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A B S T R A C T  

 

 

The purpose of this project is to implement an end-to-end automatic speech recognition 

system using recurrent neural networks, the Arabic language which ranks as the fifth 

most spoken language in the world has been chosen as the main language of the system. 

The Arabic language has been alienated from such type of projects due to its complexity, 

uniqueness and lack of free appropriate corpuses, but with new emerging algorithms in 

the domain of speech recognition such as the connectionist temporal classification, it is 

becoming more accessible to use unsegmented corpuses in the aim of building 

performant automatic speech recognition systems. The development of the project 

includes basic digital signal processing, exploration of the phonetic properties of the 

Arabic language, an adaption of a general corpus to fit the purpose of the project, feature 

extraction and a brief study on recurrent neural networks their performance in such a 

system. 

The full system with its various parts is implemented in Python and TensorFlow, different 

models inspired from literature are trained and tested using the Arabic speech corpus, 

leading to a selection of a final model that shows the lowest word error rate of 35.23%. 

The results encourage to explore more in depth the implementation of a speaker 

independent robust Arabic speech recognition system. 
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G E N E R A L  I N T R O D U C T I O N  

 Automatic speech recognition (ASR) has been an active research area for over five 

decades. It has always been considered as an important bridge in fostering better human–

human through machine translation and human–machine communication. In the past, 

however, speech never actually became an important modality in the human–machine 

communication.  

This is partly because the technology at that time was not good enough to pass the usable 

bar for most real-world users under most real usage conditions, and partly because in 

many situations alternative communication modalities such as keyboard and mouse 

significantly outperform speech in the communication efficiency, restriction, and 

accuracy. 

In the recent years, speech technology started to change the way we live and work and 

became one of the primary means for humans to interact with some devices. This trend 

started due to the progress made in several key areas. First, Moor’s law continues to 

function. The computational power available today, through multi-core processors, 

general purpose graphical processing units (GPGPUs), CPU/GPU clusters, and the new 

tensor processing units (TPUs), is several orders of magnitude more than that available 

just a decade ago. This makes training of more powerful yet complex models possible. 

These more computation demanding models, which are the topic of this book, 

significantly reduced the error rates of the ASR systems. Second, we can now access to 

much more data than before, thanks to the continued advance of the Internet and the cloud 

computing. By building models on big data collected from the real usage scenarios, we 

can eliminate many model assumptions made before and make systems more robust. 

Third, mobile devices, wearable devices, intelligent living room devices, and in-vehicle 

infotainment systems became popular. On these devices and systems, alternative 

interaction is preferable [1]. 
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This chapter provides a gentle introduction to the main topic of this report, and a brief 

history of automatic speech recognition (ASR). 

 

1 . 1  H I D D E N  M A R K O V  M O D E L S  ( H M M )  

HMM is a very powerful statistical method of characterizing the observed data samples 

of a discrete-time series. Not only can it provide an efficient way to build parsimonious 

parametric models but can also incorporate the dynamic programming principle in its 

core for a unified pattern segmentation and pattern classification of time-varying data 

sequences. The data samples in the time series can be discretely or continuously 

distributed; they can be scalars or vectors. The underlying assumption of the HMM is 

that the data samples can be well characterized as a parametric random process, and the 

parameters of the stochastic process can be estimated in a precise and well-defined 

framework [2]. 

The HMM had been widely used in speech recognition, natural language modelling, on-

line handwriting recognition, and for the analysis of biological sequences such as proteins 

and DNA [3]. 

HMM is a good method for constructing such models because speech has a temporal 

structure and can be encoded as a sequence of spectral vectors inside the audio frequency 

range. 

 

 

Figure 1.1-1Components of a Speech Recognizer using HMM [4] 
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1 . 2  D E E P  N E U R A L  N E T W O R K  -  H I D D E N  

M A R K O V  M O D E L  ( D N N - H M M )  

A deep neural network (DNN) is a conventional multilayer perceptron (MLP) with many 

(often more than two) hidden layers, each hidden unit uses a nonlinear function to map 

the feature input from the layer below to the current unit. [1]. 

A perceptron is an algorithm for supervised learning of binary classifiers (functions that 

can decide whether an input, represented by a vector of numbers, belongs to some 

specific class or not). It is a type of linear classifier, i.e. a classification algorithm that 

makes its predictions based on a linear predictor function combining a set of weights with 

the feature vector [5]. 

