ABSTRACT

The purpose of this project is to implement an end-to-end automatic speech recognition
system using recurrent neural networks, the Arabic language which ranks as the fifth
most spoken language in the world has been chosen as the main language of the system.
The Arabic language has been alienated from such type of projects due to its complexity,
uniqueness and lack of free appropriate corpuses, but with new emerging algorithms in
the domain of speech recognition such as the connectionist temporal classification, it is
becoming more accessible to use unsegmented corpuses in the aim of building
performant automatic speech recognition systems. The development of the project
includes basic digital signal processing, exploration of the phonetic properties of the
Arabic language, an adaption of a general corpus to fit the purpose of the project, feature
extraction and a brief study on recurrent neural networks their performance in such a

system.

The full system with its various parts is implemented in Python and TensorFlow, different
models inspired from literature are trained and tested using the Arabic speech corpus,
leading to a selection of a final model that shows the lowest word error rate of 35.23%.

The results encourage to explore more in depth the implementation of a speaker

independent robust Arabic speech recognition system.
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GENERAL INTRODUCTION

Automatic speech recognition (ASR) has been an active research area for over five
decades. It has always been considered as an important bridge in fostering better human—
human through machine translation and human—-machine communication. In the past,
however, speech never actually became an important modality in the human—machine

communication.

This is partly because the technology at that time was not good enough to pass the usable
bar for most real-world users under most real usage conditions, and partly because in
many situations alternative communication modalities such as keyboard and mouse
significantly outperform speech in the communication efficiency, restriction, and

accuracy.

In the recent years, speech technology started to change the way we live and work and
became one of the primary means for humans to interact with some devices. This trend
started due to the progress made in several key areas. First, Moor’s law continues to
function. The computational power available today, through multi-core processors,
general purpose graphical processing units (GPGPUs), CPU/GPU clusters, and the new
tensor processing units (TPUS), is several orders of magnitude more than that available
just a decade ago. This makes training of more powerful yet complex models possible.
These more computation demanding models, which are the topic of this book,
significantly reduced the error rates of the ASR systems. Second, we can now access to
much more data than before, thanks to the continued advance of the Internet and the cloud
computing. By building models on big data collected from the real usage scenarios, we
can eliminate many model assumptions made before and make systems more robust.
Third, mobile devices, wearable devices, intelligent living room devices, and in-vehicle
infotainment systems became popular. On these devices and systems, alternative

interaction is preferable [1].
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STATE OF THE ART

This chapter provides a gentle introduction to the main topic of this report, and a brief

history of automatic speech recognition (ASR).

1.1 HIDDEN MARKOV MODELS (HMM)

HMM is a very powerful statistical method of characterizing the observed data samples
of a discrete-time series. Not only can it provide an efficient way to build parsimonious
parametric models but can also incorporate the dynamic programming principle in its
core for a unified pattern segmentation and pattern classification of time-varying data
sequences. The data samples in the time series can be discretely or continuously
distributed; they can be scalars or vectors. The underlying assumption of the HMM is
that the data samples can be well characterized as a parametric random process, and the
parameters of the stochastic process can be estimated in a precise and well-defined
framework [2].

The HMM had been widely used in speech recognition, natural language modelling, on-
line handwriting recognition, and for the analysis of biological sequences such as proteins
and DNA [3].

HMM is a good method for constructing such models because speech has a temporal
structure and can be encoded as a sequence of spectral vectors inside the audio frequency

range.
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—» Words
Spoech > extraction vectors Dacoder
Acoustic Language | Pronunciation
models model ' dictionary

Figure 1.1-1Components of a Speech Recognizer using HMM [4]
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1.2 DEEP NEURAL NETWORK - HIDDEN
MARKOV MODEL (DNN-HMM)

A deep neural network (DNN) is a conventional multilayer perceptron (MLP) with many
(often more than two) hidden layers, each hidden unit uses a nonlinear function to map
the feature input from the layer below to the current unit. [1].

A perceptron is an algorithm for supervised learning of binary classifiers (functions that
can decide whether an input, represented by a vector of numbers, belongs to some
specific class or not). It is a type of linear classifier, i.e. a classification algorithm that
makes its predictions based on a linear predictor function combining a set of weights with

the feature vector [5].
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Figure 1.2-1 A diagram of a Perceptron [5]

Page |3



STATE OF THE ART

Output
Layer

Hidden
Layer 3

Figure 1.2-2 An example deep neural network with an input layer, three hidden layers, and an
output layer [1]

Deep neural networks have become popular acoustic models for state-of-the-art
large vocabulary speech recognition systems . These combinations of neural networks
and statistical models are often referred to as hybrid systems. Using the new learning
methods, several different research groups have shown that DNNs outperform
(Gaussian Mixture Models)GMMs at acoustic modeling for speech recognition on a

variety of datasets including large datasets with large vocabularies [6].
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Figure 1.2-3 DNN-HMM model structure [4]
1.3 END TO END ASR

Previous methods have strong markovian-assumptions and required several separate

components and training for the pronunciation, acoustic and language model.

Acoustic models take acoustic features and predict a set of sub word units (phonemes).
Then the pronunciation model, which is a hand-designed lexicon, maps a sequence of
phonemes produced by the acoustic model to words. Finally, the language model is in
charge of assigning probabilities to word sequences.

Training independent components is complex and suboptimal compared to training all
components jointly. That is why there has been a growing popularity in developing end-
to-end systems over the last several years [4].

A special type of DNN called recurrent neural networks (RNNSs) are a powerful model
for sequential data. End-to-end training methods such as Connectionist Temporal
Classification make it possible to train RNNs for sequence labelling problems where the
input-output alignment is unknown. The combination of these methods with the Long

Short-term Memory RNN architecture has proved particularly fruitful [7].
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Figure 1.3-1End-to-End ASR system pipeline

1.3.1 Connectionist Temporal Classification (CTC)
CTC is a method for labelling sequence data with RNNs that removes the need for pre-
segmented training data and post-processed outputs, and models all aspects of the
sequence within a single network architecture. The basic idea is to interpret the network
outputs as a probability distribution over all possible label sequences, conditioned on a
given input sequence. Given this distribution, an objective function can be derived that
directly maximizes the probabilities of the correct labeling. Since the objective function
is differentiable, the network can then be trained with standard backpropagation through

time [8].
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THEORITICAL BACKGROUND

The aim of this chapter is to provide the necessary theoretical background about the

various methods used in this report.

