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Abstract: Concerning human and environmental health, safe alternatives to synthetic pesticides are
urgently needed. Many of the currently used synthetic pesticides are not authorized for application in
organic agriculture. In addition, the developed resistances of various pests against classical pesticides
necessitate the urgent demand for efficient and safe products with novel modes of action. Botanical
pesticides are assumed to be effective against various crop pests, and they are easily biodegradable
and available in high quantities and at a reasonable cost. Many of them may act by diverse yet
unexplored mechanisms of action. It is therefore surprising that only few plant species have been
developed for commercial usage as biopesticides. This article reviews the status of botanical pesticides,
especially in Europe and Mediterranean countries, deepening their active principles and mechanisms
of action. Moreover, some constraints and challenges in the development of novel biopesticides
are highlighted.

Keywords: botanical insecticides; botanical herbicides; botanical fungicides; Mediterranean region;
bioactive substances; mechanism of action

1. Introduction

To maximize food production for feeding the ever-increasing human population,
a remarkable growth in the agrochemical market has been recorded worldwide. This
increased demand has resulted in the development and wide acceptance of synthetic
agrochemicals for managing crop pests and weeds. Plant protection products, such as
synthetic insecticides and herbicides, have helped to maintain and increase agricultural
yields for a long time. However, the use of chemical pesticides has also had numerous

Biomolecules 2022, 12, 311. https://doi.org/10.3390/biom12020311 https://www.mdpi.com/journal/biomolecules

https://doi.org/10.3390/biom12020311
https://doi.org/10.3390/biom12020311
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/biomolecules
https://www.mdpi.com
https://orcid.org/0000-0002-0982-727X
https://orcid.org/0000-0003-3441-0553
https://orcid.org/0000-0001-5616-8505
https://orcid.org/0000-0002-9832-8279
https://orcid.org/0000-0002-6389-692X
https://doi.org/10.3390/biom12020311
https://www.mdpi.com/journal/biomolecules
https://www.mdpi.com/article/10.3390/biom12020311?type=check_update&version=2


Biomolecules 2022, 12, 311 2 of 30

negative effects on human health and the environment [1–4]. The emergence of resistant
insects and weeds still underscores the urgent need for novel and safe products. In
developing countries, pesticides and herbicides are still frequently used in agriculture
without control. These examples highlight the increasing demand for organic products and
alternative eco-friendly approaches to substitute some of the synthetic pesticides [5]. For
many years, botanical pesticides have been considered as gained alternatives to synthetic
pesticides, due to their limited risk for the environment and humans. It has not been
determined exactly when humans began to use plants and their metabolites as pesticides
against insects and microbes, but it is already related to the onset of agriculture [6,7].
In Europe and North America, botanical pesticides have been applied for more than
150 years, much earlier than the discovery of the major classes of synthetic pesticides [8]. In
Africa, the use of several plants, due to their suppressive activity to pests, has a centuries-
long tradition passed down through the generations [9,10]. In modern agriculture, some
botanical pesticides have already been registered in managing different crop pests, such
as neem oil and pyrethrins. The benefits from the use of biopesticides include their low
persistence and residuality, preventing environmental pollution and minimizing adverse
effects on living organisms [11]. They can exhibit high host specificity, resulting in a delayed
knockdown, and they are less prone to pest resistance [11]. Their highly versatile chemical
structures (for examples, see Figure 1) arise from the enormous biosynthetic capabilities
of plants.
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In the first part of the present review, the structural basis and mechanistic principles of
the currently used botanical insecticides, herbicides and fungicides in Europe and Mediter-
ranean countries are summarized. In the second part, recent challenges and prospects in
developing novel biopesticides are discussed.

2. Bioactive Principles in Botanical Pesticides

Botanical pesticides (“botanicals”) are characterized by bioactive mixtures/extracts/
compounds from plant materials, which serve as insecticides and repellents but also as
bactericides, fungicides, herbicides and nematicides [8]. In retrospect, the selection of
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effective botanical pesticides was carried out either through (i) testing the efficiency of
traditional pesticidal plant extracts or substrates and identifying their active compounds
or (ii) by a targeted or untargeted screening of some plant families selected after survey,
which were then subjected to chemical analysis of their potential active compound(s) [12].

The industrial development and production of new botanical pesticides are chal-
lenging and, e.g., require (i) availability of pesticidal plant resources in a sustainable and
large-scale manner, (ii) standardization in the processing of phytochemical substrates and
performance of quality assurance protocols, and (iii) authorization approval, which implies
extended record data on the environmental fate of the bioactive substrates and possible
toxic effects on non-target organisms.

Moreover, the combined use of biopesticides and biofertilizers can improve soil health
status and prevent environmental pollution, thereby promoting sustainable agriculture [13].
Yadav et al. [14] reported that the adoption of organic farming practices through combined
application of biofertilizers and biopesticides increases sustainability in plant cultivation.
The use of biopesticides in combination with natural enemies can also enhance crop produc-
tion [15]. The detailed mechanisms of these combinations are less known, but compatibility
interactions among various biocontrol agents that act synergistically appear to be key
parameters to improve plant protection in the future [16].

The active principles of botanical pesticides, especially the unique structural motifs of
secondary metabolites, e.g., alkaloids, essential oils including terpenes, flavonoids, phe-
nolics, phytosterols and polyketides as well as resins, are qualified to confer antibacterial,
antifungal, herbicidal and insecticidal action [17,18] (Figure 1). Essential oils (EOs) and
plant extracts are the botanical products most frequently used as biopesticides. Their
action relies on plant-synthesized molecules as part of their intrinsic defensive mecha-
nism against microbial pathogens and pests [19]: (i) To afford EOs, steam distillation is
the most frequently applied method [20], but they can also be obtained from plants by
fermentation, solvent extraction and enfleurage [21]. The obtained EO is a hydrophobic
concentrate comprising of volatile chemical compounds, including terpenes, and others,
namely alcohols, aldehydes, esters, fatty acids, ketones, phenols, as well as nitrogenous
and sulphuric compounds [22]. (ii) Plant extracts are typically obtained from dried plant
material, essentially by a solid/liquid extraction method using aqueous or organic solvents,
e.g., acetone, ethanol, hexane or methanol [23]. These extracts are relatively complex mix-
tures of biomolecules in a liquid or semi-solid state or, after having removed the solvent, in
a dry state. The typical bioactive compounds in biopesticidal extracts belong to secondary
metabolites of plants, such as alkaloids, saponins or sterols [18,24] (Figure 2).
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2.1. Alkaloids

Alkaloids, with more than 12,000 structures, form an exceptionally broad group with
highly diverse chemical structures. Therefore, a structural definition of alkaloids is difficult,
but criteria are (i) the low or medium molecular mass and the presence of one or more
heterocyclic nitrogen-containing rings derived from amino acids in their molecule and
(ii) the ability to provide an alkaline reaction in aqueous solution [25]. Alkaloids are found
in considerable quantities in several plant species belonging to Annonaceae, Apocynaceae,
Fabaceae, Fumariaceae, Lauraceae, Papaveraceae, Rubiaceae, Rutaceae and Solanaceae [26]
and are accumulated in the aerial part of these plants [27]. Among many other properties,
most alkaloids exhibit insecticidal activities at low concentrations. Typical examples of
insecticidal alkaloids are anabasine (from Anabasis aphylla), nicotine (from Nicotiana species),
ryanodine (Rayania; from Ryania speciosa) and veratridine (from Schoenocaulon officinale) [28]
(Figure 3).
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2.2. Phenolics

Phenolics are a highly heterogeneous group of plant secondary metabolites, identi-
fying more than 50,000 distinct structures. Typical examples for pesticidal phenolics are
shown in Figure 4. Their structures can be either simple (phenol: MW 94, identified in
some plant EOs) or complex, e.g., polyphenols, including anthocyanins (MW up to 2000)
and tannins (MW up to 20,000), identified in plant extracts. They can be further divided
into flavonoids (anthocyanidins, flavones, flavonols, flavanones, isoflavones, coumarins
and rotenoids) and non-flavonoids (phenolic alcohols, phenolic acids, stilbenes and lig-
nans) [26,28–30]. Phenolics are involved in the attraction of pollinators as well as in the
protection of plants from ultraviolet (UV) radiation, microbial invasion, and herbivore
species [31,32]. According to Furiga et al. [33], phenolic compounds with antifungal prop-
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erties include anthraquinones with different modes of action, coumarin and its derivatives,
flavanols, flavonoids, simple-structured phenols, and tannins.
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2.3. Essential Oils