 

Figure 1.2-1 A diagram of a Perceptron [5] 
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Figure 1.2-2  An example deep neural network with an input layer, three hidden layers, and an 

output layer [1] 

 

Deep neural  networks  have  become  popular  acoustic  models  for  state-of-the-art  

large  vocabulary  speech  recognition systems  . These combinations of neural networks 

and statistical models are often referred to as hybrid systems.  Using the  new  learning  

methods,  several  different  research  groups  have  shown  that  DNNs  outperform 

(Gaussian Mixture Models)GMMs  at  acoustic  modeling  for  speech  recognition  on  a  

variety  of  datasets  including  large  datasets  with  large vocabularies [6]. 
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Figure 1.2-3 DNN-HMM model structure [4] 

1 . 3  E N D  T O  E N D  A S R  

Previous methods have strong markovian-assumptions and required several separate 

components and training for the pronunciation, acoustic and language model.  

 Acoustic models take acoustic features and predict a set of sub word units (phonemes).  

Then the pronunciation model, which is a hand-designed lexicon, maps a sequence of 

phonemes produced by the acoustic model to words.   Finally, the language model  is  in  

charge  of  assigning  probabilities  to word sequences. 

Training independent components is complex and suboptimal compared to training all 

components jointly.  That is why there has been a growing popularity in developing end-

to-end systems over the last several years [4]. 

A special type of DNN called recurrent neural networks (RNNs) are a powerful model 

for sequential data. End-to-end training methods such as Connectionist Temporal 

Classification make it possible to train RNNs for sequence labelling problems where the 

input-output alignment is unknown.   The combination of these methods with the Long 

Short-term Memory RNN architecture has proved particularly fruitful [7]. 
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Figure 1.3-1End-to-End ASR system pipeline 

1.3.1 Connectionist Temporal Classification (CTC) 

 CTC is a method for labelling sequence data with RNNs that removes the need for pre-

segmented training data and post-processed outputs, and models all aspects of the 

sequence within a single network architecture.  The basic idea is to interpret the network 

outputs as a probability distribution over all possible label sequences, conditioned on a 

given input sequence.  Given this distribution, an objective function can be derived that 

directly maximizes the probabilities of the correct labeling. Since the objective function 

is differentiable, the network can then be trained with standard backpropagation through 

time [8]. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

C H A P T E R  2 :  T H E O R I T I C A L     

B A C K G R O U N D  

 

 

 

 

 

 

 

 

 

 

 



THEORITICAL    BACKGROUND 

P a g e  | 7 

The aim of this chapter is to provide the necessary theoretical background about the 

various methods used in this report. 

2 . 1  D E E P  N E U R A L  N E T W O R K S  

Deep neural networks have proven very useful in solving many real world learning tasks 

such as sequence learning tasks that require the prediction of sequences of labels from 

noisy, unsegmented input data.    

In speech recognition, for example, an acoustic signal is transcribed into words or sub-

word units. RNNs are powerful sequence learners that have proven to be well suited to 

such tasks, why they are the focus of this section.  

2.1.1 Recurrent Neural Networks 

A recurrent neural network is a class of neural network models where many connections 

among its neurons form a directed cycle. This gives rise to the structure of internal states 

or memory in the RNN, endowing it with the dynamic temporal behavior not exhibited 

by the DNN [1]. 

Given an input sequence x = (x1,….., xT ), a standard RNN computes the hidden vector 

sequence h = (h1,…….., hT ) and output vector sequence y = (y1,…….,yT ) by iterating the 

following equations from t = 1 to T: 

ht = H(Wxhxt +Whhht - 1 + bh)        (2.1) 

yt = Whyht + by                                                       (2.2) 

Where the W terms denote weight matrices (e.g. Wxh is the input-hidden weight matrix), 

the b terms denote bias vectors (e.g. bh is hidden bias vector) and H is the hidden layer 

function, H is usually an elementwise application of a sigmoid function. However Long 

Short-Term Memory (LSTM) [9] architecture using LSTM cells shown in figure 3.1-1, 

which uses purpose-built memory cells to store information, is better at finding and 

exploiting long range context [7]. 
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Figure 2.1-1 Long Short-term Memory Cell [7] 

 

One shortcoming of conventional RNNs is that they are only able to make use of previous 

context.  In speech recognition, where whole utterances are transcribed at once, there is 

no reason not to exploit future context as well.   Bidirectional RNNs (BRNNs) do this by 

processing the data in both directions with two separate hidden layers, which are then fed 

forwards to the same output layer [7].  As illustrated in figure 3.1-2. 

Combining BRNNs with LSTM gives bidirectional LSTM. 

 

 

Figure 2.1-2 Bidirectional RNN [7] 
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A crucial element of the recent success of RNNs is the use of deep architectures that can 

be achieved by stacking multiple RNN hidden layers on top of each other, with the output 

sequence of one layer being the input sequence for the next one [7].  