2.1 DEEP NEURAL NETWORKS

Deep neural networks have proven very useful in solving many real world learning tasks
such as sequence learning tasks that require the prediction of sequences of labels from

noisy, unsegmented input data.

In speech recognition, for example, an acoustic signal is transcribed into words or sub-
word units. RNNs are powerful sequence learners that have proven to be well suited to

such tasks, why they are the focus of this section.

2.1.1 Recurrent Neural Networks
A recurrent neural network is a class of neural network models where many connections
among its neurons form a directed cycle. This gives rise to the structure of internal states
or memory in the RNN, endowing it with the dynamic temporal behavior not exhibited
by the DNN [1].

Given an input sequence X = (X, ....., Xt ), @ standard RNN computes the hidden vector
sequence h = (hy, ........ , ht) and output vector sequence y = (ys, ... .... ,y1 ) by iterating the

following equations fromt=1to T:
he = HWinxe +Whehe- 1+ br)  (2.1)
Jt= I’V]zy]]t + by (22)

Where the W terms denote weight matrices (e.g. Wxn is the input-hidden weight matrix),
the b terms denote bias vectors (e.g. bn is hidden bias vector) and H is the hidden layer
function, H is usually an elementwise application of a sigmoid function. However Long
Short-Term Memory (LSTM) [9] architecture using LSTM cells shown in figure 3.1-1,
which uses purpose-built memory cells to store information, is better at finding and

exploiting long range context [7].
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Figure 2.1-1 Long Short-term Memory Cell [7]

One shortcoming of conventional RNNs is that they are only able to make use of previous
context. In speech recognition, where whole utterances are transcribed at once, there is
no reason not to exploit future context as well. Bidirectional RNNs (BRNNSs) do this by
processing the data in both directions with two separate hidden layers, which are then fed

forwards to the same output layer [7]. As illustrated in figure 3.1-2.

Combining BRNNs with LSTM gives bidirectional LSTM.
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Figure 2.1-2 Bidirectional RNN [7]
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A crucial element of the recent success of RNNSs is the use of deep architectures that can
be achieved by stacking multiple RNN hidden layers on top of each other, with the output

sequence of one layer being the input sequence for the next one [7].

2.1.2 Training RNNs
Although the gradients of the RNN are easy to compute, RNNs are fundamentally

difficult to train, especially on problems with long-range temporal dependencies, such as
ASR, due to their nonlinear iterative nature. A small change to an iterative process can
compound and result in very large effects many iterations later; this is known colloquially
as “the butterfly-effect”. The implication is that in an RNN, the derivative of the loss
function at one time can be exponentially large with respect to the hidden activations at

a much earlier time [10].

2.1.3 Connectionist temporal classification
Before CTC was proposed the most effective use of RNNSs for sequence labelling was to
combine them with HMMs in the so called hybrid approach. Hybrid systems use HMMs
to model the long-range sequential structure of the data, and neural nets to provide
localized classifications. The HMM component is able to automatically segment the
sequence during training, and to transform the network classifications into label
sequences [8].

Considering the mapping of input sequence X of length T, X=[x1,X2,...,x7], such as
audio, to the corresponding output sequences Y=[y1,Y>,...,yu], such as transcripts. The

aim is to find an accurate mapping from X’s to Y’s [8].

There are challenges which get in the way of using simpler supervised learning
algorithms, both X and Y can vary in length, the ratio of the lengths of X and Y can vary
and most data sets don’t provide and accurate alignment (correspondence of the

elements) of X and Y.

The CTC algorithm overcomes these challenges. For a given X; gives us an output
distribution over all possible Y’s. This distribution can be used either to infer a likely

output or to assess the probability of a given output.

A CTC network has a softmax output layer with one more unit than there are labels in
the (finite) alphabet L, The activations of the first |L| units are interpreted as the

probabilities of observing the corresponding labels at particular times. The activation of
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the extra unit is the probability of observing a ‘blank’, or no label. Together, these outputs
define the probabilities of all possible ways of aligning all possible label sequences with
the input sequence. The total probability of any one label sequence can then be found by
summing the probabilities of its different alignments [8].

The network switches from predicting no label to predicting a label, or from predicting
one label to another, using a many-to-one map B, that simply removes all blanks and
repeated labels from the paths [8].

R nput (X)
ccaaat alignment
C a t output (¥)

Figure 2.1-3 Connectionist temporal classification based speech recognition system

Finally B is used to define the conditional probability of a given labellingl € L<T as

the sum of the probabilities of all the paths corresponding to it:

P(1|x) =) re-10) p(m/x) (23)
Given the above formulation, the output of the classifier should be the most probable
labelling for the input sequence, then an objective function is derived from the principle
of maximum likelihood. That is, minimizing it maximizes the log likelihoods of the
target labeling, the same principle underlying the standard neural network objective
functions. Given the objective function, and its derivatives with respect to the network
outputs, the weight gradients can be calculated with standard backpropagation through
time. The network can then be trained with any of the gradient-based optimization

algorithms [8].

