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Abstract 

 

Starting from the fact that quadrotors are nonlinear MIMO system that operates in 3D space, 

the task of stabilizing and generating suitable control commands have been the interest of many 

researches. Another challenging task is the autonomous navigation as both the weight and the 

computation capacity are limited which constrains the type of sensors and algorithms.   

 In this project, an autonomous navigation and obstacle avoidance system based on monocular 

camera has been implemented which enables the quadrotor navigates in previously unknown 

GPS-denied environment. Moreover, four controllers have been designed and their 

performance were compared. 

The mathematical model of a quadrotor has been derived using Newton’s and Euler’s laws, 

where a linear and nonlinear version of the model are presented, based on that various control 

strategies such as LQR, PID, Feedback Linearization with pole placement and Sliding Mode 

control Have been implemented in MATLAB/Simulink and discussed.  

Sensor data and the camera video stream have been used by a Keyframe visual SLAM system 

to compute the location of the drone and generate the 3D map of the environment in the form 

of point cloud. This point cloud data is clustered and used for obstacle detection. Moreover a 

PRM algorithm has been used to generate a collision-free path that will be followed by the 

drone based on the PID controller designed. 

We implemented our approach on a real Parrot ARDrone2.0, and our approach has been 

validated with experiments. All computations are performed on a ground station, which is 

connected to the drone via wireless LAN. 
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Introduction 

With the huge technological development, the role of robots is becoming integral in humans 

life, and especially aerial robots. They have been employed in many key activities such as 

agriculture and environmental work, where they have been used to collect data of large surfaces 

of fields, investigating water consumption rates, security. It has also been used to detect gas 

leaks from oil pipelines.  

Autonomous flight robots can assist human to complete various tasks, however they need to 

acquire the current pose and environment information for localization, motion planning and 

control 

 

 Problem statement: 

Control and autonomous obstacle avoidance are without doubt the most important components 

in the success of micro aerial vehicles (MAVs). The challenge to achieve that rise from the fact 

that MAVs are not equipped with a high accuracy sensors, deploying new sensors might not be 

suitable because of the high weight and power consumption of these sensors. Monocular 

cameras are the appropriate and attractive lightweight sensors that can provide enough data 

about the surrounding environment. 

The objective of this thesis is to implement and compare a number of control methods then 

choosing the most suitable one to develop an obstacle avoidance system that is capable of 

navigating in an unknown environment using only onboard sensors, without markers or 

calibration objects. 

 Previous works:  

[1] Used a MAV equipped with a rotating laser range sensor in order to have an 

Omnidirectional sensing of the environment. Due to the accuracy of the sensing systems, the 

authors were able to obtain an accurate point cloud of the environment, to detect the obstacles 

and to successfully avoid them. In our work we have used monocular camera which is more 

challenging with respect of the use of the stereo cameras. 

[2] Addresses this challenge by producing a dense depth map from the monocular camera using 

the hovering function of the Ardrone. The depth map is used to compute locally a new collision-

free waypoint for the MAV to follow by calculating the furthest 3D point reachable from the 

MAV without collisions. 
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[3] Developed a small scale indoor collision avoidance system based on Tum_ardrone ROS 

package. However in our work a K-means clustering methods has been used for obstacle 

avoidance, Moreover an occupancy grid map has been used all along with graph-based collision 

avoidance algorithm instead of geometric algorithm. 

 Quadrotors 

A Quadrotor is an UAV with four rotors. Varying the speeds of the rotors helps to control the 

position and the orientation of the robot. The adjacent rotors have opposite sense of rotation. 

This is done to balance the total angular momentum of the craft, otherwise the UAV will start 

rotating about itself. The Quadrotor has 6 degrees of freedom but only four actuators (Rotors). 

Hence, Quadrotors are underactuated. The Rotors produce thrust, torque and drag force and the 

control input to the system is the angular velocity of the motors. A low level controller stabilizes 

the rotational speed of each blade. The Quadrotor can perform Vertical Take Off and Landing 

(VTOL), hover and make slow precise movements. The four rotors provide a higher payload 

capacity. 

 Components of Autonomous Flight 

In order to enable autonomous flight, there are a few components/modules that we need in any 

UAV. They are listed as below: 

 State Estimation: Estimate the position and velocity (including rotation and angular 

velocity of the robot). 

 Control: Command motors and produce desired actions in order to navigate to the 

desired state. 

 Mapping: The vehicle must have some basic capability to map its environment. If it 

does not know what the surrounding environment looks like, then it’s incapable of 

reasoning about this environment and planning safe trajectories in this environment. 

 Planning: Finally, the vehicle must be able to compute a trajectory, given a set of 

obstacles and a destination. 
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 Outline 

The rest of this thesis is organized as follows: 

 

 Chapter 1: This chapter presents the mathematical mode of a quadrotor UAV which 

has been derived based on the Newton-Euler laws, including the linear and nonlinear 

version of the model. 

 

 Chapter 2: This chapter shows four developed control strategies to control the attitude, 

altitude and position of the quadrotor in space. The controllers have been verified and 

simulated in MATLAB/Simulink. 

  

 Chapter 3: This chapter presents the theoretical background about the components used 

to implement the autonomous navigation system. 

 

 Chapter 4: Finally in this chapter the results of controllers and the autonomous 

navigation system have been shown and discussed.    
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Chapter 1 

System Modeling   

 

1.1 Kinematic Model 

In order to discuss the modeling of the quadrotor, we first need to define the coordinate frames that will 

be used. Figure 1-1 shows the Earth reference frame with N, E and D axes and the body frame with x, y 

and z axes. The Earth frame is an inertial frame fixed on a specific place at ground level as its name 

implies, it uses the N-E-D notation where the axes point to the North, East and downwards respectively.                               

On the other hand, the body frame is at the center of the quadrotor body, with its x-axis pointing towards 

propeller 1, y-axis pointing towards propeller 2 and the z-axis is pointing to the ground. 

 

 

 

 

 

 

 

                                                          

 

                                                Figure 1-1: Quadrotor Reference Frames 
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The distance between the Earth frame and the body frame describes the absolute position of the center of 

mass of the quadrotor r = [x y z]T. The rotation R from the body frame to the inertial frame describes the 

orientation of the quadrotor. The orientation of the quadrotor is described using roll, pitch and yaw angles 

(φ; θ and ψ) representing rotations about the X, Y and Z-axes respectively. Assuming the order of rotation 

to be roll (φ), pitch (θ) then yaw (ψ), the rotation matrix R which is derived based on the sequence of 

principle rotations is: 

                                           

 1.1

c c s s c c s c s s

R c s s s s c c c s s s c

s s c c c

         

           

    

 
 

   
  

 

Where c and s denote cos and sin respectively.                                    

The rotation matrix R will be used in formulating the dynamics model of the quadrotor, its significance is 

due to the fact that some states are measured in the body frame (e.g. the thrust forces produced by the 

propellers) while some others are measured in the inertial frame (e.g. the gravitational forces and the 

quadrotor’s position). Thus, to have a relation between both types of states, a transformation from one 

frame to the other is needed. 

To acquire information about the angular velocity of the quadrotor, typically an on-board Inertial 

Measurement Unit (IMU) is used which will in turn give the velocity in the body coordinate frame. To 

relate the Euler rates 
T

      that are measured in the inertial frame and angular body rates ω = [p q 

r]T
, a transformation is needed as follows:  

                                                               1.2rR                                                                             

Where 

                                                           

1 0 sin

0 cos sin cos

0 sin cos cos

rR
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Around the hover position, small angle assumption is made where cos φ ≡ 1, cos θ ≡ 1, sin φ =0 and   sin 

θ= 0. Thus Rr can be simplified to an identity matrix I [4]. 

 

1.2 Dynamics Model 

The motion of the quadrotor can be divided into two subsystems, rotational subsystem (roll, pitch and 

yaw) and translational subsystem (altitude and x and y position), the rotational subsystem is fully while 

the translational subsystem is underactuated [4]. 

 

1.2.1 Rotational Equations of Motion 

The rotational equations of motion are derived in the body frame using the Newton-Euler method with the 

following general formalism: 

                                                             
(1.3)BJ J M    

                                                                      

Where: 

         J         Quadrotor’s diagonal inertia Matrix. 

        ω       Angular body rate. 

      MB        Moments acting on the quadrotor in the body frame. 

 

1.2.1.1 Inertia Matrix 

The inertia matrix for the quadrotor is a diagonal matrix, the off-diagonal elements, which are the 

product of inertia, are zero due to the symmetry of the quadrotor. 

                                             
 

0 0

0 0 1.4

0 0

xx

yy

zz

I

J I

I

 
 

  
 
 

 

Where Ixx, Iyy and Izz are the area moments of inertia about the principle axes in the body frame. 
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1.2.1.2 Moments Acting on the Quadrotor (MB)      

For the last term of equation (1.3), there is a need to define two physical effects which are the aerodynamic 

forces and moments produced by a rotor. As an effect of rotation, there is a generated force called the 

aerodynamic force or the lift force and there is a generated moment called the aerodynamic moment. 

Equations (1.5) and (1.6) show the aerodynamic force Fi and moment Mi produced by the ith rotor [5]. 

                                                                   

 

 

2 2

2 2

1
1.5

2

1
1.6

2

i T i

i D i

F AC r

M AC r





 

 

 

Where  

                       Air density. 

         A              Blade area. 

        CT, CD       Aerodynamic coefficients. 

          r                 Radius of blade. 

        
i                Angular velocity of rotor i.  

Clearly, the aerodynamic forces and moments depend on the geometry of the propeller and the air density. 

Since for the case of quad rotors, the maximum altitude is usually limited, thus the air density can be 

considered constant, Equations (1.5) and (1.6) can be simplified to [4]:                                                                                                           

                                                                      
 

 

2

2

1.7

1.8

i f i

i M i

F K

M K

 

 

 

Where Kf and KM are the aerodynamic force and moment constants respectively and Ωi is the angular 

velocity of rotor i. The aerodynamic force and moment constants can be determined experimentally for 

each propeller type. 

By identifying the forces and moments generated by the propellers, we can study the moments MB acting 

on the quadrotor. Figure 1-2 shows the forces and moments acting on the quadrotor. Each rotor causes an 
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upwards thrust force Fi and generates a moment Mi with direction opposite to the direction of rotation of 

the corresponding rotor i. 

Starting with the moments about the body frame’s x-axis, by using the right-hand-rule in association with 

the axes of the body frame, F2 multiplied by the moment arm l generates a negative moment about the x-

axis, while in the same manner, F4 generates a positive moment. 

                                        Figure 1-2: Forces and Moments acting on Quadrotor. 

Thus the total moment about the x-axis can be expressed as  

                                                      

 

2 4

2 2

2 4

2 2

2 4

1.9

x

f f

f

M F l F l

K l K l

lK

  

    

  

 

For the moments about the body frame’s y-axis, also using the right-hand-rule, the thrust of rotor 1 

generates a positive moment, while the thrust of rotor 3 generates a negative moment about the y-axis. 