2.1.2 Training RNNs 

Although the gradients of the RNN are easy to compute, RNNs are fundamentally 

difficult to train, especially on problems with long-range temporal dependencies, such as 

ASR, due to their nonlinear iterative nature. A small change to an iterative process can 

compound and result in very large effects many iterations later; this is known colloquially 

as “the butterfly-effect”. The implication is that in an RNN, the derivative of the loss 

function at one time can be exponentially large with respect to the hidden activations at 

a much earlier time [10]. 

2.1.3 Connectionist temporal classification 

Before CTC was proposed the most effective use of RNNs for sequence labelling was to 

combine them with HMMs in the so called hybrid approach. Hybrid systems use HMMs 

to model the long-range sequential structure of the data, and neural nets to provide 

localized classifications.  The HMM component is able to automatically segment the 

sequence during training, and to transform the network classifications into label 

sequences [8]. 

Considering the mapping of input sequence X of length T, X=[x1,x2,…,xT], such as 

audio, to the corresponding output sequences Y=[y1,y2,…,yU], such as transcripts. The 

aim is to find an accurate mapping from X’s to Y’s [8]. 

There are challenges which get in the way of using simpler supervised learning 

algorithms, both X and Y can vary in length, the ratio of the lengths of X and Y can vary 

and most data sets don’t provide and accurate alignment (correspondence of the 

elements) of X and Y. 

The CTC algorithm overcomes these challenges. For a given Xi gives us an output 

distribution over all possible Y’s. This distribution can be used either to infer a likely 

output or to assess the probability of a given output. 

A CTC network has a softmax output layer with one more unit than there are labels in 

the (finite) alphabet L, The activations of the first |L| units are interpreted as the 

probabilities of observing the corresponding labels at particular times. The activation of 
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the extra unit is the probability of observing a ‘blank’, or no label. Together, these outputs 

define the probabilities of all possible ways of aligning all possible label sequences with 

the input sequence. The total probability of any one label sequence can then be found by 

summing the probabilities of its different alignments [8]. 

The network switches from predicting no label to predicting a label, or from predicting 

one label to another, using a many-to-one map B, that simply removes all blanks and 

repeated labels from the paths [8]. 

 

Figure 2.1-3 Connectionist temporal classification based speech recognition system 

 

Finally B is used to define the conditional probability of a given labelling l ∈ L ≤ T as 

the sum of the probabilities of all the paths corresponding to it: 

                P ( l  | x ) =∑ π∈B−1(l)  p(π|x)                                      (2.3) 

Given the above formulation, the output of the classifier should be the most probable 

labelling for the input sequence, then an objective function is derived from the principle 

of maximum likelihood. That is, minimizing it maximizes the log likelihoods of the 

target labeling, the same principle underlying the standard neural network objective 

functions. Given the objective function, and its derivatives with respect to the network 

outputs, the weight gradients can be calculated with standard backpropagation through 

time. The network can then be trained with any of the gradient-based optimization 

algorithms [8]. 

2.1.4 Convolutional Neural Networks 

Convolutional neural network (CNN, or ConvNet) are a class of deep, feed-forward 

artificial neural networks, most commonly applied to analyzing visual imagery. 
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CNNs use a variation of multilayer perceptrons designed to require minimal 

preprocessing. They apply a convolution operation to the input, passing the result to the 

next layer. The convolution emulates the response of an individual neuron to visual 

stimuli. Although fully connected feedforward neural networks can be used to learn 

features as well as classify data, it is not practical to apply this architecture to images. A 

very high number of neurons would be necessary, even in a shallow (opposite of deep) 

architecture, due to the very large input sizes associated with images, where each pixel 

is a relevant variable. For instance, a fully connected layer for a (small) image of size 100 

x 100 has 10000 weights for each neuron in the second layer. The convolution operation 

brings a solution to this problem as it reduces the number of free parameters, allowing 

the network to be deeper with fewer parameters. For instance, regardless of image size, 

tiling regions of size 5 x 5, each with the same shared weights, requires only 25 learnable 

parameters [11]. 

 

2 . 2  A U D I O  F E A T U R E S  R E P R E S E N T A I O N  

Sound is a longitudinal pressure wave formed of compressions and rarefactions of air 

molecules [2], Audio can be represented in many ways, and which one is “best” depends 

on the application as well as the processing machinery.  For many years, feature design 

and selection was a key component  of  many  audio  analysis  tasks  and  the  list  includes  

spectral  centroid  and  higher order statistics of spectral shape, zero crossing statistics, 

harmonicas, fundamental frequency, and temporal envelope  descriptions [12].  