2.1.4 Convolutional Neural Networks
Convolutional neural network (CNN, or ConvNet) are a class of deep, feed-forward

artificial neural networks, most commonly applied to analyzing visual imagery.
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CNNs use a variation of multilayer perceptrons designed to require minimal
preprocessing. They apply a convolution operation to the input, passing the result to the
next layer. The convolution emulates the response of an individual neuron to visual
stimuli. Although fully connected feedforward neural networks can be used to learn
features as well as classify data, it is not practical to apply this architecture to images. A
very high number of neurons would be necessary, even in a shallow (opposite of deep)
architecture, due to the very large input sizes associated with images, where each pixel
is a relevant variable. For instance, a fully connected layer for a (small) image of size 100
x 100 has 10000 weights for each neuron in the second layer. The convolution operation
brings a solution to this problem as it reduces the number of free parameters, allowing
the network to be deeper with fewer parameters. For instance, regardless of image size,
tiling regions of size 5 x 5, each with the same shared weights, requires only 25 learnable

parameters [11].

2.2 AUDIO FEATURES REPRESENTAION

Sound is a longitudinal pressure wave formed of compressions and rarefactions of air
molecules [2], Audio can be represented in many ways, and which one is “best” depends
on the application as well as the processing machinery. For many years, feature design
and selection was a key component of many audio analysis tasks and the list includes
spectral centroid and higher order statistics of spectral shape, zero crossing statistics,
harmonicas, fundamental frequency, and temporal envelope descriptions [12].

Traditionally speech recognition research has largely focused on using log mel-filterbank
energies or mel-frequency cepstral coefficients (MFCCs), but has been moving to raw
audio recently [13] [14] [15], Recurrent neural networks such as LSTM-RNNSs have been
a key component in these new speech classification pipelines, because they allow for

building models with long range contexts.

2.2.1 Human Speech Perception
The auditory perception system can be split in two major components: the
peripheral auditory system (ears), and the auditory nervous system (brain). The received
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acoustic pressure signal is processed by peripheral auditory system into two steps:
firstly, it is transformed into a mechanical vibration pattern on the basilar
membrane; and then, is represented by a series of pulses to be transmitted by the
auditory nerve. Finally, the auditory nervous system is responsible for extracting
the perceptual information. The human ear, as shown in Figure 3.2-1, is made up
of three parts: the outer ear, the middle ear, and the inner ear. The outer ear consists
of the external visible part and the external auditory canal is where sound wave travels.
The length of the auditory canal is such that performs as an acoustic resonator whose
principal effect is to increase the ear’s sensitivity to sounds in the 3-4 KHz range.
When the sound arrives at the eardrum, it vibrates at the same frequency as the
incoming sound pressure wave. The vibrations are transmitted through the middle ear.
The main structure of the inner ear is the cochlea which communicates with the

auditory nerve, driving a representation of sound to the brain [16].

Figure 2.2-1 Peripheral auditory system [16]

There are two main competing theories about human hearing, Place theory which states
that our perception of sound depends on where each component frequency produces
vibrations along the basilar membrane. By this theory, the pitch of a sound, such as a
human voice or a musical tone, is determined by the places where the membrane vibrates,
based on frequencies corresponding to the tonotopic organization of the primary auditory
neurons [17], and the other one is the temporal theory which states that human perception
of sound depends on temporal patterns with which neurons respond to sound in the

cochlea. Therefore, in this theory, the pitch of a pure tone is determined by the period of
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neuron firing patterns either of single neurons, or groups as described by the volley theory
[18].

2.2.2 Raw audio Features

Audio signals are data-intensive time-domain signals and are stored (in their basic
uncompressed form) as series of numbers corresponding to the amplitude of the signal
over time. Although this representation is adequate for transmission and reproduction of
arbitrary waveforms it is not appropriate for analyzing and understanding audio signals.
The way we perceive and understand audio signals as humans is based on and constrained
by our auditory system. It is well known that the early stages of the human auditory

system (HAS) decompose incoming sound wave into different frequency bands [19].

Researchers usually avoid modelling raw audio because it ticks so quickly: typically
16,000 samples per second or more, with important structure at many time-scales, but as
mentioned earlier in the beginning of this section some research groups found interest in

using the raw audio features as input to speech recognition models.

Time

Figure 2.2-2 Raw Features of a single word

2.2.3 Spectral Shape Features

Mel-Frequency Cepstral Coefficients (MFCCs) were very popular features for a long

time; but more recently, filter banks are becoming increasingly popular.

Filter Banks and MFCCs involve the same procedure, where in both cases filter banks
are computed with a few more extra steps MFCCs can be obtained a signal goes through
a pre-emphasis filter; then gets sliced into (overlapping) frames and a window function

is applied to each frame; afterwards, a Short-Time Fourier Transform is applied and the
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power spectrum is calculated; subsequently the filter banks are computed. To obtain
MFCCs, a Discrete Cosine Transform (DCT) is applied to decorrelate the resulting
feature vectors retaining a number of the resulting coefficients while the rest are
discarded. A final step in both cases, is mean normalization.

Figure 2.2-3 Spectrogram of a single word

2.3 SOFTWARE TOOLS
2.3.1 Python

Python is an interpreted, object-oriented, high-level programming language with
dynamic semantics. Its high-level built in data structures, combined with dynamic typing
and dynamic binding, make it very attractive for Rapid Application Development, as well
as for use as a scripting or glue language to connect existing components together.
Python's simple, easy to learn syntax emphasizes readability and therefore reduces the
cost of program maintenance. Python supports modules and packages, which encourages
program modularity and code reuse. The Python interpreter and the extensive standard
library are available in source or binary form without charge for all major platforms, and
can be freely distributed [20].

2.3.2 TensorFlow
TensorFlow is an open source software library for high performance numerical
computation. Its flexible architecture allows easy deployment of computation across a
variety of platforms (CPUs, GPUs, TPUs), and from desktops to clusters of servers to
mobile and edge devices. Originally developed by researchers and engineers from the

Google Brain team within Google’s Al organization, it comes with strong support for
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machine learning and deep learning and the flexible numerical computation core is used

across many other scientific domains [21].

2.3.3 Keras

Keras is a high-level neural networks library, written in Python and capable of running
on top of either TensorFlow or Theano (Keras, 2017). It was developed with the purpose
of enabling fast experimentation. Providing results with the least possible delay, Keras
constitutes a key for good research. It is designed on the following properties: modularity,
so many functions, graphs and neural layers to create new models when combined
together, minimalism, that it is important each module to be short and simple and easy

extensibility, the ability to add new models [22].

