1

𝑚
𝑐𝑜𝑠(𝜃) 𝑐𝑜𝑠(𝜙) 𝐹              (3.19) 

𝑈4 =(𝐹1 + 𝐹2 + 𝐹3 + 𝐹4) = 𝐹 

 

Now we shall start presenting the backstepping gains assigned for this work, in which I 

used two gains for Z  altitude control denoted by  L 3and L 4 

For the Euler angles I used two main gains for the entire process, thereby for the three 

remaining subsystem we will haveL 1and L 2 

 

Control command of the Roll angle.  

ɸ̇ = 𝑝 

𝑝̇ =  (
𝑙

𝐼𝑥
) (𝐹4 − 𝐹2) + 𝑘2𝑞𝑟                      (3.16) 

 

Step1: 

We define the first error that represents the deviation between the actual and the desired 

value which is zero. 

𝜖1 = ɸ
𝑑

− ɸ                       (3.17) 

We introduce now 𝛼 to be the next pseudo input for the subsystem, by taking the 

derivative and subsitututing the first derivative of the error becomes 

 

𝜖1̇ = ɸ̇
𝑑

− 𝛼(3.18) 

 

We define the first Lyaponuvfunction  and its derivative: 

𝑉1(𝑥) =
1

2
𝜖1

2 



Chapter Three                                        Control approach of Quadcopter 

 

33   

 

𝑉̇1(𝑥) = 𝜖1𝜖1̇ 

Now to meet lyaponuv conditions as discussed in the previous section we have to verify this 

equation where 𝐿1 > 0 

𝜖1̇ =  −𝐿 1𝜖1 

ɸ̇
𝑑

− 𝛼 =  −𝐿 1𝜖1 

Which after substitution yields to a pseudo input𝛼 of the form 

𝛼 = ɸ̇
𝑑

+ 𝐿1𝜖1(3.19) 

Step 2: 

Now we form a second error 

𝜖2 = 𝛼 − 𝑝                                (3.20) 

By taking the derivative of the second error 

 

𝜖2̇ = 𝛼̇ − 𝑝̇                              (3.21) 

From equation (3.18) and (3.20) we have  

𝜖1̇ = ɸ̇
𝑑

− 𝑝 

𝜖1̇ = ɸ̇
𝑑

+ 𝜖2 − 𝛼                   (3.22) 

 

 

 

And also from state space equation (3.16) we have  

𝜖2̇ = 𝛼̇ − (
𝑙

𝐼𝑥
) (𝐹4 − 𝐹2) − 𝑘2𝑞𝑟 

𝜖2̇ = ɸ
𝑑
̈ + 𝐿 1𝜖1̇ − (

𝑙

𝐼𝑥
) (𝐹4 − 𝐹2) − 𝑘2 𝑞 𝑟              (3.23) 

Now we exert another Lyaponuv function bearing in mind the two errors  

𝑉2(𝑥) =
1

2
𝜖1

2 +
1

2
𝜖2

2 

We obtain the first derivative with respect to time  

𝑉̇2(𝑥) = 𝜖1𝜖1̇ + 𝜖2𝜖2̇ 

 

Putting 3.22 and 3.23 and by substitution, equation 𝑉̇2(𝑥) becomes, 
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𝑉̇2(𝑥) = 𝜖1(ɸ̇
𝑑

+ 𝜖2 − 𝛼) + 𝜖2(ɸ
𝑑
̈ + 𝐿1𝜖1̇ − (

𝑙

𝐼𝑥
) (𝐹4 − 𝐹2) − 𝑘2𝑞𝑟) 

𝑉̇2(𝑥) = 𝜖1(ɸ̇
𝑑

+ 𝜖2 − ɸ̇
𝑑

− 𝐿1𝜖1) + 𝜖2(ɸ
𝑑
̈ + 𝐿1𝜖1̇ − (

𝑙

𝐼𝑥
) (𝐹4 − 𝐹2) − 𝑘2𝑞𝑟) 