Traditionally speech recognition research has largely focused on using log mel-filterbank 

energies or mel-frequency cepstral coefficients (MFCCs), but has been moving to raw 

audio recently [13] [14] [15], Recurrent neural networks such as LSTM-RNNs  have been 

a key component in these new speech classification pipelines, because they allow for 

building models with long range contexts. 

 

2.2.1 Human Speech Perception 

The  auditory  perception  system  can  be  split  in  two   major  components:    the  

peripheral auditory system (ears), and the auditory  nervous system (brain). The  received  
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acoustic  pressure  signal  is  processed  by  peripheral   auditory  system  into  two  steps:  

firstly,  it  is  transformed  into  a  mechanical  vibration  pattern  on  the    basilar  

membrane; and  then,  is  represented  by  a  series  of  pulses  to  be  transmitted  by  the  

auditory  nerve.  Finally,  the  auditory  nervous  system  is  responsible  for  extracting  

the  perceptual information. The  human  ear,  as  shown  in  Figure  3.2-1,  is  made  up  

of  three  parts:  the  outer  ear, the middle ear, and the inner ear. The outer ear consists 

of the external visible part and the external auditory canal is where sound wave travels.  

The  length  of  the  auditory canal is such that performs as an acoustic resonator whose 

principal effect is to increase the  ear’s  sensitivity  to  sounds  in  the  3-4  KHz  range.  

When  the  sound  arrives  at  the eardrum,  it  vibrates  at  the  same  frequency  as  the  

incoming  sound  pressure  wave.  The vibrations are transmitted through the middle ear.  

The main structure of the inner ear is the  cochlea  which  communicates  with  the  

auditory  nerve,  driving  a  representation  of sound to the brain [16].  

 

Figure 2.2-1 Peripheral auditory system [16] 

There are two main competing theories about human hearing, Place theory which states 

that our perception of sound depends on where each component frequency produces 

vibrations along the basilar membrane. By this theory, the pitch of a sound, such as a 

human voice or a musical tone, is determined by the places where the membrane vibrates, 

based on frequencies corresponding to the tonotopic organization of the primary auditory 

neurons [17], and the other one is the temporal theory which states that human perception 

of sound depends on temporal patterns with which neurons respond to sound in the 

cochlea. Therefore, in this theory, the pitch of a pure tone is determined by the period of 
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neuron firing patterns either of single neurons, or groups as described by the volley theory 

[18]. 

 

2.2.2 Raw audio Features 

Audio signals are data-intensive time-domain signals and are stored (in their basic 

uncompressed form) as series of numbers corresponding to the amplitude of the signal 

over time. Although this representation is adequate for transmission and reproduction of 

arbitrary waveforms it is not appropriate for analyzing and understanding audio signals. 

The way we perceive and understand audio signals as humans is based on and constrained 

by our auditory system. It is well known that the early stages of the human auditory 

system (HAS) decompose incoming sound wave into different frequency bands [19]. 

Researchers usually avoid modelling raw audio because it ticks so quickly: typically 

16,000 samples per second or more, with important structure at many time-scales, but as 

mentioned earlier in the beginning of this section some research groups found interest in 

using the raw audio features as input to speech recognition models. 

 

Figure 2.2-2 Raw Features of a single word 

 

2.2.3 Spectral Shape Features 

Mel-Frequency Cepstral Coefficients (MFCCs) were very popular features for a long 

time; but more recently, filter banks are becoming increasingly popular.  

Filter Banks and MFCCs involve the same procedure, where in both cases filter banks 

are computed with a few more extra steps MFCCs can be obtained a signal goes through 

a pre-emphasis filter; then gets sliced into (overlapping) frames and a window function 

is applied to each frame; afterwards, a Short-Time Fourier Transform is applied and the 
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power spectrum is calculated; subsequently the filter banks are computed. To obtain 

MFCCs, a Discrete Cosine Transform (DCT) is applied to decorrelate the resulting 

feature vectors retaining a number of the resulting coefficients while the rest are 

discarded. A final step in both cases, is mean normalization. 

 

Figure 2.2-3 Spectrogram of a single word 

2 . 3  S O F T W A R E  T O O L S  

2.3.1 Python 

Python is an interpreted, object-oriented, high-level programming language with 

dynamic semantics. Its high-level built in data structures, combined with dynamic typing 

and dynamic binding, make it very attractive for Rapid Application Development, as well 

as for use as a scripting or glue language to connect existing components together. 