2.3.4 Jupyter Notebook
The Jupyter Notebook is an open-source web application that allows the creation and
sharing of documents that contain live code, equations, visualizations and narrative text.
Uses include: data cleaning and transformation, numerical simulation, statistical

modeling, data visualization, machine learning [23].
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IMPLEMENTATION AND RESULTS

In this chapter the implementation of a speech recognition system using RNN, LSTM
and CTC, the main purpose is to implement an end to end model capable of doing
phoneme level recognition without the need of a phoneme labeled database. The model
is to be trained on an Arabic speech corpus that was adapted for the purpose of this

project.

All the scripts in this section were written in python.

3.1 ARABIC SPEECH CORPUS

The Arabic Speech Corpus is a Modern Standard Arabic (MSA) speech corpus was
mainly built for speech synthesis purposes. The corpus contains phonetic and
orthographic transcriptions of more than 3.7 hours of MSA speech. The annotations
include word stress marks on the individual phonemes. The corpus contains an extra

separate 18 minutes of fully annotated corpus which was used for evaluations [24].

Transcription of the corpus is in a modified Buckwalter Arabic transliteration that
provides a strictly one-to-one mapping, unlike the more common Romanization schemes
that add morphological information not expressed in Arabic script which is undesirable

for the application of this report, more information about it can be found in the Appendix.

The Arabic Speech Corpus was built as part of a doctoral project by Nawar Halabi at the
University of Southampton funded by MicroLinkPC who own an exclusive license to
commercialize the corpus, but the corpus is available for strictly non-commercial

purposes through the official Arabic Speech Corpus website.

3.2 CORPUS ADAPTATION

In speech recognition each language has its own set of challenges and properties, one of
the challenges faced in building an Arabic speech recognition system was the lack of

specially built and tested corpuses.

The corpus at hand provided audio wav files of 1813 sentences with their transcription,
in addition to 100 sentences that was used for testing and validation purposes.

Data preparation is an important task in deep learning as the data has to be in a format

that allows to first layer of the model to extract the features.
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Since the Arabic speech corpus wasn’t tested on ASR before, it was preferred to provide
at least two levels of labeling, word level labeling, and phrase level labeling that was

already available.

"ARA NORM ©€0l1l.wav" ">atAHat lilbA}iEi lmutajaw~ili >an yakuwna jA*iban
lilmuwATini l>agal~i daxlan"
"ARA NORM ©@02.wav" ">aHrazat muntaxabAtu lbarAziyli wa>lmAnyA waruwsyA - fawzan
fiy mugAbalAtihim 1<iEdAdiy~api l~atiy >ugiymat istiEdAdan linihA}iy~Ati ka>si
1EAlam - >al~atiy satanTaliqu baEda >agal~i min >usbuwE"

"ARA NORM @@e3.wav" ">axfaga majlisu lh~uw~Abi 1ll~ubnAniy~u fiy xtiyAri raliysin
jadiydin 1ilbilAdi - xalafan lilr~al}iysi 1HAliy~i 1l~a*iy tantahiy wilAyatuhu fiy
1xAmisi wAlEi$riyn - min mAyuw >ayAra lmugbil”

"ARA NORM ©604.wav" "<i* sayaHDuru ligA'a ha*A 1lEAmi xamsun wa”alA“uwna minhum"

Figure 3.2-1 Orthographic transcription format for each audio file in the corpus

To do so an open source software for phonetic analysis called Praat was used. Praat was
chosen because it was the same software used to make the corpus and for its strong

scripting environment that enables the automation of tasks which was very important.

The creator of the corpus also provides Textgrid files which marked the alignment of the

transcription with the audio file, this can be viewed in figure 3.2-2.

5029975  1.257009 (0.796 / s) ‘6 286984

11D H7

| ¥ W
n I phones
1| (166)

a

sil

__ .| haDab JAlt~bil fi | Alo>akaAdiymiy | AlS~iyniy |.. . . altasotamir—~|darajaAt|AloHaraA Jwamus words
-2 . . : -7 fliloEuluwmil il - s
ap1 |y ~api1 ~apl1 no a u rapi  [otaway|(11/26)

z accor ther The 1
ding t e’s 0soul [0
1214975 [ 1257009 5158016

15000 |3.815000 Visible part 7.630000 seconds 11445000 3815

Total durafion 15.260000 seconds

Figure 3.2-2 Praat editing interface

Based on these marks a Praat script had been developed to go through all the speech
corpus segment the phrase long audio files into word with the appropriate label for each

word.

The script took as in put each phrase long audio file and the corresponding Textgrid file
which provided orthographic transcription and the boundaries for each word, the output
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of the script was folders for each audio file that contained multiple audio wav files with
a txt file that contained the transcription of each new file, this can be viewed in the figure
3.2-3 which represents the output of the script for an input phrase audio file which
contained 9 words and 2 silence files.

LY,

T 2.wav File Edit Format View
e 2.wav Help
b dowav |5 i 1 o
Sway >atAHat
m €0 1i1bA}iEi
~ élwav lmutajaw~ili
[ Cowaw
mﬂ Jowav >an
I 10.wav yakuwna
R 11.wav jA*iban
=| ARaNORM 0001.T. 11i1muwATini
l1>agal~i
daxlan
sil 5

Figure 3.2-3 The output of the audio segmentation script
The script was applied on both the training the test sets and gave as output 6772 audio
file from the training set and 644 audio file from the test set, with this we had at least 2
representations to test the model on, it should be also noted that the same script could
have been used to get the phonemes level labeling of the corpus.

3.3 PREPROCESSING

3.3.1 Audio preprocessing
The audio signals had to be preprocessed before feeding them as in put to the neural
networks, the raw normalized spectrogram was the format of choice for the work of this

report.