Essential oils (EOs) are derived from more than 17,500 known aromatic plants, mainly
belonging to angiosperms, e.g., Asteraceae, Lamiaceae, Myrtaceae, Rutaceae and Zingiber-
aceae [34]. They can be obtained from the flowers, leaves, roots or seeds of these plants
mainly by hydrodistillation. These distillates have a long history of usage in the perfume
and food industry, mainly due to the sensory properties of the obtained volatile compounds.
However, many compounds in these mixtures also exhibit pesticidal activities, mainly due
to their insecticidal and repellent properties. These active principles include terpenes, such
as 1,8-cineole (eucalyptol), β-caryophyllene, linalool, D-limonene, α-pinene, α-terpineol,
thymol, carvacrol, and α-thujone (Figure 5), which can be obtained, for example, from
orange oil, Lavandula angustifolia, Origanum majorana, Rosmarinus officinalis, Salvia officinalis,
Cannabis sativa, Tanacetum vulgare, and Thymus vulgaris [8,35,36]. EOs are attractive due to
easiness in preparation and chromatographic analysis, and due to the broad number of
plant species synthesizing this cocktail of volatile phytochemicals of potential pesticidal
usage [37].
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2.4. Limonoids

The neem tree Azadirachta indica (Meliaceae) produces a great variety of phytochemi-
cals, including alkaloids, fatty acids, polyphenols, saponins, terpenes and terpenoids [38,39].
Its most famous constituent, azadirachtin (Figure 6), is an active principle in many commer-
cial bioinsecticides (Table S1). The UV- and acid-labile compound is a tetranortriterpenoid,
which belongs to the class of limonoids. Generally, limonoids show complex structures,
most of them carrying four six-membered carbon rings and a furanolactone-type moiety
(for example, limonin and nomilin) (Figure 6). Limonoids have been identified, especially
in the plant order of Sapindales (e.g., Meliaceae and Rutaceae families) and the family
of Cucurbitaceae. For example, azadirachtin can be isolated from all parts of A. indica,
especially from the seeds, with reported concentrations of 4–6 mg/g seed [40].
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2.5. Pyrethrins

Dalmatian pyrethrum (Tanacetum cinerariifolium), also called pyrethrum daisy, pro-
duces a potent insecticide, commonly named pyrethrin. Commercially, pyrethrin represents
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the most exploited bioinsecticide with a long history of successful applications against
various insect pests [41] (see Table S1). Pyrethrin is a natural mixture comprising at least
six compounds categorized into two groups, namely “Pyrethrins I” (pyrethrin I, cinerin
I, jasmolin I; esters of chrysanthemic acid) and “Pyrethrins II” (pyrethrin II, cinerin II,
jasmolin II; esters of pyrethric acid) [42,43] (Figure 7). Pyrethrins I and Pyrethrins II are
plentiful in Tanacetum, especially in the flower heads (10–30 mg/g dry weight) [44].
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2.6. Polyketides

Polyketides, e.g., β-triketones (Figure 8), represent another abundant family of biopesti-
cides. They are biosynthesized from acetyl-CoA units by the action of polyketide synthases.
A typical representative of a plant polyketide is the β-triketone leptospermone, which
is produced by Myrtaceae spp., such as Leptospermum scoparium (manuka). β-Triketones
can act as herbicides by inhibition of 4-hydroxyphenylpyruvate dioxygenase (HPPD), an
enzyme that is relevant in the plant metabolism of tyrosine and the production of its
downstream products.

2.7. Fatty Acids

Lipids and fatty acids typically serve as solvents that, in conjunction with emulgators,
stabilize the active principles (such as azadirachtin or pyrethrins) in commercial biopesti-
cides. However recently, conjugated unsaturated fatty acids, such as rumenic acid, which
can be described as a conjugated linoleic acid (CLA) (Figure 9), have been shown to directly
act on insect pests, such as the Colorado potato beetle. Foliar application of a mixture
of CLAs demonstrated its insecticidal properties, inducing larval mortality, antifeedant
effects and reduced survival rates of the eggs [45]. As another example, pelargonic acid
from, e.g., Pelargonium roseum showed post-emergent herbicidal effects towards different
broadleaf and grassy weeds, for example, in Abutilon theophrast, Avena fatua, Brassica napus,
Chenopodium spp. and Portulaca oleracea [46–49].
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3. Botanical Insecticides
3.1. State of the Art

It is well established that botanical insecticides can repel the attacking insects, inhibit
their food ingestion, reduce their growth at various developmental stages, inhibit egg-
laying activities, or even directly kill the insects by irreversible inhibition of one or more
essential reactions in their metabolism. There is a wealth of literature documenting the
insecticidal properties of plants extracts and isolates therefrom [12,34,50–52]. For example,
Babaousmail and Isman [53] listed over 60 studies carried out in 1995–2015 that assessed
the insecticidal properties of botanicals in North Africa, targeting insects from the orders of
Coleoptera, Diptera, Hemiptera, Lepidoptera and Thysanoptera. Despite these abundant
promising results, botanical insecticides produced in North African countries have not
yet been exploited for use in the European market [6,17,50,53–55]. Nevertheless, recent
changes in European Union regulations have renewed the interest in these findings [54,56].

Along with these studies, especially relevant for Mediterranean countries, our knowl-
edge about the molecular mechanisms and bioactivities of plant derivatives, such as neem
(from Azadirachta indica), pyrethrins (from Chrysanthemum or Tanacetum) and various plant
EOs to arthropod pests, has expanded greatly over the last 20 years [6,57]. The modern
technologies in analytics and biological sciences can now also be used to identify and
optimize novel insecticides rationally.

Driven by the rapidly increasing knowledge about the modes of action of botanical
insecticides, a considerable number of commercial products has been developed and
registered for the European market (Table S1) [58]. Examples of commercially available
botanical insecticides of wide use are neem oil from Azadirachta indica and pyrethrins
from Tanacetum cinerariifolium [51]. However, the active principles present in most of these
products rely on only a few compounds, namely azadirachtin, pyrethrins, fatty acids, and
EOs. Notably, still little knowledge exists on scale-up production and applications of these
few principles [6].
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The same holds true for biopesticides in Africa, with a few products on the market
(Table S2), but in these countries, on-farm applications of pesticidal plants by resource-
limited smallholder farmers is a common practice [54]. The use of botanical insecticides
by low income farmers is mostly based on the preparation and application of home-made
aqueous extracts [59]. For example, aqueous extracts from neem leaves or seeds were suc-
cessfully tested against Hemipterans, Lepidopterans and Thysanopterans, resulting in su-
perior performance as compared to controls, probably reflecting the effects of azadirachtin
and other limonoids present in Azadirachta indica [59]. In field experiments, Patil and Nandi-
halli [60] controlled mites by applying neem aqueous extract and oil. Moreover, Degri
and Sharah [61] evaluated the performance of neem oil emulsions against fruit flies in the
field. Complete protection against bean weevil during cowpea storage was achieved by the
application of tobacco aqueous extracts [10]. Other home-made bioinsecticides commonly
used are garlic extracts due to the presence of allicin, extracts of chili peppers due to high
capsaicin content, mother of cocoa, due to the synthesis of coumarins, and clove basil, due
to its essential oils [59].

Finally, only less than 1% of all plant secondary metabolites have been examined
against insects. Moreover, only a few or even one insect species have been typically used
for evaluation of the bioactive compounds [62]. This underpins the great potential to
discover new bioinsecticides from plants in the future.

3.2. Modes of Action of Botanical Insecticides

Botanical insecticides can induce various modes of action on the target pest species,
including repellence, growth inhibition and modifications in their structure and physiol-
ogy (Figure 10). On this basis, botanical insecticides represent promising alternatives in
present and future pest management. The modes of action of some already established
bioinsecticides are summarized in Table 1.
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Table 1. Modes of action of some bioinsecticides.

Insecticide Main Mode of Action Remarks

Azadirachtin
Stops larval moulting by inhibiting ecdysteroids

synthesis (moulting hormones). Acts as repellent and
antifeedant. Causes sterility in adult females.

Broad spectrum insecticide targeting aphids,
whiteflies, fungus gnats and two-spotted mits.

Nicotinoids Mimic acetylcholine neurotransmitter. Banned by the EU in 2018, due to its harmful effect
on honeybees.

Pyrethrins Disruption of sodium and potassium ion exchange in
insect nerve fibres, leading to immediate paralysis. Synergized by piperonyl butoxide (PBO).

Ryanodine Acts as stomach poison, with ryanodine receptors
influencing the secretion of Ca2+. Synergized by PBO.