Python's simple, easy to learn syntax emphasizes readability and therefore reduces the 

cost of program maintenance. Python supports modules and packages, which encourages 

program modularity and code reuse. The Python interpreter and the extensive standard 

library are available in source or binary form without charge for all major platforms, and 

can be freely distributed [20]. 

 

2.3.2 TensorFlow 

TensorFlow is an open source software library for high performance numerical 

computation. Its flexible architecture allows easy deployment of computation across a 

variety of platforms (CPUs, GPUs, TPUs), and from desktops to clusters of servers to 

mobile and edge devices. Originally developed by researchers and engineers from the 

Google Brain team within Google’s AI organization, it comes with strong support for 
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machine learning and deep learning and the flexible numerical computation core is used 

across many other scientific domains [21]. 

 

2.3.3 Keras 

Keras is a high-level neural networks library, written in Python and capable of running 

on top of either TensorFlow or Theano (Keras, 2017). It was developed with the purpose 

of enabling fast experimentation. Providing results with the least possible delay, Keras 

constitutes a key for good research. It is designed on the following properties: modularity, 

so many functions, graphs and neural layers to create new models when combined 

together, minimalism, that it is important each module to be short and simple and easy 

extensibility, the ability to add new models [22]. 

 

2.3.4 Jupyter Notebook 

The Jupyter Notebook is an open-source web application that allows the creation and 

sharing of documents that contain live code, equations, visualizations and narrative text. 

Uses include: data cleaning and transformation, numerical simulation, statistical 

modeling, data visualization, machine learning [23]. 
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In this chapter the implementation of a speech recognition system using RNN, LSTM 

and CTC, the main purpose is to implement an end to end model capable of doing 

phoneme level recognition without the need of a phoneme labeled database. The model 

is to be trained on an Arabic speech corpus that was adapted for the purpose of this 

project. 

All the scripts in this section were written in python. 

3 . 1  A R A B I C  S P E E C H  C O R P U S  

The Arabic Speech Corpus is a Modern Standard Arabic (MSA) speech corpus was 

mainly built for speech synthesis purposes. The corpus contains phonetic and 

orthographic transcriptions of more than 3.7 hours of MSA speech. The annotations 

include word stress marks on the individual phonemes. The corpus contains an extra 

separate 18 minutes of fully annotated corpus which was used for evaluations [24]. 

Transcription of the corpus is in a modified Buckwalter Arabic transliteration that 

provides a strictly one-to-one mapping, unlike the more common Romanization schemes 

that add morphological information not expressed in Arabic script which is undesirable 

for the application of this report, more information about it can be found in the Appendix. 

The Arabic Speech Corpus was built as part of a doctoral project by Nawar Halabi at the 

University of Southampton funded by MicroLinkPC who own an exclusive license to 

commercialize the corpus, but the corpus is available for strictly non-commercial 

purposes through the official Arabic Speech Corpus website. 

 

3 . 2  C O R P U S  A D A P T A T I O N  

In speech recognition each language has its own set of challenges and properties, one of 

the challenges faced in building an Arabic speech recognition system was the lack of 

specially built and tested corpuses.  

The corpus at hand provided audio wav files of 1813 sentences with their transcription, 

in addition to 100 sentences that was used for testing and validation purposes. 

Data preparation is an important task in deep learning as the data has to be in a format 

that allows to first layer of the model to extract the features. 
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Since the Arabic speech corpus wasn’t tested on ASR before, it was preferred to provide 

at least two levels of labeling, word level labeling, and phrase level labeling that was 

already available. 

 

Figure 3.2-1 Orthographic transcription format for each audio file in the corpus 

 

To do so an open source software for phonetic analysis called Praat was used. Praat was 

chosen because it was the same software used to make the corpus and for its strong 

scripting environment that enables the automation of tasks which was very important. 

The creator of the corpus also provides Textgrid files which marked the alignment of the 

transcription with the audio file, this can be viewed in figure 3.2-2. 

 

Figure 3.2-2 Praat editing interface 

Based on these marks a Praat script had been developed to go through all the speech 

corpus segment the phrase long audio files into word with the appropriate label for each 

word. 

The script took as in put each phrase long audio file and the corresponding Textgrid file 

which provided orthographic transcription and the boundaries for each word, the output 
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of the script was folders for each audio file that contained multiple audio wav files with 

a txt file that contained the transcription of each new file, this can be viewed in the figure 

3.2-3 which represents the output of the script for an input phrase audio file which 

contained 9 words and 2 silence files. 

 

Figure 3.2-3 The output of the audio segmentation script 

The script was applied on both the training the test sets and gave as output 6772 audio 

file from the training set and 644 audio file from the test set, with this we had at least 2 

representations to test the model on, it should be also noted that the same script could 

have been used to get the phonemes level labeling of the corpus. 