The first step was to explore the dataset, a script that takes an audio wav file and plots its
wave plot and spectrogram was developed, it was mostly useful in further steps of the

project for debugging purposes.
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0 01 0.2 0.3 04 0.5
Time

: plt.figure(figsize=(17,4))
librosa.display.specshow (melgram, sr=samp rate, x_axis='time',y axi=='mel’)
plt.colorbar(format="%+02.0f 4B')
plt.show ()

+3dB
|+2 dB
+1dB

+0dB
-1d8
-2d8

Figure 3.3-1 Mel scaled spectrogram and wave plot of an audio file for the word ‘maEohadu’

o 01 02 03 0.4 05 06
Time

After having acquired a tool to visualize the data, the main script to process the speech
corpus has been developed, the script took as input an audio file, resampled it at 22050Hz,
and computed its normalized spectrogram and gave an output array of shape

(timesteps * 161) which has been used later on as input to the neural network.
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print (x.shape
print (x)

(2, 1el}

[[ 1.3061E853 1.60028362 1.80817141 ..., —-0.44543381 -0.38010482
-0.3B8373428]

[ 1.1530%96253 1.392B77e7 1.31785827 ..., -0.6838973621 -0.38613215
-0.58108819]

[ 1.04274239 0.90352317 0.454094975 ..., -1.330576d4 -1.330537e4

-1.330537e4 1]

l

[ 0.544459098 0.38925801 0.82008895 ..., —-1.64685924 -1.64685924

-1.846E85824]
[ 0.723820844 0.47EQE13 0.71800355 ..., -1.51006057 -1.33356244
-1.38190009]
[ 1.053126674 0.96342214 0.99870807 ..., -1.412495314 -1.14432%962

-1.1821035511

Figure 3.3-2 Audio features array

3.3.2 Text preprocessing
The text labels were in a modified Buckwalter format which produced an alphabet of 46
character, a one-to-one char map was created each character taking an integer in the range
0 to 45, and this gave a way to transform each word into a vector based on the characters
it contained.

{'q': 29, 'm's 32, '*': 16, 'a': 41, 'w': 42, 'E': 13, 'i': 43, 't': 10, '£': 28, 'd': 15, ')
g, "ML, 'ghi 26, ' 27, D't 24, 'D': 22, 'E': 25, '8':2l, 'b'r g, 's': 19, 'n': 34,
ks 30, '<SPACED': 0, 'T': 23, '§': 12, 'z': 18, 'N': 39, 'V': 36, 'x': 14, 'A': 7, 'y': 37,
g4, 'rt 17, to's 45, ''r 2, '§': 20, "w': 35, '1': 3L, 'K': 40, >':3, 'm': 33, '<': 5
JTMLL, Tpr 9, TR 38, ' 44

Figure 3.3-3 Speech corpus alphabet character map
Two other scripts had been developed for two functions text_to_int_sequence which took
a string and gave an array of numbers using the character map, and another function
int_sequence_to_text which did the inverse, the second function was used in a further

step of the project to retransform the network output into text again.
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input ch="kam? tam~a taHsiynu whAjihAti lt~anag~ul wAxtiyAri wasA}ili ln~agli"
i:nt_sgquence=text_to_int_sequence (input_ch)

word =int sequence to text(int sequence)

print (input _ch

print(int sequence)

print ("' .]Toin (word ))

kamA tam~z taHsiynu wAjihati lt~anag~ul  whAxtiyAri wasi}ili ln~agli

[30, 41, 32, 7, 0, 10, 41, 32, 44, 41, 0, 10, 41, 13, 19, 43, 37, 33, 42, 0, 35, 7, 12, 43, 3
4, 7, 10, 43, 0, 31, 10, 44, 41, 33, 41, 29, 44, 42, 31, 0, 0, O, 35, 7, 14, 10, 43, 37, 7, 1
7, 43, 0, 35, 41, 19, 7, &, 43, 31, 43, 0, 31, 33, 44, 41, 258, 31, 43]

kamA tam~z taHsiynu wAjihati lt~anag~ul  whxtiyAri wasa}ili ln~aqli

Figure 3.3-4 Text preprocessing

3.3.3 Arabic speech corpus preprocessing
A new script had been developed using the tools developed from the previous two
sections this script processed the whole Arabic speech corpus and gave back the arrays

that had been used in later parts of the project to train a speech recognition model.

The script took as input the link to the Arabic speech corpus and a csv file, audio
preprocessing was performed to acquire the arrays which were saved in a new directory
in a .npy format, the csv file contained the duration, numpy array path and the label for

each sample.

The processing was performed on both training and test set.

: | #preprocess the test set
csv_f = open('test.csv', "at'
process_AraSpeechCorpus (csv_f,test_dir)
csv_f.close()

ARA NORM 00015 .wav A
16758 22050

Arabic Speech corpus preprocessing (9 / €44) - 'E:\Lectures\Masters\FYP Masters\arabic-speech-corpusi\slices\test se
t\ARA NORM 0001\10.wav']

ARR NORM 000110.wav

14774 22050

Arabic Speech corpus preprocessing (10 / €44) - "E:\Lectures\Masters\FYP Masters\arabic-speech-corpus\slices\test =
et\ARA NORM 0001\1l.wav']

ARR NORM 000111.wav

2205 22050

Lrabic S3peech corpus preprocessing (11 / €44) - "E:\Lectures\Masters\FYP Masters\arabic-speech-corpus\slices\test s
et\ARZ NORM 0002\1l.wav']

ARR NORM 00021.wav

2426 22030

Arabic S3peech corpus preprocessing (12 / €44) - "E:\Lectures\Masters\FYP Masters\arabic-speech-corpus\slices\test s
et\ARZ NORM 0002\2.wav']

ARR NORM 00022.wav

17420 22050

Arabic Speech corpus preprocessing (13 / €44) - "E:\Lectures\Masters\FYP Masters\arabic-speech-corpusi\slices\test s
et\ARZ NORM 0002\3.wav'] v