𝑉̇2(𝑥) = −𝐿 1𝜖1
2 + 𝜖2(𝜖1 + ɸ

𝑑
̈ + 𝐿 1𝜖1̇ − (

𝑙

𝐼𝑥
) (𝐹4 − 𝐹2) − 𝑘2 𝑞 𝑟) 

If we could have  

(𝜖1 + ɸ
𝑑
̈ + 𝐿1𝜖1̇ − (

𝑙

𝐼𝑥
) (𝐹4 − 𝐹2) − 𝑘2𝑞𝑟) = −𝐿2𝜖2 

Second Lyaponuv function becomes 

𝑉̇2(𝑥) = −𝐿1𝜖1
2 − 𝐿2𝜖2

2 < 0 

And the command law will achieve asymptotic stability of the subsystem  

𝑼𝟏=(𝑭𝟒 − 𝑭𝟐) =
𝑰𝒙

𝒍
(𝝐𝟏 + ɸ

𝒅
̈ + 𝑳𝟏𝝐̇𝟏+𝑳𝟐𝝐𝟐 − 𝒌𝟐𝒒𝒓) 

 

Control command of the Pitch angle.  

𝜃̇ = 𝑞 

𝑞̇ =  (
𝑙

𝐼𝑦
) (𝐹1 − 𝐹3) + 𝑘4𝑝𝑟                     (3.17) 

Step1: 

We define the first error that represents the deviation between the actual and the desired 

value which is zero. 

𝜖1 = 𝜃𝑑 − 𝜃                    (3.24) 

we introduce now 𝛼to be the next pseudo input for the subsystem, by taking the 

derivative and subsitututing the first derivative of the error becomes 

𝜖1̇ = 𝜃̇𝑑 − 𝛼                  (3.25) 

 

 

We define the first lyaponuv function and its derivative: 

𝑉1(𝑥) =
1

2
𝜖1

2 

𝑉̇1(𝑥) = 𝜖1𝜖1̇ 

Now to meet lyaponuv conditions as discussed in the previous section we have to verify this 

equation where 𝐿1 > 0 
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𝜖1̇ =  −𝐿 1𝜖1 

𝜃̇𝑑 − 𝛼 = −𝐿 1𝜖1 

Which after substitution yields to a pseudo input 𝛼 of the form 

𝛼 = 𝜃̇𝑑 + 𝐿1𝜖1             (3.26) 

 

Step 2: 

Now we form a second error 

𝜖2 = 𝛼 − 𝑞(3.27) 

by taking the derivative of the second error 

𝜖2̇ = 𝛼̇ − 𝑞̇(3.28) 

From equation (25) and (27) we have  

𝜖1̇ = 𝜃̇𝑑 − 𝑞 

𝜖1̇ = 𝜃̇𝑑 + 𝜖2 − 𝛼 

𝜖1̇ = 𝜖2 − 𝐿1𝜖1(3.29) 

 

And also from state space equation (3.17) we have  

𝜖2̇ = 𝛼̇ − (
𝑙

𝐼𝑦
) (𝐹1 − 𝐹3) − 𝑘4𝑝𝑟 

𝜖2̇ = 𝜃𝑑̈ + 𝐿1𝜖1̇ − (
𝑙

𝐼𝑦
) (𝐹1 − 𝐹3) − 𝑘4𝑝𝑟(3.30) 

Now we exert another Lyaponuv function bearing in mind the two errors  

𝑉2(𝑥) =
1

2
𝜖1

2 +
1

2
𝜖2

2 

We obtain the first derivative with respect to time  

V̇2(x) = ϵ1ϵ̇1 + ϵ2ϵ̇2 

 

Putting 3.29 and 3.30 and by substitution equation  V̇2(x) becomes, 

V̇2(x) = ϵ1(ϵ2 − L 1ϵ1) + ϵ2(θd̈ + L 1ϵ̇1 − (
l

Iy
) (F1 − F3) − k4 p r) 