Rayania Inhibits cellular respiration (mitochondrial poison). Extremely toxic to fish and insects. EU announced in
2008 a phase-out of rotenone (EC 2008/317).

Rotenone Neurotoxic, causing paralysis and death. Synergized by PBO or N-octyl bicycloheptene
dicarboximide (MGK-264).

Sabadilla Repellent, anti-feedant, Na+ channel agonist, neurotoxic. Broad spectrum insecticide, mild activities, highly
toxic to bees.

Botanical insecticides affect insect behaviour, physiology, morphology and metabolism [8,28,63],
including growth and oviposition inhibition, ovicidal activities and the release of growth-reducing
triggers [64–69]. Specifically, many of them exhibit neurotoxic mechanisms via interference with the
neuromodulator octopamine or with GABA-gated chloride channels [8,70]. Among the different
developmental stages of insect pests, adults are typically more sensitive to botanical insecticides,
followed by larvae, pupae, and eggs [58].

Alkaloids: Many alkaloids interfere with nerve acetylcholine receptors (e.g., nicotine)
or membrane sodium channels (e.g., veratridine) of the insects. It is well known that
alkaloids also can exert a feeding deterrent action against numerous insects, such as
Choristoneura fumiferana [71] and Spodoptera littoralis [72]. Other alkaloids such as harmaline
and hermidine again affect the growth and development of insects, including Tribolium
castaneum, but their modes of action are not fully understood [73]. Ryanodine, an alkaloid
compound from the plant species Ryania speciosa, exerts a strong insecticidal activity,
acting at the sarcoplasmic reticulum, with ryanodine receptors influencing the secretion of
Ca2+ [74]. Moreover, sabadilla alkaloids are agonists of Na+ channels in a similar manner
to pyrethrins, causing neurotoxic effects on insect pests [75].

Essential oils: Their mode of action virtually depends on the main constituents
present in the respective plant oil as well as the targeted insect pest. Generally, it ranges
from repellent and antifeedant effects to neurotoxic effects [8,63] but also includes other
effects, such as growth and oviposition inhibition, ovicidal activities and growth-reducing
triggers on a variety of insects [64–68,76]. The acute activity against various pests is
characteristic of a predominant neurotoxic mode of action, while interference of oils with the
neuromodulator octopamine or with the GABA-gated chloride channels is evidenced [8,70].
However, the detailed biochemical mechanisms and synergisms triggered by essential oils
are incompletely understood.

Phenolics and O-heterocyclic compounds: Plant phenolics and related compounds
such as coumarines or anthraquinones are considered as an important defensive line
against insects [28,77–79]. They reduce insect activities through deterrent or antifeeding
effects. A large range of insects belonging to various orders, including aphids, Coleoptera,
Diptera, Lepidoptera and Orthoptera, appear to be sensitive [80]. At the protein level,
they provide inhibitory action on hydrolytic enzymes, such as pectinases, cellulases and
proteases. They can also inhibit the production of hydrolytic enzymes and the biosynthesis
of parasitic toxins. Conversely, they cause membrane alterations and inhibitions of the
electron transport chain [81].

Limonoids: The impacts of limonoids (e.g., azadirachtin) include antifeedant and/or
physiological effects [38]. Azadirachtin is a growth regulator that disturbs the hormone
system of insect pests by contact or ingestion [82]. The main mode of action is interference
with the endocrine system of insects, which leads to a disruption of the synthesis of
ecdysteroids (moulting hormones) and juvenile hormones. Moreover, limonoids block
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the release of morphogenetic peptide hormones, such as the prothoracicotropic hormone
(PTTH) from the corpora cardiaca [38,40,63]. As a result, abnormal or delayed moults
that are incompatible with the insects’ lifestyle and reduced growth can be seen upon
azadirachtin treatment in many different insect species. Moreover, growth regulatory (IGR)
effects due to azadirchatin can result in growth reduction, mortality increase, sterility,
abnormal/delayed moults, and interference with cellular and metabolic processes (such
as protein and hormone synthesis) [40,83,84]. In contrast to other botanical insecticides as
well as to synthetic chemical insecticides, azadirachtin seems to act as a plant stimulant,
which can lead to higher (crop) yields [85].

Pyrethrins: Pyrethrins exhibit a neurotoxic mode of action by interfering with the
ion channels of the insects, which are kept open and thus cause nerve impulses to fail [8].
In particular, pyrethrins interfere with the Na+, K+ exchange pump in nerve cells of
target pests, leading to rapid nerve impulses and causing paralysis [86]. This results
in a rapid knock-down effect in the insects and leads to death. If applied at low doses,
pyrethrins also act as repellents on flying insects [42,87]. Many studies have proven the
great efficacy of pyrethrins against various insect pests belonging to different orders, while
their—albeit moderate—toxicity against mammals and non-target insect species provides
some constraints for their broad usages [41].

3.2.1. Repellent Effects

Repellents are substances that act from a distance and repel the insects from the
treated plants or stored crops [8,88]. Due to their properties, natural repellents have been
used for centuries in many countries. In recent years, several studies have convincingly
demonstrated the repellent activities of plant products, including EOs (for review, see [89]).
For example, EOs extracted from Asteraceae species, such as Achillea millefolium, Artemisia
absinthium, Santolina chamaecyparissus, Tanacetum patula and T. vulgare, exhibited anti-settling
activity when used against Myzus persicae females (green peach aphids) [90], and EOs from
aniseed, lemongrass and peppermint were repellent against Rhopalosiphum padi [91].

Nevertheless, there are drawbacks in relation to the use of EO repellents, especially
due to their volatility, low water solubility and oxidizability. However, the use of these
compounds in nanoparticles could solve, to some extent, such limitations by reducing their
degradation rate and increasing their residuality through evaporation prevention [92].

3.2.2. Antifeedant Effects

Antifeedants are defined as compounds that “reduce consumption by an insect”
or as “a peripherally mediated behaviour modifying substance (i.e., acting directly on
the chemosensilla in general and deterrent receptors in particular) resulting in feeding
deterrence” [93]. There is a strong thought that various plants remaining unattacked by
insects possess a high content of antifeedant compounds [94]. In the 1970s and 1980s, the
idea of applying insect antifeedants (“feeding deterrents”) gained ground by demonstrating
the feeding deterrent effects of azadirachtin and neem seed extracts to numerous pest
species [8]. However, antifeedant effects are not restricted to azadirachtin but include many
terpenes and terpenoids [95], as well as phenolics and flavonoids [96]. As an example,
Zhang et al. [97] reported that ginsenosides, triterpenoid saponines from Panax ginseng,
possess potent antifeedant activities against Pieris rapae. Singh and Kaur [98] revealed
that saponins act as insecticidal compounds due to their high toxicity to insect pests.
Akhtar et al. [99] reported that naphthoquinones are effective feeding deterrents to the
cabbage looper Trichoplusia ni.

Different molecular mechanisms may be involved in these antifeedant effects. It has
been assumed that phenolic compounds inhibit important enzymes, such as proteases
and other digestive hydrolases, and polyphenol oxidases (PPOs) [100], thereby decreasing
the digestibility of nutritional proteins [101]. For example, multiple antifeedant actions
of Calceolaria integrifolia were attributed to inhibition of phenol oxidase, proteinase or
tyrosinase, to cuticle synthesis inhibition and to moulting sclerotization toxicity [102]. Some
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mechanisms by which compounds from bitter gourd extracts repel insects and alter their
physiology were explained in a recent study [103]. It was found that transgenic flies with
impaired aversive taste sensitive neurons exhibited a decreased aversion when exposed
to bitter gourd extract, indicating that the bitter-sensitive gustatory neurons depend on
these compounds.

3.2.3. Toxic Effects

The toxic effects of plant bioactive compounds are quite complex and rely on the
chemical composition, the kind of insect pest, and the developmental stage of the insect [58].
In particular, the toxicity of plant EOs or extracts is mainly associated with the receptors
and channels in the nervous system of insects, e.g., by affecting their γ-aminobutyric
acid (GABA)-gated chloride and sodium channels, acetylcholinesterase (AChE), nicotinic
receptors for acetylcholine (nAChR), octopamine and tyramine receptors [34,58,63].

AChE is a crucial enzyme in terminating the nerve impulse through the hydrolysis
of neurotransmitters. Approximately 70% of the world market for insecticides is based
on synthetic AChE inhibitors (organophosphates, carbamates and, more recently, neoni-
cotinoids), including those insecticides acting on the voltage-gated sodium channels (in
particular, pyrethrins) [104]. In recent years, a new area of biopesticides development was
the detection of less harmful (for humans, other mammals, and the environment) natural
compounds acting on insect nAChR by inhibiting their AChE activity.