The total moment can be expressed as: 

                                                        

 

1 3

2 2

1 3

2 2

1 3

1.10

y

f f

f

M Fl F l

K l K l

lK
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For the moments about the body frame’s z-axis, the thrust of the rotors does not cause a moment. On the 

other hand, moment caused by the rotors’ rotation as per Equation (1.6). By using the right-hand-rule, the 

moment about the body frame’s z-axis can be expressed as: 

                                                         

 

1 2 3 4

2 2 2 2

1 2 3 4

2 2 2 2

1 2 3 4

1.11

z

M M M M

M

M M M M M

K K K K

K

   

       

    

 

Combining equations (1.9), (.10) and (1.11) in vector form, we get: 

                                               

 

 

 

 

2 2

2 4

2 2

1 2

2 2 2 2

1 2 3 4

1.12

f

B f

M

lK

M lK

K

  
 
   
 
    
 

 

Where l is the arm length, which is the distance between the axis of rotation of each rotor to the origin of 

the body reference frame which should coincide with the center of the quadrotor. 

 

1.2.2 Translational Equations of Motion 

The translation equations of motion for the quadrotor are based on Newton’s second law and they are 

derived in the Earth inertial frame [4]: 

                                                   

0

0 1.13Bmr RF

mg

 
 

 
 
  

 

Where  

       m              Quadrotor’s mass. 

       g                Gravitational acceleration. 

     BF                Nongravitational forces acting on the quadrotor in the body frame. 
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1.2.2.1 Nongravitational Forces Acting on the Quadrotor 

When the quadrotor is in a horizontal orientation (i.e. it is not rolling or pitching), the only nongravitational 

forces acting on it is the thrust produced by the rotation of the propellers which is proportional to the 

square of the angular velocity of the propeller as per Equation (1.7). Thus, the nogravitational forces acting 

on the quadrotor FB, can be expressed as: 

                                             

 
 

2 2 2 2

1 2 3 4

0

0 1.14B

f

F

K

 
 

  
 
      

 

The first two rows of the force vector are zeros as there is no forces in the X and Y directions, the last row 

is simply an addition of the thrust forces produced by the four propellers. The negative sign is due to the 

fact that the thrust is upwards while the positive z-axis in the body framed is pointing downwards. 

FB is multiplied by the rotation matrix R to transform the thrust forces of the rotors from the body frame 

to the inertial frame, so that the equation can be applied in any orientation of the quadrotor. 

1.3 Aerodynamic Effects 

In the previous dynamics formulation, the aerodynamic effects acting on the quadrotor body were 

neglected. However, in order to have an accurate and realistic model to be used in simulations, 

aerodynamic effects should be included. There are namely two types of aerodynamic effects, drag forces 

and drag moments [6]. 

1.3.1 Drag Forces 

Due to the friction of the moving quadrotor body with air, a force acts on the body of the quadrotor 

resisting the motion. As the velocity of travel of the quadrotor increases, the drag forces in turn increase. 

The drag forces Fa can be approximated by: 

                                                            1.15a tF K r  
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Where Kt is a constant matrix called the aerodynamic translation coefficient matrix and r  is the time 

derivative of the position vector r. This indicates that there is an extra force acting on the quadrotor body, 

the translational equation of motion Equation (1.13) should be rewritten to be: 

                                                              

0

0 1.16B amr RF F

mg

 
 

  
 
  

 

1.3.2 Drag Moments 

The same as the drag force, due to the air friction, there is a drag moment Ma acting on the quadrotor body 

which can be approximated by [5]: 

                                                              1.17a rM K   

Where Kr is a constant matrix called the aerodynamic rotation coefficient matrix and   is the Euler rates. 

Accordingly, the rotational equation of motion expressed by Equation (1.3) can be rewritten to as [5]: 

                                                               1.18B aJ J M M       

1.4 State Space Model 

Formulating the acquired mathematical model for the quadrotor into a state space model will help make 

the control problem easier to tackle. 

1.4.1 State Vector X 

Defining the state vector of the quadrotor to be: 

                                              1 2 3 4 5 6 7 8 9 10 11 12 1.19
T

X x x x x x x x x x x x x  

Which is mapped to the degrees of freedom of the quadrotor in the following manner: 

                                            1.20
T

X z z x x y y                                                      

The state vector defines the position of the quadrotor in space and its angular and linear velocities. 
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1.4.2 Control Input Vector U 

 

 A control input vector U consisting of four inputs, U1 through U4 is defined as: 

                                                                       

   1 2 3 4 1.21
T

U U U U U  

Where 

                                 

   

   

   

   

2 2 2 2

1 1 2 3 4

2 2

2 2 4

2 2

3 1 3

2 2 2 2

4 1 2 3 4

1.22

1.23

1.24

1.25

f

f

f

M

U K

U K

U K

U K

    

  

  

    

 

U1 is the resulting upwards force of the four rotors which is responsible for the altitude of the quadrotor 

and its rate of change (z; z ). U2 is the difference in thrust between rotors 2 and 4 which is responsible for 

the roll rotation and its rate of change (φ; ). U3 on the other hand represents the difference in thrust 

between rotors 1 and 3 thus generating the pitch rotation and its rate of change (θ; ). Finally U4 is the 

difference in torque between the two clockwise turning rotors and the two counterclockwise turning rotors 

generating the yaw rotation and ultimately its rate of change ( ; ). This choice of the control vector U 

decouples the rotational system, where U1 will generate the desired altitude of the quadrotor, U2 will 

generate the desired roll angle, the desired pitch angle will be generated by U3 whereas U4 will generate 

the desired heading. 

1.4.3 Rotational Equation of Motion 

Substituting equations (1.21) through (1.24) in equation (1.12), the equation of the total moments acting 

on the quadrotor becomes: 

                                                       
2

3

4

1.26B

lU

M lU

U
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Substituting (1.25) into the rotational equation of motion (1.3) and expanding each term with their prior 

definition, the following relation can be derived:  

                  

2

3

4

0 0 0 0

0 0 0 0

0 0 0 0

xx xx

yy yy

zz zz

lUI I

I I lU

I I U

  

  

  

          
          

            
                    

 

Expanding that, leads to: 

                                         

 
2

3

4

1.27

xx zz yy

yy xx zz

zz yy xx

I I I lU

I I I lU

UI I I

    

    

    

    
    

      
         

 

Rewriting the last equation to have the angular accelerations in terms of the other variables: 

                                     

 

 

 

2

3

4

1.28

1.29

1.30

yy zz

xx xx xx

xxzz

yy yy yy

yyxx

zz zz zz

I Il
U

I I I

IIl
U

I I I

IIl
U

I I I

  

  

  

  

  

  

 

To simplify, define: 

                                           

1

2

3

yy zz

xx

zz xx

yy

xx yy

zz

I I
a

I

I I
a

I

I I
a

I










                        

1

2

3

xx

yy

zz

l
b

I

l
b

I

l
b

I
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Using the above definition of a1 to a3 and b1 to b3, equations (1.27) through (1.29) can then be rewritten in 

a simpler form in terms of the system states: 

                                       

 

 

 

1 2 1 4 6

2 3 2 2 6

3 4 3 2 4

1.31

1.32

1.33

bU a x x

b U a x x

b U a x x







 

 

 

 

With the choice of the control input vector U, it is clear that the rotational subsystem is fully-actuated, it 

is only dependent on the rotational state variables x1 to x6 that correspond , , , , and      respectively. 

1.4.4 Translational Equation of Motion 

Substituting equations (1.21) through (1.24) in equation (1.13), the equation of the total moments acting 

on the quadrotor becomes: 

                                           

1

0

0 1.34BF

U

 
 


 
  

                                                                

Embedding that into the translational equation of motion (1.13) and expanding the terms, we get: 

                              

1

0 0

0 0

x c c s s c c s c s s

m y c s s s s c c c s s s c

z mg s s c c c U

         

           

    

       
      

         
              

 

                            

  

  

  

 

1

1

1

0

0 1.35

s s c c s Ux

m y c s s c s U

z mg c c U
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Rewriting Equation (1.34) to have the accelerations in terms of the other variables, we get: 

                        

   

   

   

1

1

1

sin sin cos cos sin 1.36

cos sin sin cos sin 1.37

cos cos 1.38

U
x

m

U
y

m

U
z g

m

    

    

 


 


 

 

 

Rewriting in terms of the state variable X                       

                      

   

   

   

1
1 5 1 5 3

1
1 5 3 5 1

1
1 3

sin sin cos cos sin 1.39

cos sin sin cos sin 1.40

cos cos 1.41

U
x x x x x x

m

U
y x x x x x

m

U
z g x x

m


 


 

 

 

It is clear here that the translational subsystem is underactuated as it dependent on both the translational 

state variables and the rotational ones. 

1.4.5 State Space Representation 

Using the equations of the rotational angular acceleration. Equations (1.31) to (1.33), and those of 

translation, Equations (1.39) to (1.41), the complete mathematical model of the quadrotor can be written 

in a state space representation as follows: 
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1 2

2 1 4 6 1 2

3 4

4 2 2 6 2 3

5 6

6 3 2 4 3 4

7 8

1
8 1 3

9 10

1
10 1 5 1 5 3

11 12

1
12 1 5

cos cos

sin sin cos cos sin

cos sin s

x x

x a x x bU

x x

x a x x b U

x x

x a x x b U

x z x

U
x z g x x

m

x x x

U
x x x x x x x

m

x y x

U
x y x x
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4

2 2 6 2 3

6

3 2 4 3 4

8

1
1 3

10

1
1 5 1 5 3

12

1
1 5 3 5 1

, 1.42

cos cos

sin sin cos cos sin

cos sin sin cos sin

x

a x x bU

x

a x x b U

x

a x x b U

x
f X U

U
g x x

m

x

U
x x x x x

m

x

U
x x x x x
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It is possible to rewrite the state space equation (1.42) in the following form: 

                                     
4

1

1.43i i

i

f g u


      

Where  
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0 0 0 0 0 0 0 0 0 0 0
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1 1 3
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1
cos cos

1
sin sin cos cos sin

1
cos sin sin cos sin

G x x
m

G x x x x x
m
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 1.5 Linear model 

Inorder to linearize the system (1.43), we need to find an equilibrium point    which for fixed input U  

is the solution of the algebraic system(1.42), or the value of state’s vector, which on fixed constant input 

is the solution of algebraic system:                                                                                 

                                                            ,U 0 1.45f          

Since the function f is nonlinear, problems related to the existence of a unique solution of system (1.45) 

arise. In particular, for the system in hand, the solution is difficult to find because of trigonometric 

functions related each other in no-elementary way. For this reason, the linearization is performed on a 

simplified model which considers only small oscillations. This simplification is made by approximating 

the sine function with its argument and the cosine function with unity. The approximation is valid if the 

argument is small. The resulting system is described by the following equations [8]: 