V̇2(x) = −L 1ϵ1
2 + ϵ2(ϵ1 + θd̈ + L 1ϵ̇1 − (

l

Iy
) (F1 − F3) − k4 p r) 

If wecould have  



Chapter Three                                        Control approach of Quadcopter 

 

36   

 

(ϵ1 + θd̈ + L 1ϵ̇1 − (
l

Iy
) (F1 − F3) − k4 p r) = −L2ϵ2 

Second Lyaponuv function becomes 

V̇2(x) = −L1ϵ1
2 − L2ϵ

2
2 < 0 

And the command law will achieve asymptotic stability of the subsystem  

𝐔𝟐=(𝐅𝟏 − 𝐅𝟑) =
𝐈𝐲

𝐥
(𝛜𝟏 + 𝛉𝐝̈ + 𝐋 𝟏𝛜̇𝟏+𝐋𝟐𝛜𝟐 − 𝐤𝟒 𝐩 𝐫) 

 

Control command of the Yaw angle.  

𝜓̇ = 𝑟 

𝑟̇ =  (
𝑘

𝐼𝑧
) (𝐹2 − 𝐹1 + 𝐹4 − 𝐹3 )                (3.18) 

Step1: 

We define the first error that represents the deviation between the actual and the desired 

value which is zero. 

ϵ1 = ψ
d

− ψ                   (3.31) 

we introduce now α to be the next pseudo input for the subsystem, by taking the 

derivative and subsitututing the first derivative of the error becomes 

 

ϵ1̇ = ψ̇
d

− α(3.32)   

We define the first Lyaponuv function and its derivative: 

V1(x) =
1

2
ϵ1

2 

V̇1(x) = ϵ1ϵ̇1 

Now to meet lyaponuv conditions as discussed in the previous section we have to verify this 

equation where L 1 > 0 

ϵ̇1 =  −L 1ϵ1 

ψ̇
d

− α =  −L 1ϵ1 

Which after substitution yields to a pseudo input α of the fo𝑟𝑚 

α = ψ̇
d

+ L 1ϵ1             (3.33) 

 

Step 2: 

Now we form a second error 
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ϵ2 = α − r                        (3.34) 

by taking the derivative of the second error  

 

ϵ̇2 = α̇ − ṙ                  (3.35) 

From equation (3.32) and (3.34) we have  

ϵ1̇ = ψ̇
d

− r 

ϵ1̇ = ψ̇
d

+ ϵ2 − α 

ϵ1̇ = ϵ2 − L 1ϵ1 (3.36) 

And also from state space equation (3.18) we have  

ϵ̇2 = α̇ − (
k

Iz
) (F2 − F1 + F4 − F3 ) 

ϵ̇2 = ψ
d̈

+ L 1ϵ̇1 − (
k

Iz
) (F2 − F1 + F4 − F3 )   (3.37) 

Now we exert another Lyaponuv function bearing in mind the two errors  

V2(x) =
1

2
ϵ1

2 +
1

2
ϵ2

2 

We obtain the first derivative with respect to time  

V̇2(x) = ϵ1ϵ̇1 + ϵ2ϵ̇2 

Putting 3.36 and 3.37 and by substitution equation  V̇2(x) becomes, 

V̇2(x) = ϵ1(ϵ2 − L 1ϵ1) + ϵ2(ψ
d̈

+ L 1ϵ̇1 − (
k

Iz
) (F2 − F1 + F4 − F3 )) 

V̇2(x) = −L 1ϵ1
2 + ϵ2(ϵ1 + ψ

d̈
+ L 1ϵ̇1 − (

k

Iz
) (F2 − F1 + F4 − F3 )) 

If wecould have  

(ϵ1 + ψ
d̈

+ L 1ϵ̇1 − (
k

Iz
) (F2 − F1 + F4 − F3 )) = −L2ϵ2 

 

Second Lyaponuv function becomes 

V̇2(x) = −L1ϵ1
2 − L2ϵ

2
2 < 0 

And the command law will achieve asymptotic stability of the subsystem if  

𝐔𝟑=(𝐅𝟐 − 𝐅𝟏 + 𝐅𝟒 − 𝐅𝟑 ) =
𝐈𝐳

𝐤
(𝛜𝟏 + 𝛙𝐝

̈ + 𝐋 𝟏𝛜̇𝟏 + 𝐋𝟐𝛜𝟐) 
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Control command of the Z position.  