Figure 3.3-5Test set preprocessing
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: | #Preprocess the training set

csv_f = open{'#:ain.:sv‘,

)

process RAraSpeechCorpus (csv_f, train_dir)

csv_f.cloae()

Arabic Speech corpus preprocessing (0 / €772) - 'E:\Lectures\Masters\FYP Masters\arabic-speech-corpus\slices\Traini

ng set\ZRE NORM 0002\1.wav']

LRE NORM 00021.wav
2205 22030

A

Arabic Speech corpus preprocessing (1 / 6€772) - 'E:\Lectures\Masters\FYP Masters\arabic-speech-corpus\slices\Traini
ng set\ZRA NORM 0002\Z.wav']

ARR NOBM 0002Z.wav
15412 22050

Arabic Speech corpus preprocessing (2 / 6772) - 'E:\Lectures\Masters\FYP Masters\arabic-speech-corpus\slices\Traini
ng set\ARA NORM 0002\3.wav']

LRA NORM 00023.wav
14391 22050

Arabic Speech corpus preprocessing (3 / 6772) - 'E:\Lectures\Masters\FYP Masters\arabic-speech-corpus\slices\Traini
ng set\ARA NORM 0002\4.wav']

LRR NORM 00024.wav
10126 22050

Arabic Speech corpus preprocessing (4 / €772) - 'E:\Lectures\Masters\FYP Masters\arabic-speech-corpus\slices\Traini
ng set\ARA NORM 0002\5.wav']

LRR NORM 00025.wav

Figure 3.3-6 Training set preprocessing

The audio and label files were of different length as they depended on the length of the

audio file and transcription of the word, for this reason the next step had been to zero

pad both the input arrays (audio features) and the output arrays (labels), but also with

keeping the original input and output lengths in separate arrays.

The preprocessing returned 8 arrays, the_input, the_labels, input_length and

label_length.

train inputs =

{'the input’:

X train,

"the labels': ¥ train,
train input length,
train labkel length

'input length':
'label length':

}
test inputs = {'the input': X test,
'the labels': ¥ test,
'input length': test input length,
'label length': test label length .,
H

Figure 3.3-7 Dataset arrays after preprocessing

3.4 ARABIC SPEECH RECOGNITION

3.4.1 First experiment

Given their effectiveness in modeling sequential data, the first model has been chosen to

be a RNN. The RNN takes the time sequence of audio features as input.
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At each time step, the speaker pronounces one of 46 possible characters defined

previously in the character map.

The output of the RNN at each time step is a vector of probabilities with 47 entries, where
the i-th entry encodes the probability that the i-th character is spoken in the time
sequence. (The extra character is an empty "character" used to pad training examples

within batches containing uneven lengths.)

Layer (type) Cutput Shape FParam #
the input (InputLayer) (Mone, None, 161) Qa

ronn  (LSTM) (Hone, None, 200) 2B9g00
bn_rnn 1d (BatchNormalizatic (None, Neone, 200) 200
time distributed 7 (TimeDist (None, None, 47) 9447
softmax (Bcoctiwvation) (Mone, None, 47) Qa

Total params: 299, EB47
Trainable params: 299,447
Non—trainakle params: 400

None

Figure 3.4-1First model summary

The sliced dataset contained a lot of silences which caused many problems in training

so the silences has been removed from the dataset.

Training X shape: (3900, 97, 1le1)

Training ¥ shape: (3900, 30}

Numker of unigue words in the training set: 3157
Test ¥ shape: (470, &6, 1g1)

Test ¥ shape: (470, 1&)

Numkber of unigue words in the test set: 434

Figure 3.4-2Information about the training and test data

The model was interrupted at 25 epochs of the planned 100, the training was done on the
full training set (after removing the silences) and the validation was done on the full test

set, the details can be viewed in the figures below.
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Epoch 20/100 '
3900/3%900 [ ] - 110s 28ms/step - loss: 2.1828 - acc: 0.3010 -

val loss: 16.1933 - val acc: 0.0000e+00

Epoch 21/100

3900/3%900 [ 1 - 1125 2%ms/step - loss: 2.0088 - acc: 0.3215
val loss: 16.1085 - val acc: 0.0000e+00

Epoch 22/100

3900/3%900 [ ] - 10%s 28ms/step - loss: 1.8605 - acc: 0.3490 -
val loss: 19.5041 - val acc: 0.0021

Epoch 23/100

3900/3%900 [ ] - 111s 28ms/step - loss: 1.7132 - acc: 0.3762
val loss: 17.3116 - val acc: 0.0021

Epoch 24/100

3900/3%900 [ 1 - 111s 28ms/step - loss: 1.6154 - acc: 0.3890 -
val loss: 1€.0840 - val acc: 0.0021

Epoch 25/100

3440/3900 [ >....] - ETA: 135 - loss: 1.4556 - acc: 0.4267

KeyboardInterrupt Traceback (most recent call last) \

Figure 3.4-3Training of the first model

Loss
100 1 —— Training loss {1.61537)
— Walidation loss (16.08400)
m -
m 4
i
5
_qD -
20
D -
0 5 10 15 20 25

Epochs

Figure 3.4-4 Train and Validation loss of the first model

The model was performing well on the training set but not so well on the test set, which
suggested the model wasn’t generalizing well and was going to over fit on the training

data, which was behind the reason for stopping the training to try a different model.

3.4.2 Second Experiment

One shortcoming of conventional RNNs is that they are only able to make use of previous

context. In speech recognition, where whole utterances are transcribed at once, future
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context could help the recognition especially that how the phonemes are pronounced

depend on the word itself.

For this reason the second model was chosen to be a bidirectional RNN (BRNN).

Layer (type) Cutput Shape Param #
the input (InputLayer) (Hone, HNone, 1al) a
bidirectional 5 (Bidirection (None, None, 400} 379200
time distributed 5 (TimeDist (None, None, 47) 18847
softmax (Activation) (Hone, MNone, 47) a

Total params: 598,047
Trainakle params: 598,047
Non—-trainakle params: 0

Figure 3.4-5 Second model summary

The same training set and validation set as the previous experiment were used to train

the model for 15 epochs.