                       

                             

 

 

 

 

2

1 4 6 1 2

4

2 2 6 2 3

6

3 2 4 3 4

8

1

10

1
1 5 3

12

1
5 3 1

ˆ , 1.46
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a x x bU
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1.5.1 Linearization 

As said above, in order to perform the linearization, an equilibrium point is needed. The resulting 

equilibrium point from the above equations:                                                                 

   120 0 0 0 0 0 0 0 0 1.47
T

z x y    

From the equations, we can find that the equilibrium point (2.47) for the input is obtained by the constant 

input value: 

                                         40 0 0 1.48
T

U mg    

Note that this particular value represents the force necessary to delete the quadrotor’s weight and it 

consents its hovering. After determined the equilibrium point  and the corresponding nominal inputU , 

we have that the matrices associated to the linear system are given by relations: 

                  

 

0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0,
1

0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0

U U

f U

g

g
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1.500 0 0 0

1
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0 0 0 0
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0 0 0 0

U U

b

b

b
f U

U

m




 
 
 
 
 
 
 
 
  
   

  
 
 
 
 
 
 
 
 
 

  

The linear model is in the form: 

                                               1.51U      

1.5.2 Controllability of the linear system 

Controllability represents major concept of modern control system theory. This concept was introduced 

by R. Kalman in 1960. If we consider the linear system (1.51) it can be roughly define the controllability 

as follow: 

 Controllability: The pair (A, B) is said to be controllable if for any initial state X(0)=X0 and any 

final state X1, there exists an input that transfers X0 to X1 in a finite time. Otherwise (A, B) is said 

to be uncontrollable [8]. 

Inorder to check if the system (1.51) is controllable or not, we should first define the controllability matrix 

as follow:  

 2 3 4 5 6 7 8 9 10 11 12 48 1.52c                             

The system (1.51) is controllable if the matrix c (1.52) is full rank, otherwise is not controllable [8]. To 

check its controllability, we have used Matlab. The linear system (1.51) is found to be controllable. 

Block controllability could have been used in this case but the block controllability matrix is not full rank. 
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Chapter 2 

Control Design 

 

In this chapter, the formulated quadrotor model has been used in control design. Four controllers 

have been developed: LQR, PID, Sliding Mode and Feedback Linearization with pole placement. 

Computer based simulations have been implemented on MATLAB/Simulink and have been used to 

assess the performance of the developed controllers. 

 

2.1 Closed loop simulation for the PID and Sliding Mode control design 

In this section we will discuss the closed loop configuration that has been used to design the PID and 

Sliding Mode controllers in MATLAB/Simulink.  

2.1.1 Altitude Controller 

The altitude controller takes an error signal e as an input which is the difference between the desired 

altitude Zd  and the actual altitude Z and produces a control signal U1, as shown in the block diagram 

in Figure 2-1. 

     Figure 2-1: Block Diagram for Altitude Controller. 
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2.1.2 Attitude and Heading Controller 

Similar to the altitude controller block, the attitude and heading controller take as an input an error 

signal e which is the difference between the desired roll d , pitch d  and yaw d  and their actual 

values , and   . The attitude and heading controller produces the output signals U2, U3 and U4, as 

shown in Figure 2-2. 

 

 

2.1.3 Position Controller 

Unlike the altitude and orientation of the quadrotor, its x and y position is not decoupled and cannot 

be directly controlled using one of the four control laws U1 through U4. On the other hand, the x and 

y position can be controlled through the roll and pitch angles. The desired roll and pitch angles d  

and d  can be calculated from the translational equations of motion, Equations (1.36) and (1.37) as 

follows: 

                             Figure 2-2: Block Diagram for Attitude and Heading Controller. 
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1

1

sin sin cos cos sin

cos sin sin cos sin

U
x

m

U
y

m

    

    


 


 

  

Since the quadrotor is operating around hover, which means small values for the roll and pitch angles 

φ and θ, we can use the small angle assumption to simplify the above equations (small oscillation):  

                                          

   

   

1

1

sin cos 2.1

sin cos 2.2

d d

d d

U
x

m

U
y

m

   

   


 


 

 

Which can be written in a matrix form as: 

                                    
1

sin cos
2.3

cos sin

d d

d d

xm

yU

 

  

      
    

     
  

Which can be inverted to get: 

                                

 

1

1

1

1

sin cos

cos sin

sin cos

cos sin

sin cos
2.4

cos sin

d d

d d

d

d

d d

d d

xm

yU

xm

yU

x ym

x yU

  

  

 

 

 

 


     

    
    

   
   

    

  
  

  

  

 

The calculated d and d  have to be limited to the range between -200 and 200 to fulfill the small angle 

assumption, this can be done via a saturation function in the simulation. 

The closed loop simulation for the altitude and attitude controllers is further enhanced to include the 

position controller as shown in the block diagram in Figure 2-3. 
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The controller blocks in the previous block diagrams have been used to implement the PID and the 

Sliding Mode controllers, where the controllers input(s) are the error related to some of the quadrotor’s 

states and produce an output which is either one or several control inputs U1 through U4 or d  and d  

if it is the position controller. 

2.2 PID Control 

After the mathematical model of the quadrotor, a PID controller was developed. The PID controller 

generates the desired control inputs for the quadrotor. The block diagram for a PID controller is shown 

in Figure 2-4. 

                                           Figure 2-4: PID Controller Block Diagram 

 

                Figure 2-3: Position Controller Block Diagram (Complete System). 
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2.2.1 Altitude Control 

A PID controller is developed to control the altitude of the quadrotor. It generates the control input 

U1 which is responsible for the altitude for the quadrotor as per Equation (1.22). The derived control 

law is as follows: 

                                               1 2.5p d d d i dU k z z k z z k z z dt        

Where      

        

   

   

 

    

 

p

d

d

d

i

Proportional gain

z Desired altitude

k Derivative gain

z Desired altitude rate of change

k Integral n

k

gai

  

 

2.2.2 Attitude and Heading Control 

2.2.2.1 Roll Controller 

Another PID controller is developed to control the roll angle φ of the quadrotor. The derived control 

law generates the input U2 that controls the roll angle as follows: 

                                                2 2.6p d d d i dU k k k dt            

 

Where 

     

   

   

 

    

 i

p

d

d

d

Proportional gain

Desired roll angle

k Derivative gain

Desired roll angle rate of change

k Integra a n

k

l g i
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2.2.2.2 Pitch Controller 
A PID controller is developed to control the pitch angle θ of the quadrotor. The derived control law 

generates the input U3 that controls the pitch angle as follows: 

                                                3 2.7p d d d i dU k k k dt            

Where 

         

          

   

   

 

    

 i

p

d

d

d

Proportional gain

Desired roll angle

k Derivative gain

Desired roll angle rate of change

k Integra a n

k

l g i





 

 

2.2.2.3 Yaw Controller 

Similar to the pitch and roll controllers, a yaw controller was developed to generate the control input 

U4 based on the following control law: 

                                              4 2.8p d d d i dU k k k dt            

Where 

         

          

   

   

 

    

 

d

d

d

p

i

Proportional gain

Desired yaw angle

k Derivative gain

Desired yaw angle rate of change

k Integra a n

k

l g i
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2.2.3 Position Controller 

After acquiring stable controllers for the altitude and the attitude of the quadrotor, a complete position 

controller is developed. PID controllers are used to calculate the desired accelerations dx  and dy :  

                                     

       

       

2.9

2.10

d p d d d i d

d p d d d i d

x k x x k x x k x x dt

y k y y k y y k y y dt

     

     




 

Where 

    

 .

.

 .

   .

.

   .

 .

d

d

d

d

p

d

i

Proportional gain

Desired x position

k Derivative gain

x Desired x position rate of change

y Desired y position

y Desired y positio

k

n rate of change

k Integral

x

gain

  

Plugging the values of the desired accelerations dx and dy  into Equation (2.4), the desired roll and pitch 

angles d and d can be calculated which are in turn fed to the attitude controller previously expressed 

in Equations (2.6) and (2.7). 
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2.3 Sliding Mode Control 

Since the quadrotor system is a nonlinear type system, we proposed using a Sliding Mode Controller 

(SMC) to control the states of the quadrotor. 

2.3.1 Introduction to Sliding Mode Control 

A Sliding Mode Control is a Variable Structure Control (VSC). Basically, VSC includes several 

different continuous functions that map plant state to a control surface. The switching among these 

functions is determined by plant state which is represented by a switching function [9]. 

Considering the system to be controlled described by state space equation: 

                                                     
       , , 2.11
n

x f x t g x t u    

Where x(t) = (x, x (1),.........., x (n-1) ) is the vector of state variable f (x, t) and g(x, t) are both nonlinear 

functions present the system, u is the control part. 

The design of the sliding mode control needed two steps. The choice of the sliding surface, and the 

design of the control law. 

step1: the Choice of the Sliding Surface 

The objective is the convergence of state variable x at its desired value .The general formulation of 

the sliding surface is given by the following equation [10]: 

                                                      
1

1 1

( ) 2.12
i n n

i i n i i

i i

s x e e e 
 

 

      

When 1n   , and i  (i = 1...n-1) present the plan coefficients. 

Generally the sliding surface is given by the following linear function: 

                                                               2.13S x e e    

Where λ is constant positive value, and de x x  . 
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The idea in the tracking problem is to find a suitable control law that makes the error function e  stay 

on the sliding surface  , 0S x t   for 0t  . To achieve this, a positive Lyapunov function V is defined 

as: 

                                                            21
, , ( , t) 2.14

2
V s x t s x   

The sufficient condition for the stability of the system is given by: 

                                                          ( , , ) ( ) . . 2.15V s x t V s s s s      

Where η is the positive value (η > 0). 

Step2: the design of the control law 

The sliding mode control contains two terms which are equivalent control term and switching control 

term: 

                                                           2.16s eqU t U t U t   

( )eqU t is the equivalent part of the sliding mode control, i.e. the necessary known part of the control 

system when 0s  . 

( )sU t is the Sliding control mode define as follow: 

                                                           ( ) 2.17sU t k sign s    

A block diagram showing the SMC is shown in Figure 2-5. 

                                                   Figure 2-5: SMC Block Diagram 
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2.3.2 Attitude Control 

Based on what we have discussed in the previous section, Sliding Mode controller for attitude has 

been developed. 