 

𝑧̇ = 𝑤 

𝑤̇ = −𝑔 +
1

𝑚
𝑐𝑜𝑠(𝜃) 𝑐𝑜𝑠(𝜙) 𝐹(3.19) 

 

Step1: 

We define the first error that represents the altitude deviation between the actual and the 

desired value 

ϵ1 = zd − z 

we introduce now α to be the next pseudo input for the subsystem, by taking the 

derivative and subsitututing the first derivative of the error becomes 

ϵ1̇ = żd − α                                         (3.36) 

 

We define the first lyaponuv function and its derivative: 

V1(x) =
1

2
ϵ1

2 

V̇1(x) = ϵ1ϵ̇1 

Now to meet lyaponuv conditions as discussed in the previous section we have to verify this 

equation where L 3 > 0 

ϵ̇1 =  −L 3ϵ1 

ψ̇
d

− α =  −L 3ϵ1 

Which after substitution yields to a pseudo input α of the form 

α = żd + L 3ϵ1 (3.37) 

Step 2: 

Now we form a second error 

ϵ2 = α − W(3.38) 

by taking the derivative of the second error 

ϵ̇2 = α̇ − Ẇ                                 (3.39) 

From equation (3.36) and (3.38) we have  

ϵ1̇ = żd − W 

ϵ1̇ = ψ̇
d

+ ϵ2 − α 
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ϵ1̇ = ϵ2 − L 3ϵ1 (3.40) 

 

And also from state space equation (3.19) we have  

ϵ̇2 = α̇ + g −
1

m
cos(θ) cos(ϕ) F  

ϵ̇2 = Zd̈ + L 3ϵ̇1 + g −
1

m
cos(θ) cos(ϕ) F          (3.41) 

Now we exert another Lyaponuv function bearing in mind the two errors  

V2(x) =
1

2
ϵ1

2 +
1

2
ϵ2

2 

We obtain the first derivative with respect to time  

V̇2(x) = ϵ1ϵ̇1 + ϵ2ϵ̇2 

Putting 3.40 and 3.41 and by substitution equation  V̇2(x) becomes, 

V̇2(x) = ϵ1(ϵ2 − L 3ϵ1) + ϵ2(Zd̈ + L 3ϵ̇1 + g −
1

m
cos(θ) cos(ϕ) F) 

V̇2(x) = −L 3ϵ1
2 + ϵ2(ϵ1 + Zd̈ + L 3ϵ̇1 + g −

1

m
cos(θ) cos(ϕ) F) 

If wecould have  

(ϵ1 + Zd̈ + L 3ϵ̇1 + g −
1

m
cos(θ) cos(ϕ) F) = −L4ϵ2 

 

Second Lyaponuv function becomes 

V̇2(x) = −L1ϵ1
2 − L2ϵ

2
2 < 0 

And the command law will achieve asymptotic stability of the subsystem if  

𝐔𝟒 = 𝐅 = 𝐦/ 𝐜𝐨𝐬(𝛉) 𝐜𝐨𝐬(𝛟) (𝛜𝟏 + 𝐙𝐝̈ + 𝐋𝟑𝛜̇𝟏 + 𝐋𝟒𝛜𝟐 + 𝐠) 

3.4 Conclusion  

The Backstepping is an effective tool for stabilizing nonlinear system as it deals with the 

fact of stabilizing the system iteratively starting from upper order and meet lower order result.  