 

3 . 3  P R E P R O C E S S I N G  

3.3.1 Audio preprocessing  

The audio signals had to be preprocessed before feeding them as in put to the neural 

networks, the raw normalized spectrogram was the format of choice for the work of this 

report. 

The first step was to explore the dataset, a script that takes an audio wav file and plots its 

wave plot and spectrogram was developed, it was mostly useful in further steps of the 

project for debugging purposes. 
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Figure 3.3-1 Mel scaled spectrogram and wave plot of an audio file for the word ‘maEohadu’ 

After having acquired a tool to visualize the data, the main script to process the speech 

corpus has been developed, the script took as input an audio file, resampled it at 22050Hz, 

and computed its normalized spectrogram and gave an output array of shape        

(timesteps * 161) which has been used later on as input to the neural network. 
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Figure 3.3-2 Audio features array 

 

3.3.2 Text preprocessing 

The text labels were in a modified Buckwalter format which produced an alphabet of 46 

character, a one-to-one char map was created each character taking an integer in the range 

0 to 45, and this gave a way to transform each word into a vector based on the characters 

it contained. 

 

Figure 3.3-3 Speech corpus alphabet character map 

Two other scripts had been developed for two functions text_to_int_sequence which took 

a string and gave an array of numbers using the character map, and another function 

int_sequence_to_text which did the inverse, the second function was used in a further 

step of the project to retransform the network output into text again. 
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Figure 3.3-4 Text preprocessing 

 

3.3.3 Arabic speech corpus preprocessing 

A new script had been developed using the tools developed from the previous two 

sections this script processed the whole Arabic speech corpus and gave back the arrays 

that had been used in later parts of the project to train a speech recognition model. 

The script took as input the link to the Arabic speech corpus and a csv file, audio 

preprocessing was performed to acquire the arrays which were saved in a new directory 

in a .npy format, the csv file contained the duration, numpy array path and the label for 

each sample. 

The processing was performed on both training and test set. 

 

Figure 3.3-5Test set preprocessing 
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Figure 3.3-6 Training set preprocessing 

The audio and label files were of different length as they depended on the length of the 

audio file and transcription of the word, for this reason the next step had been to zero 

pad both the input arrays (audio features) and the output arrays (labels), but also with 

keeping the original input and output lengths in separate arrays. 

The preprocessing returned 8 arrays, the_input, the_labels, input_length and 

label_length.  

 

Figure 3.3-7 Dataset arrays after preprocessing 

 

3 . 4  A R A B I C  S P E E C H  R E C O G N I T I O N  

3.4.1 First experiment 

Given their effectiveness in modeling sequential data, the first model has been chosen to 

be a RNN. The RNN takes the time sequence of audio features as input. 
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At each time step, the speaker pronounces one of 46 possible characters defined 

previously in the character map. 

The output of the RNN at each time step is a vector of probabilities with 47 entries, where 

the i-th entry encodes the probability that the i-th character is spoken in the time 

sequence. (The extra character is an empty "character" used to pad training examples 

within batches containing uneven lengths.)  

 

Figure 3.4-1First model summary 

The sliced dataset contained a lot of silences which caused many problems in training 

so the silences has been removed from the dataset. 

 

Figure 3.4-2Information about the training and test data 

 

The model was interrupted at 25 epochs of the planned 100, the training was done on the 

full training set (after removing the silences) and the validation was done on the full test 

set, the details can be viewed in the figures below. 
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Figure 3.4-3Training of the first model 

 

 

Figure 3.4-4 Train and Validation loss of the first model 

The model was performing well on the training set but not so well on the test set, which 

suggested the model wasn’t generalizing well and was going to over fit on the training 

data, which was behind the reason for stopping the training to try a different model. 

 

3.4.2 Second Experiment 

One shortcoming of conventional RNNs is that they are only able to make use of previous 

context. In speech recognition, where whole utterances are transcribed at once, future 
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context could help the recognition especially that how the phonemes are pronounced 

depend on the word itself. 

For this reason the second model was chosen to be a bidirectional RNN (BRNN). 

 

Figure 3.4-5 Second model summary 

The same training set and validation set as the previous experiment were used to train 

the model for 15 epochs. 

 

Figure 3.4-6Train and validation losses of the Second model 

The model performed well on the training set, but after the 4th epoch the model started 

to over fit over the training set. 
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3.4.3 Third Experiment 

Based on the first two experiments it has been decided to add a convolutional layer at 

the input of the model and to experiment with different type of RNN architecture, the 

summary of the model can be viewed in the figure 3.4-7 . 