2.3.2.1 Roll Controller 

The SMC is used to track a reference trajectory for the roll angle. The error in the roll is defined as: 

                                                          2.18de      

The sliding surface is defined as: 

                                                          1 2.19s c e e    

Where c1 is a constant that has to be greater than zero. The derivative of the sliding surface 

defined in Equation (2.14) with the substitution of Equation (2.13) is formulated as the following:  

                                                         
   

1

1 2.20d d

s c e e

c    

 

   
  

A Lyapunov function is then defined to be:          

   21
( ) 2.21

2
V s s e   

Based on the Lyapunov function, the Sliding Mode controller define as follows: 

                                                         1 sgn( ) 2.22s k s    

Where 

                                                       
1 0

sgn( )
1 0

if s
s

if s

 
 


  

And k1 is design constants. To satisfy the sliding mode condition 0ss   , limits has to be set on k1 such 

as k1 > 0. By equating the reaching law (2.17) to the derivative of the sliding surface in Equation 

(2.15) and substituting   by its definition from Equation (1.31), the control input U2 is calculated to 

be:                                                              2 1 1 1

1

1
sgn( ) ( ) 2.23d dU k s c a

b
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2.3.2.2 Pitch Controller 

Following exactly the same steps as the roll controller, the control input U3 responsible of generating 

the pitch rotation θ is calculated to be: 

                                                    3 1 1 2

2

1
sgn( ) 2.24d dU k s c a

b
        

 
  

2.3.2.3 Yaw Controller 

Following the same steps as the roll and pitch controller, the control input U4 responsible of producing 

the yaw rotation is calculated to be: 

                                                   4 1 1 3

3

1
sgn( ) 2.25d dU k s c a

b
           

2.3.3 Altitude control 

Following the same steps as the roll, pitch and yaw controller, the control input U1 responsible of 

producing the altitude is calculated to be: 

    1 1 1sgn( ) 2.26
cos cos

d d

m
U k s c z z z g
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2.4 Feedback Linearization Control 

Feedback linearization is an approach to nonlinear control design that has attracted lots of research 

in recent years. The central idea is to algebraically transform nonlinear systems dynamics into (fully 

or partly) linear ones, so that linear control techniques can be applied. This differs entirely from 

conventional (Jacobian) linearization, because feedback linearization is achieved by exact state 

transformation and feedback, rather than by linear approximations of the dynamics [11]. 

 

2.4.1 The different linearization approaches  

Most feedback linearization approaches are based on input-output linearization or input-state 

linearization. In the input-output linearization approach, the objective is to linearize the map between 

the transformed input v and the actual output y. A controller is then designed for the linearized input-

output model. In the input-state linearization approach, the goal is to linearize the map between the 

transformed inputs and the entire vector of transformed state variables. A linear controller is then 

synthesized for the linear input-state model. However, this approach may lead to a complex controller 

design task because the map between the transformed inputs and the original outputs y is generally 

nonlinear. Feedback linearization produces a linear model by the use of nonlinear coordinate 

transformations and nonlinear state feedback [7]. 

In this work, input-output linearization approach have been used in order to avoid the complexity of 

the input-state linearization approach.  

 

2.4.2 Input-output Linearization of MIMO systems  

The purpose of this technique is to transform the nonlinear multivariable system using a linearizing 

state feedback with input-output decoupling. From there, we can apply the theory of linear systems. 

So we seek a static state feedback of the form      ,V .VU       so the input-output 

behavior and/or properties of the system after feedback are linear and decoupled. The input-output 

linearization technique of a multivariable systems is applied to nonlinear square plant that can be 

written in the following form: 
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   2.27

f g U

y h

    

 
  

Where n state vector, 
py  output vector, mU   input vector and f; g; h smooth nonlinear 

functions. 

Before going any further, let’s introduce some mathematical tools that have been used in this 

approach. 

2.4.2.1 The Lie Derivative 

Consider : n nf   a vector field and : nh   a scalar function, the Lie derivative can be 

introduced as a new scalar function, denoted  fL h x  , giving the derivative of h(x) in the direction 

f(x), as [11]: 

                                            

1

2

1 2

2.28f

n

n

f

fh h h
L h h f

x x x

f

 
 

               
 
 

  

For any order, we have: 

                                            1 1 2.29i i

f f fL h L L h h i    

2.4.2.2 The relative degree 

The relative degree ([ 1, , pr r ]) of a non-linear MIMO system is a vector of which each component ir  

represents the minimum number of times as necessary to differentiate with respect 

to time the expression of the corresponding output ( iy ) explicitly appear to see at least a component 

of the entry ( ju ) [5]: 

                                   ( ) ( 1)

0

2.30i i i

j

m
r r r

i f i g f i j

j

y L h L L hu




    

If the total relative degree (r = r1 + · · · + rp) equals the system degree (n) then the system is linearized 

by static feedback. 



Control design Chapter 2 

 

 

35 

2.4.3 Linearization by static feedback  

In some applications, the control objectives can be achieved with a nonlinear static feedback control 

law of the form: 

                                               U ( ) ( ).V 2.31       

Where V  is an external reference input to be defined later,   4    and   4 4   . 

 

In order to find the expression of the linearization control law U( ,V) which allows to make the linear 

relation between the input and output, we rewrite expression (2.31) in matrix form [11]: 

                                                   1
( )( )

1 0 .U V 2.32prr

py y       
 

 

Where  

                                          1

0 1 2.33p
T

rr

f f pL h L h     
 

  

                                  

   

   

 

1 11 1

1 1 1

1 1

1

2.34

p p

r r

g f gm f

r r

g f p gm f p

L L h L L h

L L h L L h

 

 

  
 

    
 

   

  

     is the decoupling matrix. 

So the linearizing control law has the form: 

                                              
1

0U V 2.35


         

By identification the two equations (2.31) and (2.35) the terms of static feedback can be deduced as 

follow:       
1

0.


       and    
1




      

Substituting (2.35) in (2.27) the equivalent system becomes linear and decoupled in the form: 

                                              ( )
2.36ir

i iy v  
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2.4.4 Linearization by dynamic compensation 

Previous linearization is only applicable under the condition (r = n), (the decoupling matrix is 

invertible). The dynamic extension applies to systems such as that condition is not met and the matrix 

( )   is singular. This extension is to delay an input by means of an additional states in the system. 

That is to add an integrator at the input [11]. This operation results on the one hand to increase the 

number of times it must differentiate an output to see the expression of this new entry appear. On the 

other hand, the proper degree of the system is increased since it has a more state variables [11]. 

There is therefore an interest in delaying an input when its expression appears in the derivative of 

order equal to the relative degree of several outputs. Indeed, the total relative degree will be increased 

by several units while the proper degree will be augmented. This operation will therefore tend to 

approaches the system condition (r = n) [11].   

  

2.4.5 Feedback Linearization control design for the Quadrotor 

To linearize the Quadrotor model, we first differentiate the outputs with respect to time: 
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The derivative of the outputs explicitly depend on inputs 1U and 4U , so we can deduce the decoupling 

matrix    : 
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1 5 1 5 3
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1 3

3

1
sin sin cos cos sin 0 0 0

1
cos sin sin cos sin 0 0 0

1
cos cos 0 0 0

0 0 0

x x x x x
m
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m

x x
m
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It is clear that, the total relative degree ( 8r  ) is less than the degree of the system (1.42) (n=12). So 

the decoupling matrix is singular. To have a non-singular decoupling matrix we need a dynamic 

compensator. 

As the second derivative of the outputs 2y  and 3y  system involves the input 1u , with inputs 2u  and 3u  

acting on the Quadrotor do not appear explicitly, then one is compelled to add an integrators on 1u   

(Figure 2-6), so as to delay its action and thus enable the inputs 2u and 3u act on the system [11]. 

 

   

  

 

 

 

 

 

 

 

 

 

 

 

                Figure 2-6: The Quadrotor model after dynamic 
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The real control signals ( 1 2 3 4, ,u u u and u  ) have been replaced by ( 1 2 3 4, ,u u u and u    ) to avoid 

singularity in Lie transformation matrices when using exact linearization. In that case 1u has been 

delayed by double integrator. The other control signals will remain unchanged. 
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( 1 2 3 4, ,u u u and u    ) are the new entries after the dynamic compensation of the system, and ( 1 2,a ax x ) are 

auxiliary states. The state space representation of Quadrotor after the dynamic compensation is of the 

form: 

                                               
 

     U 2.38
d

f g
dt


        

 

Where 
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The input-output decoupling problem is solvable for the nonlinear system (2.27) by means of a 

dynamic feedback control law if it is solvable via a static feedback for the extended system (2.38). 

For the nonlinear system, the relative degree vector [ 1 2 3 4, , ,r r r r ] is given by: 

                                                             1 2 3 44, 2r r r r      

And we have  

                                            31 2 4( )( ) ( ) ( )

1 2 3 4 0 U 2.39
T

rr r r
y y y y          

Passing again through the steps of static feedback control design we can deduce the decoupling matrix 

    and the vector  0
  .The matrix    is nonsingular at any point characterized by 
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1 0, , .
2 2 2 2

ax
   

         Therefore, the input-output decoupling problem is solvable for the 

system (2.27) by means of a dynamic feedback control law of the form:                                   

                                            U ( ) ( ).V 2.40         

The figure 2-7 shows the structure for the control law of the original system (2.27). 

 

 

                                                

 

 

 

 

 

 

                                     Figure 2-7: Block diagram of the control law. 

Since the extended system (2.38) has dimension n=14 and the condition 1 2 3 4r r r r n     is hold, 

now, the system can be transformed via a dynamic feedback into a system which is fully linear and 

controllable. The change of coordinates  z    is given by: 
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The linear system with new coordinates is given as follow: 

                                            
A B v

2.42
C z

z z
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With  

1 2 1 2
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0 0 0 0 0 0 0 1
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The figure 2-8 shows the linear relation between the input v and the output y. 

   

 

 

 

 

 

 

                              Figure 2-8: The relation between the input v and the output y. 

 

Note that the resulting system (2.42) with the new controls (v) is linear, in addition to that is  

decoupled. So it is easy to control the system using conventional linear techniques. In our case, pole 

placement technique has been used. The results are shown in chapter 4. 
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2.5 Linear Quadratic Regulator control 

The objective of the optimal control is to determine control signal so that the system to be controlled 

can meet physical constraints and minimize/maximize a cost/performance function. Namely, the 

solution of an optimization problem is supposed to bring the system’s state  (t) to the desired 

trajectory d  minimizing some cost. Furthermore, it minimizes the use of the control inputs, thus 

reducing the use of actuators[7]. 

Considering the continuous linear system shown in Equation (2.43), a cost function can be defined as 

Equation (2.44).   

                                  
U

2.43
Cy

  


 
  

                             
0

U .R.U .Q. 2.44
TT

d d
t

J t t t t t t dt

      
    

Where  

               R  is the cost of actuators ( R = RT positive definite matrix; R m m ). 

               Q  is the cost of the state ( Q = QT positive semi-definite matrix;Q n n ). 

It is possible to find the control input  U t which minimizes the cost function formed as: 

                                     U . 2.45dt t t       

Where  

                               1R . .P 2.46T    

The P matrix is a solution of the Riccati’s algebraic equation: 

                            1P. .P P. R . .P C.Q.C 0 2.47T T       

Where P is a positive definite matrix. The Figure 2-9 shows a scheme of the implemented system:   
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                                                                 Figure 2-9: LQR control. 