Now by the end we can say that we have obtained the four input forces, and what comes 

next practically is simply the operation of exciting the dynamics of our model in a systematic 

way and study the behavior of the latter and observe further altitude control as this can deviate 
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if not setting the right gain that nevertheless applies to respect the Lyaponuv direct method 

but also to good trajectory tracking as will be seen in the next chapter. 
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 4.1. Introduction 

 In the previous chapter, using Backstepping command I have designed four input 

control for each subsystem to be controlled and so that its actual and desired states will be 

alike. 

In this chapter we shall start seeing the response of the nonlinear control system as 

excited by two sort of inputs. The first one will be a simple step function that I have 

programmed in which the quadcopter’s velocity and acceleration is initially at rest and as time 

goes by the hovering process will start and reach a fixed value and remains there. 

The second input is slightly complementary as the system is not only required to rich a 

certain position but to land the quadcopter in a very rigorous manner and we shall see the 

variation of the speed and acceleration that corresponds to this command. 

 

Figure 4.1 general diagram representation of the nonlinear system 

4.2. Angular Design Approach  

 As we all know for an excellent command of a quadcopter altitude the Euler angles with 

respect to both body fixed frame and inertial frame must be zeroed out. This not only ensures 

the visionary stability of the quadcopter with respect to the horizontal access but will also 

guarantee no variation along the X and Y direction.  

If the nonlinear controller comes to achieve a desired angles which in this case is Zero 

then controlling the altitude would be much easier to focus on. 
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Figure 4.2 Reference generation functions 

As discussed earlier it can clearly be seen that the Euler angles are set to be equal to zero 

so that the latter will avoid angle variation and position along other Cartesian axis which will 

lack and oppose in other word the altitude control command and the system deviate from 

desired trajectory and becomes unstable since no control is done on the X and Y direction. 

If the Euler angles are all set to zero the backstepping command U1, U2, U3 will 

compensate for any variation and get them equal to the desired value in this way if the angular 

angles are equal to zero therefore both Angulat velocity and acceleration will also be zero. 

4.3. Trajectory planning  

4.3.1 Regulation  

As it is seen in figure 4.2 the two first blocks are to design the function to be tracked by 

the system the first function follows a step form for which the quadcopter is desired to reach a 

height of 2 meters and remains fixed. 
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Figure 4.3 Step input function (Regulation) 

4.3.2 Tracking  

The second function is a polynomial of 5th degree where it is smoothly designed. The 

quadcopter will initially be at rest and then hover for an altitude of 10 meters this is during the 

first 10 seconds. The quadcopter then is set to remain fixed for 5 seconds at this height and 

land smoothly after. 

                           

                  Figure 4.4 Fifth order polynomial function (Tracking) 

4.4 Simulation result 
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4.4.1 Backstepping Gains  

After Simulation process the systems altitude Z and its linear first and second derivative 

were dependent on the BACKSTEPPING gain. 

If we recall from chapter 3 the closed loop nonlinear control dynamics were based on the 

Lyaponuv approach when we set the backstepping gain L 1 to be positive to achieve 

asymptotic stability, a pseudo input from relation (3.19) was then injected in the second part 

of the subsystem where we presented a second lyaponuv function. 

And we said the origin can be asymptotically stable if we could set a second gain 𝐿2  to 

be positive and therefore to obtain the overall input command for Roll angle control. We did 

the same thing for Pitch and yaw angles only in which the overall subsystem commands U2 

and U3 were originally based on different moment equations for sure. 

For the 4th input control U4= F1+F2+F3+F4, we had two different gains 𝐿3 and 𝐿4 which 

followed the same procedure but did a different job which is to control the altitude instead of 

the attitude. 

4.4.2 Backstepping Gains Tuning  

Our control design followed a basic theoretical approach; however simulation and 

practice may do slightly different than what we think. Setting 𝐿2 𝑎𝑛𝑑 𝐿1 to be positive was 

very straight forward; however it wasn’t the case for 𝐿3 𝑎𝑛𝑑 𝐿4. 