Several EOs from aromatic plants, mostly monoterpenes, were shown to act as efficient
AChE inhibitors in various insects [28]. More specifically, 1,8-cineole, carvone, linalool,
α-pinene and phenolic compounds exhibited great toxicity via AChE inhibition [105].
Fenchone, S-carvone and linalool followed by estragole were also shown to efficiently
inhibit AChE of stored-product pests under in vitro conditions [106].

The toxicity of alkaloids is also based on their anti-cholinesterase activity in the central
nervous system, on disrupting cell membranes by interacting with the 3β-hydroxysterols of
the membranes, and on modulating the active transport of ions through membranes, finally
leading to metabolic dysfunction [107]. As an example, the alkaloids berberine, palmatine
and sanguinarine were shown to substantially affect AChE, choline acetyl-transferase,
butyrylcholinesterase, alpha 1- and alpha 2-adrenergic, nicotinergic, muscarinergic and
serotonin-2 receptors in Periplaneta americana via interaction with nAChRs [28].

In this context, synergistic effects (“entourage effects”) could occur when dealing with
complex mixtures of bioactive constituents, for example, EOs or plant extracts containing
alkaloids plus terpenes or fatty acids. These mixtures are qualified to multiply the desired
insecticidal activities. This effect should also not be underestimated in preventing resistance
against pathogens and pests. Taking advantage from the entourage effect is probably
one of the most important benefits of future biopesticides based on botanical compound
mixtures [63,108,109].

3.2.4. Growth Regulation Effects: Larval Growth and Adult Reproduction

Plant secondary metabolites can confer properties similar to synthetic growth regula-
tors, such as teflubenzuron [110,111]. Acting as insect growth regulators (IGRs), phytochem-
icals influence the reproduction, development and metamorphosis of insects. These effects
can cause irreversible changes in their physiology and behaviour [112,113]. Numerous
bioactive compounds in plant extracts can affect the endocrine regulation of moulting and
metamorphosis and thereby act as IGRs. It was postulated that they probably have juvenile
hormone analogous (JHAs)-like properties [104].

As examples, extracts from Calceolaria talcana and Condalia microphylla were found
as efficient IGRs, with similar activity to phytoecdysteroids, as indicated by their strong
inhibition of the moulting process [114,115]. Their action is similar to juvenile hormone
mimics [115]. The effect of azadirachtin on the growth and developmental stages of larvae
with interference on ecdysone and juvenile hormone regulation has also been documented
in various insects [116]. Muema et al. [117] suggested that morphological aberrations in
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mosquito larvae associated with IGRs from Zanthoxylum chalybeum are due to impacts on
the ecdysteroid pathway, finally inducing larval retardation.

Quiroz-Carreño et al. [118] reported that the benzylisoquinoline alkaloids coclau-
rine, laurolitsine, boldine and pukateine could interact with the heterodimer ecdysone
receptor. Endocrine disturbance could also be found in non-emergent adults or deformed
adults (adultoids), probably triggered by plant extracts containing phytoecdysteroids or
terpenoids that act as JHAs [119].

Many previous studies reported that some EOs and plant extracts from various species
have strong effects on the reproduction of insects by reducing adults’ weight, the longevity
of females, fecundity and fertility, and egg hatchability, or by increasing neonate larval
mortality [120,121]. IGRs can also change metabolic pathways, leading to ultrastructural
and morphological malformations, modifying the duration of larval, pupal, and imaginal
development, showing deterrent activity and finally leading to insect death [122]. For
example, a decrease in oviposition of Damalinia limbata was detected in neem-exposed
female lice. Abdellaoui et al. [123] reported that the application of olive leaf extract (OLE)
resulted in decreased fecundity and fertility and limited oocyte growth during the first
gonadotropic cycle. Furthermore, OLE reduced the protein, lipid and carbohydrate content
of ovaries, indicating a disruption in the embodiment of the haemolymph substrates in the
oocytes and interference with the vitellogenic process.

These examples underline that reproduction and hormonal regulation in insects are
key targets for the development of novel insecticides [124]. Acquired resistance to plant-
derived IGRs is extremely difficult to be developed by insects since these compounds quite
efficiently mimic the natural insect hormones [125]. Thus, plant compounds acting as IGRs
may provide the most promising source for the development of novel bioinsecticides [126].

3.2.5. Metabolic Effects

Many of the effects described above are also associated with a reprogramming of
the core carbon and nitrogen metabolism of the insects. For example, toxic effects due to
inhibition of hydrolytic enzymes or effects upon hormonal signalling cascades finally end
in changes of substrate usages and/or the rerouting of metabolic fluxes. It appears that
metabolic targets are under-represented in the classes of insecticides and, therefore, have
high potential for the discovery of novel bioinsecticides based on new modes of action.

In support of this hypothesis, a recent study using metabolomics investigated the
effect(s) of azadirachtin on Helicoverpa armigera larvae [83]. It was revealed that the levels of
most metabolites were remarkedly affected, underlining the complete reprogramming of
the core metabolism. Similarly, protein levels were changed. Those proteins associated with
immunity, RNA processing, and protein synthesis were upregulated, while proteins associ-
ated with amino acid storage, defence mechanisms, energy transfer and lipid metabolism
were downregulated [83]. This seminal study also showed that H. armigera is unable to me-
tabolize azadirachtin; thus, the insect could not neutralize the toxic effects of azadirachtin.
Another study reported a significant reduction of the quantity and relative composition of
fatty acids as well as the downregulation of carbohydrate metabolism in Bactrocera dorsalis,
due to azadirachtin treatment [84].

4. Botanical Herbicides
4.1. State of the Art

Several extracts from plants have been described to exhibit herbicidal activities
(Table S3). The genus Syzygium, family Myrtaceae, contains various species, such as
Syzygium aromaticum, syn. Eugenia caryophyllus [127–129]. The main phytotoxic com-
pounds from Syzygium sp. (clove essential oil) are β-caryophyllene, eugenol, and eugenol
acetate [128–131]. For example, eugenol inhibited the root growth of Avena fatua [132], Abu-
tilon theophrasti, Amaranthus spp., broccoli (Brassica oleracea), Chenopodium album [133,134],
Portulaca oleracea, and Urtica urens [134]. Additionally, it inhibited the seedling growth of
Chenopodium album, Melilotus indicus, Raphanus raphanistrum, Sisymbrium irio [131], Amaran-
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thus retroflexus, and Brassica oleracea [133]. Both clove oil and particularly eugenol exhibited
herbicidal effects on broccoli leaf, although the presence of leaf epicuticular wax greatly
reduced the retention of these oils [133]. Several bioherbicides based on clove oil are now
available (Table S4).

The genus Cymbopogon, family Poaceae, contains more than 140 species of tropical and
subtropical plants cultivated in Asia, South America, Australia and Africa [135]. Several
species, such as Cymbopogon citratus, C. nardus and C. winterianus, exhibit phytotoxic ef-
fects. The phytotoxic effect of Cymbopogon-derived herbicides is attributed to the presence
of citronellal, geraniol and citronellol and are well documented against germination of
wheat seeds, Ageratum conyzoides, Amaranthus tricolor, Cassia occidentalis, Cenchrus echi-
natus, Chenopodium album, Digitaria horizontalis, Malvastrum coromandelianum, Parthenium
hysterophorus, and little seed canary grass [136], as well as Amaranthus thaliana and Senecio
jacobaea leaves [137].

The genus Cinnamomum, family Lauraceae, is an important fragrant spice plant con-
taining more than 250 evergreen trees [138,139]. The commonly known cinnamon being
of Indian, Australian and Asian origin is cultivated currently in West Indies, South Amer-
ica and further tropical climates [138]. Species of cinnamon include Cinnamomum verum,
C. zeylanicum and Cinnamon cassiacae [138,140]. The main bioactive substances of cinnamon
essential oil are eugenol and trans-cinnamic aldehyde [137,138,141]. Cinnamon exhibited
herbicidal effects on Ageratum conyziodes, Amarantus retroflexus, Ambrosia artemisiifolia, Bidens
pilosa, Cassia occidentalis, Chenopodium album, Commelina benghalensis, Echinochloa crus-galli,
Leptochloa chinensis, Lolium spp., Phalaris minor, Sinapis arvensis, Sorghum halepense, and Tarax-
acum officinale [132,142–144]. Cinnamon essential oil also inhibited the seed germination of
Amaranthus tricolor and Echinochloa crus-galli [137,145].