The algebraic equation can be solved through Riccati’s method, performed by Matlab through LQR 

function: 

                                            K LQR , ,Q,R .     

We consider the linear system (1.51). We choose the matrices Q and R taking into account  (1.49) 

and  (1.50). We apply the LQR control using the LQR function from Matlab/Simulink. 
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Chapter 3  

Autonomous navigation 
 

3.1 SLAM System 

 Simultaneous localization and mapping (SLAM) is the problem of concurrently estimating in real 

time the structure of the surrounding world (the map), while simultaneously localizing the robot in it, 

and it is the major component to build any system capable of autonomous navigation. It uses sensor 

data to build a map of the environment incrementally and estimates the position of the robot at the 

same time. 

There are two categories of sensors that can be used with SLAM systems 

  Non-visual : 

 Ultrasonic range sensors 

 High-resolution laser range scanner: very powerful and accurate providing a full depth 

images, however it’s so expensive. 

 Visual : 

 RGBD and stereo cameras: provide depth data of the environment can greatly simplify 

the process and reduce the computational cost but they are not suitable for drones because 

of their size, weight, high power consumption and limitation of range. 

 Monocular camera: it’s available with the drone so no additional sensors are required, 

however it does not provide depth information. 

 

On this thesis we are going to use Visual monocular SLAM system where the map of the environment 

is typically represented by a number of landmarks, which are points in three-dimensional space that 

can be recognized and Localized in the camera image, typically appearing as small, distinctive regions 

or patches (keypoints). The position of the camera is estimated Based on the locations of these 

keypoints in the image. As new parts of the environment become visible, additional landmarks are 

identified, added to the map and can then be integrated into the pose- estimation process [12]. 
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3.1.1 Monocular, Keyframe-Based SLAM Algorithm Outline 

Monocular SLAM algorithms (PTAM for this thesis) are based on two distinct parts, running 

independently in parallel threads: tracking and mapping. A separate initialization procedure is needed 

to generate an initial map for the system to launch. 

 • Initialization is performed once after the algorithm is started and requires a certain type of 

camera-motion. 

     input: initial video frames 

     output: initial map 

• Mapping runs continuously to optimize the map and integrate new keyframes when instructed to 

by the tracking component. 

     input: the old map, new keyframes. 

     output: updated map 

• Tracking continuously evaluating the camera pose for each new video frame. 

     input: new video frame, landmark positions. 

     output: the camera pose  

3.1.2 Keypoints generation 

Keypoints or local feature points are widely used in many algorithms of computer vision field, the 

idea behind them is that processing the image as a whole is computationally unfeasible, instead a small 

set of particularly “interesting” and distinguishable image segments is used for tasks such as object 

recognition, detection and tracking, pose estimation and many more. Keypoints mainly occur on 

strongly textured objects, a keypoint is a two-dimensional location in the camera image, while the 

corresponding three-dimensional position will be referred to as a landmark. Keypoints are hence the 

two-dimensional projections of landmarks onto the image plane [12]. 
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3.1.3 The FAST Corner Detector 

SLAM system presented on this thesis uses FAST (Features from Accelerated Segment Test) a 

keypoint detector which was presented by Rosten and Drummond in 2006 [13], As the acronym 

already tells the FAST corner detector has the advantage of being significantly faster than other 

methods, achieving a speedup of factor 20 to 30 [12], compared to Harris corner detector [14], making 

it the method of choice for time-critical applications such as real-time SLAM systems  

The key idea behind the segment test criterion is to consider a circle of sixteen pixels around the corner 

candidate P, and classifies P as a corner if there exists a set of n contiguous pixels in the circle which 

are all brighter than the intensity of the candidate pixel Ip plus a threshold t, or all darker than Ip - t, 

as illustrated in Figure 3.2, n was chosen to be twelve because it admits a high-speed test which can 

be used to exclude a very large number of non-corners: the test examines only the four pixels at 1, 5, 

9 and 13 (the four compass directions). If p is a corner then at least three of these must all be brighter 

than Ip + t or darker than Ip - t. If neither of these is the case, then p cannot be a corner. The full 

segment test criterion can then be applied to the remaining candidates by examining all pixels in the 

circle,then creates a decision tree which can classify all corners, this decision tree is then converted 

into C-code, creating a long string of nested if-then-else statements which is compiled and used as a 

corner detector [13]. 

 

Figure 3-1: Keypoints generated by PTAM system 
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3.1.4 Tracking a Keypoint 

Tracking a keypoint is the task of finding the exact position (and possibly other parameters such as 

scale and orientation) of a keypoint in an image. Assuming that the displacement between two 

consecutive frames is small. A general formulation of tracking is to find parameters p of a warp 

function 
2 2(x, y;p) : df    such that the difference between the original patch T(x, y) and the 

transformed image I( f (x, y; p)) becomes minimal, that is minimizing the sum of squared 

differences[12] (SSD) : 

            

* argmin (p) (3.1)SSDp E

 

with            2

,

( ) : (I( (x, y;p)) T(x, y)) (3.2)SSD

x y

E p f   

The warp function f (x, y; p) can take different forms, for tracking a two-dimensional image patch 

two important warp functions are: 

Pure Translation: It is often sufficient to consider only translation for frame-to-frame tracking. The 

resulting transformation has two degrees of freedom, the displacement in two dimensions. 

Figure 3-2: 12 point segment test corner detection in an 

Image patch. P is the center of a candidate corner. 
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       ( , ; , ) (3.3)
x x

f x y x y
y y


 



 
  

 
  

Which is used for the PTAM system used on this thesis. 

Affine Transformation: An affine transformation allows for displacement, non-uniform scaling and 

rotation, leading to 6 degrees of freedom. 

    
51 2

3 4 6

( , ;p) (3.4)
pp p x

f x y
p p y p

    
      

    
 

3.1.5 Initialization 

The difficulty in Visual SLAM systems comes from the fact that to build a map it is required to be 

able to track the camera position, which in turn requires the existence of a map. This is due to absence 

of the depth information, this issue does not exist with stereo-SLAM or RGBD-SLAM where the 

initial map can be built simply from the first image, the approach used to solve this is to apply a 

separate initialization procedure which can be summarized as follow: 

1. Analyze the first keyframe K1 and detect promising keypoints p1 . . . pn using FAST corner 

detector. 

2. Track keypoints using a simple frame-to-frame tracking approach as described in 

the previous Section. 

3. Extract new keypoint positions p’1 . . . p’n from the second keyframe K2. 

4. Generate the initial map from these point-correspondences. 

 

 

 

 

 

 Figure 3-3: Initialization procedure of PTAM. Every line 

corresponds to a successfully tracked keypoint.      
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3.1.6 Mapping 

The mapping loop continuously optimizes the map and extends it by incorporating new keyframes 

and landmarks. 

Map Optimization 

Given all observations
ijp , the goal is to refine the keyframe and landmark positions 

jK and ix , such 

that they best coincide with these observations. The solution to this problem is obtained by minimizing 

the total reprojection error Erep: Let the reprojection error of a single observation p of landmark  

wx  , and from a camera-position C be defined as [12] 

  ( , , ) : (K ( )) (3.5)w cam we p x c p proj proj Ec x     

 

wx : The homogeneous representation of a point wx . 

Kcam: camera projection matrix. 

p : Pixel-coordinates of an observation of landmark. 

Which corresponds to the distance in pixel between the location where the landmark actually was 

observed and its projection onto the image. The total reprojection error is now given by:                                         

2

1 2
1...

( ... ) : ( ) (3.6)

j

ij

rep n

j m ij
i

e
E x x Obj






    

where Obj:    is a robust kernel function and 
j  the set of indices of all landmarks observed in 

keyframe j. Minimizing this error function, using an iterative method is referred to as global bundle 

adjustment (BA). 

For a growing number of landmarks and keyframes, optimizing this error function as a whole each 

time a new keyframe or landmark is added quickly becomes computationally unfeasible. This gives 

rise to the concept of local bundle adjustments. Optimization of (3.6) is performed by only considering 

a small subset of keyframes and a corresponding subset of landmarks, keeping everything else fixed, 

after adding a new keyframe, optimizing only over the most recently added keyframes and a 

corresponding set of landmarks may be sufficient [12].  
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3.1.7 Tracking 

The tracking loop is executed once for each new video-frame I, and calculates the corresponding 

camera position C, based on the known landmark positions x1 . . . xn. It requires an initial guess of the 

camera pose C0, for example the pose in the previous frame [12]. 

Pose Estimation 

First, all potentially visible landmarks are projected into the image based on the expected camera 

position C0, and for each such landmark, a warped template of its expected appearance is generated 

from a keyframe it was observed in. Using a tracking approach, the exact location of the landmark in 

the image is then computed to subpixel accuracy. The result of this stage is a set of k 3D-to-2D point 

correspondences, x1 . . . xk and p1 . . . pk. 

Based on these 3D-to-2D point correspondences, the camera position C is to be estimated. This is 

called the perspective n-point (PnP) problem, it is a known problem in computer vision and robotics. 

There are various ways to solve this problem, including iterative and non-iterative methods, a good 

overview is given in [15]. For a SLAM system, it can generally be assumed that a good initialization 

is available as the camera movement is small in between two frames - applying a gradient-descend 

based, iterative method, minimizing the reprojection error as defined in the previous Sections 

Therefore the preferred method[12]: 

2

*

2
1

(p , x , )
arg min ( ) (3.7)

k
i i

i i

e C
C Obj



    

 

The tracking part also decides if a frame will be added as new keyframe based on heuristic criteria 

such as: 

 Tracking quality is good (a high fraction of landmarks has been found). 

 No keyframe was added for some time. 

 No keyframe was taken from a point close to the current camera position. 
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3.2 K-Means Clustering 

k-means clustering is an iterative, data-partitioning algorithm that assigns n observations to exactly 

one of k clusters defined by centroids, where k is chosen before the algorithm starts. The objective 

of K-Means clustering is to minimize the “within-cluster sum of squares”. 

Inputs :  

 K: the number of clusters. 

 X: n p  data set where n is number of points, and p is the number of features. 

Outputs :  

 C : k p matrix of cluster centroid locations 

At the initialization phase the algorithm gives an initial estimates for the Κ centroids which can   

either be randomly generated or randomly selected from the data set. The algorithm then  

iterates between two steps:  

 Data assignment step 

Each centroid defines one of the clusters. In this step, each data point is assigned to 

Its nearest centroid, based on the squared Euclidean distance. More formally, if  ic  is 

the collection of centroids in set C , then each data point x is assigned to a cluster 

based on 

                          
2argmin ( , ) (3.8)i idist c x c C   

Let the set of data point assignments for each ith cluster centroid be Si. 

 Centroid update step 

The centroids are then recomputed by taking the mean of all data points assigned to that  

centroid's cluster. 