 

Figure 3.4-7 Third model summary 

The model has been trained with the same dataset for 10 epochs. 

 

Figure 3.4-8Training and validation losses of the third model 

Again, the model performed well on the training set but wasn’t able to generalize well 

as it has been noticed on the validation loss to be fluctuating and not decreasing with 

the training loss. 
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3.4.4 Fourth Experiment 

Based on the previous experiments it has been decided to try with an architecture 

similar to the one in the third experiment, the summary of the model can viewd in the 

figure below. 

 

Figure 3.4-9 Fourth model summary 

Training of the model with the segmented data generated a lot of errors related to the 

CTC implementation of TesorFlow, so it has been decided to try with the full phrases 

as input to the model and was trained for 25 epochs, using the full 100 samples from 

the test set for validation. 

 

Figure 3.4-10 Training and validation data for the fourth model 

 

The model performed well, which was encouraging to investigate more about the 

performance of the model, and testing on the combination of 4 test samples (44, 57, 100, 

21) combined into one set gave the following results, and for comparison reasons the true 

transcription versus the predicted transcription were put side to side. 
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Figure 3.4-11 True and predicted transcriptions for test samples (44, 57, 100, 21) 

 

Getting these encouraging results called for a true metrics of ASR systems Word error 

rate (WER). 

WER is derived from the Levenshtein distance, working at the word level instead of the 

phoneme level. The WER is a valuable tool for comparing different systems as well as 

for evaluating improvements within one system. 

 

𝑾𝑬𝑹  =   
𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒔𝒖𝒃𝒔𝒕𝒊𝒕𝒖𝒕𝒊𝒐𝒏𝒔 + 𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒅𝒆𝒍𝒆𝒕𝒊𝒐𝒏𝒔 + 𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒊𝒏𝒔𝒆𝒓𝒕𝒊𝒐𝒏𝒔 

 𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒘𝒐𝒓𝒅𝒔 𝒊𝒏 𝒕𝒉𝒆 𝒓𝒆𝒇𝒆𝒓𝒆𝒏𝒄𝒆
       (3.1) 

     

A python script was adapted to compute the WER for the model, the script took two 

inputs the hypothesis (predicted transcription by the model) and a reference   (the true 

transcription), for this the model was fed the total test set and the output values were 

saved into a list, the true transcription was taken directly from the dataset, this gave two 

lists of 100 entry each, one for the predicted transcription and one for the true 

transcription, the  WER was computed for each  sample of the data set and were stored 

in an array of 100 entries, the  final WER for the model on the test set was computed by 

averaging the   WERs of each single sample. 

This gave a WER of 0.3523 i.e. a word accuracy Wacc = 64.77%.
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G E N E R A L  C O N C L U S I O N  

 

Throughout the period of working on this project an end to end Arabic speech recognition 

system using recurrent neural networks was implemented; an unknown and untested 

Arabic speech corpus for automatic speech recognition was explored, segmented and 

used to train the different models. A final model was selected from the results of testing 

various models; this model showed good results which encouraged to go further and use 

a real metric for speech recognition (word error rate) which gave fairly good results of 

64.77% word accuracy. 

The obtained results proved the effectiveness of RNNs in dealing with temporal Data and 

in ASR in particular. 

Buckwalter Arabic transliteration proved to be an effective representation of the Arabic 

text versus other Romanization schemes that add morphological information not 

expressed in Arabic script. 

Audio features representation is an important step in ASR and finding a good 

representation of audio is one of the various challenges not addressed by this work. 

As future work, adding a language model to increase the accuracy of the system could be 

explored, another method to improve the performance of the system would be better 

audio feature representations as it would allow to build performant speech recognition 

systems through general transcribed audio datasets that aren’t created for the purpose of 

speech recognition; this could be especially helpful in languages where there is a lack in 

specialized datasets.  
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A P P E N D I X  

BUCKWALTER ARABIC TRANSLITERATION 

 

The Buckwalter Transliteration is a strict transliteration of Modern Standard Arabic 

orthographical symbols using only 7-bit ASCII characters. It is used for representing 

exact orthographical strings of Arabic in email and other environments where the display 

of real Arabic script is impractical or impossible. There is a strict one-to-one mapping 

back and forth from UNICODE to Buckwalter Transliteration, without gain or loss of 

ambiguity. Arabic text in ASMO 449 and ISO8859-6 can also be translated into 

Buckwalter Transliteration (or UNICODE), but the reverse mapping is hindered by the 

lack of a couple of (rare) characters. 