The genus Eucalyptus, family Myrtaceae, is a plant originating from Australia, which
is currently cultivated in subtropical areas and in the Mediterranean region and includes
more than 800 species [146]. Various species, such as Eucalyptus camaldulensis, E. citriodora
and E. globulus, were reported to exhibit herbicidal effects [146–148]. The harmful effects of
eucalyptus essential oil were affirmed for several plants, for example, Cassia occidentalis,
Lolium rigidum, Portulaca oleracea, Vicia sativa [149,150], Celtis occidentalis and Echinochloa
crus-galli [147], while causing inhibition of seed germination of Lactuca sativa, Pisum sativum,
Triticum durum, Zea mays [151], Acroptilon repens and Portulaca oleracea [152].

Leptospermum is a member of the Myrtaceae family that originated from Australia and
New Zealand [153,154]. It contains about 87 species, including L. lanigerum, L. liversidgei,
L. nitens, L. polygalifolium, L. scoparium, L. speciosum and L. whitei [153–157]. The herbicidal
activity of Leptospermum scoparium (manuka) is caused by high concentrations of herbicidal
β-triketones, especially leptospermone (see Figure 8) [156,158–160]. Manuka oil inhibited
the seedling growth of Amaranthus powellii, Digitaria sanguinalis, Eleusine coracana, pepper,
sweet corn and tomato [159,161]. Since there is only a small post-emergent effect of Manuka
oil on some crops, low doses can be used as selective herbicides, especially in pepper, sweet
corn and tomato field [159,161]. To the best of our knowledge, no bioherbicides containing
Manuka oil as an active ingredient are currently offered.

The genus Ocimum, family Lamiaceae, is an herbaceous plant that thrives in India,
Thailand and the Mediterranean area [162]. This family contains about 160 species, in-
cluding Ocimum basilicum, O. gratissimum and O. sanctum [163,164]. The main components
that are responsible for the phytotoxic impacts on plants are, for example, geranial and
geraniol, linalool, methyl cinnamate and methyl eugenol [164–168]. The herbicidal effect
of Ocimum basilicum and O. tenuiflorum was documented for Echinochloa crus-galli, Lactuca
sativa, Lepidium sativum, Lolium multiflorum, Medicago sativa, and Phleum pretense, as well as
for seeds of Amaranthus spp., Cucumis sativus, Glycine max (soybean), Portulaca oleraceae, Zea
mays (maize), and Solanum lycopersicum [144,166,169,170]. Ocimum spp. are more effective
on post-emerged seeds and young weeds than on pre-emerged seeds [166], suggesting
that application in the field before germination of non-target plants could be propitious.
To confirm this strategy, a better understanding of the phytotoxic mechanisms is needed.
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To the best of our knowledge, no commercial bioherbicides based on basil essential oil
are available.

The genus Origanum, family Lamiaceae, originated in the Mediterranean basin, par-
ticularly from Spain and France. Origanum onites, O. vulgare subsp. hirtum, O. vulgare
subsp. vulgare and O. vulgare subsp. virens are the most common species of this fam-
ily [171,172]. Origanum vulgare essential oil has a high content of carvacrol, γ-terpinene
and thymol [171,173,174]. Carvacrol, as the main compound in Origanum vulgare essential
oil, has antigerminative functions against Alcea pallida, Amaranthus retroflexus, Capsicum
annuum, Centaurea solstitalis, Chenopodium album, Echinochloa crus-galli, Lactuca sativa, Lolium
perenne, Portulaca oleracea, Raphanus raphanistrum, Rumex crispus, R. nepalensis, and Sinapis
arvensis [144,149,173,175–178]. The application of Origanum onites and O. vulgare caused
inhibition of germination of Avena sterilis, Cucumis sativus, Sinapis arvensis, Solanum ly-
copersicum, and a number of wheat cultivars [149,169,171,179,180]. Although there are
many publications on the inhibitory effect of Origanum vulgare, as of now, no commercial
bioherbicides based on Oregano essential oil or carvacrol are available.

The genus Pelargonium, family Geraniaceae, has origins from India, Pakistan, and
South Africa [181–183]. It contains 250 species, including Pelargonium graveolens, P. reniforme,
and P. sidoides [182]. P. graveolens has a high content of essential oil [184,185], with citronellol,
citronellyl formate and trans-geraniol being its main components [138,182,186,187]. The
plant also contains pelargonic acid, showing post-emergent herbicidal effects towards
different broadleaf and grassy weeds, for example, in Abutilon theophrast, Avena fatua,
Brassica napus, Chenopodium spp., Portulaca oleracea, and many more [46–49]. Being a non-
selective bioherbicide makes it unsuitable for use in plantations, but it could be used as
a potential bioherbicide for a wide range of applications [47]. According to the European
Food Safety Authority (EFSA), pelargonic acid has no harmful effects on human or animal
health and is of relatively low risk to the environment [188]. Taking into account that
the herbicidal effect and environmental compatibility were officially confirmed, several
commercial bioherbicides based on pelargonic acid are now on the market (Table S4).
However, to the best of our knowledge, no commercial bioherbicide based on Pelargonium
essential oil is available.

The genus Thymus belongs to the Lamiaceae family and originates from Central and
South Europe [138]. Examples from the 21 species cultivated, e.g., in Bulgaria, Romania
and Iran, are Thymus callieri, T. serpyllum, and T. vulgaris [149,189,190]. Thyme essential oil
has a high content of carvacrol and thymol, as well as borneol [171,174,190], which seem to
be responsible for its herbicidal activity. Carvacrol shows post-emergent effects. It inhibited
Amaranthus retroflexus, Avena fatua, Echinochloa crus-galli, Erigeron bonariensis, and Portulaca
oleracea [48,191]. Thymus species also show pre-emergent allelopathic performance. Thymus
fontanesii inhibited seed germination of Avena fatua, Cyperus rotundus, Sinapis arvensis,
Sonchus oleraceus, and Xanthium strumarium [171]. Thymus proximus suppressed the seed
germination of Amaranthus retroflexus and Poa anuua [192]. Thymus algeriensis inhibited
Medicago sativa and Triticum astivum seedling growth [193]. Many other Thymus species
also showed phytotoxic effects to further herbs [192], indicating that thyme essential oil, in
general, has high herbicidal potential and can be used in a wide range of weeds. Thymol
and carvacrol were shown to be more phytotoxic than glyphosate, referring to the root
growth of Echinochloa crus-galli [191]. It also acted on some glyphosate-resistant weeds [48],
suggesting that thyme essential oil could be used especially on glyphosate-resistant weeds,
e.g., Portulaca oleracea [48].

The genus Lavandula, part of the Lamiaceae family, originates from the Mediterranean
region but is also currently cultivated in other countries [194,195]. There are several species
of lavender, for example Lavandula angustifolia, L. latifolia, and L. spica [195,196], showing a
variation in terpene composition. L. angustifolia, for example, being an important Lavandula
species, has a high content of linalool and linalyl acetate [194,197]. Further compounds
are 1,8-cineole and fenchone [175]. Linalool worked pre- and post-emergent on Cassia
occidentalis [198]. Certain Lavandula species showed allelopathic action in several plants.
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Lavandula spp. exhibited phytotoxicity against seeds of Amarantus retroflexus, Lolium spp.,
and Sinapis arvensis [142]. Lavandula stoechas and L. angustifolia reduced seed germination
of A. retroflexus and P. oleracea [175]. Lavandula x intermedia Emeric ex Loisel. cv. Super A
influenced the germination and seedling emergence of A. retroflexus, Rumex crispus, and
Sinapis arvensis [199]. Remarkably, Cicer arietinum, Helianthus annuus cv. Sirena, Solanum
lycopersicum, and Triticum aestivum cv. Gün-91 were not sensitive to lavender essential
oil [175,199], indicating that Lavandula species could work as a selective bioherbicide in
tomato fields and other cash crops [175]. To review if more cash crops react on treatment
with lavender essential oil, further investigations are needed. To the best of our knowledge,
no commercial bioherbicides are available that contain lavender essential oil.

4.2. Modes of Action of Botanical Herbicides

Eugenol: The phenylpropanoid eugenol is known to elicit the generation of active
oxygen species in plants, which leads to cell membrane damage and inhibition of photo-
synthesis. The enhanced activity of ROS-scavenging enzymes inhibits further metabolic
pathways [131–133,137,143,144].