                                 
1

(3.9)
i i

i i

x Si

c x
S 

    

 

  

The algorithm iterates between these steps until the centroids are no longer changing or some 

maximum number of iterations is reached.This algorithm is guaranteed to converge to a result, 

the result may be a local optimum. 
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3.3 Occupancy Grids 
  

After the obstacle detection phase through clustering methods the next step is to create a visual map  

that represents the robot all along with the obstacles in the surrounding environment, which enables  

us to perform path planning to find collision-free paths. 

Occupancy grids are a represent of the robot workspace as a matrix of grids with specified resolution  

Depending On the quality of the sensor data used to create the map. Each cell gives information  

weather its location is occupied with an obstacle. 

There are two types of occupancy grids : 

 Binary occupancy grid: cells with occupied workspace (obstacles) hold true values, Whereas 

cells with false values represent the free workspace. This grid shows where obstacles are and 

whether a robot can move through that space. It is a light map and does not require lot of  

memory. 

  Probability occupancy grid:  uses probability values to create a more detailed map  

representation. Each cell in the occupancy grid has a value representing the probability of the 

occupancy of that cell.Values close to 1 represent a high certainty that the cell contains an 

obstacle. Values close to 0 represent certainty that the cell is not occupied and obstacle free. 

The probabilistic values can give better fidelity of objects and improve performance 

of certain algorithm applications. 

  

    Figure 3-4: K-means clustering on a data set      
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The two coordinate systems supported are world and grid coordinates. 

 world coordinates: which is used most in robotics applications, the origin is the bottom-left 

       corner of the map  

 grid coordinates: the first grid location with index (1,1) begins in the top-left corner of the grid. 

 

 

 

 

 

 

 

 

 

 

                           

 

3.4 Probabilistic roadmap 

with an occupancy grid map in hands the next step is to generate a collisions-free path for our robot, 

path planning has been the area of interest of many researches throughout  the years and this yield in 

many algorithms and approaches such as the Rapidly-Exploring Random Trees algorithm, the 

Probabilistic Roadmap (PRM) method and the Artificial Potential Field (APF). PRM approach was 

used in this thesis to realize the path planning of the robot. 

The basic idea behind PRM is to take random samples from the configuration space of the robot, 

testing them for whether they are in the free space, then use a local planner to connect these 

configurations to other nearby configurations. The starting and goal configurations are added in, and 

a graph search algorithm is applied to the resulting graph to determine a path between the starting and 

goal configurations. 

Figure 3-5: occupancy grid map represented in grid 

coordinates starting from top left corner and world 

coordinates starting from bottom left corner. 
 

https://en.wikipedia.org/wiki/Configuration_space_(physics)
https://en.wikipedia.org/wiki/Graph_search_algorithm
https://en.wikipedia.org/wiki/Graph_(discrete_mathematics)
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The framework of PRM planning algorithm consists of two phases 

 roadmap construction (learning) phase 

On this phase a roadmap data structure is constructed in a probabilistic way by repeatedly 

generating random free configurations of the robot and connecting these configurations using 

a local planner, the roadmap formed is stored as an undirected graph R = (N, E).The nodes in 

N are a set of configurations of the robot appropriately chosen over the free C-space. The edges 

in E correspond to (simple) paths. 

in more details at the beginning of the learning algorithm the graph R is empty, Then 

repeatedly adding a random free configuration to N, For every new node c a set Nc of candidate 

neighbors is chosen from N based on a distance function, Then we pick nodes from N, in order 

of increasing distance from c. We try to connect c to each of the selected nodes. whenever this 

planner succeeds to compute a feasible path between c and a selected node n, the edge (c, n) 

is added to E, then an expansion step is performed to improve the connectivity of the graph R 

[16]. 

 query phase 

In this phase we use the roadmap (graph R) constructed in the learning phase to find the 

shortest path connecting two desired configurations namely a starting configuration s and a 

goal configuration g. The first step to achieve this is to connect s and g to some two nodes s’ 

and g’ in N with feasible paths Ps, and Pg, If successful, it then searches R for a sequence of 

edges in E connecting s’ to g’ , A feasible path from s to g is eventually constructed by 

concatenating Ps and Pg. 

Another question to answer is how to compute the paths Ps, and Pg using no expensive 

algorithms. The strategy for connecting s to R is to consider the nodes in R in order of 

increasing distance from s according to a distance function and try to connect s to each of them 

with the local planner, until one connection succeeds. 
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Figure 3-6:  a path generated by PRM algorithm in bold red, PS and Pg 

in bold green, and local path segments in red 
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Chapter 4 

Implementation and results 

 

4.1 Controller’s simulation and results  

In this section, we show the results obtained in MATLAB/Simulink and we discuss the differences 

between the several controllers illustrated above. For each control, we show the step response of the 

output variable , , z,x y  . Table 4.1 presents the parameters of our real model ardrone2.0 used in the 

simulation.  

 

           Parameter              Value              Units 

             Body Mass                  103.8                   g 

           Battery Mass                  119.2                   g 

             Case Mass                   62.0                   g 

           Engine Mass                   37.8                   g 

                   Ixx                   4.50                 gm2 

                   Iyy                   5.10                 gm2 

                   Izz                   9.50                 gm2 

                                                  

                                               Table 4.1: Model parameters (AR drone2.0). 
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4.1.1 PD control results 

Figure 4.1 shows the step response of the output variables x; y; z; when the PD controller is used 

 

 

 

 

                                        

       ( )x t         ( )y t           ( )z t        ( )t   

Rise time [s]      0.453       0.595         0.548      0.567 

Overshoot [%]     3.646       2.597         1.531      2.577 

Settling time [s]     0.702       0.856         0.770      0.837 

(a)                                                                          (b) 

                               (c)                                                                            (d)  

Figure 4.1: step response (PD controller) of (a): , (b): , (c): , (d):  

Table 4.2: Characteristic parameters to a step input. 
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4.1.2 Sliding Mode control results 

Figure 4.2 shows the step response of the output variables x; y; z; when the Sliding Mode controller 

is used. 

 

 

 

 

                               (a)                                                                                   (b )  

                               (c)                                                                                (d)  

Figure 4.2: step response of Sliding Mode controller  (a): , (b): , (c): , (d):  
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Table 4.3 shows some characteristic parameters of the step response when Sliding Mode controller is 

used. 

       ( )x t         ( )y t           ( )z t        ( )t   

Rise time [s]       0.501       0.487         1.462       1.121 

Overshoot [%]          0        2.43            0          0 

Settling time [s]       0.751       0.977         1.746      1.463 

                               Table 4.3: Characteristic parameters to a step input. 

4.1.3 Feedback Linearization with Pole Placement control results 

After the system (1.43) has been linearized using Feedback Linearization technique, the obtained 

system was not stable with degree 14, so the pole placement technique has been used to stabilize the 

system, and the following desired poles have been chosen to improve the system response: 

                        [-1-i   -1+i   -6   -7   -1-i   -1+i   -6   -7   -1-i   -1+i   -6  -7  -1-i  -1+i]    

With control gain matrix: 

 

Figure 4.3 shows the step response of the output variables x; y; z; when the Feedback linearization 

with pole placement controller is used. 
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Table 4.4 shows some characteristic parameters of the step response when Feedback linearization 

with pole placement controller is used. 

       ( )x t         ( )y t           ( )z t        ( )t   

Rise time [s]      1.612       1.612        1.612     1.507 

Overshoot [%]      3.646       3.646        3.646     4.737 

Settling time [s]      2.431       2.431        2.431     2.084 

                               Table 4.4: Characteristic parameters to a step input. 

 

                               (a)                                                                                   (b )  

                               (c)                                                                                   (d)  

Figure 4.3: step response of feedback linearization with Pole placement (a): , (b): , (c): , (d):  
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4.1.4 LQR control results 

Based on linear mode (1.51), the LQR has been implemented with  R diag 1,1,1,1  and

 Q diag 1,1,100000,1,1,1,1,1,1,100000,100000,100000 . The obtained gain matrix is: 

  

Figure 4.4 shows the step response of the output variables x; y; z; when the LQR controller is used. 

 

                               (a)                                                                                   (b)  

                               (c)                                                                                   (d)  

Figure 4.4: step response of LQR controller (a): , (b): , (c): , (d):  
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Table 4.5 shows some characteristic parameters of the step response when Feedback linearization with 

pole placement controller is used. 

       z( )t         ( )y t           ( )z t        ( )t   

Rise time [s]      0.369        0.360         0.681     0.212 

Overshoot [%]      10.56        10.49         4.737     4.831 

Settling time [s]      1.039        1.006         1.680     0.298 

                               Table 4.5: Characteristic parameters to a step input. 

 

4.1.5 Discussion:  

Based on the results we have obtained above (Table 4.2, Table 4.3, Table 4.4 and Table 4.5), the four 

controllers gave comparable dynamic performance in term of rising time, settling time and overshoot. 

However, we can make the following observation for each controllers: 

 The PD is faster than SM and FL, but it has a lower value of overshoot than FL and LQR. 

 The SM is slower than PD and LQR, but it has the smallest value of overshoot. In other hand, 

SM produce the chattering effect due to its high frequency switching nature which is can 

adversely affect the actuators. 

 The FL is the slowest and has a higher value of overshooting than PD and SM. 

 The LQR is the fastest, but has the highest value of overshooting and a huge control gain. 

For the implementation of our autonomous navigation system, we have used PID controller due to its 

performance and also because our system is working around the hovering point (small oscillation 

assumption). In addition to that, the notable advantage of the PID is that its control law is not a function 

of the system parameters, it is only a function of the state error which makes it easy to implement.        
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4.2 Autonomous navigation system implementation and results 

In our work we have chosen to work with Tum_ardrone ROS package that would help us achieve our 

aim of autonomous navigation. Tum_ardrone’s system consists of three components: a monocular 

SLAM system, an extended Kalman filter for data fusion and state estimation and a PID controller 

to generate steering commands.  

 Monocular SLAM: 

The SLAM system used is based on Parallel Tracking and Mapping (PTAM). Using the pose 

estimates from the EKF falsely tracked frames are identified and rejected. A novel, closed-

form solution to estimate the absolute scale of the generated visual map from inertial and 

altitude measurements was implemented on this package as well.  

 Extended Kalman Filter: 

An extended Kalman filter is employed to fuse all available data, it is also used to compensate 

for the different time delays in the system, arising from wireless LAN communication and 

computationally complex visual tracking. Full motion model of the quadrocopter’s flight 

dynamics and reaction to control commands was derived and calibrated as well. 

 PID Control:  

Based on the position and velocity estimates from the EKF, PID control is applied to steer the 

quadrocopter towards the desired goal location 
4(x, y,z, )P   in a global coordinate 

system. For each of the four degrees-of freedom, a separate PID controller is employed for 

which we designed suitable controller gains. 