Choosing arbitrarily was the key point but not everything since I had to fix one gain 𝐿4 =

8, and I varied 𝐿3. The following result reveals the complexity of this approach. 
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The desired Zd versus the actual altitude Z for 𝑳𝟑 = 𝟑𝟔: 

 

 

 

 

 

 

Figure 4.6 Tracking Comparison 

Figure 4.5 Altitude Regulation comparison 
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The desired Zd versus the actual altitude Z for 𝑳𝟑 = 𝟐𝟓: 

 

 

 

 

 

  

 

 

 

We notice here as we decrease the backstepping gain the origin seems to be more 

asymptotically stable and trajectory is reached in this situation we can choose lower gain and 

observe the behavior of the actual altitude. 

Figure 4.7 Altitude Regulation comparison 

Figure 4.8 Tracking with a different  gain 

comparison comparison 
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This happens mainly due to the saturation of the actuators. As I have changed the thrust 

coefficient and made a bit larger in a previous experiment with the same backstepping gain 

system seemed to converge toward the desired altitude. 

NB: this was only done to check the efficiency of the controller under a variety of 

condition not to change the motors parameters. 

The desired Zd versus the actual altitude Z for 𝟏𝟒 ≤ 𝑳𝟑 ≤ 𝟏 

 

 

 
Figure 4.10 Tracking with a lower Backstepping gain  

Figure 4.9 Regulation with a lower backstepping  gain 
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The desired linear velocity dZd versus the actual velocity dZ (along the Z axis)   

 

Figure 4.11 The linear velocity Regulation. 

 

Figure 4.12 The linear velocity Tracking. 
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The desired linear Acceleration ddZd versus the actual acceleration ddZ. 

 

   Figure 4.13 The linear acceleration Regulation. 

 

Figure 4.14 The linear acceleration Tracking. 
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4.4.3 Euler angles  

As we have mentioned earlier Roll, yaw and pitch angles are set to be zero therefore no 

variation and displacement exists along the X and Y axis. It is very straight forward to show 

that the total force required to lift the quadcopter would be an equal force fed to all rotors 

therefore the angular velocity of the rotors must be the same. 

If the controller achieves this, there will be no chance left for the Euler angle to appear. 

The figures below will illustrate both tracking and regulation process influence on the X and 

Y direction and Vice versa. And will show the resulting angles. 

 

Figure 4.15 The angular velocity of the 4 rotors (RPM) 

As seen in Figure 4.15 the angular velocity of the four rotors is the same and is of a 

constant value in Regulation. 
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      Figure 4.16 Regulation influence on X and Y direction 

 

Figure 4.17 Tracking influence on X and Y direction 
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4.5 Conclusion  

From our quadrotor model we realized a backstepping command based on Lyapunov's 
theorem. We managed to generate a trajectory of the quadrotor, so that the system 
convergences toward the desired values (Stability). 

We have seen that this nonlinear controller is valid for systems stabilization under some 
conditions which were shown above such as backstepping gain tuning which depends on the 
model and the actuators you’re feeding. So the backstepping responses loses tracking when 
system reaches saturation. 

Therefore Backstepping has a high tracking performance. 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



General Conclusion 
 

 

General Conclusion 

 

In this work, I reviewed the nonlinear control design and I wanted to check its 

efficiency in term of stability maintaining since the linear counterpart techniques are preferred 

due to the fact that they have been proven to work for a large class of control and automatic 

problems. The nonlinear technique explained in this project is efficiently reliable for nonlinear 

system stabilization. 

When analyzing the results, backstepping has positive and negative marks, it is true 

that we have achieved the stability objectives and prior tracking but for hard nonlinearities 

encountered by the quadcopter the system may show no resistance and compensation for the 

last. 

To sum up I would suggest designing a more vulnerable Lyaponuv function for more 

error regulation, because based upon the lyaponuv theory there may exist many types of 

lyaponuv functions that will globally stabilize the system and yet achieving the best one is of 

great interest and consequence to the system. 

The last thing that I can add for future work is adding an integral control which means 

adding another state that helps in steady state tracking performance and rejecting constant 

disturbances that is known by n’th order integral backstepping. 
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