Cinnamic aldehyde: In contrast to eugenol, cinnamic aldehyde does not peroxidate
lipids of the cell membrane but interacts with the integrated receptors on the surface,
leading to manipulation of ligand-based metabolic pathways [137,200].

Monoterpenes: The monoterpenes citronellal, citronellol and gerniol regulate the phos-
pholipid synthesis in the cytoplasmic membrane during oxidative stress, altering membrane
permeability and causing electrolyte losses [201]. Citronellal has a phytotoxic effect on both
seed germination and plants. It inhibits respiration, photosynthesis, and other metabolic
pathways. Correlating to other isoprene derivatives, citronellol releases reactive oxygen
species that induce oxidative stress on plants. Electrolyte leakage, caused by disrupted cell
membranes and reduced photosynthesis, are examples of manipulated metabolic pathways
that harm the target weed [137,183]. Citronellol inhibited seed germination of Ageratum
conyzoide, Amaranthus virdis and Cassia occidentalis [198,202,203]. Citronellal and citronellol
as pure substances proved to be more effective than the mixture in Cymbopogon essential
oil [136,137]. Negative synergism between citronellal and citronellol and possibly other
ingredients can be assumed. Notably, the phenylpropanoid cinnamic aldehyde seems to
respond faster on target plants than for citronellal and citronellol [137], suggesting that
cinnamon essential oil is a quickly working herbicide compared to citronella essential oil.
Therefore, mixing of lemongrass oil with other essential oils for potential synergistic effects
needs further investigations. The phytotoxicity of eucalyptus essential oil mainly refers
to the monoterpene 1,8-cineol, causing oxidative stress followed by membrane disruption
and electrolyte leakage [131,146,204]. It inhibits mitosis by inhibiting G1 phase and several
enzymes as p38, resulting in further metabolic interceptions, for example, in photosynthe-
sis and energy metabolism [148], which lead to cellular damage and death of the target
plant [205]. It was found that 1,8-cineol alone has only poor phytotoxic effects and increases
its adverse effects when combined with other components [150]. Therefore, it needs further
investigations to find out which combinations of terpenes or essential oils obtain the largest
herbicidal effects.

The monoterpenes carvacrol, γ-terpinene, and thymol are known to disrupt the cell
membrane and to influence several metabolic pathways, photosynthesis, cell respiration
and mitosis [171,206]. However, there is not much known about the exact mechanism of
carvacrol in plant metabolism [137], but it seems that this monoterpene deploys cytotoxic
effects [191,207] that harm several plants. Similar to other monoterpenes, carvacrol has
intense inhibitory effects on germination and seedling growth [179], suggesting that path-
ways other than photosynthesis are induced by carvacrol. Moreover, a release of reactive
oxygen molecules and resulting reprogramming of metabolic pathways could be assumed.

Linalool is a highly potent monoterpene, affecting several metabolic pathways. Similar
to other monoterpenes, linalool reduces photosynthesis, respiratory activity and alteration
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of water status [198]. Further ROS-connected manipulations of the plant’s metabolism,
such as enzyme inhibition and lipid oxidation, can be assumed [202].

Pelargonic acid: Pelargonic acid has a strong allelopathy effect [137,208] with even
higher herbicidal effects compared to citronellol [48,137].

β-Triketones: Herbicidal β-triketones, such as leptospermone from L. scoparium, regu-
late carotenoid synthesis by inhibiting para-hydroxyphenylpyruvate dioxygenase (HPPD),
an essential enzyme cofactor for plant defence systems [161]. Accordingly, Manuka oil
causes oxidative stress [209], which subsequently reduces photosynthesis and finally leads
to electrolyte leakage and to the death of the plant [161]. Leptospermone in Manuka
essential oil has a long persistence in the soil and remarkable synergistic effects with
other bioactive substances, leading to high efficiency in its herbicidal pre-emergent func-
tion [159,161]. Further studies are needed to explore the suitable concentrations and
combination of Manuka and other essential oils. Although some essential oils, such as
lemongrass and pine oil, display contact burn-down bioactivity, Manuka oil exhibited
systemic activity as well as a synergistic effect with pelargonic acid [210]. Leptospermone
has residual soil activity, suggesting its potential use as an organic herbicide [159].

5. Botanical Fungicides
5.1. State of the Art

Botanical fungicides have recently gained ground since they have less or no negative
impact compared to synthetic antifungal agents, including residual effects and induced
resistance. In this regard, they may be effective, selective, biodegradable or less toxic to
the ecosystem [211]. However, still only a limited number of botanical fungicides has been
authorized and commercialized [211] (Table S5).

Nevertheless, today’s farmers are increasingly aware of the hazards of synthetic fungi-
cides and are looking for botanical alternatives. Thus, the demand for botanical fungicides
is rapidly increasing, and there is ongoing research on the exploration of potential plants
having fungicidal activities, the development of effective extraction methods, and the
elucidation of the mode of action on target fungi.

5.2. Modes of Action of Botanical Fungicides

Phenolics: Research on botanical pesticides has shown that extracts from various
plants exerted activity against various phytopathogenic fungi without imposing negative
effects. According to Lattanzio et al. [212], the antifungal properties of phenolics are
attributed to their lipophilicity and/or the occurrence of the hydroxyl groups in their
structure. Due to their binding properties to adhesions and proteins, they are qualified to
disrupt membranes, inactivate enzymes and complex metal ions, thereby exhibiting toxic
effects upon fungi (Table 2) [213]. In particular, the lipophilicity of phenolics facilitates
penetration of the cytoplasmic membrane, whereas hydroxyl groups are involved in the
uncoupling of oxidative phosphorylation.

Table 2. Modes of action of phenolic and O-heterocyclic compounds on fungi.

Compound Remarks

Flavonoids Bind to adhesions
Phenol Substrate deprivation

Phenolic acids Membrane disruption
Quinones Bind to adhesions link to cell wall, enzyme inactivation

Tannins
Bind to proteins, bind to adhesions, membrane

disruption, enzyme inhibition, substrate deprivation
and metal ions complexation

Terpenes: To date, several terpenes have proven to be active against a wide variety
of fungal species [214]. Mendoza et al. [215] revealed that terpenes cause membrane
disruption in fungi, owing to their lipophilic properties. However, these compounds can
also induce structural alterations on hypha and mycelia, thereby lowering the production
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of toxins, e.g., aflatoxin and fumonisin produced by Aspergillus and Fusarium species,
respectively, resulting in reduced pathogenicity of mycotoxin-producing fungi [216].

Alkaloids: Zhou et al. [217] have shown by in vitro assays using plant extracts from
Veratrum taliense that the verazine and jerveratrum-type alkaloids exhibit strong suppressive
properties against the phytopathogenic oomycete Phytophthora capisis. This antioomycete
activity is due to the fact that these alkaloids intercalate into the cell wall and/or DNA [218].

6. Regulation of Biopesticides in the European Union

Directive 67/548/EEC on products that might affect human health and Directive
78/631/EEC on plant protection products were the main legislative documents providing
rules on the use of pesticides. In the EU, the authorization of plant protection agents initially
relied on Directives 91/414/EEC and 98/8/EC, concerning the placing of plant protection
and biocidal products on the market, respectively, as amended in Regulation (EU) No.
528/2012 on the authorization of biocides. Directive 91/414/EEC was further amended by
Directives 2001/36/EC and 2005/25/EC to include regulatory issues regarding microbial
biological control agents. Moreover, minimum requirements for biological control agents
used in organic farming are stated in Regulation (EU) No. 889/2008. Both agrochemicals
and biopesticides are enclosed under the term “plant protection products”.

Meanwhile, the Common Agricultural Policy (CAP), which regulates the use of pes-
ticides and give guidelines for more sustainable practices in the agricultural sector, the
Water Framework Directive (WFD), Regulation (EU) No. 396/2005 on upper residue limits
of pesticidal products in food and feed, the Waste Framework Directive, the Directive
on hazardous waste and the Directives on health and the safety of workers and on the
preservation of the biodiversity also affected the use of pesticides. Moreover, the Directives
for wild birds and habitats and on the preservation of the biodiversity proliferate the use of
biopesticides. Directive 1999/45/EC, on the classification and labelling identity of harm-
ful chemical preparations, should also be taken into consideration. In addition, specific
strategies were taken place in the Sixth Environmental Action Programme of the European
Council and Parliament to promote the sustainable use of pesticides through a thorough
analysis of the subject, focusing on identifying pressures on the environment and on the
selection of appropriate technological and law-based tools to face ecological concerns,
including legislative proposals, communication actions and impact assessment reports
(https://ec.europa.eu/environment/archives/ppps/pdf/pesticides_en.pdf accessed on
14 December 2021).