Tum_ardrone is composed of three nodes: 

 drone_stateestimation: its main role is to estimate the drone's position based on sent sensors 

data, PTAM data and sent control commands. 

Subscribed topics: 

o /ardrone/navdata 

o /ardrone /image_raw 

o /cmd_vel 

             

            Published topics: 

o /ardrone/predictedPose 
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 drone_autopilot: It used the implemented PID controller to follow the desired way-points 

sent using Drone_gui node. 

Subscribed topics: 

o /ardrone/predictedPose 

            Published topics: 

o /cmd_vel 

 Drone_gui: This node offers a simple QT GUI to send control commands to the drone either 

via the drone_autopilot node, or manually via keyboard. 

Subscribed topics: 

o /ardrone/predictedPose 

o /cmd_vel 

o /ardrone/navdata 

o /joy 

            Published topics: 

o /cmd_vel 

Our approach was to use Tum_ardrone package to localize the robot and generate 3D point cloud of 

the environment, this point cloud is then sent to a MATLAB algorithm that will segment and cluster 

it. The centroids of the segments are computed and handled as obstacles. Furthermore a binary 

occupancy grid map has been built using the detected obstacles. A path planning algorithm based on 

PRM has been used to generate an obstacle-free optimal path for the drone. This path is then sent back 

to ROS through a topic to be followed using the drone_autopilot node.  

To test our approach we have conducted many experiments the process can be summarized as follow: 

4.2.1 Point cloud generation: 

 Tum_ardrone package does not originally publish key points or point cloud data of the environment 

so we had to modify the code in order to integrate this functionality. 

We have used The Point Cloud Library (PCL) which is a standalone, large scale, open project for 

2D/3D image and point cloud processing In order to retrieve and store and publish the point cloud 

data through a ROS topic.  

Robotics System Toolbox™ provides an interface between MATLAB and the Robot Operating 

System (ROS) that enables them to communicate and interactively exchange messages through topics. 

https://github.com/tum-vision/tum_ardrone#drone_autopilot
https://github.com/tum-vision/tum_ardrone#drone_autopilot
https://www.mathworks.com/products/robotics.html
https://www.mathworks.com/products/matlab.html
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As shown in the figure 4-5 our environment consists of 2 obstacles, the built map of the environment 

is shown in figure 4-6, gave a good representation of the surroundings. The next step after sending 

this point cloud data to MATLAB is to Cluster it.  

 

 

Figure 4-5: real world environment with 2 obstacles 
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4.2.2 Clustering and segmentation: 

After subscribing to the point cloud topic sent from ROS the coordinates of each point has been 

extracted and saved it in a matrix where Rows correspond to points and columns correspond to 

features (x, y, z), This matrix is passed as an argument to the clustering algorithm, we have chosen 

the number of clusters to be 2 same as the number of the obstacles. The output of this step is the 

location of the obstacles. 

4.2.3 Occupancy grid building: 

An occupancy grid has been created with a specific height, width and resolution. The locations of the 

centroids returned from the previous step are set as occupied in the map, and it has been inflated with 

a specific radius to insure there will be no collision with the robot. Because the occupancy grid 

implementation does not accept negative values the obstacles have been shifted up on the x-axis.  

 

Figure 4-6: The map of the environment generated by PTAM in the form of Point cloud data 
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4.2.4 Path generation: 

The path planning algorithm takes the map, starting and the goal locations as input and returns the 

way points the robot should take in order to reach the goal destination.  

 

 

 

 

 

  

 

 

 

 

 

 

 

The waypoint composing the trajectory are sent back to Tum_ardrone package, which has been 

modified to receive these way points and sends the steering command to the real drone. 

Many experiments has been conducted to test the approach in various environments. It has been 

noticed that the algorithm works better in indoor textured environments with a good lighting, because 

the SLAM system is able to detect bigger number of keypoints. In general the experiments proved the 

applicability of the approach in terms of obstacles detections and avoidance.   

 

Figure 4-7:  occupancy grid map with the detected two obstacles and 

the generated path.  
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Conclusion 

On this thesis a control design for ardrone2.0 has been presented, as well as collision avoidance 

system that allows the quadrotor to navigate in previously unknown environment based on the 

monocular camera. 

The mathematical model has been developed and used to design a number of controllers for 

namely: LQR, PID, Sliding mode and feedback linearization with pole placement. Furthermore 

they have been compared based on their performance. PID controller has been used in an 

autonomous navigation system. Tum_ardrone ROS package were used for simultaneous 

Localization of the robot and mapping of the surrounding environment as well as an accurate 

state estimation. The environment was published in the form of point cloud which has been 

clustered in MATLAB and used for obstacle detection. The location of these obstacles has been 

used to construct a binary occupancy grid. Finally a PRM algorithm has been used to generate 

an obstacle free path that is followed by the drone. 

Our results have been validated with experiments using real Ardrone2.0. as a future work we 

propose an adaptive PID controller ,that is able to tune its coefficients based on a learning 

algorithm, to overcome the uncertainties and the disturbance of the system. On the other hand 

we propose the use of ORB-SLAM system for an accurate map building and obstacle detection.    
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Appendix-A: Quadrocopter 

 
The Parrot AR.Drone2.0 was introduced in January 2010, originally designed as a sophisticated 

toy for augmented reality games. It is meant to be controlled by a pilot using a 

smart phone or a tablet PC. In spite of the original design as a high-tech toy, the drone 

quickly caught attention of universities and research institutions, and today is used in several 

research projects in the fields of Robotics, Artificial Intelligence and Computer Vision 

in contrast to many other available remote controlled aerial vehicles, the drone 

with a retail price of only 300 dollars is inexpensive, robust, and easy to use and fly. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A-1 Schematic of the Parrot AR.Drone2.0 
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A-1 Hardware 

A-1.1 Basic Quadrocopter Mechanics  

A quadrocopter is a heicopter, which is lifted and maneuvered by four rotors. It can be maneuvered in 

three-dimensional space solely by adjusting the individual engine speeds while all four rotors contribute 

to the upwards thrust, two opposite ones are rotating clockwise (rotors 2 and 3) while the other two 

(rotors 1 and 4) are rotating counter-clockwise, canceling out their respective torques. Ignoring 

mechanical inaccuracies and external influences, running all engines at equal speed - precisely nullifying 

gravity - allows a quadrocopter to stay in the air without moving. The following actions can be taken to 

maneuver the quadrocopter: 

 Vertical acceleration is achieved by increasing or decreasing the speed of all four 

rotors equally. 

 Yaw rotation can be achieved by increasing the speed of engines 1 and 4, while 

decreasing the speed of engines 2 and 3 (or vice-versa) - resulting in an overall 

clockwise (or counter-clockwise) torque, without changing overall upwards thrust or 

balance. 

  Horizontal movement can be achieved by increasing the speed of one engine, while 

decreasing the speed of the opposing one, resulting in a change of the roll or pitch angle, 

and thereby inducing horizontal acceleration. The fine tuning of the relative engine 

speeds is very sensible to small changes, making it difficult to control a quadrocopter 

without advanced controlling routines and accurate sensors. 

A-1.2 The Parrot AR.Drone2.0 

The Parrot AR.Drone2.0 has dimensions of 52.5 cm×51.5 cm with, and 45 cm×29 cm without 

hull. It has four rotors with a 20 cm diameter, fastened to a robust carbon-fiber skeleton cross 

providing stability. A removable styrofoam hull protects the drone and particularly the rotors 

during indoor-flights, allowing the drone to survive minor and not-so-minor crashes such as 

flying into various types of room furniture, doors and walls – making it well suited for 

experimental flying and development. An alternative outdoor-hull - missing the rotor protection 

and hence offering less protection against collisions - is also provided and allows for better 

maneuverability and higher speeds. The drone weights 380 g with the outdoor-hull, and 420 g 

with the indoor-hull. Although not officially supported, in our tests the drone was able to fly 

with an additional payload of up to 120 g using the indoor hull - stability, maneuverability and 

battery life however suffered significantly, making the drone hardly controllable with that kind 

of additional weight. The drone is equipped with two cameras (one directed forward and one 
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directed downward), an ultrasound altimeter, a 3-axis accelerometer (measuring acceleration), 

a 2-axis gyroscope (measuring pitch and roll angle) and a one-axis yaw precision gyroscope. 

The onboard controller is composed of an ARM9 468 MHz processor with 128 Mb DDR Ram, 

on which a BusyBox based GNU/Linux distribution is running. It has an USB service port and 

is controlled via wireless LAN. 

Cameras  

The AR.Drone has two on-board cameras, one pointing forward and one pointing downward. 

The camera pointing forward runs at 18 fps with a resolution of 640 × 480 pixels, covering a 

field of view of 73.5◦ × 58.5◦. Due to the used fish eye lens, the image is subject to significant 

radial distortion. Furthermore rapid drone movements produce strong motion blur, as well as 

linear distortion due to the camera’s rolling shutter (the time between capturing the first and the 

last line is approximately 40 ms). The camera pointing downwards runs at 60 fps with a 

resolution of 176 × 144 pixels, covering a field of view of only 47.5◦ × 36.5◦, but is afflicted 

only by negligible radial distortion, motion blur or rolling shutter effects. Both cameras are 

subject to an automatic brightness and contrast adjustment. 

Gyroscopes and altimeter  

The measured roll and pitch angles are, with a deviation of only up to 0.5◦, surprisingly 

accurate and not subject to drift over time. The yaw measurements however drift significantly 

over. Furthermore an ultrasound based altimeter with a maximal range of 6 m is installed on 

the drone. 

A-2 Software 

The Parrot AR.Drone comes with all software required to fly the quadcopter. Due to the drone 

being a commercial product which is primarily sold as high-tech toy and not as a tool for 

research, accessing more than this basic functionality however turns out not to be 

so easy. The first and most important drawback is, that the software running onboard is not 

accessible: while some basic communication via a telnet shell is possible, the control software 

is neither open-source nor documented in any way - while custom changes including starting 

additional processes are possible, this would require massive trial and error and is connected 

with a risk of permanently damaging the drone. 
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A-2.1 Communication Channels   

As soon as the battery is connected, the drone sets up an ad-hoc wireless LAN network to 

which any device may connect. Upon connect, the drone immediately starts to communicate 

(sending data and receiving navigational commands) on four separate channels: 

 navigation channel (UDP port 5554) 

 video channel (UDP port 5555) 

 command channel (UDP port 5556) 

 control port (TCP port 5559, optional) 

Note that the three major communication channels are UDP channels, hence packages 

may get lost or be received in the wrong order. Also note the complete lack of any security 

measures - anybody may connect to and control a running drone at any time, no password 

protection or encryption is possible. 

Navigation Channel 

While in normal mode the drone only broadcasts basic navigational data every 30 ms, after 

switching to debug mode it starts sending large amounts of sensor measurements every 5 ms. 