Name 

(Unicode name) 
UNICODE 

Buckwal

ter 

ISO 

8859-6 

ASMO 

449 

Window

s 1256 

Glyp

h 

hamza-on-the-line 

(Arabic letter 

hamza) 

\u0621 ' C1 A C1 
 

madda 

(Arabic letter alef 

with madda above) 

\u0622 | C2 B C2 
 

hamza-on-'alif 

(Arabic letter aleph 

with hamza above) 

\u0623 > C3 C C3 
 

hamza-on-waaw 

(Arabic letter waw 

with hamza above) 

\u0624 & C4 D C4 
 

hamza-under-'alif 

(Arabic letter aleph 

with hamza below) 

\u0625 < C5 E C5 
 

hamza-on-yaa' 

(Arabic letter 

yeh with hamza 

above) 

\u0626 } C6 F C6 
 

bare 'alif 

(Arabic letter alef) 
\u0627 A C7 G C7 
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baa' 

(Arabic letter beh) 
\u0628 b C8 H C8 

 

taa' marbuuTa  

(Arabic letter teh 

marbuta) 

\u0629 p C9 I C9 
 

taa' 

(Arabic letter teh) 
\u062A t CA J CA 

 

thaa'  

(Arabic letter theh) 
\u062B v CB K CB 

 

jiim 

(Arabic letter 

jeem) 

\u062C j CC L CC 
 

Haa' 

(Arabic letter hah) 
\u062D H CD M CD 

 

khaa' 

(Arabic letter 

khah) 

\u062E  x CE N CE 
 

daal 

(Arabic letter dal) 
\u062F  d CF O  CF 

 

dhaal 

(Arabic letter thal) 
\u0630 * D0 P D0 

 

raa' 

(Arabic letter reh)  
\u0631 r D1 Q D1 

 

zaay 

(Arabic letter zain) 
\u0632 z D2 R D2 

 

siin 

(Arabic letter seen) 
\u0633 s D3 S D3 

 

shiin 

(Arabic letter 

sheen) 

\u0634 $ D4 T D4 
 

Saad 

(Arabic letter sad) 
\u0635 S D5 U D5 

 

Daad 

(Arabic letter dad) 
\u0636 D D6 V D6 

 

Taa' 

(Arabic letter tah) 
\u0637 T D7 W D8 

 

Zaa' (DHaa') 

(Arabic letter zah) 
\u0638 Z D8 X D9 
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cayn 

(Arabic letter ain) 
\u0639 E D9 Y DA 

 

(Arabic letter 

ghain) 
\u063A g DA Z DB 

 

taTwiil 

(Arabic letter 

tatweel) 

\u0640 _ E0 0x60 DC 
 

faa' 

(Arabic letter 

feh) 

\u0641 f E1 a DD 
 

qaaf 

(Arabic letter 

qaf) 

\u0642 q E2 b DE 
 

kaaf 

(Arabic letter kaf) 
\u0643 k E3 c DF 

 

laam 

(Arabic letter lam) 
\u0644 l E4 d E1 

 

miim 

(Arabic letter 

meem) 

\u0645 m E5 e E3 
 

nuun 

(Arabic letter noon) 
\u0646 n E6 f E4 

 

haa' 

(Arabic letter heh) 
\u0647 h E7 g E5 

 

waaw 

(Arabic letter waw) 
\u0648 w E8 h E6 

 

'alif maqSuura 

(Arabic letter alef 

maksura) 

\u0649 Y E9 i EC 
 

yaa' 

(Arabic letter yeh) 
\u064A y EA j ED 

 

fatHatayn 

(Arabic fathatan) 
\u064B F EB k F0 

 

Dammatayn 

(Arabic dammatan) 
\u064C N EC l F1 

 

kasratayn 

(Arabic kasratan) 
\u064D K ED m F2 

 

fatHa 

(Arabic fatha) 
\u064E a EE n F3 
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Damma 

(Arabic damma) 
\u064F u EF o F5 

 

kasra 

(Arabic kasra) 
\u0650 i F0 p F6 

 

shaddah 

(Arabic shadda) 
\u0651 ~ F1 q F8 

 

sukuun 

(Arabic sukun) 
\u0652 o F2 r FA 

 

dagger 'alif 

(Arabic letter 

superscript alef) 

\u0670 ` 
(missin

g) 

(missin

g) 

(missing

) 
 

waSla-on-alif 

(Arabic letter alef 

wasla) 

\u0671 { 
(missin

g) 

(missin

g) 

(missing

) 
 

 

 It should be noted that in the corpus used for this work the Arabic letter Thaa’ 

 was mapped to ‘^’ instead of  ‘v’. 