Directive 2009/127/EC, amending Directive 2006/42/EC, “with regard to machinery
for pesticide application”, Directive 2009/128/EC on the Sustainable Use of Pesticides,
Directive 2005/25 providing the evaluation principles for microbial plant protection prod-
ucts, as incorporated in Regulation (EU) No. 546/2011, Regulation (EU) No. 2017/1432,
amending Regulation (EU) No. 1107/2009 concerning market placement of plant protection
agents, Regulation (EU) No. 396/2005 “on maximum residue levels of pesticides” and
Regulation (EU) No. 284/2013 on the data requirements for phytoprotective products are
the main drivers in the authorization and use of plant protection products [219,220]. How-
ever, despite the important progress in the field of biological control agents, no revision of
data requirement for low-risk bioactive products was performed in Regulation (EU) No.
284/2013 from those reported in Directive 2001/36/EC [221]. The plant health Directive
2000/29/EC also influences the regulation status of biopesticides, whereas Regulation (EU)
No. 1143/2014 on Invasive Alien Species affects the authorization for non-indigenous or-
ganisms [222]. Regulation (EU) 1107/2009, which is the backbone in authorization process
of biopesticides, permits the option of registering biorationals either as “low-risk” or “basic”
substances, following the procedure described in article 22 and 23 of this Commission doc-
ument, respectively, providing two registration routes to SMEs (small- and medium-sized
enterprises) [223].

The EU Reflection Paper “Towards a Sustainable Europe by 2030” and the United Na-
tions 2030 Agenda and its Sustainable Development goals set as a priority the sustainable
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use of pesticides (file:///C:/Users/Asus/Downloads/NA0219035ENN.en.pdf accessed
on 14 December 2021). A response of the Commission Green Deal commitment towards
sustainable practices is the “Farm to Fork” and the “Biodiversity” strategies, promoting
a reduced use of agrochemicals, a fact that can promote biopesticide market growth. Ac-
cording to the evaluation report of Regulations (EU) No. 1107/2009 and No. 396/2005,
“The aim of EU legislation on pesticides is therefore not to eliminate pesticides but rather to
minimize their impact on human health and the environment through reduced dependency
on pesticides, alternative methods and through increased use of low risk and non-chemical
pesticides” [224], thus supporting initiatives for reducing dependency on chemical sub-
stances. In previous evaluations of the Regulation on plant protection products, the need
for further protecting the environment and human and animal health, together with the
necessity for enhanced transparency and independence of science, was denoted. The sec-
ond evaluation report also stated the need for more incentives and research on low-risk
solutions, whereas it required the reinforcement of the precautionary principle and the
implementation of hazard-based methods for authorization. Moreover, prevention and
monitoring of harmful organisms through protection actions, preference on non-chemical
approaches for pest management and reduction of pesticides levels and facing resistance
issues are the main topics of Directive 2009/128/EC [225].

7. Current Challenges in the Development and Registration of Biopesticides

There is less doubt that biopesticides have great potential to control insects and vector-
borne diseases, bacterial and fungal pathogens, and weeds. An expansion of biopesticides
over conventional pesticides is observed globally, with the global biopesticides market size
exceeding USD 4 billion at the outset of this decade, expecting to double by the year 2025,
with bioinsecticides being approximately half of the total biopesticide share [226]. More
than 1400 biopesticide registrations have been made worldwide [227], although a much
lower number of registrations are considered in Europe due to the complex regulatory
system in the EU. Besides, more than 200 biopesticide products are currently available in
the North American market, compared to approximately 60 in the EU [228].

Pyrethrum and azadirachtin are the main biopesticidal compounds in the global
biopesticide market, with pyrethrum representing ca. 80% of botanical insecticides world-
wide. Kenya is the leading country in pyrethrum production, providing ca. 70% of the
global share [229]. Regarding azadirachtin from neem seeds, India is a major neem oil
producer with more than 2.5 lakh tones [229].

Regulation stringency in using chemical pesticides, environmental and safety consid-
erations, and new technological achievements are among the factors boosting biopesticide
consumption and global market share. Besides, many countries in North Europe and North
America have possessed the political willingness in recent years to reduce conventional
pesticides by strengthening biopesticide consumption through restrictions in the use of
synthetic pesticides and investments in biological agents [230]. Conversely, the wide use
of biopesticides is still restricted compared to synthetic pesticides, due to lower acute
activity and higher degradation rate, higher production complexity, poor investment per-
formance, restricted formulation approaches, and past reputations for poor efficiency [231].
Moreover, regulations are still a drawback for the promotion of biopesticides in many
countries. Thus, a rapid and straightforward registration process and effective commu-
nication within registrants and authorities through easiness in exchanging knowledge
and information and improving organization can facilitate the expansion of the global
biopesticides market. Apart from the high demand for organic products in the USA, the
simplification of the registration submission process and the reduction in registration
fees by the US Environmental Protection Agency (US EPA) resulted in increased num-
bers of registrations of biopesticides (https://www.epa.gov/sites/default/files/2015-08/
documents/biopesticide-oversight-chapter_0.pdf accessed on 14 December 2021), being
a good paradigm to follow by the other countries [231]. The fact that the registration of
such products in countries such as the United States of America is less expensive and needs
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less time to prepare the application file and to obtain the registration certificate compared
to synthetic pesticides have also contributed to the penetration of the biopesticides to
pesticides markets outside the EU.

A concern has arisen regarding the low number of SMEs registering plant protection
products in Europe due to high requirements for authorization, with the stakeholders
to emphasize the disproportionation in authorization occurring for low-risk substrates,
such as biopesticides. Several researchers argue that European legislation on pesticides
was initially designed for chemical substrates and not for the approval of biopesticides
since the latter have distinct properties compared to synthetic pesticides [232]. Moreover,
segmentation and differences in the authorization process of biological agents are obsta-
cles to the registration in a higher number. Regarding biofertilizers, including microbial
biostimulants, their regulation relies on Regulation (EU) No. 2019/1009 on fertilizing prod-
ucts, while the authorization of biocides is based on Regulation (EU) No. 528/2012 [223].
Moreover, Regulation (EU) No. 2018/848 “on organic production and labelling of organic
products”, replacing Council Regulation (EU) No. 834/2007, handles issues regarding the
authorization of organic farming [233].

Enforcement of policies promoting natural biological products through legislative acts
can play a pivotal role in boosting the biopesticides market. For instance, a ban on the
use of chemical pesticides within the limits of cities in some municipalities led the federal
government of Canada to include such measures in the Pest Control Products Act, as the
consequence of the public’s awareness to abate pesticide application [230], creating new
opportunities for biopesticides market to cover the gap.

The adoption of biopesticides as reduced-risk products and the harmonization with
registration practices promoting biopesticide use as those followed by US EPA and pro-
posed by OECD can increase the relatively low number of commercially available biological
products, which is among the main drawbacks for the expansion of this safer pest manage-
ment approach [234]. Immature attempts in the past to develop novel biological agents,
mainly restricted to laboratory attempts of Universities’ consortia, and the still low share of
biopesticides in the pesticide market (less than 3%) [235] prevent large pesticide companies
from expanding their investment in this field. Besides, incompatibility in their laboratory
infrastructure and lack of expertise in microbial formulation and fermenter technology af-
fects their shift into developing biopesticide products. Easiness in the authorization process
can facilitate the further penetration of SMEs into the biopesticides market, resulting in an
increased number of bioactive products, simultaneously reducing the cost of production,
which is among the major obstacles in farmers’ acceptability [236]. Regarding farmers, the
effectiveness and reliability of biopesticides as compared to conventional agrochemicals
are among the major criteria for consideration. Conversely, SMEs that are interested in
biopesticides commercialization often present limitations in the infrastructure, investment
capital and scale-up knowledge. Financial support, facilitation in preparing registration
dossier and an up-to-date decision system is worth providing at early development stages
by the governmental and registration authorities. Moreover, an integrated plan to inform
growers of biopesticides availability, uses and advantages should be issued by public
authorities and private companies. Thus, collaboration and interaction among farmers,
SMEs, key pesticide companies, universities, consumers and authorities are needed to
enhance building capacity in the field of biopesticides development and to ensure the
scale-up and quality assurance of the novel biological products. OECD reports that an in-
creasing number of global initiatives have taken place to provide the legislative framework
towards a shift from chemical pesticide-based cultivations to more sustainable integrated
pest management systems, which have lower health risks for farmers and consumers, and
which have reduced environmental impact [237].