Loss
wod Training loss {1.72650)
' — Validation loss (20.89678)
17.5 4
15.0 4
i 12.5 4
3 1000 4
7.5 1
5.0 1
25 1
2 4 B B 10 12 14
Epochs

Figure 3.4-6Train and validation losses of the Second model

The model performed well on the training set, but after the 4" epoch the model started

to over fit over the training set.
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3.4.3 Third Experiment
Based on the first two experiments it has been decided to add a convolutional layer at
the input of the model and to experiment with different type of RNN architecture, the

summary of the model can be viewed in the figure 3.4-7 .

Laver (tvpe) Cutput Shape Faram #
the input (InputLayer) (None, None, l1gl) a
convld (ConvlD) (Momne, None, 200) 3254400
bn conv_1d (BatchMormalizati (Mone, Nons, 200) 800

ron (GRIT) (Mone, None, 200) 240500
bn rnn 1d (BatchNormalizatio (MNone, None, 200) 800
time distributed 13 (TimeDis (None, None, 47) 9447
softmax (Activation) (None, HNone, 47) a

Total params=s: 606,047
Trainakbkle params: 03,247
Non—trainakle params: B00

Figure 3.4-7 Third model summary

The model has been trained with the same dataset for 10 epochs.

Loss

225 1
200 1
175 A

150 -
i — Training loss (32.21497)
125 1 —— validation loss (196.80327)

100 1

Lo

25 - T T T T T

Epochs

Figure 3.4-8Training and validation losses of the third model

Again, the model performed well on the training set but wasn’t able to generalize well
as it has been noticed on the validation loss to be fluctuating and not decreasing with

the training loss.
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3.4.4 Fourth Experiment

Based on the previous experiments it has been decided to try with an architecture

similar to the one in the third experiment, the summary of the model can viewd in the

figure below.
Laver (twvpe) Cutput Shape FParam #
the_ input (Inputhaver) (Mone, None, 18l1) Q0
layer 1 conv (ConwlD) (HMone, None, Z00) 3254400
conv_batch norm (BatchMNormal (Mone, None, 200) 800
ronn_ 1 (GRIT) (HMone, None, Z50) 338250
bt _rnn 1 (BatchMormalization (Mone, None, 250) 1000
final layer of rnn (GRU) (HMone, None, Z50) 275750
bt _rnn final (BatchMNormaliza (Mone, None, 250) 1000
time distributed 1 (TimeDi=st (Mone, None, 47) 11797

zoftmax (Actiwvation) (HMone, None, 47) Q

Total params: 1,082,997
Trainable params: 1,081,597
Mon—trainakle params: 1,400

Figure 3.4-9 Fourth model summary

Training of the model with the segmented data generated a lot of errors related to the
CTC implementation of TesorFlow, so it has been decided to try with the full phrases
as input to the model and was trained for 25 epochs, using the full 100 samples from
the test set for validation.

Training X shape: (1813, 13537, 1lel}

Training ¥ shape: (1813, 461)

Number of unigue phrases in the training set: 1813

Test X shape: (100, 1233, 161}

Te=t ¥ shape: (100, 303)
Number of unigue phrases in the test =set: 100

Figure 3.4-10 Training and validation data for the fourth model
The model performed well, which was encouraging to investigate more about the
performance of the model, and testing on the combination of 4 test samples (44, 57, 100,

21) combined into one set gave the following results, and for comparison reasons the true

transcription versus the predicted transcription were put side to side.
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Test set example, samples 44,57,100,21
True transcription:

kamA tam~a taHsiynu wAjihAti lt~anag~ul  wAXtiyAri wasA}ili Iln~agli IlmunAsibapi biSaklin kab
iyr minhA »agmiSapun waradawAtun maEdaniy~apun waxa$Sabiyv~apun  waginAnun blAstiykiy~apun wa
zujAjiy~apun warawrAqu SuHuf wayumkinuka lHuSuwlu EalY taTbiygAtin lilt~adriybAti l>asAsiy~ap
i maj~Anan jamFu lmu&ana~"i lsa~Alimi mi~la  fAzat <iHdY 1Ta~AlibAti fiy musRbagapi lgirA'At
i lqurrAniya~pi

Predicted transcription:

kaBAmah tarm~a doaAHosiyn waAjihaAti Alt~anag~u o waBxotiyaAri wasalA}ili Al~agori AlmuwlaAsi
bati biSakolay mokabiyro N minohal agomi$Sapu lw<adawAtN luEiadaniy~apN waxaSibiy~atk waqgly
naaAnu lolaAsoivkiy~apN wzujaljiy adpu AlowaraworahAquSuHa ofo dm wayumobkilu kali Hu Suwlu Eal

Y tauDobi y gaAtK lilt~adolAlyibaAti Alo<i>isaAsiy~ap malj~aAnAF DjamoE Alomusan~a”~i Als~aAl
imiymizola faAza to<iaHoda taRlibaAti fiy muSaAbagai AlogilaA'aAti Aloquraoc|nniy~api F

Figure 3.4-11 True and predicted transcriptions for test samples (44, 57, 100, 21)

Getting these encouraging results called for a true metrics of ASR systems Word error
rate (WER).

WER is derived from the Levenshtein distance, working at the word level instead of the
phoneme level. The WER is a valuable tool for comparing different systems as well as

for evaluating improvements within one system.

number of substitutions + number of deletions + number of insertions

WER

3.1

number of words in the reference

A python script was adapted to compute the WER for the model, the script took two
inputs the hypothesis (predicted transcription by the model) and a reference (the true
transcription), for this the model was fed the total test set and the output values were
saved into a list, the true transcription was taken directly from the dataset, this gave two
lists of 100 entry each, one for the predicted transcription and one for the true
transcription, the WER was computed for each sample of the data set and were stored
in an array of 100 entries, the final WER for the model on the test set was computed by

averaging the WERs of each single sample.