The most important parameters and sensor values - and the ones used in our approach - are the 

following: 

 Drone orientation as roll, pitch and yaw angles: as mentioned in the previous section, 

roll and pitch values are drift-free and very accurate, while the measured yaw-angle 

is subject to significant drift over time. 

 Horizontal velocity: in order to enable the drone to keep its position in spite of wind, 

an optical-flow based motion estimation algorithm utilizing the full 60 fps from the 

floor camera is performed onboard, estimating the drone’s horizontal speed. The 

exact way these values are determined however is not documented. 

Experiments have shown that the accuracy of these values strongly depends on whether the 

ground below the drone is textured or not: when flying above a textured surface (or, for 

example, a cluttered desk) these values are extremely accurate 

- when flying above a poorly textured surface however, the quality of these speed 

estimates is very poor, deviating from the true value by up to 1 m/s above completely untextured 

surfaces. 
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 Drone height in millimeter: this value is based solely on the ultrasound altimeter 

measurements. As long as the drone is flying over a flat, reflecting surface, this value 

is quite accurate, with (at a height of 1 m) a mean error of only 8, 5 cm. As this sensor 

measures relative height, when flying over uneven surfaces or close to walls strong 

fluctuations will occur. This often induces sudden and undesired vertical acceleration, 

as the drone tries to keep its relative height as supposed to its absolute height. This 

value is measured only every 40 ms. 

 Battery state as an integer between 100 and 0. 

 The control state as a 32-bit bit field, indicating the drone’s current internal status. 

This might for example be “LANDED”, “HOVERING”, “ERROR”, “TAKEOF” etc., 

  The drone’s internal timestamp, at which the respective data was sent, in microseconds. 

This is not necessarily the time at which the sensor values were taken, experiments have 

shown that within the same package, some parameters are up to 60 ms older than others. 

Video Channel 

The drone continuously transmits one video stream, which can be one of four different channels 

- switching between channels can be accomplished by sending a control command to the drone. 

The four available channels are depicted in Figure 2.3. As can be seen, neither of the available 

cameras can be accessed fully: for the downwards facing camera the available frame rate is - 

with only 18 fps - significantly lower than the original 60 fps. Furthermore the maximal 

supported resolution is 320 × 240, halving the forward camera’s original resolution1. The video 

stream is encoded using a proprietary format, based on a simplified version of the H.263 UVLC 

codec [41]. Images are encoded in YCBCR color space, 4:2:0 type2, using 8 bit values. More 

details can be found in [32]. While the achieved compression is fairly good (in practice around 

10 kB per frame, resulting in a bandwidth required of only 180 kBps), this encoding produces 

significant artifacts in the decoded picture. 

Command Channel 

The Drone is navigated by broadcasting a stream of command packages, each defining the 

following parameters: 

1. Desired roll and pitch angle, yaw rotational speed as well as vertical speed, each as 

fraction of the allowed maximum, i.e. as value between -1 and 1. 
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2.  One bit switching between hover-mode (the drone tries to keep its position, ignoring 

any other control commands) and manual control mode, 

3.  One bit indicating whether the drone is supposed to enter or exit an error-state, 

immediately switching off all engines, 

4. One bit indicating whether the drone is supposed to take off or land.  

Being sent over an UDP channel, reception of any one command package cannot be 

guaranteed. In our implementation the command is therefore re-sent approximately every 

10 ms, allowing for smoothly controlling the drone. 

Control Port 

Control commands can be used to change internal settings of the drone, for example for 

switching between the four available video channels. In general a control command is 

transmitted as a string of the format “[attribute]=[value]”. 
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Appendix-B: ROS  

 

B-1 Introduction to Robot Operating System ROS 

Robot Operating System (ROS) is a trending robot application development platform that 

provides various features such as message passing, distributed computing, code reusing, and so 

on. The ROS project was started in 2007 with the name Switchyard by Morgan Quigley as part 

of the Stanford STAIR robot project. The main development of ROS happened at Willow 

Garage. Here are some of the reasons why people choose ROS over other robotic platforms 

such as Player,YARP, Orocos, MRPT, and so on : 

 High-end capabilities: ROS comes with ready to use capabilities, for example, SLAM 

(Simultaneous Localization and Mapping) and AMCL (Adaptive Monte Carlo 

Localization) packages in ROS can be used for performing autonomous navigation in 

mobile robots and the MoveIt package for motion planning of robot manipulators. 

 Tons of tools: ROS is packed with tons of tools for debugging, visualizing, and 

performing simulation. The tools such as rqt_gui, RViz and Gazebo are some of the 

strong open source tools for debugging, visualization, and simulation. The software 

framework that has these many tools is very rare. 

 Support high-end sensors and actuators: ROS is packed with device drivers and 

interface packages of various sensors and actuators in robotics. The high-end sensors 

include Velodyne-LIDAR, Laser scanners, Kinect, and so on and actuators such as 

Dynamixel servos. We can interface these components to ROS without any hassle. 

 Inter-platform operability: the ROS message-passing middleware allows 

communicating between different nodes. These nodes can be programmed in any 

language that has ROS client libraries. We can write high performance nodes in C++ or 

C and other nodes in Python or Java. This kind of flexibility is not available in other 

frameworks. 

 Modularity: One of the issues that can occur in most of the standalone robotic 

applications are, if any of the threads of main code crash, the entire robot application 

can stop. In ROS, the situation is different, we are writing different nodes for each 
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process and if one node crashes, the system can still work. Also, ROS provides robust 

methods to resume operation even if any sensors or motors are. 

 Concurrent resource handling: Handling a hardware resource by more than two 

processes is always a headache. Imagine, we want to process an image from a camera 

for face detection and motion detection, we can either write the code as a single entity 

that can do both, or we can write a single threaded code for concurrency. If we want to 

add more than two features in threads, the application behavior will get complex and 

will be difficult to debug. But in ROS, we can access the devices using ROS topics from 

the ROS drivers. Any number of ROS nodes can subscribe to the image message from 

the ROS camera driver and each node can perform different functionalities. It reduce 

the complexity in computation and also increase the debug-ability of the entire system. 

 Active community: When we choose a library or software framework, especially from 

an open source community, one of the main factors that needs to be checked before 

using it is its software support and developer community. There is no guarantee of 

support from an open source tool. Some tools provide good support and some tools 

don't. In ROS, the support community is active. The ROS community has a steady 

growth in developers worldwide. 

B-2 Understanding the ROS file system level 

Similar to an operating system, ROS files are also organized on the hard disk in a particular 

fashion. In this level, we can see how these files are organized on the disk. The following graph 

shows how ROS files and folder are organized on the disk: 

 

 

 

 

 

 

 

 

Figure B-1. The ROS file system level 
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Similar to an operating system, an ROS program is divided into folders, and these 

 Packages: Packages form the atomic level of ROS. A package has the minimum 

structure and content to create a program within ROS. It may have ROS Runtime 

process (nodes), configuration files; and so on. 

 Manifests: Manifests provide information about a package, license information, 

dependencies, compiler flags, and so on. Manifest are managed with a file called 

manifests.xml. 

 Stacks: When you gather several packages with some functionality, you will obtain a 

stack. In ROS, there exists a lot of these stacks with different uses, for example, the 

navigation 

 Stack manifests: Stack manifests (stack.xml) provide data about a stack, including its 

license information and its dependencies on other stacks. 

 Message (msg) types: A message is the information that a process sends to other 

processes. ROS has a lot of standard types of messages. Message descriptions are 

stored in my_package/msg/MyMessageType.msg. 

 Service (srv) types: Service descriptions, stored in my_package /srv/ My Service 

Type.srv, define the request and response data structures for services in ROS.  

B-3 ROS computational Graph level  

ROS creates a network where all the processes are connected. Any node in the system 

can access this network, interact with other nodes, see the information that they are sending, 

and transmit data to the network 

 Nodes: ROS nodes are a process that perform computation using ROS client 

libraries such as roscpp and rospy. One node can communicate with other 

nodes using ROS Topics, Services, and Parameters. 

 Topic: Chanel between two or more nodes, nodes communicate by publishing 

and/or subscribing to the appropriate topics 

 Services: ROS uses a simplified service description language for describing 

ROS service types. This builds directly upon the ROS msg format to enable 

request/response communication between nodes. Service descriptions are 

stored in .srv file in the srv/ subdirectory of a package. 
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  Parameters: The Parameter Server gives us the possibility to have data stored 

using keys in a central location. With this parameter, it is possible to configure 

a nodes while it’s running or to change the working of the nodes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure B-2. ROS computational Graph level 
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Appenix-C: History and development of                              

SLAM systems 
  

The SLAM problem has been formulated first in 1986 [17], First solutions proposed were based 

on the extended Kalman filter (EKF), these methods are called EKF-SLAM. The map is a large 

state vector x that consists of both the Position of landmarks as well as the current position of 

the robot. 
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The goal of EKF-SLAM, therefore, is to keep the map {x ,P} up to date at all times. 

From the fact that a full update of the maintained covariance matrix of x is required for each 

new pose-estimate the computational complexity of this approach scales quadratically, which 

limits the number of landmarks to a few hundred in practice, making it impossible to navigate 

in larger environments. 

This limitation was addressed by FastSLAM by Montemerlo et al. [18]: The observation 

that conditioned on the robot’s path, the positions of the individual landmarks become 

independent allows for each landmark’s position to be estimated independently. Using a 

particle filter instead of a Kalman filter (each particle representing one possible path taken 

and maintaining its own estimate of all landmark positions), leads to a naive complexity 

for each update of O(kn), k being the number of particles and n the number of landmarks. 
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Using a tree-based data structure, this can be reduced to O(k log n), hence logarithmic 

instead of quadratic complexity in the number of landmarks - rendering maps containing 

tens of thousands of landmarks computationally feasible [12]. 

The emergence of keyframe-based methods such as parallel tracking and mapping (PTAM) 

by G. Klein and D. Murray in 2007 [19] was a major development of monocular SLAM 

methods. Keyframe-based approaches are different in many ways from filtering-based 

approaches such as EKF-SLAM. Instead of using probability distribution to marginalize out 

previous poses and summarize all information, keyframe-based approaches retain a selected 

subset of previous observations - called keyframes - explicitly representing past knowledge 

gained. 

As illustrated by Figure C.1 in the filtering-based approaches correlations between landmark 

positions are explicitly represented as covariance, and the current camera position is an integral 

part of the map. Whereas in keyframe-based approaches correlations between landmarks are 

not explicitly represented and observations serve as link between landmarks and keyframes. 

The process of Keyframe-based SLAM can be split into two major tasks: 

1. Tracking: estimating the position of the camera C based on a fixed map, using only 

the landmark positions xi. 

Figure C.1: (a) Visual representation of the map for filtering-based approaches, (b)                                                        

Visual representation of the map for keyframe-based approaches. 
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2.  Mapping: optimizing and integrating new keyframes and landmarks into the map, as 

well as performing other modifications such as removing invalid landmarks, 

observations or even keyframes. 
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