Conversely, the wide biodiversity of pesticidal plant species in Africa, which are
commonly used by low-income farmers to manage pests, suggests the existence of a
new market segment that caters to both resource-poor farmers and organic producers in
developed countries [5]. As an example, world pyrethrum production mainly relies on
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plant species commercially cultivated in Africa and specifically in Kenya, which covers
80% of global production [238]. Stevenson, Isman and Belmain [54] reported that several
indigenous pesticidal plant species are used in the Mediterranean region, including North
Africa, where the application of botanical pesticides with activity against arthropod pests
has been confirmed. In the last decade, an important number of scientific reports have
focused on optimizing the application of pesticide plant species at a smallholder farmer
level, especially in Africa.

Isman and Grieneisen [56] reported that the major obstacles for a broad adoption of
plant-derived pesticidal products are (i) the lack of scale-up paradigms in international
literature, (ii) the limited number of low-cost effective plant pesticidal products, (iii) the
strict legislative framework for authorization, (iv) the short persistence of many botanical
pesticides during application due to either evaporation or microbial degradation, and
(v) the variation in phytochemical composition of plant extracts and mixtures due also to
diverse climatic conditions that influence the extraction process, a fact that can result in
the production of pesticidal products of weaker activity. Sufficient quantities of pesticidal
plants at consistent availability should be guaranteed for scale-up development of botanical
insecticides. In addition, the recent achievements in chemical synthesis and extraction,
biochemical engineering, biotechnology, and molecular biology (e.g., DNA recombinant
technologies) can boost the development and commercialization of novel plant pesticidal
products [58].

Based on the current status of EU legislation on biopesticides, the following conclu-
sions can be drawn:

• Biopesticides and related products should be evaluated in a more biological and
ecological context.

• A simplification of authorization should be enacted to enhance the further penetration
of biopesticides into plant protection markets, shifting agriculture to more sustainable
integrated pest management systems.

• There is a need for unification of legislation for low-risk biologically based plant
protection products, separating their evaluation from conventional chemical pesticides,
with a focus on food safety, human health and protection of the environment.

• Financial and in-depth scientific support through research programmes should be
provided to facilitate SMEs to develop more biological control products and key
pesticides producers to switch to more sustainable products.

• Support of networking approaches and effective links within farmers, SMEs and the
industry will further stimulate the biopesticides market.
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Turkey (TÜBİTAK) (121N251 and 121N259), under the PRIMA Programme. PRIMA is an Art.185 ini-
tiative supported and co-funded under Horizon 2020, the European Union’s Programme for Research
and Innovation. This project is also partially funded by PerNaturam GmbH, Gödenroth, Germany.

https://www.mdpi.com/article/10.3390/biom12020311/s1
https://www.mdpi.com/article/10.3390/biom12020311/s1


Biomolecules 2022, 12, 311 22 of 30

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Maggi, F.; la Cecilia, D.; Tang, F.H.M.; McBratney, A. The global environmental hazard of glyphosate use. Sci. Total Environ. 2020,

717, 137167. [CrossRef]
2. Schrödl, W.; Krüger, S.; Konstantinova-Müller, T.; Shehata, A.A.; Rulff, R.; Krüger, M. Possible effects of glyphosate on Mucorales

abundance in the rumen of dairy cows in Germany. Curr. Microbiol. 2014, 69, 817–823. [CrossRef]
3. Krüger, M.; Basiouni, S.; Ederk, I.; Rodloff, A. Susceptibility of extended-spectrum ß-lactamase (ESBL)-producing Enterobacteri-

aaceae to Roundup. Ger. J. Microbiol. 2021, 1, 7–15. [CrossRef]
4. Suratman, S.; Edwards, J.W.; Babina, K. Organophosphate pesticides exposure among farmworkers: Pathways and risk of adverse

health effects. Rev. Environ. Health 2015, 30, 65–79. [CrossRef]
5. Sola, P.; Mvumi, B.M.; Ogendo, J.O.; Mponda, O.; Kamanula, J.F.; Nyirenda, S.P.; Belmain, S.R.; Stevenson, P.C. Botanical pesticide

production, trade and regulatory mechanisms in sub-Saharan Africa: Making a case for plant-based pesticidal products. Food
Secur. 2014, 6, 369–384. [CrossRef]

6. Isman, M.B. Bridging the gap: Moving botanical insecticides from the laboratory to the farm. Ind. Crops Prod. 2017, 110, 10–14.
[CrossRef]

7. Klein, R.A.; Dunkel, F.V. New pest management frontiers: Linking plant medicine to traditional knowledge. Am. Entomol. 2003,
49, 7–16. [CrossRef]

8. Isman, M.B. Botanical insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated world. Annu.
Rev. Entomol. 2006, 51, 45–66. [CrossRef]

9. Belmain, S.; Stevenson, P. Ethnobotanicals in Ghana: Reviving and modernising age-old farmer practice. Pestic. Outlook 2001, 12,
233–238.

10. Boeke, S.; Baumgart, I.; Van Loon, J.; Van Huis, A.; Dicke, M.; Kossou, D. Toxicity and repellence of African plants traditionally
used for the protection of stored cowpea against Callosobruchus maculatus. J. Stored Prod. Res. 2004, 40, 423–438. [CrossRef]

11. Wafukho, S.S.; Watiti, J.; Nang’ayo, F.; Masso, C.; Tarus, D. The building blocks for biofertiliser and biopesticides policymaking in
Africa. Policy Brief 2013, 2.

12. Regnault-Roger, C.; Philogène, B.J. Past and current prospects for the use of botanicals and plant allelochemicals in integrated
pest management. Pharm. Biol. 2008, 46, 41–52. [CrossRef]

13. Kaushik, B.D.; Kumar, D.; Shamim, M. Biofertilizers and Biopesticides in Sustainable Agriculture; Apple Academic Press and CRC
Press: Boca Raton, FL, USA, 2019.

14. Yadav, R.S.; Panwar, J.; Tarafdar, J.C.; Yadav, B.K.; Dave, S. Role of arbuscular mycorrhiza in dryland agriculture. Org. Agric. 2012,
119.

15. Hammad, A.M.A.; Bashir, H.A.A.A.; Abdelbagi, A.O.; Ishag, A.E.S.A.; Ali, M.M.Y.; Bashir, M.O.; Hur, J.-H.; Laing, M.D. Efficacy
of indigenous entomopathogenic fungi for the control of the tomato leafminer Tuta absoluta (Meyrick) in Sudan. Int. J. Trop. Insect
Sci. 2021, 2021, 1–11. [CrossRef]

16. Guijarro, B.; Larena, I.; Casals, C.; Teixidó, N.; Melgarejo, P.; De Cal, A. Compatibility interactions between the biocontrol agent
Penicillium frequentans Pf909 and other existing strategies to brown rot control. Biol. Control 2019, 129, 45–54. [CrossRef]

17. Lengai, G.M.; Muthomi, J.W.; Mbega, E.R. Phytochemical activity and role of botanical pesticides in pest management for
sustainable agricultural crop production. Sci. Afr. 2020, 7, e00239. [CrossRef]

18. Ahmad, W.; Singh, S.; Kumar, S. Phytochemical screening and antimicrobial study of Euphorbia hirta extracts. J. Med. Plants Stud.
2017, 5, 183–186.

19. Banthorpe, D.V. Classification of terpenoids and general procedures for their characterization. In Methods in Plant Biochemistry;
Charlwood, B.V., Banthorpe, D.V., Eds.; Academic Press: London, UK, 1991; Volume 7, pp. 1–41.

20. Reverchon, E.; Senatore, F. Isolation of rosemary oil: Comparison between hydrodistillation and supercritical CO2 extraction.
Flavour Fragr. J. 1992, 7, 227–230. [CrossRef]

21. Burt, S. Essential oils: Their antibacterial properties and potential applications in foods—a review. Int. J. Food Microbiol. 2004, 94,
223–253. [CrossRef]

22. Ippolito, A.; Nigro, F. Natural antimicrobials in postharvest storage of fresh fruits and vegetables. In Natural Antimicrobials for the
Minimal Processing of Foods; Roller, S., Ed.; Woodhead Publishing: Cambridge, UK, 2003; pp. 176–200.

23. Min, W.; Yi-Min, W.; Jin-Ming, G. Analysis of fatty acid and unsaponifiable matter from tartary buckwheat oil and buckwheat oil
by GC/MS. In Advances in Buckwheat Research, Proceedings of the 9th International Symposium on Buckwheat, Prague, Czech Republic,
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