This gave a WER of 0.3523 i.e. a word accuracy Wacc = 64.77%.
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GENERAL CONCLUSION

Throughout the period of working on this project an end to end Arabic speech recognition
system using recurrent neural networks was implemented; an unknown and untested
Arabic speech corpus for automatic speech recognition was explored, segmented and
used to train the different models. A final model was selected from the results of testing
various models; this model showed good results which encouraged to go further and use
a real metric for speech recognition (word error rate) which gave fairly good results of
64.77% word accuracy.

The obtained results proved the effectiveness of RNNs in dealing with temporal Data and

in ASR in particular.

Buckwalter Arabic transliteration proved to be an effective representation of the Arabic
text versus other Romanization schemes that add morphological information not

expressed in Arabic script.

Audio features representation is an important step in ASR and finding a good

representation of audio is one of the various challenges not addressed by this work.

As future work, adding a language model to increase the accuracy of the system could be
explored, another method to improve the performance of the system would be better
audio feature representations as it would allow to build performant speech recognition
systems through general transcribed audio datasets that aren’t created for the purpose of
speech recognition; this could be especially helpful in languages where there is a lack in

specialized datasets.
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APPENDIX

BUCKWALTER ARABIC TRANSLITERATION

The Buckwalter Transliteration is a strict transliteration of Modern Standard Arabic
orthographical symbols using only 7-bit ASCII characters. It is used for representing
exact orthographical strings of Arabic in email and other environments where the display
of real Arabic script is impractical or impossible. There is a strict one-to-one mapping
back and forth from UNICODE to Buckwalter Transliteration, without gain or loss of
ambiguity. Arabic text in ASMO 449 and 1SO8859-6 can also be translated into
Buckwalter Transliteration (or UNICODE), but the reverse mapping is hindered by the

lack of a couple of (rare) characters.

Name Buckwal ISO ASMO Window Glyp
(Unicode name) UNICODE ter 8859-6 449 s1256 h
hamza-on-the-line
(Arabic letter \u0621 ' C1 A C1l 3
hamza)
madda
(Arabic letter alef ~ \u0622 C2 B C2 I

with madda above)

hamza-on-alif
(Arabic letter aleph \u0623 > C3 C C3 ‘
with hamza above)

hamza-on-waaw
(Arabic letter waw \u0624 & C4 D C4 9
with hamza above)

hamza-under-'alif
(Arabic letter aleph \u0625 < C5 E C5 'I
with hamza below)

hamza-on-yaa'

(Arabic letter ;
yeh with hamza \u0626 } C6 F C6 (s
above)
bare ‘alif \u0627 A c7 G c7 \

(Arabic letter alef)



APPENDIX

baa'

]
(Arabic letter beh) 10628 b C8 H c8 -
taa' marbuuTa
Arabic letter teh \u0629 C9 | c9 o
( D s
marbuta)
taa' .
(Arabic letter teh) \u062A t CA J CA k)
thaa' .
(Arabic letter theh) 0628 v CB K CB (™)
jiim
(Arabic letter \u062C j cC L cC :
jeem)
Haa'
(Arabic letter hany 062D H CD M CD C
khaa' ‘
(Arabic letter \u062E X CE N CE C
khah)
daal
(Arabic letter dal) \u062F d CF 0 CF 3
dhaal . .
(Arabic letter thal) 10830 DO P DO
raa'
(Arabic letter reh) 0631 r D1 Q D1 D
zaay .
(Arabic letter zain) \u0632 Z D2 R D2 )
siin
(Arabic letter seen) 0633 S D3 S D3 (M
shiin .
(Arabic letter \u0634 $ D4 T D4
sheen)
Saad

(Arabic letter sad) \0635 S D5 U D5
Daad
(Arabic letter dad)

Taa'

(Arabic letter tah)

e
L}-ﬂ
\u0636 D D6 v D6 o
\u0637 T D7 W s L

Zaa' (DHaa')

(Arabic letter zah) \u0638 Z D8 X D9 A
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cayn
(Arabic letter ain)

(Arabic letter
ghain)

taTwiil
(Arabic letter
tatweel)

faa'
(Arabic letter
feh)

gaaf
(Arabic letter

qaf)

kaaf
(Arabic letter kaf)

laam
(Arabic letter lam)
miim
(Arabic letter
meem)

nuun
(Arabic letter noon)

haa'
(Arabic letter heh)

waaw
(Arabic letter waw)

‘alif magSuura
(Arabic letter alef
maksura)

yaa'
(Arabic letter yeh)

fatHatayn
(Arabic fathatan)

Dammatayn
(Arabic dammatan)

kasratayn
(Arabic kasratan)

fatHa
(Arabic fatha)

\u0639

\u063A

\u0640

\u0641

\u0642

\u0643

\u0644

\u0645

\u0646

\u0647

\u0648

\u0649

\uO64A

\u064B

\u064C

\u064D

\uO64E

D9

DA

EO

El

E2

E3

E4

E5

E6

E7

E8

E9

EA

EB

EC

ED

EE

0x60

DA

DB

DC

DD

DE

DF

El

E3

E4

ES

E6

EC

ED

FO

F1

F2

F3

v C, o (o

C-
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Damma
(Arabic damma)

kasra
(Arabic kasra)

shaddah
(Arabic shadda)

sukuun
(Arabic sukun)

dagger ‘alif
(Arabic letter
superscript alef)

waSla-on-alif
(Arabic letter alef
wasla)

\u064F

\u0650

\u0651

\u0652

\u0670

\u0671

EF 0
FO p
F1 q
F2 r

(missin ~ (missin
9) 9)

(missin  (missin
9) 9)

F5

F6

F8

FA

)

)

(missing

(missing

e It should be noted that in the corpus used for this work the Arabic letter Thaa’

& was mapped to “* instead of ‘v’.
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